BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS ISSN: 1821-1291, URL: http://www.bmathaa.org Volume 7 Issue 2(2015), Pages 46-55.

SOME RELATED FIXED POINT THEOREMS ON METRIC SPACES

(COMMUNICATED BY VLADIMIR MULLER)

KARIM CHAIRA, EL MILOUDI MARHRANI AND MOHAMED AAMRI

ABSTRACT. We give some generalizations of the B. Fischer fixed point theorem (B. Fisher [7]) for two mappings on metric spaces by using a function α defined from $[0, +\infty[$ into [0, 1[and satisfies $\limsup_{t \to t_o^+} \alpha(t) < 1$, for all $t_o \geq 0$. We study also the existence of solutions for a functional equation arising in dynamic programming.

1. INTRODUCTION

In 1981, B. Fisher presented the following related fixed point theorem on complete metric spaces:

Theorem 1.1 (B. Fischer [7]). Let (X, d) and (Y, δ) two metric spaces; we assume that (X, d) is complete. Let $T : X \to Y$ and $S : Y \to X$ two mappings such that, for all $(x, y) \in X \times Y$,

$$\begin{cases} d(Sy, STx) \leqslant c.Max\{d(x, Sy); \delta(y, Tx) : d(x, STx)\}\\ \delta(Tx, TSy) \leqslant c.Max\{d(x, Sy); \delta(y, Tx); \delta(y, TSy)\}, \end{cases}$$

where $c \in [0, 1[$. Then there exists a unique pair $(x^*, y^*) \in X \times Y$ such that $Tx^* = y^*$ and $Sy^* = x^*$. And then $STx^* = x^*$ and $TSy^* = y^*$.

Recently, K. Chaira and El-Miloudi Marhrani proved the following results:

Theorem 1.2 (See [5]). Let (X, d) and (Y, δ) two metric spaces; we assume that (X, d) is complete. Let $T : X \to Y$ and $S : Y \to X$ two mappings such that, for all $(x, y) \in X \times Y$,

$$\begin{cases} d(Sy, STx) \leqslant \alpha(\delta(y, Tx)) Max\{d(x, Sy); \delta(y, Tx)\} + \beta(\delta(y, Tx))d(x, STx) \\ \delta(Tx, TSy) \leqslant \alpha(d(x, Sy)) Max\{d(x, Sy); \delta(y, Tx)\} + \beta(d(x, Sy))\delta(y, TSy), \end{cases}$$

where $\alpha, \beta: [0, +\infty[\rightarrow [0, 1]]$ are two functions satisfying

$$\limsup_{t \to t_0^+} (\alpha(t) + \beta(t)) < 1, \quad \text{for all } t_0 \in [0, +\infty[.$$

²⁰⁰⁰ Mathematics Subject Classification. 47H10, 54H25.

Key words and phrases. Complete metric space; Fixed point theorem.

^{©2015} Universiteti i Prishtinës, Prishtinë, Kosovë.

Submitted August 1, 2007. Published January 2, 2008.

Then there exists a unique pair $(x^*, y^*) \in X \times Y$ such that $Tx^* = y^*$ and $Sy^* = x^*$; and then, $STx^* = x^*$ and $TSy^* = y^*$.

Theorem 1.3 (See [10]). Let X be a non-empty set, d and δ two metrics on X; and $T: X \to X$ a mapping such that:

 $\begin{array}{ll} (1) & (X,d,\delta) \text{ is an } (M)\text{-space} \\ (2) & For all \, x, y \in X, \text{ one of the conditions:} \\ (i) & d(x,Ty) \leq \delta(x,y) \\ (ii) & \delta(x,Ty) \leq d(x,y) \\ \text{ implies} \\ & \begin{cases} d(Tx,Ty) \leq \alpha(\delta(x,y))\delta(x,y) \\ \delta(Tx,Ty) \leq \alpha(d(x,y))d(x,y) \end{cases} \end{array}$

Then T has a unique fixed point in X

In the present article, we give others generalizations of the B. Fischer results for related fixed point theorem on metric spaces. And, we study the existence of a solution for some functional equations arising in dynamic programming.

2. Main results

Let α be a function from $[0, +\infty[$ into [0, 1[such that $\limsup_{s \to s_0^+} \alpha(s) < 1$ for all $s_0 \in [0, +\infty[$.

