# SOME RELATED FIXED POINT THEOREMS ON METRIC SPACES 

## (COMMUNICATED BY VLADIMIR MULLER)

KARIM CHAIRA, EL MILOUDI MARHRANI AND MOHAMED AAMRI


#### Abstract

We give some generalizations of the B. Fischer fixed point theorem (B. Fisher [7] ) for two mappings on metric spaces by using a function $\alpha$ defined from $\left[0,+\infty\left[\right.\right.$ into $\left[0,1\left[\right.\right.$ and satisfies $\lim \sup _{t \rightarrow t_{o}^{+}} \alpha(t)<1$, for all $t_{o} \geq$ 0 . We study also the existence of solutions for a functional equation arising in dynamic programming.


## 1. Introduction

In 1981, B. Fisher presented the following related fixed point theorem on complete metric spaces:

Theorem 1.1 (B. Fischer [7]). Let $(X, d)$ and $(Y, \delta)$ two metric spaces; we assume that $(X, d)$ is complete. Let $T: X \rightarrow Y$ and $S: Y \rightarrow X$ two mappings such that, for all $(x, y) \in X \times Y$,

$$
\left\{\begin{array}{l}
d(S y, S T x) \leqslant c . \operatorname{Max}\{d(x, S y) ; \delta(y, T x): d(x, S T x)\} \\
\delta(T x, T S y) \leqslant c . \operatorname{Max}\{d(x, S y) ; \delta(y, T x) ; \delta(y, T S y)\},
\end{array}\right.
$$

where $c \in\left[0,1\left[\right.\right.$. Then there exists a unique pair $\left(x^{*}, y^{*}\right) \in X \times Y$ such that $T x^{*}=y^{*}$ and $S y^{*}=x^{*}$. And then $S T x^{*}=x^{*}$ and $T S y^{*}=y^{*}$.

Recently, K. Chaira and El-Miloudi Marhrani proved the following results:
Theorem 1.2 (See [5]). Let $(X, d)$ and $(Y, \delta)$ two metric spaces; we assume that $(X, d)$ is complete. Let $T: X \rightarrow Y$ and $S: Y \rightarrow X$ two mappings such that, for all $(x, y) \in X \times Y$,

$$
\left\{\begin{array}{l}
d(S y, S T x) \leqslant \alpha(\delta(y, T x)) \operatorname{Max}\{d(x, S y) ; \delta(y, T x)\}+\beta(\delta(y, T x)) d(x, S T x) \\
\delta(T x, T S y) \leqslant \alpha(d(x, S y)) \operatorname{Max}\{d(x, S y) ; \delta(y, T x)\}+\beta(d(x, S y)) \delta(y, T S y),
\end{array}\right.
$$

where $\alpha, \beta:[0,+\infty[\rightarrow[0,1[$ are two functions satisfying

$$
\limsup _{t \rightarrow t_{0}^{+}}(\alpha(t)+\beta(t))<1, \quad \text { for all } t_{0} \in[0,+\infty[.
$$

2000 Mathematics Subject Classification. 47H10, 54H25.
Key words and phrases. Complete metric space; Fixed point theorem.
(c)2015 Universiteti i Prishtinës, Prishtinë, Kosovë.

Submitted August 1, 2007. Published January 2, 2008.

Then there exists a unique pair $\left(x^{*}, y^{*}\right) \in X \times Y$ such that $T x^{*}=y^{*}$ and $S y^{*}=x^{*}$; and then, STx ${ }^{*}=x^{*}$ and TSy*$=y^{*}$.
Theorem 1.3 (See [10]). Let $X$ be a non-empty set, $d$ and $\delta$ two metrics on $X$; and $T: X \rightarrow X$ a mapping such that:
(1) $(X, d, \delta)$ is an ( $M$ )-space
(2) For all $x, y \in X$, one of the conditions:
(i) $d(x, T y) \leq \delta(x, y)$
(ii) $\delta(x, T y) \leq d(x, y)$
implies

$$
\left\{\begin{array}{l}
d(T x, T y) \leq \alpha(\delta(x, y)) \delta(x, y) \\
\delta(T x, T y) \leq \alpha(d(x, y)) d(x, y)
\end{array}\right.
$$

Then $T$ has a unique fixed point in $X$.
In the present article, we give others generalizations of the B. Fischer results for related fixed point theorem on metric spaces. And, we study the existence of a solution for some functional equations arising in dynamic programming.

## 2. Main Results

Let $\alpha$ be a function from $\left[0,+\infty\left[\right.\right.$ into $\left[0,1\left[\right.\right.$ such that $\lim _{\sup }^{s \rightarrow s_{0}^{+}}{ }^{\alpha}(s)<1$ for all $s_{0} \in[0,+\infty[$.

Theorem 2.1. Let $(X, d)$ and $(Y, \delta)$ be two metric spaces such that $(X, d)$ is complete. Let $T: X \rightarrow Y$ and $S: Y \rightarrow X$ be two mappings such that for each $(x, y) \in X \times Y$, one of the conditions:
(a): $d(x, S T x) \leq d(x, S y)$
(b) : $\delta(y, T S y) \leq \delta(y, T x)$
implies

$$
\left\{\begin{array}{l}
\delta(T x, T S y) \leq \alpha(d(x, S y)) \max \{\delta(y, T S y), d(x, S y), \delta(y, T x)\} \\
d(S y, S T x) \leq \alpha(\delta(y, T x)) \max \{d(x, S T x), \delta(y, T x), d(x, S y)\}
\end{array}\right.
$$

Then, there exists a unique pair $\left(x^{*}, y^{*}\right) \in X \times Y$ such that $T x^{*}=y^{*}$ and $S y^{*}=x^{*}$; and then $S T x^{*}=x^{*}$ and $T S y^{*}=y^{*}$.

