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SOME RELATED FIXED POINT THEOREMS ON METRIC

SPACES

(COMMUNICATED BY VLADIMIR MULLER)

KARIM CHAIRA, EL MILOUDI MARHRANI AND MOHAMED AAMRI

Abstract. We give some generalizations of the B. Fischer fixed point theorem

(B. Fisher [7] ) for two mappings on metric spaces by using a function α
defined from [0,+∞[ into [0, 1[ and satisfies lim sup

t→t+o
α(t) < 1, for all to ≥

0. We study also the existence of solutions for a functional equation arising in

dynamic programming.

1. Introduction

In 1981, B. Fisher presented the following related fixed point theorem on com-
plete metric spaces:

Theorem 1.1 (B. Fischer [7]). Let (X, d) and (Y, δ) two metric spaces; we assume
that (X, d) is complete. Let T : X → Y and S : Y → X two mappings such that,
for all (x, y) ∈ X × Y ,{

d(Sy, STx) 6 c.Max{d(x, Sy); δ(y, Tx) : d(x, STx)}
δ(Tx, TSy) 6 c.Max{d(x, Sy); δ(y, Tx); δ(y, TSy)},

where c ∈ [0, 1[. Then there exists a unique pair (x∗, y∗) ∈ X×Y such that Tx∗ = y∗

and Sy∗ = x∗. And then STx∗ = x∗ and TSy∗ = y∗.

Recently, K. Chaira and El-Miloudi Marhrani proved the following results:

Theorem 1.2 (See [5]). Let (X, d) and (Y, δ) two metric spaces; we assume that
(X, d) is complete. Let T : X → Y and S : Y → X two mappings such that, for all
(x, y) ∈ X × Y,{

d(Sy, STx) 6 α(δ(y, Tx))Max{d(x, Sy); δ(y, Tx)}+ β(δ(y, Tx))d(x, STx)

δ(Tx, TSy) 6 α(d(x, Sy))Max {d(x, Sy); δ(y, Tx)}+ β(d(x, Sy))δ(y, TSy),

where α, β :[0,+∞[→ [0, 1[ are two functions satisfying

lim sup
t→t+0

(α(t)+ β(t)) < 1, for all t0 ∈ [0,+∞[.
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Then there exists a unique pair (x∗, y∗) ∈ X×Y such that Tx∗ = y∗ and Sy∗ = x∗;
and then, STx∗ = x∗ and TSy∗ = y∗.

Theorem 1.3 (See [10]). Let X be a non-empty set, d and δ two metrics on X;
and T : X → X a mapping such that:

(1) (X, d, δ) is an (M)-space
(2) For all x, y ∈ X, one of the conditions:

(i) d(x, Ty) ≤ δ(x, y)
(ii) δ(x, Ty) ≤ d(x, y)
implies {

d(Tx, Ty) ≤ α(δ(x, y))δ(x, y)

δ(Tx, Ty) ≤ α(d(x, y))d(x, y)

Then T has a unique fixed point in X.

In the present article, we give others generalizations of the B. Fischer results for
related fixed point theorem on metric spaces. And, we study the existence of a
solution for some functional equations arising in dynamic programming.

2. Main results

Let α be a function from [0,+∞[ into [0, 1[ such that lim sups→s+0
α(s) < 1 for

all s0 ∈ [0,+∞[.

Theorem 2.1. Let (X, d) and (Y, δ) be two metric spaces such that (X, d) is com-
plete. Let T : X → Y and S : Y → X be two mappings such that for each
(x, y) ∈ X × Y, one of the conditions:

(a): d(x, STx) ≤ d(x, Sy)
(b): δ(y, TSy) ≤ δ(y, Tx)

implies {
δ(Tx, TSy) ≤ α(d(x, Sy)) max{δ(y, TSy), d(x, Sy), δ(y, Tx)}
d(Sy, STx) ≤ α(δ(y, Tx)) max{d(x, STx), δ(y, Tx), d(x, Sy)}

Then, there exists a unique pair (x∗, y∗) ∈ X×Y such that Tx∗ = y∗ and Sy∗ = x∗;
and then STx∗ = x∗ and TSy∗ = y∗.