Theorem 2.1. Let (X, d) and (Y, δ) be two metric spaces such that (X, d) is complete. Let $T : X \to Y$ and $S : Y \to X$ be two mappings such that for each $(x, y) \in X \times Y$, one of the conditions:

(a): $d(x, STx) \leq d(x, Sy)$ (b): $\delta(y, TSy) \leq \delta(y, Tx)$

implies

$$\begin{cases} \delta(Tx, TSy) \le \alpha(d(x, Sy)) \max\{\delta(y, TSy), d(x, Sy), \delta(y, Tx)\} \\ d(Sy, STx) \le \alpha(\delta(y, Tx)) \max\{d(x, STx), \delta(y, Tx), d(x, Sy)\} \end{cases}$$

Then, there exists a unique pair $(x^*, y^*) \in X \times Y$ such that $Tx^* = y^*$ and $Sy^* = x^*$; and then $STx^* = x^*$ and $TSy^* = y^*$.

Proof. First step. Let $x_0 \in X$; for all $n \in \mathbb{N}$, we define the sequences $(x_n)_n$ and $(y_n)_n$ by $y_n = Tx_n$ and $x_{n+1} = Sy_n$. For all $n \in \mathbb{N}$, we have:

$$d(x_n, STx_n) = d(x_n, x_{n+1}) \le d(x_n, Sy_n)$$

thus

$$\delta(y_n, y_{n+1}) = \delta(Tx_n, TSy_n) \leq \alpha(d(x_n, Sy_n)) \max(\delta(y_n, TSy_n), \delta(y_n, Tx_n), d(x_n, Sy_n)) \leq \alpha(d(x_n, x_{n+1})) \max(\delta(y_n, y_{n+1}), d(y_n, y_n), d(x_n, x_{n+1}))$$

which gives

$$\delta(y_n, y_{n+1}) \le \alpha(d(x_n, x_{n+1}))d(x_n, x_{n+1})$$
(2.1)

For $x = x_{n+1}$ and $y = y_n$, we obtain

$$\delta(y_n, TSy_n) = \delta(y_n, y_{n+1}) \le \delta(y_n, Tx_{n+1})$$

as above, we obtain

$$d(x_{n+1}, x_{n+2}) \le \alpha(\delta(y_n, y_{n+1}))\delta(y_n, y_{n+1})$$
(2.2)

It follows from (2.1) and (2.2) that the sequences $(d(x_n, x_{n+1}))_n$ and $(\delta(y_n, y_{n+1}))_n$ are decreasing and then convergent. By the hypothesis on α , we can deduce that there exists $k \in [0, 1]$ such that

$$\begin{cases} d(x_{n+1}, x_{n+2}) &\leq k d(x_n, x_{n+1}) \\ \delta(y_{n+1}, y_{n+2}) &\leq k \delta(y_n, y_{n+1}) \end{cases}$$

for large integers. Therefore $(x_n)_n$ and $(y_n)_n$ are Cauchy sequences; then there exists $x^* \in X$ such that $\lim_{n \to +\infty} d(x_n, x^*) = 0$.

Second step. Let $y^* = Tx^*$; if $\lim_n \delta(y_n, y^*) \neq 0$, we obtain

 $\delta(y_n, TSy_n) \leq \delta(y_n, Tx^*)),$ for large integers n;

which implies

$$\delta(Tx^*, TSy_n) \leq \alpha(d(x^*, Sy_n) \max\{\delta(y_n, Tx^*), d(x^*, Sy_n)\} \\ \leq h\delta(y_n, y^*)$$

for some $h \in [0, 1]$ and large integers n; which is a contradiction. And then $\lim_{n} \delta(y_n, y^*) = 0$.

We have $x^* = Sy^*$. For this, assume that $x^* \neq Sy^*$. We have

 $d(x_n, TSx_n) \le d(Sy^*, x_n),$ for large n;

which implies

$$d(Sy^*, x_{n+1}) \le \alpha(\delta(y^*, y_n) \max\{d(x_n, x_{n+1}), d(x_n, Sy^*), \delta(y^*, y_n)\}$$

for large integers. And since $\limsup_n \alpha(\delta(y_n, y^*)) < 1$, there exists $h \in [0, 1[$ such that

$$d(Sy^*, x^*) \le hd(x^*, Sy^*);$$

which leads to $x^* = Sy^*$.

Third step. Uniqueness of x^* and y^* .

Assume that there exists $x \in X - \{x^*\}$ such that STx = x. We have $d(x, STx) \le d(x, Sy^*)$; and then

$$\begin{aligned} \delta(Tx, y^*) &= \delta(Tx, TSy^*) \\ &\leq \alpha(d(x, Sy^*) \max\{\delta(y^*, TSy^*), \delta(y^*, Tx), d(x, Sy^*)\} \\ &< d(x, Sy^*) \end{aligned}$$

and

$$\begin{array}{ll} d(Sy^*,x) &= d(Sy^*,STx) \\ &\leq \alpha(\delta(y^*,Tx)\max\{d(x,STx),d(x,Sy^*),\delta(y^*,Tx)\} \\ &< \delta(y^*,Tx) \end{array}$$

Thus, $x = x^*$.