Proof. First step. Let $x_{0} \in X$; for all $n \in \mathbb{N}$, we define the sequences $\left(x_{n}\right)_{n}$ and $\left(y_{n}\right)_{n}$ by $y_{n}=T x_{n}$ and $x_{n+1}=S y_{n}$. For all $n \in \mathbb{N}$, we have:

$$
d\left(x_{n}, S T x_{n}\right)=d\left(x_{n}, x_{n+1}\right) \leq d\left(x_{n}, S y_{n}\right)
$$

thus

$$
\begin{aligned}
\delta\left(y_{n}, y_{n+1}\right) & =\delta\left(T x_{n}, T S y_{n}\right) \\
& \leq \alpha\left(d\left(x_{n}, S y_{n}\right)\right) \max \left(\delta\left(y_{n}, T S y_{n}\right), \delta\left(y_{n}, T x_{n}\right), d\left(x_{n}, S y_{n}\right)\right) \\
& \leq \alpha\left(d\left(x_{n}, x_{n+1}\right)\right) \max \left(\delta\left(y_{n}, y_{n+1}\right), d\left(y_{n}, y_{n}\right), d\left(x_{n}, x_{n+1}\right)\right)
\end{aligned}
$$

which gives

$$
\begin{equation*}
\delta\left(y_{n}, y_{n+1}\right) \leq \alpha\left(d\left(x_{n}, x_{n+1}\right)\right) d\left(x_{n}, x_{n+1}\right) \tag{2.1}
\end{equation*}
$$

For $x=x_{n+1}$ and $y=y_{n}$, we obtain

$$
\delta\left(y_{n}, T S y_{n}\right)=\delta\left(y_{n}, y_{n+1}\right) \leq \delta\left(y_{n}, T x_{n+1}\right)
$$

as above, we obtain

$$
\begin{equation*}
d\left(x_{n+1}, x_{n+2}\right) \leq \alpha\left(\delta\left(y_{n}, y_{n+1}\right)\right) \delta\left(y_{n}, y_{n+1}\right) \tag{2.2}
\end{equation*}
$$

It follows from (2.1) and 2.2) that the sequences $\left(d\left(x_{n}, x_{n+1}\right)\right)_{n}$ and $\left(\delta\left(y_{n}, y_{n+1}\right)\right)_{n}$ are decreasing and then convergent. By the hypothesis on $\alpha$, we can deduce that there exists $k \in[0,1[$ such that

$$
\begin{cases}d\left(x_{n+1}, x_{n+2}\right) & \leq k d\left(x_{n}, x_{n+1}\right) \\ \delta\left(y_{n+1}, y_{n+2}\right) & \leq k \delta\left(y_{n}, y_{n+1}\right)\end{cases}
$$

for large integers. Therefore $\left(x_{n}\right)_{n}$ and $\left(y_{n}\right)_{n}$ are Cauchy sequences; then there exists $x^{*} \in X$ such that $\lim _{n \rightarrow+\infty} d\left(x_{n}, x^{*}\right)=0$.
Second step. Let $y^{*}=T x^{*}$; if $\lim _{n} \delta\left(y_{n}, y^{*}\right) \neq 0$, we obtain

$$
\left.\delta\left(y_{n}, T S y_{n}\right) \leq \delta\left(y_{n}, T x^{*}\right)\right), \quad \text { for large integers } n
$$

which implies

$$
\begin{aligned}
\delta\left(T x^{*}, T S y_{n}\right) & \leq \alpha\left(d\left(x^{*}, S y_{n}\right) \max \left\{\delta\left(y_{n}, T x^{*}\right), d\left(x^{*}, S y_{n}\right)\right\}\right. \\
& \leq h \delta\left(y_{n}, y^{*}\right)
\end{aligned}
$$

for some $h \in[0,1[$ and large integers $n$; which is a contradiction. And then $\lim _{n} \delta\left(y_{n}, y^{*}\right)=0$.
We have $x^{*}=S y^{*}$. For this, assume that $x^{*} \neq S y^{*}$. We have

$$
d\left(x_{n}, T S x_{n}\right) \leq d\left(S y^{*}, x_{n}\right), \quad \text { for large } n
$$

which implies

$$
d\left(S y^{*}, x_{n+1}\right) \leq \alpha\left(\delta\left(y^{*}, y_{n}\right) \max \left\{d\left(x_{n}, x_{n+1}\right), d\left(x_{n}, S y^{*}\right), \delta\left(y^{*}, y_{n}\right)\right\}\right.
$$

for large integers. And since $\lim \sup _{n} \alpha\left(\delta\left(y_{n}, y^{*}\right)\right)<1$, there exists $h \in[0,1[$ such that

$$
d\left(S y^{*}, x^{*}\right) \leq h d\left(x^{*}, S y^{*}\right) ;
$$

which leads to $x^{*}=S y^{*}$.
Third step. Uniqueness of $x^{*}$ and $y^{*}$.
Assume that there exists $x \in X-\left\{x^{*}\right\}$ such that $S T x=x$. We have $d(x, S T x) \leq$ $d\left(x, S y^{*}\right)$; and then

$$
\begin{aligned}
\delta\left(T x, y^{*}\right) & =\delta\left(T x, T S y^{*}\right) \\
& \leq \alpha\left(d\left(x, S y^{*}\right) \max \left\{\delta\left(y^{*}, T S y^{*}\right), \delta\left(y^{*}, T x\right), d\left(x, S y^{*}\right)\right\}\right. \\
& <d\left(x, S y^{*}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
d\left(S y^{*}, x\right) & =d\left(S y^{*}, S T x\right) \\
& \leq \alpha\left(\delta\left(y^{*}, T x\right) \max \left\{d(x, S T x), d\left(x, S y^{*}\right), \delta\left(y^{*}, T x\right)\right\}\right. \\
& <\delta\left(y^{*}, T x\right)
\end{aligned}
$$