Proof. First step. Let x0 ∈ X; for all n ∈ IN, we define the sequences (xn)n and
(yn)n by yn = Txn and xn+1 = Syn. For all n ∈ IN, we have:

d(xn, STxn) = d(xn, xn+1) ≤ d(xn, Syn)

thus

δ(yn, yn+1) = δ(Txn, TSyn)
≤ α(d(xn, Syn)) max(δ(yn, TSyn), δ(yn, Txn), d(xn, Syn))
≤ α(d(xn, xn+1)) max(δ(yn, yn+1), d(yn, yn), d(xn, xn+1))

which gives
δ(yn, yn+1) ≤ α(d(xn, xn+1))d(xn, xn+1) (2.1)

For x = xn+1 and y = yn, we obtain

δ(yn, TSyn) = δ(yn, yn+1) ≤ δ(yn, Txn+1)

as above, we obtain

d(xn+1, xn+2) ≤ α(δ(yn, yn+1))δ(yn, yn+1) (2.2)
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It follows from (2.1) and (2.2) that the sequences (d(xn, xn+1))n and (δ(yn, yn+1))n
are decreasing and then convergent. By the hypothesis on α, we can deduce that
there exists k ∈ [0, 1[ such that{

d(xn+1, xn+2) ≤ kd(xn, xn+1)

δ(yn+1, yn+2) ≤ kδ(yn, yn+1)

for large integers. Therefore (xn)n and (yn)n are Cauchy sequences; then there
exists x∗ ∈ X such that limn→+∞ d(xn, x

∗) = 0.
Second step. Let y∗ = Tx∗; if limn δ(yn, y

∗) 6= 0, we obtain

δ(yn, TSyn) ≤ δ(yn, Tx∗)), for large integers n;

which implies

δ(Tx∗, TSyn) ≤ α(d(x∗, Syn) max{δ(yn, Tx∗), d(x∗, Syn)}
≤ hδ(yn, y∗)

for some h ∈ [0, 1[ and large integers n; which is a contradiction. And then
limn δ(yn, y

∗) = 0.
We have x∗ = Sy∗. For this, assume that x∗ 6= Sy∗. We have

d(xn, TSxn) ≤ d(Sy∗, xn), for large n;

which implies

d(Sy∗, xn+1) ≤ α(δ(y∗, yn) max{d(xn, xn+1), d(xn, Sy
∗), δ(y∗, yn)}

for large integers. And since lim supn α(δ(yn, y
∗)) < 1, there exists h ∈ [0, 1[ such

that
d(Sy∗, x∗) ≤ hd(x∗, Sy∗);

which leads to x∗ = Sy∗.
Third step. Uniqueness of x∗ and y∗.
Assume that there exists x ∈ X − {x∗} such that STx = x. We have d(x, STx) ≤
d(x, Sy∗); and then

δ(Tx, y∗) = δ(Tx, TSy∗)
≤ α(d(x, Sy∗) max{δ(y∗, TSy∗), δ(y∗, Tx), d(x, Sy∗)}
< d(x, Sy∗)

and
d(Sy∗, x) = d(Sy∗, STx)

≤ α(δ(y∗, Tx) max{d(x, STx), d(x, Sy∗), δ(y∗, Tx)}
< δ(y∗, Tx)

Thus, x = x∗.
In the same way, if there exists y ∈ Y − {y∗} such that TSy = y and since
0 = δ(y, TSy) ≤ δ(y, Tx∗), we obtain{

δ(Tx∗, y) = δ(Tx∗, TSy) < d(x∗, Sy)

d(Sy, x∗) = d(Sy, STx∗) < δ(y, Tx∗)

and we conclude that y = Tx∗ = y∗.

Remark. The theorem remain valid if we permute α(d(x, Sy)) and α(δ(y, Tx)).

Theorem 2.2. Let (X, d) and (Y, δ) be two metric spaces such that (X, d) is com-
plete; and let T : X → Y, S : Y → X two mappings such that for all (x, y) ∈ X×Y,
one of the condition
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(a): d(x, STx) ≤ d(x, Sy)
(b): δ(y, TSy) ≤ δ(y, Tx)

implies{
δ(Tx, TSy) ≤ α(δ(y, Tx)) max{d(x, STx), δ(y, TSy), d(x, Sy)}
d(Sy, STx) ≤ α(d(x, Sy)) max{d(x, STx), δ(y, TSy), δ(y, Tx)}

Then, there exists a unique pair (x∗, y∗) ∈ X×Y such that Tx∗ = y∗ and Sy∗ = x∗.
And then STx∗ = x∗ and TSy∗ = y∗.