In the same way, if there exists $y \in Y - \{y^*\}$ such that TSy = y and since $0 = \delta(y, TSy) \leq \delta(y, Tx^*)$, we obtain

$$\begin{cases} \delta(Tx^*, y) = \delta(Tx^*, TSy) < d(x^*, Sy) \\ d(Sy, x^*) = d(Sy, STx^*) < \delta(y, Tx^*) \end{cases}$$

and we conclude that $y = Tx^* = y^*$.

Remark. The theorem remain valid if we permute $\alpha(d(x, Sy))$ and $\alpha(\delta(y, Tx))$.

Theorem 2.2. Let (X, d) and (Y, δ) be two metric spaces such that (X, d) is complete; and let $T : X \to Y$, $S : Y \to X$ two mappings such that for all $(x, y) \in X \times Y$, one of the condition

(a):
$$d(x, STx) \leq d(x, Sy)$$

(b): $\delta(y, TSy) \leq \delta(y, Tx)$

implies

$$\begin{cases} \delta(Tx, TSy) \le \alpha(\delta(y, Tx)) \max\{d(x, STx), \delta(y, TSy), d(x, Sy)\} \\ d(Sy, STx) \le \alpha(d(x, Sy)) \max\{d(x, STx), \delta(y, TSy), \delta(y, Tx)\} \end{cases}$$

Then, there exists a unique pair $(x^*, y^*) \in X \times Y$ such that $Tx^* = y^*$ and $Sy^* = x^*$. And then $STx^* = x^*$ and $TSy^* = y^*$.

Proof. First step: For $x_0 \in X$, we define the sequences $(x_n)_n$ and $(y_n)_n$ by $y_n = Tx_n$ and $x_{n+1} = Sy_n$, for all $n \in \mathbb{N}$. For $x = x_n$ and $y = y_n$, we have:

$$d(x_n, STx_n) = d(x_n, x_{n+1}) \le \max\{d(x_n, Sy_n), \delta(y_n, Tx_n)\}$$

Then

 $\delta(Tx_n,TSy_n) \leq \alpha(\delta(y_n,Tx_n)) \max\{d(x_n,STx_n),\delta(y_n,TSy_n),d(x_n,Sy_n)\}$ which implies

$$\delta(y_n, y_{n+1}) \le \alpha(0) \max\{d(x_n, x_{n+1}), \delta(y_n, y_{n+1}), d(x_n, x_{n+1})\}$$

Therefore

$$\delta(y_n, y_{n+1}) \le \alpha(0)d(x_n, x_{n+1})$$

For $x = x_{n+1}$ and $y = y_n$, we obtain:

$$\delta(y_n, TSy_n) = \delta(y_n, y_{n+1}) \le \max\{d(x_{n+1}, Sy_n), \delta(y_n, Tx_{n+1})\}$$

which implies

$$d(x_{n+1}, x_{n+2}) \le \alpha(d(x_{n+1}, Sy_n)) \max\{d(x_{n+1}, x_{n+2}), \delta(y_n, y_{n+1}), \delta(y_n, y_{n+1})\}$$

and then

$$d(x_{n+1}, x_{n+2}) \le \alpha(0)\delta(y_n, y_{n+1}).$$

For $k = (\alpha(0))^2$, we obtain

$$\begin{cases} d(x_{n+1}, x_{n+2}) \le k d(x_n, x_{n+1}) \\ \delta(y_{n+1}, y_{n+2}) \le k \delta(y_n, y_{n+1}) \end{cases}$$

which shows that $(x_n)_n$ and $(y_n)_n$ are Cauchy sequences. And, since (X, d) is complete, there exists $x^* \in X$ such that $\lim_{n \to +\infty} d(x_n, x^*) = 0$. Second step. Let $y^* = Tx^*$; and assume that $\lim_n \delta(y_n, y^*) \neq 0$.

 $\delta(y_n, TSy_n) \leq \delta(y_n, Tx^*)$, for large integers n.

$$\delta(Tx^*, TSy_n) \le \alpha(\delta(y_n, Tx^*) \max\{d(x^*, STx^*), \delta(y_n, TSy_n), d(x^*, Sy_n)\}$$
(2.3)

 $d(Sy_n, STx^*) \le \alpha(d(x^*, Sy_n) \max\{d(x^*, STx^*), \delta(y_n, TSy_n), \delta(y_n, Tx^*)\}$ (2.4) From (2.4), we obtain

$$d(x_{n+1}, Sy^*) \le \alpha(d(x^*, x_{n+1}) \max\{d(x^*, STx^*), \delta(y_n, y^*)\}$$

for large integers.