Thus, $x=x^{*}$.
In the same way, if there exists $y \in Y-\left\{y^{*}\right\}$ such that $T S y=y$ and since $0=\delta(y, T S y) \leq \delta\left(y, T x^{*}\right)$, we obtain

$$
\left\{\begin{array}{l}
\delta\left(T x^{*}, y\right)=\delta\left(T x^{*}, T S y\right)<d\left(x^{*}, S y\right) \\
d\left(S y, x^{*}\right)=d\left(S y, S T x^{*}\right)<\delta\left(y, T x^{*}\right)
\end{array}\right.
$$

and we conclude that $y=T x^{*}=y^{*}$.
Remark. The theorem remain valid if we permute $\alpha(d(x, S y))$ and $\alpha(\delta(y, T x))$.
Theorem 2.2. Let $(X, d)$ and $(Y, \delta)$ be two metric spaces such that $(X, d)$ is complete; and let $T: X \rightarrow Y, S: Y \rightarrow X$ two mappings such that for all $(x, y) \in X \times Y$, one of the condition
(a): $d(x, S T x) \leq d(x, S y)$
(b): $\delta(y, T S y) \leq \delta(y, T x)$
implies

$$
\left\{\begin{array}{l}
\delta(T x, T S y) \leq \alpha(\delta(y, T x)) \max \{d(x, S T x), \delta(y, T S y), d(x, S y)\} \\
d(S y, S T x) \leq \alpha(d(x, S y)) \max \{d(x, S T x), \delta(y, T S y), \delta(y, T x)\}
\end{array}\right.
$$

Then, there exists a unique pair $\left(x^{*}, y^{*}\right) \in X \times Y$ such that $T x^{*}=y^{*}$ and $S y^{*}=x^{*}$. And then STx ${ }^{*}=x^{*}$ and TSy $y^{*}=y^{*}$.

Proof. First step: For $x_{0} \in X$, we define the sequences $\left(x_{n}\right)_{n}$ and $\left(y_{n}\right)_{n}$ by $y_{n}=T x_{n}$ and $x_{n+1}=S y_{n}$, for all $n \in \mathbb{N}$.
For $x=x_{n}$ and $y=y_{n}$, we have:

$$
d\left(x_{n}, S T x_{n}\right)=d\left(x_{n}, x_{n+1}\right) \leq \max \left\{d\left(x_{n}, S y_{n}\right), \delta\left(y_{n}, T x_{n}\right)\right\}
$$

Then

$$
\delta\left(T x_{n}, T S y_{n}\right) \leq \alpha\left(\delta\left(y_{n}, T x_{n}\right)\right) \max \left\{d\left(x_{n}, S T x_{n}\right), \delta\left(y_{n}, T S y_{n}\right), d\left(x_{n}, S y_{n}\right)\right\}
$$

which implies

$$
\delta\left(y_{n}, y_{n+1}\right) \leq \alpha(0) \max \left\{d\left(x_{n}, x_{n+1}\right), \delta\left(y_{n}, y_{n+1}\right), d\left(x_{n}, x_{n+1}\right)\right\}
$$

Therefore

$$
\delta\left(y_{n}, y_{n+1}\right) \leq \alpha(0) d\left(x_{n}, x_{n+1}\right)
$$

For $x=x_{n+1}$ and $y=y_{n}$, we obtain:

$$
\delta\left(y_{n}, T S y_{n}\right)=\delta\left(y_{n}, y_{n+1}\right) \leq \max \left\{d\left(x_{n+1}, S y_{n}\right), \delta\left(y_{n}, T x_{n+1}\right)\right\}
$$

which implies

$$
d\left(x_{n+1}, x_{n+2}\right) \leq \alpha\left(d\left(x_{n+1}, S y_{n}\right)\right) \max \left\{d\left(x_{n+1}, x_{n+2}\right), \delta\left(y_{n}, y_{n+1}\right), \delta\left(y_{n}, y_{n+1}\right)\right\}
$$

and then

$$
d\left(x_{n+1}, x_{n+2}\right) \leq \alpha(0) \delta\left(y_{n}, y_{n+1}\right)
$$

For $k=(\alpha(0))^{2}$, we obtain

$$
\left\{\begin{array}{l}
d\left(x_{n+1}, x_{n+2}\right) \leq k d\left(x_{n}, x_{n+1}\right) \\
\delta\left(y_{n+1}, y_{n+2}\right) \leq k \delta\left(y_{n}, y_{n+1}\right)
\end{array}\right.
$$

which shows that $\left(x_{n}\right)_{n}$ and $\left(y_{n}\right)_{n}$ are Cauchy sequences. And, since $(X, d)$ is complete, there exists $x^{*} \in X$ such that $\lim _{n \rightarrow+\infty} d\left(x_{n}, x^{*}\right)=0$.
Second step. Let $y^{*}=T x^{*}$; and assume that $\lim _{n} \delta\left(y_{n}, y^{*}\right) \neq 0$.