Proof. First step: For x0 ∈ X, we define the sequences (xn)n and (yn)n by
yn = Txn and xn+1 = Syn, for all n ∈ IN.
For x = xn and y = yn, we have:

d(xn, STxn) = d(xn, xn+1) ≤ max{d(xn, Syn), δ(yn, Txn)}
Then

δ(Txn, TSyn) ≤ α(δ(yn, Txn)) max{d(xn, STxn), δ(yn, TSyn), d(xn, Syn)}
which implies

δ(yn, yn+1) ≤ α(0) max{d(xn, xn+1), δ(yn, yn+1), d(xn, xn+1)}
Therefore

δ(yn, yn+1) ≤ α(0)d(xn, xn+1)

For x = xn+1 and y = yn, we obtain:

δ(yn, TSyn) = δ(yn, yn+1) ≤ max{d(xn+1, Syn), δ(yn, Txn+1)}
which implies

d(xn+1, xn+2) ≤ α(d(xn+1, Syn)) max{d(xn+1, xn+2), δ(yn, yn+1), δ(yn, yn+1)}
and then

d(xn+1, xn+2) ≤ α(0)δ(yn, yn+1).

For k = (α(0))2, we obtain{
d(xn+1, xn+2) ≤ kd(xn, xn+1)

δ(yn+1, yn+2) ≤ kδ(yn, yn+1)

which shows that (xn)n and (yn)n are Cauchy sequences. And, since (X, d) is
complete, there exists x∗ ∈ X such that limn→+∞ d(xn, x

∗) = 0.
Second step. Let y∗ = Tx∗; and assume that limn δ(yn, y

∗) 6= 0.

δ(yn, TSyn) ≤ δ(yn, Tx∗), for large integers n.

δ(Tx∗, TSyn) ≤ α(δ(yn, Tx
∗) max{d(x∗, STx∗), δ(yn, TSyn), d(x∗, Syn)} (2.3)

d(Syn, STx
∗) ≤ α(d(x∗, Syn) max{d(x∗, STx∗), δ(yn, TSyn), δ(yn, Tx

∗)} (2.4)

From (2.4), we obtain

d(xn+1, Sy
∗) ≤ α(d(x∗, xn+1) max{d(x∗, STx∗), δ(yn, y

∗)}
for large integers.
Using the fact that (d(x∗, xn+1))n is convergent, there exists k ∈ [0, 1[ such that

d(xn+1, Sy
∗) ≤ kmax{d(x∗, Sy∗), δ(yn, y

∗)}
which leads to

d(xn+1, Sy
∗) ≤ kδ(yn, y∗)) (2.5)
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for large integers.
From (2.3), we obtain:

δ(y∗, TSyn) ≤ α(δ(yn, Tx
∗)) max{d(x∗, STx∗), δ(yn, TSyn), d(x∗, Syn)}

we can deduce

δ(y∗, yn+1) ≤ α(δ(yn, y
∗)) max{d(x∗, STx∗), δ(yn, yn+1), d(x∗, xn+1)} (2.6)

Using (2.5) and (2.6), we obtain

d(xn+1, Sy
∗) ≤ kδ(yn, y∗)) ≤ kd(x∗, Sy∗)

and then

d(x∗, Sy∗) ≤ kd(x∗, Sy∗), for large intergers

which gives Sy∗ = x∗; and consequently TSy∗ = y∗ and STx∗ = x∗.
With the same arguments as in the proof of the theorem 2.2, we obtain:

Theorem 2.3. Let (X, d) and (Y, δ) be two metric spaces such that (X, d) is com-
plete; and let T : X → Y, S : Y → X two mappings such that for all (x, y) ∈ X×Y,
one of the conditions:

(a): d(x, STx) ≤ d(x, Sy)
(b): δ(y, TSy) ≤ δ(y, Tx)

implies{
δ(Tx, TSy) ≤ α(δ(y, Tx)) max{d(x, STx), δ(y, TSy), δ(y, Tx)}
d(Sy, STx) ≤ α(d(x, Sy)) max{d(x, STx), δ(y, TSy), d(x, Sy)}

Then, there exists a unique pair (x∗, y∗) ∈ X×Y such that Tx∗ = y∗ and Sy∗ = x∗.
And then STx∗ = x∗ and TSy∗ = y∗.