Using the fact that $(d(x^*, x_{n+1}))_n$ is convergent, there exists $k \in [0, 1]$ such that

$$d(x_{n+1}, Sy^*) \le k \max\{d(x^*, Sy^*), \delta(y_n, y^*)\}$$

which leads to

$$d(x_{n+1}, Sy^*) \le k\delta(y_n, y^*))$$
 (2.5)

for large integers. From (2.3), we obtain:

 $\delta(y^*, TSy_n) \le \alpha(\delta(y_n, Tx^*)) \max\{d(x^*, STx^*), \delta(y_n, TSy_n), d(x^*, Sy_n)\}$

we can deduce

$$\delta(y^*, y_{n+1}) \le \alpha(\delta(y_n, y^*)) \max\{d(x^*, STx^*), \delta(y_n, y_{n+1}), d(x^*, x_{n+1})\}$$
(2.6)

Using (2.5) and (2.6), we obtain

$$d(x_{n+1}, Sy^*) \le k\delta(y_n, y^*)) \le kd(x^*, Sy^*)$$

and then

$$d(x^*, Sy^*) \le kd(x^*, Sy^*)$$
, for large intergers

which gives $Sy^* = x^*$; and consequently $TSy^* = y^*$ and $STx^* = x^*$. With the same arguments as in the proof of the theorem 2.2, we obtain:

Theorem 2.3. Let (X, d) and (Y, δ) be two metric spaces such that (X, d) is complete; and let $T : X \to Y$, $S : Y \to X$ two mappings such that for all $(x, y) \in X \times Y$, one of the conditions:

(a):
$$d(x, STx) \le d(x, Sy)$$

(b):
$$\delta(y, TSy) \leq \delta(y, Tx)$$

implies

$$\begin{cases} \delta(Tx, TSy) \le \alpha(\delta(y, Tx)) \max\{d(x, STx), \delta(y, TSy), \delta(y, Tx)\} \\ d(Sy, STx) \le \alpha(d(x, Sy)) \max\{d(x, STx), \delta(y, TSy), d(x, Sy)\} \end{cases}$$

Then, there exists a unique pair $(x^*, y^*) \in X \times Y$ such that $Tx^* = y^*$ and $Sy^* = x^*$. And then $STx^* = x^*$ and $TSy^* = y^*$.

Corollary 2.4. Let (X, d) and (Y, δ) be metric spaces such that (X, d) is complete, $T: X \to Y$ and $S: Y \to X$ two mappings. If there exists $r \in [0, 1[$ such that, for all $(x, y) \in X \times Y$, one of the conditions:

(a): $d(x, STx) \le d(x, Sy)$

(b): $\delta(y, TSy) \leq \delta(y, Tx)$

implies

$$\begin{cases} \delta(Tx, TSy) \le r.max\{d(x, STx); d(x, Sy); \delta(y, Tx))\} \\ d(Sy, STx) \le r.max\{\delta(y, TSy); \delta(y, Tx); d(x, Sy)\} \end{cases}$$

,

then, there exists a unique pair $(x^*, y^*) \in X \times Y$ such that $Tx^* = y^*$ and $Sy^* = x^*$. Consequently, $STx^* = x^*$ and $TSy^* = y^*$.

Corollary 2.5. Let (X,d) be a complete metric space, δ a metric on X and T : $X \to X$ a mapping such that for each $(x,y) \in X^2$, one of the conditions:

(a):
$$d(x, T^2x) \le d(x, Ty)$$

(b):
$$\delta(y, T^2y) \leq \delta(y, Tx)$$

implies

$$\begin{cases} d(Tx, T^2y) \le \alpha(d(y, Tx)) \max\{d(x, T^2x), d(y, T^2y), \delta(y, Tx)\} \\ d(Ty, T^2x) \le \alpha(d(x, Ty)) \max\{d(x, T^2x), d(y, T^2y), d(x, Ty)\} \end{cases}$$

Then, there exists a unique element $x^* \in X$ such that $Tx^* = x^*$.

50

Proof. If we take S = T in theorem 2.2, we obtain a pair $(x^*, y^*) \in X \times X$ such that $Tx^* = y^*$, $Ty^* = x^*$ and then $T^2x^* = x^*$. On the other hand, we have

$$d(x^*, T^2x^*) = 0 \le d(x^*, Tx^*);$$

then

$$\begin{array}{ll} d(Tx^*, T^2x^*) &= d(Tx^*, x^*) \\ &\leq \alpha(d(x^*, Tx^*)) \max\{d(x^*, T^2x^*), \delta(x^*, T^2x^*), d(x^*, Tx^*)\} \\ &\leq \alpha(d(x^*, Tx^*)) d(x^*, Tx^*) \end{array}$$

which gives $Tx^* = x^*$.