$$
\begin{align*}
& \delta\left(y_{n}, T S y_{n}\right) \leq \delta\left(y_{n}, T x^{*}\right), \quad \text { for large integers } n . \\
\delta\left(T x^{*}, T S y_{n}\right) & \leq \alpha\left(\delta\left(y_{n}, T x^{*}\right) \max \left\{d\left(x^{*}, S T x^{*}\right), \delta\left(y_{n}, T S y_{n}\right), d\left(x^{*}, S y_{n}\right)\right\}\right.  \tag{2.3}\\
d\left(S y_{n}, S T x^{*}\right) & \leq \alpha\left(d\left(x^{*}, S y_{n}\right) \max \left\{d\left(x^{*}, S T x^{*}\right), \delta\left(y_{n}, T S y_{n}\right), \delta\left(y_{n}, T x^{*}\right)\right\}\right. \tag{2.4}
\end{align*}
$$

From 2.4, we obtain

$$
d\left(x_{n+1}, S y^{*}\right) \leq \alpha\left(d\left(x^{*}, x_{n+1}\right) \max \left\{d\left(x^{*}, S T x^{*}\right), \delta\left(y_{n}, y^{*}\right)\right\}\right.
$$

for large integers.
Using the fact that $\left(d\left(x^{*}, x_{n+1}\right)\right)_{n}$ is convergent, there exists $k \in[0,1[$ such that

$$
d\left(x_{n+1}, S y^{*}\right) \leq k \max \left\{d\left(x^{*}, S y^{*}\right), \delta\left(y_{n}, y^{*}\right)\right\}
$$

which leads to

$$
\begin{equation*}
\left.d\left(x_{n+1}, S y^{*}\right) \leq k \delta\left(y_{n}, y^{*}\right)\right) \tag{2.5}
\end{equation*}
$$

for large integers.
From 2.3, we obtain:

$$
\delta\left(y^{*}, T S y_{n}\right) \leq \alpha\left(\delta\left(y_{n}, T x^{*}\right)\right) \max \left\{d\left(x^{*}, S T x^{*}\right), \delta\left(y_{n}, T S y_{n}\right), d\left(x^{*}, S y_{n}\right)\right\}
$$

we can deduce

$$
\begin{equation*}
\delta\left(y^{*}, y_{n+1}\right) \leq \alpha\left(\delta\left(y_{n}, y^{*}\right)\right) \max \left\{d\left(x^{*}, S T x^{*}\right), \delta\left(y_{n}, y_{n+1}\right), d\left(x^{*}, x_{n+1}\right)\right\} \tag{2.6}
\end{equation*}
$$

Using 2.5 and 2.6, we obtain

$$
\left.d\left(x_{n+1}, S y^{*}\right) \leq k \delta\left(y_{n}, y^{*}\right)\right) \leq k d\left(x^{*}, S y^{*}\right)
$$

and then

$$
d\left(x^{*}, S y^{*}\right) \leq k d\left(x^{*}, S y^{*}\right), \quad \text { for large intergers }
$$

which gives $S y^{*}=x^{*}$; and consequently $T S y^{*}=y^{*}$ and $S T x^{*}=x^{*}$.
With the same arguments as in the proof of the theorem 2.2 , we obtain:
Theorem 2.3. Let $(X, d)$ and $(Y, \delta)$ be two metric spaces such that $(X, d)$ is complete; and let $T: X \rightarrow Y, S: Y \rightarrow X$ two mappings such that for all $(x, y) \in X \times Y$, one of the conditions:
(a): $d(x, S T x) \leq d(x, S y)$
(b): $\delta(y, T S y) \leq \delta(y, T x)$
implies

$$
\left\{\begin{array}{l}
\delta(T x, T S y) \leq \alpha(\delta(y, T x)) \max \{d(x, S T x), \delta(y, T S y), \delta(y, T x)\} \\
d(S y, S T x) \leq \alpha(d(x, S y)) \max \{d(x, S T x), \delta(y, T S y), d(x, S y)\}
\end{array}\right.
$$

Then, there exists a unique pair $\left(x^{*}, y^{*}\right) \in X \times Y$ such that $T x^{*}=y^{*}$ and $S y^{*}=x^{*}$. And then STx $x^{*}=x^{*}$ and TSy*$=y^{*}$.

Corollary 2.4. Let $(X, d)$ and $(Y, \delta)$ be metric spaces such that $(X, d)$ is complete, $T: X \rightarrow Y$ and $S: Y \rightarrow X$ two mappings. If there exists $r \in[0,1[$ such that, for all $(x, y) \in X \times Y$, one of the conditions:
(a): $d(x, S T x) \leq d(x, S y)$
(b): $\delta(y, T S y) \leq \delta(y, T x)$
implies

$$
\left\{\begin{array}{l}
\delta(T x, T S y) \leq r \cdot \max \{d(x, S T x) ; d(x, S y) ; \delta(y, T x))\} \\
d(S y, S T x) \leq r \cdot \max \{\delta(y, T S y) ; \delta(y, T x) ; d(x, S y)\}
\end{array}\right.
$$

then, there exists a unique pair $\left(x^{*}, y^{*}\right) \in X \times Y$ such that $T x^{*}=y^{*}$ and $S y^{*}=x^{*}$. Consequently, $S T x^{*}=x^{*}$ and $T S y^{*}=y^{*}$.
Corollary 2.5. Let $(X, d)$ be a complete metric space, $\delta$ a metric on $X$ and $T$ : $X \rightarrow X$ a mapping such that for each $(x, y) \in X^{2}$, one of the conditions:
(a): $d\left(x, T^{2} x\right) \leq d(x, T y)$
(b) : $\delta\left(y, T^{2} y\right) \leq \delta(y, T x)$
implies

$$
\left\{\begin{array}{l}
d\left(T x, T^{2} y\right) \leq \alpha(d(y, T x)) \max \left\{d\left(x, T^{2} x\right), d\left(y, T^{2} y\right), \delta(y, T x)\right\} \\
d\left(T y, T^{2} x\right) \leq \alpha(d(x, T y)) \max \left\{d\left(x, T^{2} x\right), d\left(y, T^{2} y\right), d(x, T y)\right\}
\end{array}\right.
$$

Then, there exists a unique element $x^{*} \in X$ such that $T x^{*}=x^{*}$.