Corollary 2.4. Let (X, d) and (Y, δ) be metric spaces such that (X, d) is complete,
T : X → Y and S : Y → X two mappings. If there exists r ∈ [0, 1[ such that, for
all (x, y) ∈ X × Y, one of the conditions:

(a): d(x, STx) ≤ d(x, Sy)
(b): δ(y, TSy) ≤ δ(y, Tx)

implies {
δ(Tx, TSy) ≤ r.max{d(x, STx); d(x, Sy); δ(y, Tx))}
d(Sy, STx) ≤ r.max{δ(y, TSy); δ(y, Tx); d(x, Sy)}

,

then, there exists a unique pair (x∗, y∗) ∈ X×Y such that Tx∗ = y∗ and Sy∗ = x∗.
Consequently, STx∗ = x∗ and TSy∗ = y∗.

Corollary 2.5. Let (X, d) be a complete metric space, δ a metric on X and T :
X → X a mapping such that for each (x, y) ∈ X2, one of the conditions:

(a): d(x, T 2x) ≤ d(x, Ty)
(b): δ(y, T 2y) ≤ δ(y, Tx)

implies {
d(Tx, T 2y) ≤ α(d(y, Tx)) max{d(x, T 2x), d(y, T 2y), δ(y, Tx)}
d(Ty, T 2x) ≤ α(d(x, Ty)) max{d(x, T 2x), d(y, T 2y), d(x, Ty)}

Then, there exists a unique element x∗ ∈ X such that Tx∗ = x∗.
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Proof. If we take S = T in theorem2.2, we obtain a pair (x∗, y∗) ∈ X ×X such
that Tx∗ = y∗, T y∗ = x∗ and then T 2x∗ = x∗.
On the other hand, we have

d(x∗, T 2x∗) = 0 ≤ d(x∗, Tx∗);

then

d(Tx∗, T 2x∗) = d(Tx∗, x∗)
≤ α(d(x∗, Tx∗)) max{d(x∗, T 2x∗), δ(x∗, T 2x∗), d(x∗, Tx∗)}
≤ α(d(x∗, Tx∗))d(x∗, Tx∗)

which gives Tx∗ = x∗.

Example 2.6. Let X = [0, 1] and define T and S by Tx = 1
3x

2 and Sy = 0, for
all x, y ∈ X. Let d the usual metric on X and α the function defined on [0,+∞[ by
α(t) = 2

3e
−t.

For δ = d, we obtain:

δ(Tx, TSy) = δ(
1

3
x2, 0) =

1

3
x2

and

α(δ(y, Tx)) max{d(x, STx), δ(y, TSy), d(x, Sy} =
2

3
e−|y−

1
3x

2|max{x, y}

If x ≤ y, we obtain:
1

3
x2e−

1
3x

2

≤ 1

3
y2e−

1
3y

2

≤ 2

3
ye−y,

for all y ∈ X. And then

δ(Tx, TSy) =
1

3
x2 ≤ 2

3
ye−(y−

1
3x

2

=
2

3
e−|y−

1
3x

2|max{x, y}

If y ≤ x; we have

x2e−
1
3x

2

≤ 2xe−x ≤ 2xe−y

and then
1

3
x2 ≤ 2

3
xe−(y−

1
3x

2) =
2

3
e−|y−

1
3x

2|max{x, y}

The second inequality is obvious since d(Sy, STx) = 0.
Note that TS and ST have a unique fixed point x∗ = 0.

Example 2.7. Let X = [0, 1] ∪ {5} with the usual metric; and S, T two mapping
on X defined by

Tx =

{
x+1
2 if x ∈ [0, 1]

7
8 if x = 5

Sy =

{
y
2 if x ∈ [0, 1]
1
2 if y = 5

Define α on [0,+∞[ by

α(t) =

{
0 if t = 33

8
1
2

(
1 + 1

2 sin2(t)
)

otherwise

We have δ(y, Tx) = 33
8 if and only if (x, y) = (5, 5) or (x, y) = (3

4 , 5) and d(x, Sy) 6=
33
8 , for all (x, y) ∈ X ×X.