Example 2.6. Let X = [0,1] and define T and S by $Tx = \frac{1}{3}x^2$ and Sy = 0, for all $x, y \in X$. Let d the usual metric on X and α the function defined on $[0, +\infty[$ by $\alpha(t) = \frac{2}{3}e^{-t}$.

For $\delta = d$, we obtain:

$$\delta(Tx, TSy) = \delta(\frac{1}{3}x^2, 0) = \frac{1}{3}x^2$$

and

$$\alpha(\delta(y,Tx))\max\{d(x,STx),\delta(y,TSy),d(x,Sy\} = \frac{2}{3}e^{-|y-\frac{1}{3}x^2|}\max\{x,y\}$$

If $x \leq y$, we obtain:

$$\frac{1}{3}x^2e^{-\frac{1}{3}x^2} \le \frac{1}{3}y^2e^{-\frac{1}{3}y^2} \le \frac{2}{3}ye^{-y},$$

for all $y \in X$. And then

$$\delta(Tx, TSy) = \frac{1}{3}x^2 \le \frac{2}{3}ye^{-(y-\frac{1}{3}x^2)} = \frac{2}{3}e^{-|y-\frac{1}{3}x^2|}\max\{x, y\}$$

If $y \leq x$; we have

$$x^2 e^{-\frac{1}{3}x^2} \le 2x e^{-x} \le 2x e^{-y}$$

and then

$$\frac{1}{3}x^2 \le \frac{2}{3}xe^{-(y-\frac{1}{3}x^2)} = \frac{2}{3}e^{-|y-\frac{1}{3}x^2|}\max\{x,y\}$$

The second inequality is obvious since d(Sy, STx) = 0. Note that TS and ST have a unique fixed point $x^* = 0$.

Example 2.7. Let $X = [0,1] \cup \{5\}$ with the usual metric; and S,T two mapping on X defined by

$$Tx = \begin{cases} \frac{x+1}{7} & \text{if } x \in [0, 1] \\ \frac{7}{8} & \text{if } x = 5 \end{cases}$$
$$Sy = \begin{cases} \frac{y}{2} & \text{if } x \in [0, 1] \\ \frac{1}{2} & \text{if } y = 5 \end{cases}$$

Define α on $[0, +\infty[$ by

$$\alpha(t) = \begin{cases} 0 & \text{if } t = \frac{33}{8} \\ \frac{1}{2} \left(1 + \frac{1}{2} \sin^2(t) \right) & otherwise \end{cases}$$

We have $\delta(y,Tx) = \frac{33}{8}$ if and only if (x,y) = (5,5) or $(x,y) = (\frac{3}{4},5)$ and $d(x,Sy) \neq \frac{33}{8}$, for all $(x,y) \in X \times X$. For x = y = 5, we have

$$d(x, STx) = \frac{73}{16}$$
 and $d(x, Sy) = \frac{9}{2}$

$$d(y, TSy) = \frac{17}{4}$$
 and $d(y, Tx) = \frac{33}{8}$

Note that

 $d(x,STx)>d(x,Sy) \quad and \quad d(y,TSy)>d(y,Tx)$

For $x = \frac{3}{4}$ and y = 5, we have

$$d(x, STx) = \frac{5}{16} > d(x, Sy) = \frac{1}{4}$$

and

$$\delta(y, TSy) = \frac{17}{4} > \delta(y, Tx) = \frac{33}{8}$$

For the other cases, we have

$$\min\{\alpha(d(y,Tx)), \alpha(d(x,Sy)\} \ge \frac{1}{2}$$

Case of the theorem 2.1:

If $x, y \in [0, 1]$, we have

$$\begin{cases} |x - \frac{y}{2}| &\leq \max\{|y - \frac{y+2}{4}|; |x - \frac{y}{2}|; |y - \frac{x+1}{2}|\}\\ |y - \frac{x+1}{2}| &\leq \max\{|x - \frac{x+1}{4}|; |x - \frac{y}{2}|; |y - \frac{x+1}{2}|\} \end{cases}$$

For x = 5 and $y \in [0, 1]$, we have

$$\begin{cases} |\frac{3}{4} - \frac{y}{2}| &\leq \max\{|y - \frac{y+2}{4}|; |5 - \frac{y}{2}|; |y - \frac{7}{8}|\}\\ |y - \frac{7}{8}| &\leq \max\{|5 - ST5|; |5 - \frac{y}{2}|; |y - \frac{7}{8}|\} \end{cases}$$

For $x \in [0,1] - \{\frac{3}{4}\}$ and y = 5, we have

$$\begin{cases} |\frac{x+1}{2} - \frac{3}{4}| &\leq \max\{|5 - ST5|; |x - \frac{1}{2}|; |5 - \frac{x+1}{2}|\} \\ |\frac{1}{2} - \frac{x+1}{4}| &\leq \max\{|x - \frac{x+1}{4}|; |x - \frac{1}{2}|; |5 - \frac{x+1}{2}|\} \end{cases}$$