Proof. If we take $S=T$ in theorem 2.2 , we obtain a pair $\left(x^{*}, y^{*}\right) \in X \times X$ such that $T x^{*}=y^{*}, T y^{*}=x^{*}$ and then $T^{2} x^{*}=x^{*}$.
On the other hand, we have

$$
d\left(x^{*}, T^{2} x^{*}\right)=0 \leq d\left(x^{*}, T x^{*}\right)
$$

then

$$
\begin{aligned}
d\left(T x^{*}, T^{2} x^{*}\right) & =d\left(T x^{*}, x^{*}\right) \\
& \leq \alpha\left(d\left(x^{*}, T x^{*}\right)\right) \max \left\{d\left(x^{*}, T^{2} x^{*}\right), \delta\left(x^{*}, T^{2} x^{*}\right), d\left(x^{*}, T x^{*}\right)\right\} \\
& \leq \alpha\left(d\left(x^{*}, T x^{*}\right)\right) d\left(x^{*}, T x^{*}\right)
\end{aligned}
$$

which gives $T x^{*}=x^{*}$.
Example 2.6. Let $X=[0,1]$ and define $T$ and $S$ by $T x=\frac{1}{3} x^{2}$ and $S y=0$, for all $x, y \in X$. Let $d$ the usual metric on $X$ and $\alpha$ the function defined on $[0,+\infty[$ by $\alpha(t)=\frac{2}{3} e^{-t}$.
For $\delta=d$, we obtain:

$$
\delta(T x, T S y)=\delta\left(\frac{1}{3} x^{2}, 0\right)=\frac{1}{3} x^{2}
$$

and

$$
\alpha(\delta(y, T x)) \max \left\{d(x, S T x), \delta(y, T S y), d(x, S y\}=\frac{2}{3} e^{-\left|y-\frac{1}{3} x^{2}\right|} \max \{x, y\}\right.
$$

If $x \leq y$, we obtain:

$$
\frac{1}{3} x^{2} e^{-\frac{1}{3} x^{2}} \leq \frac{1}{3} y^{2} e^{-\frac{1}{3} y^{2}} \leq \frac{2}{3} y e^{-y}
$$

for all $y \in X$. And then

$$
\delta(T x, T S y)=\frac{1}{3} x^{2} \leq \frac{2}{3} y e^{-\left(y-\frac{1}{3} x^{2}\right.}=\frac{2}{3} e^{-\left|y-\frac{1}{3} x^{2}\right|} \max \{x, y\}
$$

If $y \leq x$; we have

$$
x^{2} e^{-\frac{1}{3} x^{2}} \leq 2 x e^{-x} \leq 2 x e^{-y}
$$

and then

$$
\frac{1}{3} x^{2} \leq \frac{2}{3} x e^{-\left(y-\frac{1}{3} x^{2}\right)}=\frac{2}{3} e^{-\left|y-\frac{1}{3} x^{2}\right|} \max \{x, y\}
$$

The second inequality is obvious since $d(S y, S T x)=0$.
Note that TS and ST have a unique fixed point $x^{*}=0$.
Example 2.7. Let $X=[0,1] \cup\{5\}$ with the usual metric; and $S, T$ two mapping on $X$ defined by

$$
\begin{gathered}
T x=\left\{\begin{array}{lll}
\frac{x+1}{2} & \text { if } & x \in[0,1] \\
\frac{7}{8} & \text { if } & x=5
\end{array}\right. \\
S y=\left\{\begin{array}{lll}
\frac{y}{2} & \text { if } & x \in[0,1] \\
\frac{1}{2} & \text { if } & y=5
\end{array}\right.
\end{gathered}
$$

Define $\alpha$ on $[0,+\infty[$ by

$$
\alpha(t)=\left\{\begin{array}{lc}
0 & \text { if } t=\frac{33}{8} \\
\frac{1}{2}\left(1+\frac{1}{2} \sin ^{2}(t)\right) & \text { otherwise }
\end{array}\right.
$$

We have $\delta(y, T x)=\frac{33}{8}$ if and only if $(x, y)=(5,5)$ or $(x, y)=\left(\frac{3}{4}, 5\right)$ and $d(x, S y) \neq$ $\frac{33}{8}$, for all $(x, y) \in X \times X$.
For $x=y=5$, we have

$$
d(x, S T x)=\frac{73}{16} \quad \text { and } \quad d(x, S y)=\frac{9}{2}
$$

$$
d(y, T S y)=\frac{17}{4} \quad \text { and } \quad d(y, T x)=\frac{33}{8}
$$

Note that

$$
d(x, S T x)>d(x, S y) \quad \text { and } \quad d(y, T S y)>d(y, T x)
$$

For $x=\frac{3}{4}$ and $y=5$, we have

$$
d(x, S T x)=\frac{5}{16}>d(x, S y)=\frac{1}{4}
$$

and

$$
\delta(y, T S y)=\frac{17}{4}>\delta(y, T x)=\frac{33}{8}
$$

For the other cases, we have

$$
\min \left\{\alpha(d(y, T x)), \alpha(d(x, S y)\} \geq \frac{1}{2}\right.
$$

Case of the theorem2.1:
If $x, y \in[0,1]$, we have

$$
\begin{cases}\left|x-\frac{y}{2}\right| & \leq \max \left\{\left|y-\frac{y+2}{4}\right| ;\left|x-\frac{y}{2}\right| ;\left|y-\frac{x+1}{2}\right|\right\} \\ \left|y-\frac{x+1}{2}\right| & \leq \max \left\{\left|x-\frac{x+1}{4}\right| ;\left|x-\frac{y}{2}\right| ;\left|y-\frac{x+1}{2}\right|\right\}\end{cases}
$$