For x = y = 5, we have

d(x, STx) =
73

16
and d(x, Sy) =

9

2
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d(y, TSy) =
17

4
and d(y, Tx) =

33

8
Note that

d(x, STx) > d(x, Sy) and d(y, TSy) > d(y, Tx)

For x = 3
4 and y = 5, we have

d(x, STx) =
5

16
> d(x, Sy) =

1

4

and

δ(y, TSy) =
17

4
> δ(y, Tx) =

33

8
For the other cases, we have

min{α(d(y, Tx)), α(d(x, Sy)} ≥ 1

2

Case of the theorem2.1:
If x, y ∈ [0, 1], we have{

|x− y
2 | ≤ max{|y − y+2

4 |; |x−
y
2 |; |y −

x+1
2 |}

|y − x+1
2 | ≤ max{|x− x+1

4 |; |x−
y
2 |; |y −

x+1
2 |}

For x = 5 and y ∈ [0, 1], we have{
| 34 −

y
2 | ≤ max{|y − y+2

4 |; |5−
y
2 |; |y −

7
8 |}

|y − 7
8 | ≤ max{|5− ST5|; |5− y

2 |; |y −
7
8 |}

For x ∈ [0, 1]− { 34} and y = 5, we have{
|x+1

2 −
3
4 | ≤ max{|5− ST5|; |x− 1

2 |; |5−
x+1
2 |}

| 12 −
x+1
4 | ≤ max{|x− x+1

4 |; |x−
1
2 |; |5−

x+1
2 |}

Then for all (x, y) ∈ X2 − {(5, 5), ( 3
4 , 5)}, we have{

δ(Tx, TSy) ≤ α(d(x, Sy)) max{δ(y, TSy), d(x, Sy), δ(y, Tx)}
d(Sy, STx) ≤ α(δ(y, Tx)) max{d(x, STx), δ(y, Tx), d(x, Sy)}

In the case of theorem2.2, we have:{
|x− y

2 | ≤ max{|x− x+1
4 |, |y −

y+2
4 |, |x−

y
2 |}

|y − x+1
2 | ≤ max{|x− x+1

4 |, |y −
y+2
4 |, |y −

x+1
2 |}

for all (x, y) ∈ [0, 1]× [0, 1].
For x = 5 and y ∈ [0, 1], we have | 34 −

y
2 | ≤ |5−

y
2 |; therefore{

| 34 −
y
2 | ≤ max{|5− ST5|, |y − TSy|, |5− Sy|}

|y − 7
8 | ≤ max{|x− x+1

4 |, |y −
y+2
4 |, |y −

7
8 |}

For x ∈ [0, 1]− { 34} and y = 5, we have

|x+ 1

2
− 3

4
| ≤ |x− 1

2
| and |1

2
− x+ 1

4
| ≤ |x− x+ 1

4
|;

therefore {
|x+1

2 −
3
4 | ≤ max{|x− Tx|, |5− TS5|, |x− 1

2 |}
| 12 −

x+1
4 | ≤ max{|x− x+1

4 |, |5− TS5|, |y − x+1
2 |}
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which leads to{
δ(Tx, TSy) ≤ α(δ(y, Tx)) max{d(x, STx), δ(y, TSy), d(x, Sy)}
d(Sy, STx) ≤ α(d(x, Sy)) max{d(x, STx), δ(y, TSy), δ(y, Tx)}

for all (x, y) ∈ X ×X − {(5, 5), ( 3
4 , 5)}.

We conclude that the hypothesis of the theorem 2.1 and theorem 2.2 are satisfied.
And we have T ( 1

3 ) = 2
3 , S( 2

3 ) = 1
3 , ST ( 1

3 ) = 1
3 and TS( 2

3 ) = 2
3 .