Then for all $(x, y) \in X^2 - \{(5, 5), (\frac{3}{4}, 5)\}$, we have

$$\begin{cases} \delta(Tx, TSy) &\leq \alpha(d(x, Sy)) \max\{\delta(y, TSy), d(x, Sy), \delta(y, Tx)\} \\ d(Sy, STx) &\leq \alpha(\delta(y, Tx)) \max\{d(x, STx), \delta(y, Tx), d(x, Sy)\} \end{cases}$$

In the case of theorem 2.2, we have:

$$\begin{cases} |x - \frac{y}{2}| &\leq \max\{|x - \frac{x+1}{4}|, |y - \frac{y+2}{4}|, |x - \frac{y}{2}|\}\\ |y - \frac{x+1}{2}| &\leq \max\{|x - \frac{x+1}{4}|, |y - \frac{y+2}{4}|, |y - \frac{x+1}{2}|\} \end{cases}$$

for all $(x, y) \in [0, 1] \times [0, 1]$. For x = 5 and $y \in [0, 1]$, we have $|\frac{3}{4} - \frac{y}{2}| \le |5 - \frac{y}{2}|$; therefore

$$\begin{cases} |\frac{3}{4} - \frac{y}{2}| &\leq \max\{|5 - ST5|, |y - TSy|, |5 - Sy|\}\\ |y - \frac{7}{8}| &\leq \max\{|x - \frac{x+1}{4}|, |y - \frac{y+2}{4}|, |y - \frac{7}{8}|\} \end{cases}$$

For $x \in [0,1] - \{\frac{3}{4}\}$ and y = 5, we have

$$\left|\frac{x+1}{2} - \frac{3}{4}\right| \le |x - \frac{1}{2}|$$
 and $\left|\frac{1}{2} - \frac{x+1}{4}\right| \le |x - \frac{x+1}{4}|$;

therefore

$$\begin{cases} |\frac{x+1}{2} - \frac{3}{4}| &\leq \max\{|x - Tx|, |5 - TS5|, |x - \frac{1}{2}|\}\\ |\frac{1}{2} - \frac{x+1}{4}| &\leq \max\{|x - \frac{x+1}{4}|, |5 - TS5|, |y - \frac{x+1}{2}|\} \end{cases}$$

52

which leads to

$$\begin{cases} \delta(Tx, TSy) &\leq \alpha(\delta(y, Tx)) \max\{d(x, STx), \delta(y, TSy), d(x, Sy)\} \\ d(Sy, STx) &\leq \alpha(d(x, Sy)) \max\{d(x, STx), \delta(y, TSy), \delta(y, Tx)\} \end{cases}$$

for all $(x, y) \in X \times X - \{(5, 5), (\frac{3}{4}, 5)\}.$

We conclude that the hypothesis of the theorem 2.1 and theorem 2.2 are satisfied. And we have $T(\frac{1}{3}) = \frac{2}{3}$, $S(\frac{2}{3}) = \frac{1}{3}$, $ST(\frac{1}{3}) = \frac{1}{3}$ and $TS(\frac{2}{3}) = \frac{2}{3}$.

2.1. **Application.** Let *E* and *F* be two Banach spaces, *W* and *D* non empty subset of *E* and *D* respectively. And consider two bounded mapping $g: W \times D \to \mathbb{R}$ and $G: W \times D \times \mathbb{R} \to \mathbb{R}$. (*W* and *D* are the state and decision spaces respectively). Some problems of dynamic programming implies the problem of solving the functional equations:

$$\begin{cases} p(x) = \sup_{d \in D} \{g(x, d) + G(x, d, q(d))\}, \\ q(y) = \sup_{w \in W} \{g(w, y) + G(w, y, p(w))\} \end{cases}$$
(2.7)

for all $(x, y) \in W \times D$

Denote by $\mathbb{B}(W)$ and $\mathbb{B}(D)$ the spaces of all real bounded functions on W and D respectively, provided with the uniform metrics $d_{\infty,W}$ and $d_{\infty,D}$ respectively. And define the functionals

$$A: \mathbb{B}(W) \longrightarrow \mathbb{B}(D)$$
 and $B: \mathbb{B}(W) \longrightarrow \mathbb{B}(W)$

by:

$$Ah(y) = \sup_{w \in W} \{g(w, y) + G(w, y, h(w))\} \text{ and } Bk(x) = \sup_{d \in D} \{g(x, d) + G(x, d, k(d))\}$$