For $x=5$ and $y \in[0,1]$, we have

$$
\left\{\begin{aligned}
\left|\frac{3}{4}-\frac{y}{2}\right| & \leq \max \left\{\left|y-\frac{y+2}{4}\right| ;\left|5-\frac{y}{2}\right| ;\left|y-\frac{7}{8}\right|\right\} \\
\left|y-\frac{7}{8}\right| & \leq \max \left\{|5-S T 5| ;\left|5-\frac{y}{2}\right| ;\left|y-\frac{7}{8}\right|\right\}
\end{aligned}\right.
$$

For $x \in[0,1]-\left\{\frac{3}{4}\right\}$ and $y=5$, we have

$$
\left\{\begin{array}{l}
\left|\frac{x+1}{2}-\frac{3}{4}\right| \leq \max \left\{|5-S T 5| ;\left|x-\frac{1}{2}\right| ;\left|5-\frac{x+1}{2}\right|\right\} \\
\left|\frac{1}{2}-\frac{x+1}{4}\right| \leq \max \left\{\left|x-\frac{x+1}{4}\right| ;\left|x-\frac{1}{2}\right| ;\left|5-\frac{x+1}{2}\right|\right\}
\end{array}\right.
$$

Then for all $(x, y) \in X^{2}-\left\{(5,5),\left(\frac{3}{4}, 5\right)\right\}$, we have

$$
\begin{cases}\delta(T x, T S y) & \leq \alpha(d(x, S y)) \max \{\delta(y, T S y), d(x, S y), \delta(y, T x)\} \\ d(S y, S T x) & \leq \alpha(\delta(y, T x)) \max \{d(x, S T x), \delta(y, T x), d(x, S y)\}\end{cases}
$$

In the case of theorem, 2.2, we have:

$$
\begin{cases}\left|x-\frac{y}{2}\right| & \leq \max \left\{\left|x-\frac{x+1}{4}\right|,\left|y-\frac{y+2}{4}\right|,\left|x-\frac{y}{2}\right|\right\} \\ \left|y-\frac{x+1}{2}\right| & \leq \max \left\{\left|x-\frac{x+1}{4}\right|,\left|y-\frac{y+2}{4}\right|,\left|y-\frac{x+1}{2}\right|\right\}\end{cases}
$$

for all $(x, y) \in[0,1] \times[0,1]$.
For $x=5$ and $y \in[0,1]$, we have $\left|\frac{3}{4}-\frac{y}{2}\right| \leq\left|5-\frac{y}{2}\right|$; therefore

$$
\left\{\begin{aligned}
\left|\frac{3}{4}-\frac{y}{2}\right| & \leq \max \{|5-S T 5|,|y-T S y|,|5-S y|\} \\
\left|y-\frac{7}{8}\right| & \leq \max \left\{\left|x-\frac{x+1}{4}\right|,\left|y-\frac{y+2}{4}\right|,\left|y-\frac{7}{8}\right|\right\}
\end{aligned}\right.
$$

For $x \in[0,1]-\left\{\frac{3}{4}\right\}$ and $y=5$, we have

$$
\left|\frac{x+1}{2}-\frac{3}{4}\right| \leq\left|x-\frac{1}{2}\right| \quad \text { and } \quad\left|\frac{1}{2}-\frac{x+1}{4}\right| \leq\left|x-\frac{x+1}{4}\right| ;
$$

therefore

$$
\left\{\begin{aligned}
\left|\frac{x+1}{2}-\frac{3}{4}\right| & \leq \max \left\{|x-T x|,|5-T S 5|,\left|x-\frac{1}{2}\right|\right\} \\
\left|\frac{1}{2}-\frac{x+1}{4}\right| & \leq \max \left\{\left|x-\frac{x+1}{4}\right|,|5-T S 5|,\left|y-\frac{x+1}{2}\right|\right\}
\end{aligned}\right.
$$

which leads to

$$
\begin{cases}\delta(T x, T S y) & \leq \alpha(\delta(y, T x)) \max \{d(x, S T x), \delta(y, T S y), d(x, S y)\} \\ d(S y, S T x) & \leq \alpha(d(x, S y)) \max \{d(x, S T x), \delta(y, T S y), \delta(y, T x)\}\end{cases}
$$

for all $(x, y) \in X \times X-\left\{(5,5),\left(\frac{3}{4}, 5\right)\right\}$.
We conclude that the hypothesis of the theorem 2.1 and theorem 2.2 are satisfied. And we have $T\left(\frac{1}{3}\right)=\frac{2}{3}, S\left(\frac{2}{3}\right)=\frac{1}{3}, S T\left(\frac{1}{3}\right)=\frac{1}{3}$ and $T S\left(\frac{2}{3}\right)=\frac{2}{3}$.
2.1. Application. Let $E$ and $F$ be two Banach spaces, $W$ and $D$ non empty subset of $E$ and $D$ respectively. And consider two bounded mapping $g: W \times D \rightarrow \mathbb{R}$ and $G: W \times D \times \mathbb{R} \rightarrow \mathbb{R}$. ( $W$ and $D$ are the state and decision spaces respectively). Some problems of dynamic programming implies the problem of solving the functional equations:

$$
\left\{\begin{array}{l}
p(x)=\sup _{d \in D}\{g(x, d)+G(x, d, q(d))\}  \tag{2.7}\\
q(y)=\sup _{w \in W}\{g(w, y)+G(w, y, p(w))\}
\end{array}\right.
$$