2.1. Application. Let E and F be two Banach spaces, W and D non empty sub-
set of E and D respectively. And consider two bounded mapping g : W ×D → IR
and G : W×D×IR→ IR. (W and D are the state and decision spaces respectively).
Some problems of dynamic programming implies the problem of solving the func-
tional equations: {

p(x) = supd∈D{g(x, d) +G(x, d, q(d))},
q(y) = supw∈W {g(w, y) +G(w, y, p(w))}

(2.7)

for all (x, y) ∈W ×D
Denote by B(W ) and B(D) the spaces of all real bounded functions on W and D
respectively, provided with the uniform metrics d∞,W and d∞,D respectively. And
define the functionals

A : B(W ) −→ B(D) and B : B(W ) −→ B(W )

by:

Ah(y) = sup
w∈W
{g(w, y)+G(w, y, h(w))} and Bk(x) = sup

d∈D
{g(x, d)+G(x, d, k(d))}

for all (h, k) ∈ B(W )× B(D) and (x, y) ∈W ×D.
Assume that for all (w, x1, x2) ∈W 3 and (d, y1, y2) ∈ D3, one of the conditions
(i) |h(w)−BAh(w)| ≤ d∞,W (h,Bk)
(ii) |k(d)−ABk(d)| ≤ d∞,D(k,Ah)
implies 

|(g(w, y1)− g(w, y2)) + (G(w, y1, Ah(y1))−G(w, y2, k(y2))|
6 rmax{|h(w)−BAh(w)|, |h(w)−Bk(w)|, |k(d)−Ah(d)|}
|(g(x1, d)− g(x2, d)) + (G(x1, d, Bk(x1))−G(x2, d, h(x2))|
6 rmax{k(d)−ABk(d), |h(w)−Bk(w)|, |k(d)−Ah(d)|}

Theorem 2.8. Under the above conditions, there exists a unique pair (h∗, k∗) in
B(W )× B(D) such that{

h∗(x) = supd∈D{g(x, d) +G(x, d, k∗(d)}
k∗(y) = supw∈W {g(w, y) +G(w, y, h∗(w)}

for (x, y) ∈W ×D; and then the functional equation (2.7) has a unique solution.

Proof. For ε > 0, (h, k) ∈ B(W )× B(D) and (x, y) ∈W ×D, we have
BAh(x) = sup

d∈D
{g(x, d) +G(x, d,Ah(d))}

Bk(x) = sup
d∈D
{g(x, d) +G(x, d, k(d))},
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Then there exists (d1, d2) ∈ D2 such that:{
BAh(x)− ε < g(x, d1) +G(x, d1, Ah(d1)) 6 BAh(x)

Bk(x)− ε < g(x, d2) +G(x, d2, k(d2)) 6 Bk(x).

And then,{
g(x, d1)− g(x, d2) +G(x, d1, Ah(d1))−G(x, d2, k(d2))− ε < BAh(x)−Bk(x)

BAh(x)−Bk(x) < g(x, d1)− g(x, d2) +G(x, d1, Ah(d1))−G(x, d2, k(d2)) + ε

Which gives,

|BAh(x)−Bk(x)| < |(g(x, d1)− g(x, d2)) + (G(x, d1, Ah(d1))
−G(x, d2, k(d2)))|+ ε

and there exists (w1, w2) ∈W 2 such that :

|ABk(y)−Ah(y)| < |(g(w1, y)− g(w2, y)) + (G(w1, y, Bk(w1))
−G(w2, y, h(w2)))|+ ε

Therefore, one of the conditions
(i) |h(x)−BAh(x)| ≤ d∞,W (h,Bk)
(ii) |k(y)−ABk(y)| ≤ d∞,D(k,Ah)
implies{
|BAh(x)−Bk(x)| < rmax{|h(x)−BAh(x)|, |h(x)−Bk(x)|, |k(y)−Ah(y)|}+ ε

|ABk(y)−Ah(y)| < rmax{k(y)−ABk(y), |h(x)−Bk(x)|, |k(y)−Ah(y)|}+ ε,

And then, for any (x, y) ∈ W × D, and an arbitrary ε > 0, one of the following
conditions

(i): d∞,W (h,BAh) 6 d∞,W (h,Bk)
(ii): d∞,D(k,ABk)} 6 d∞,D(k,Ah)

implies{
d∞,D(Bk,BAh) 6 rmax{d∞,W (h,BAh)|, d∞,W (h,Bk), d∞,D(k,Ah)}
d∞,W (Ah,ABk) 6 rmax{d∞,D(k,ABk)|, d∞,W (h,Bk), d∞,D(k,Ah)}

Therefore, there exists (h∗, k∗) ∈ B(W )×B(D) such that Ah∗ = k∗ and Bk∗ = h∗.
And then (h∗, k∗) is the unique bounded solution of the functional equation (7).
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