for all $(h, k) \in \mathbb{B}(W) \times \mathbb{B}(D)$ and $(x, y) \in W \times D$. Assume that for all $(w, x_1, x_2) \in W^3$ and $(d, y_1, y_2) \in D^3$, one of the conditions (i) $|h(w) - BAh(w)| \le d_{\infty,W}(h, Bk)$ (ii) $|k(d) - ABk(d)| \le d_{\infty,D}(k, Ah)$ implies

$$\begin{aligned} &\left\{ |g(w,y_1) - g(w,y_2)| + (G(w,y_1,Ah(y_1)) - G(w,y_2,k(y_2))| \\ &\leqslant r \max\{|h(w) - BAh(w)|, |h(w) - Bk(w)|, |k(d) - Ah(d)|\} \\ &\left| (g(x_1,d) - g(x_2,d)) + (G(x_1,d,Bk(x_1)) - G(x_2,d,h(x_2))| \\ &\leqslant r \max\{k(d) - ABk(d), |h(w) - Bk(w)|, |k(d) - Ah(d)|\} \end{aligned} \end{aligned}$$

Theorem 2.8. Under the above conditions, there exists a unique pair (h^*, k^*) in $\mathbb{B}(W) \times \mathbb{B}(D)$ such that

$$\begin{cases} h^*(x) = \sup_{d \in D} \{g(x, d) + G(x, d, k^*(d)) \\ k^*(y) = \sup_{w \in W} \{g(w, y) + G(w, y, h^*(w)) \} \end{cases}$$

for $(x, y) \in W \times D$; and then the functional equation (2.7) has a unique solution.

Proof. For $\varepsilon > 0$, $(h, k) \in \mathbb{B}(W) \times \mathbb{B}(D)$ and $(x, y) \in W \times D$, we have

$$\begin{cases} BAh(x) = \sup_{d \in D} \{g(x, d) + G(x, d, Ah(d))\} \\ Bk(x) = \sup_{d \in D} \{g(x, d) + G(x, d, k(d))\}, \end{cases}$$

Then there exists $(d_1, d_2) \in D^2$ such that:

$$\begin{cases} BAh(x) - \varepsilon < g(x, d_1) + G(x, d_1, Ah(d_1)) \leq BAh(x) \\ Bk(x) - \varepsilon < g(x, d_2) + G(x, d_2, k(d_2)) \leq Bk(x). \end{cases}$$

And then,

$$\begin{cases} g(x,d_1) - g(x,d_2) + G(x,d_1,Ah(d_1)) - G(x,d_2,k(d_2)) - \varepsilon < BAh(x) - Bk(x) \\ BAh(x) - Bk(x) < g(x,d_1) - g(x,d_2) + G(x,d_1,Ah(d_1)) - G(x,d_2,k(d_2)) + \varepsilon \end{cases}$$

Which gives,

$$\begin{split} |BAh(x) - Bk(x)| < & |(g(x, d_1) - g(x, d_2)) + (G(x, d_1, Ah(d_1)) \\ & -G(x, d_2, k(d_2)))| + \varepsilon \end{split}$$

and there exists $(w_1, w_2) \in W^2$ such that :

$$|ABk(y) - Ah(y)| < |(g(w_1, y) - g(w_2, y)) + (G(w_1, y, Bk(w_1))) - G(w_2, y, h(w_2)))| + \varepsilon$$

Therefore, one of the conditions

(i) $|h(x) - BAh(x)| \le d_{\infty,W}(h, Bk)$ (ii) $|k(y) - ABk(y)| \le d_{\infty,D}(k, Ah)$ implies

$$\begin{cases} |BAh(x) - Bk(x)| < r \max\{|h(x) - BAh(x)|, |h(x) - Bk(x)|, |k(y) - Ah(y)|\} + \varepsilon \\ |ABk(y) - Ah(y)| < r \max\{k(y) - ABk(y), |h(x) - Bk(x)|, |k(y) - Ah(y)|\} + \varepsilon, \end{cases}$$

And then, for any $(x, y) \in W \times D$, and an arbitrary $\varepsilon > 0$, one of the following conditions

(i):
$$d_{\infty,W}(h, BAh) \leq d_{\infty,W}(h, Bk)$$

(ii): $d_{\infty,D}(k, ABk) \leq d_{\infty,D}(k, Ah)$

implies

$$\begin{cases} d_{\infty,D}(Bk, BAh) \leqslant r \max\{d_{\infty,W}(h, BAh)|, d_{\infty,W}(h, Bk), d_{\infty,D}(k, Ah)\} \\ d_{\infty,W}(Ah, ABk) \leqslant r \max\{d_{\infty,D}(k, ABk)|, d_{\infty,W}(h, Bk), d_{\infty,D}(k, Ah)\} \end{cases}$$

Therefore, there exists $(h^*, k^*) \in \mathbb{B}(W) \times \mathbb{B}(D)$ such that $Ah^* = k^*$ and $Bk^* = h^*$. And then (h^*, k^*) is the unique bounded solution of the functional equation (7).