for all $(x, y) \in W \times D$
Denote by $\mathbb{B}(W)$ and $\mathbb{B}(D)$ the spaces of all real bounded functions on $W$ and $D$ respectively, provided with the uniform metrics $d_{\infty, W}$ and $d_{\infty, D}$ respectively. And define the functionals

$$
A: \mathbb{B}(W) \longrightarrow \mathbb{B}(D) \quad \text { and } \quad B: \mathbb{B}(W) \longrightarrow \mathbb{B}(W)
$$

by:
$A h(y)=\sup _{w \in W}\{g(w, y)+G(w, y, h(w))\} \quad$ and $\quad B k(x)=\sup _{d \in D}\{g(x, d)+G(x, d, k(d))\}$
for all $(h, k) \in \mathbb{B}(W) \times \mathbb{B}(D)$ and $(x, y) \in W \times D$.
Assume that for all $\left(w, x_{1}, x_{2}\right) \in W^{3}$ and $\left(d, y_{1}, y_{2}\right) \in D^{3}$, one of the conditions
(i) $|h(w)-B A h(w)| \leq d_{\infty, W}(h, B k)$
(ii) $|k(d)-A B k(d)| \leq d_{\infty, D}(k, A h)$
implies

$$
\left\{\begin{array}{l}
\mid\left(g\left(w, y_{1}\right)-g\left(w, y_{2}\right)\right)+\left(G\left(w, y_{1}, A h\left(y_{1}\right)\right)-G\left(w, y_{2}, k\left(y_{2}\right)\right) \mid\right. \\
\leqslant r \max \{|h(w)-B A h(w)|,|h(w)-B k(w)|,|k(d)-A h(d)|\} \\
\mid\left(g\left(x_{1}, d\right)-g\left(x_{2}, d\right)\right)+\left(G\left(x_{1}, d, B k\left(x_{1}\right)\right)-G\left(x_{2}, d, h\left(x_{2}\right)\right) \mid\right. \\
\leqslant r \max \{k(d)-A B k(d),|h(w)-B k(w)|,|k(d)-A h(d)|\}
\end{array}\right.
$$

Theorem 2.8. Under the above conditions, there exists a unique pair $\left(h^{*}, k^{*}\right)$ in $\mathbb{B}(W) \times \mathbb{B}(D)$ such that

$$
\left\{\begin{array}{l}
h^{*}(x)=\sup _{d \in D}\left\{g(x, d)+G\left(x, d, k^{*}(d)\right\}\right. \\
k^{*}(y)=\sup _{w \in W}\left\{g(w, y)+G\left(w, y, h^{*}(w)\right\}\right.
\end{array}\right.
$$

for $(x, y) \in W \times D$; and then the functional equation 2.7) has a unique solution.
Proof. For $\varepsilon>0,(h, k) \in \mathbb{B}(W) \times \mathbb{B}(D)$ and $(x, y) \in W \times D$, we have

$$
\left\{\begin{array}{l}
B A h(x)=\sup _{d \in D}\{g(x, d)+G(x, d, A h(d))\} \\
B k(x)=\sup _{d \in D}\{g(x, d)+G(x, d, k(d))\}
\end{array}\right.
$$

Then there exists $\left(d_{1}, d_{2}\right) \in D^{2}$ such that:

$$
\left\{\begin{array}{l}
B A h(x)-\varepsilon<g\left(x, d_{1}\right)+G\left(x, d_{1}, A h\left(d_{1}\right)\right) \leqslant B A h(x) \\
B k(x)-\varepsilon<g\left(x, d_{2}\right)+G\left(x, d_{2}, k\left(d_{2}\right)\right) \leqslant B k(x) .
\end{array}\right.
$$

And then,
$\left\{\begin{array}{l}g\left(x, d_{1}\right)-g\left(x, d_{2}\right)+G\left(x, d_{1}, A h\left(d_{1}\right)\right)-G\left(x, d_{2}, k\left(d_{2}\right)\right)-\varepsilon<B A h(x)-B k(x) \\ B A h(x)-B k(x)<g\left(x, d_{1}\right)-g\left(x, d_{2}\right)+G\left(x, d_{1}, A h\left(d_{1}\right)\right)-G\left(x, d_{2}, k\left(d_{2}\right)\right)+\varepsilon\end{array}\right.$
Which gives,

$$
\begin{aligned}
|B A h(x)-B k(x)|< & \mid\left(g\left(x, d_{1}\right)-g\left(x, d_{2}\right)\right)+\left(G\left(x, d_{1}, A h\left(d_{1}\right)\right)\right. \\
& \left.-G\left(x, d_{2}, k\left(d_{2}\right)\right)\right) \mid+\varepsilon
\end{aligned}
$$

and there exists $\left(w_{1}, w_{2}\right) \in W^{2}$ such that :

$$
\begin{aligned}
|A B k(y)-A h(y)|< & \mid\left(g\left(w_{1}, y\right)-g\left(w_{2}, y\right)\right)+\left(G\left(w_{1}, y, B k\left(w_{1}\right)\right)\right. \\
& \left.-G\left(w_{2}, y, h\left(w_{2}\right)\right)\right) \mid+\varepsilon
\end{aligned}
$$

Therefore, one of the conditions
(i) $|h(x)-B A h(x)| \leq d_{\infty, W}(h, B k)$
(ii) $|k(y)-A B k(y)| \leq d_{\infty, D}(k, A h)$
implies
$\left\{\begin{array}{l}|B A h(x)-B k(x)|<r \max \{|h(x)-B A h(x)|,|h(x)-B k(x)|,|k(y)-A h(y)|\}+\varepsilon \\ |A B k(y)-A h(y)|<r \max \{k(y)-A B k(y),|h(x)-B k(x)|,|k(y)-A h(y)|\}+\varepsilon,\end{array}\right.$
And then, for any $(x, y) \in W \times D$, and an arbitrary $\varepsilon>0$, one of the following conditions

$$
\begin{aligned}
& \text { (i): } d_{\infty, W}(h, B A h) \leqslant d_{\infty, W}(h, B k) \\
& \text { (ii) : } \left.d_{\infty, D}(k, A B k)\right\} \leqslant d_{\infty, D}(k, A h)
\end{aligned}
$$

implies

$$
\left\{\begin{array}{l}
d_{\infty, D}(B k, B A h) \leqslant r \max \left\{d_{\infty, W}(h, B A h) \mid, d_{\infty, W}(h, B k), d_{\infty, D}(k, A h)\right\} \\
d_{\infty, W}(A h, A B k) \leqslant r \max \left\{d_{\infty, D}(k, A B k) \mid, d_{\infty, W}(h, B k), d_{\infty, D}(k, A h)\right\}
\end{array}\right.
$$

Therefore, there exists $\left(h^{*}, k^{*}\right) \in \mathbb{B}(W) \times \mathbb{B}(D)$ such that $A h^{*}=k^{*}$ and $B k^{*}=h^{*}$. And then $\left(h^{*}, k^{*}\right)$ is the unique bounded solution of the functional equation (7).
Acknowledgments. The authors would like to thank the anonymous referee for his/her comments that helped us improve this article.

## References

[1] Abdelkrim Aliouche and Brian Fisher, A related fixed point theorem for two pairs of mappings on two complete metric spacs, Hacettepe J. Math. Statist. 34 (2005) 39-45.
[2] Abdelkrim Aliouche and Brian Fisher, Fixed point theorems on three complete and compact metric spaces, Universitatea Din Bacan Studii Si Cercetari Seria Mathematica N. 17 (2007) 13-20.
[3] S. Baskaran and P. V. Subrahmanyam, A note on the solution of class of fonctional equations, Applicable Analysis, vol. 22,N. 3-4 (1986) 235-241.
[4] R. Bellman and E. S. Lee, Fonctional equations in dynamic programming, Aequationes Mathematicae, 17, 1 (1987) 1-18.
[5] K. Chaira and El. Marhrani, Some related fixed point theorems for a pair of mapping on two metric spaces, Inter. Jour. of Pure and Applied Mathematics, Vol. 93, N2 (2014) 191-200.
[6] L. B. Ciric, A generalization of Banach's contraction principle, proceeding of the American Mathematical Society, vol. 45(1974) 267-273.
[7] B. Fisher, Fixed point on two metric spaces, Glasnik Mat, 16 (36) (1981) 333-337.
[8] B. Fisher and P.P. Minphy, Related fixed points theorems for two pairs of mappings on two metric spaces, k. Yungpoole Math, J. 37 (1997) 343-347.
[9] A. Meir and E. Keeler, " A theorem on contraction mappings ", Journal of Mathematical Analysis and Applications, vol. 28 (1969) 326-329.
[10] El. Marhrani and K. Chaira, Fixed point theorems in a space with two metrics, Advances in Fixed point theory 5, N. 1 (2015) 1-12.
[11] R. K. Namdeo and B. Fisher, A related fixed points theorem for two pairs mappings on two metric spaces, Nonlineair Analysis Forum 8(1) (2003) 23-27.
[12] O. Popescu, Two fixed point theorems for generalized contractions with constants in complete metric space, Central European Journal of Mathematics Vol. 7, N. 3 (2009) 529-538.
[13] I. A. Rus, Generalized Contractions and Applications, Cluj University Press,Cluj Napoca, Romania, 2001.
[14] K. P. R. Sastry and S. V. R. Naidu, Fixed point theorems for generalized contraction mappings, Yokohama Mathematical Journal, Vol. 28 N. 1-2(1980) 15-29.
[15] S. L. Singh and S. N. Mishra, Remarks on recent fixed point theorems, Fixed Point theory and Applications (2010), Article ID 452905.
[16] S. L. Singh , H. K. Pathak and S. N. Mishra, On a Suzuki type general fixed point theorem with applications, Fixed Point theory and Applications (2010) Article ID 234717.
[17] Stojan Radenovic, Zoran Kadelburg, Davorka Jandrlic and Andrija Jandrlic, Some results on weakly contractive maps, Bulletin of the Iranian Mathematical Society, Vol. 38 N. 3(2012) 625-645.
[18] T.Suzuki, "A generalized Banach contraction principle that characterises metric completeness ", Proceeding of the American Mathematical Society, vol. 136, N. 5 (2008) 1861-1869.
[19] Tran Van An, Nguyen Van Dung, Zoran Kadelburg, and Stojan Radenovic, Various generalizations of metric spaces and fixed point theorems, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas (RACSAM), DOI 10. 1007/s13398-014-0173-7.

Karim Chaira
CRMEF, Rabat-Salé-Zemmour-Zaer, Avenue Allal El Fassi, Bab Madinat Al Irfane, BP 6210, 10000 Rabat (Morocco)

E-mail address: chaira_karim@yahoo.fr
El Miloudi Marhrani
University Hassan II of Casablanca, Faculty of Science Ben M'Sik,Department of Mathematics and Computer Science, P.B 7955, Sidi Othmane, Casablanca, Morocco.

E-mail address: marhrani@gmail.com
Mohamed Aamri
University Hassan II of Casablanca, Faculty of Science Ben M'Sik, Department of Mathematics and Computer Science, P.B 7955, Sidi Othmane, Casablanca, Morocco.

E-mail address: aamrimohamed9@yahoo.fr