Acknowledgments. The authors would like to thank the anonymous referee for his/her comments that helped us improve this article.

References

- Abdelkrim Aliouche and Brian Fisher, A related fixed point theorem for two pairs of mappings on two complete metric spacs, Hacettepe J. Math. Statist. 34 (2005) 39–45.
- [2] Abdelkrim Aliouche and Brian Fisher, Fixed point theorems on three complete and compact metric spaces, Universitatea Din Bacan Studii Si Cercetari Seria Mathematica N. 17 (2007) 13–20.
- [3] S. Baskaran and P. V. Subrahmanyam, A note on the solution of class of fonctional equations, Applicable Analysis, vol. 22, N. 3-4 (1986) 235–241.
- [4] R. Bellman and E. S. Lee, Fonctional equations in dynamic programming, Aequationes Mathematicae, 17, 1 (1987) 1–18.
- [5] K. Chaira and El. Marhrani, Some related fixed point theorems for a pair of mapping on two metric spaces, Inter. Jour. of Pure and Applied Mathematics, Vol. 93, N2 (2014) 191–200.
- [6] L. B. Ciric, A generalization of Banach's contraction principle, proceeding of the American Mathematical Society, vol. 45(1974) 267–273.

54

- [7] B. Fisher, Fixed point on two metric spaces, Glasnik Mat, 16 (36) (1981) 333-337.
- [8] B. Fisher and P.P. Minphy, Related fixed points theorems for two pairs of mappings on two metric spaces, k. Yungpoole Math, J. 37 (1997) 343–347.
- [9] A. Meir and E. Keeler, "A theorem on contraction mappings", Journal of Mathematical Analysis and Applications, vol. 28 (1969) 326–329.
- [10] El. Marhrani and K. Chaira, Fixed point theorems in a space with two metrics, Advances in Fixed point theory 5, N. 1 (2015) 1–12.
- [11] R. K. Namdeo and B. Fisher, A related fixed points theorem for two pairs mappings on two metric spaces, Nonlineair Analysis Forum 8(1) (2003) 23–27.
- [12] O. Popescu, Two fixed point theorems for generalized contractions with constants in complete metric space, Central European Journal of Mathematics Vol. 7, N. 3 (2009) 529–538.
- [13] I. A. Rus, Generalized Contractions and Applications, Cluj University Press, Cluj Napoca, Romania, 2001.
- [14] K. P. R. Sastry and S. V. R. Naidu, Fixed point theorems for generalized contraction mappings, Yokohama Mathematical Journal, Vol. 28 N. 1-2(1980) 15–29.
- [15] S. L. Singh and S. N. Mishra, *Remarks on recent fixed point theorems*, Fixed Point theory and Applications (2010), Article ID 452905.
- [16] S. L. Singh, H. K. Pathak and S. N. Mishra, On a Suzuki type general fixed point theorem with applications, Fixed Point theory and Applications (2010) Article ID 234717.
- [17] Stojan Radenovic, Zoran Kadelburg, Davorka Jandrlic and Andrija Jandrlic, Some results on weakly contractive maps, Bulletin of the Iranian Mathematical Society, Vol. 38 N. 3(2012) 625–645.
- [18] T.Suzuki, " A generalized Banach contraction principle that characterises metric completeness", Proceeding of the American Mathematical Society, vol. 136, N.5 (2008) 1861-1869.
- [19] Tran Van An, Nguyen Van Dung, Zoran Kadelburg, and Stojan Radenovic, Various generalizations of metric spaces and fixed point theorems, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas (RACSAM), DOI 10. 1007/s13398-014-0173-7.

KARIM CHAIRA

CRMEF, RABAT-SALÉ-ZEMMOUR-ZAER, AVENUE ALLAL EL FASSI, BAB MADINAT AL IRFANE, BP 6210, 10000 RABAT (MOROCCO)

E-mail address: chaira_karim@yahoo.fr

El Miloudi Marhrani

UNIVERSITY HASSAN II OF CASABLANCA, FACULTY OF SCIENCE BEN M'SIK, DEPARTMENT OF MATH-EMATICS AND COMPUTER SCIENCE, P.B 7955, SIDI OTHMANE, CASABLANCA, MOROCCO. *E-mail address:* marhrani@gmail.com

Mohamed Aamri

UNIVERSITY HASSAN II OF CASABLANCA, FACULTY OF SCIENCE BEN M'SIK, DEPARTMENT OF MATH-EMATICS AND COMPUTER SCIENCE, P.B 7955, SIDI OTHMANE, CASABLANCA, MOROCCO.

 $E\text{-}mail\ address: \texttt{aamrimohamed9@yahoo.fr}$