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A NEW APPLICATION OF GENERALIZED ALMOST

INCREASING SEQUENCES

(COMMUNICATED BY EBERHARD MALKOWSKY)

HİKMET SEYHAN ÖZARSLAN

Abstract. In the present paper, a general theorem dealing with |A, pn; δ|k
summability factors of infinite series has been proved by using almost increas-
ing sequence. This theorem also includes some known and new results.

1. Introduction

Let
∑
an be a given infinite series with partial sums (sn), and let A = (anv) be

a normal matrix, i.e., a lower triangular matrix of nonzero diagonal entries. Then
A defines the sequence-to-sequence transformation, mapping the sequence s = (sn)
to As = (An(s)), where

An(s) =

n∑
v=0

anvsv, n = 0, 1, ... (1.1)

The series
∑
an is said to be summable |A|k , k ≥ 1, if (see [10])

∞∑
n=1

nk−1
∣∣∆̄An(s)

∣∣k <∞, (1.2)

where

∆̄An(s) = An(s)−An−1(s).

Let (pn) be a sequence of positive numbers such that

Pn =

n∑
v=0

pv →∞ as n→∞, (P−i = p−i = 0, i ≥ 1). (1.3)

The sequence-to-sequence transformation

σn =
1

Pn

n∑
v=0

pvsv (1.4)
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defines the sequence (σn) of the Riesz mean or simply the (N̄ , pn) mean of the
sequence (sn), generated by the sequence of coefficients (pn) (see [5]). The series∑
an is said to be summable | N̄ , pn |k, k ≥ 1, if (see [2])

∞∑
n=1

(
Pn
pn

)k−1
| ∆σn−1 |k<∞, (1.5)

and it is said to be summable |A, pn; δ|k, k ≥ 1 and δ ≥ 0, if (see [7])
∞∑
n=1

(
Pn
pn

)δk+k−1
|∆̄An(s)|k <∞. (1.6)

If we take anv = pv
Pn

and δ = 0, then |A, pn; δ|k summability reduces to |N̄ , pn|k
summability. Also, if we take δ = 0, then |A, pn; δ|k summability reduces to |A, pn|k
summability (see [9]). In the special case δ = 0 and pn = 1 for all n, |A, pn; δ|k
summability is the same as |A|k summability. Furthermore, if we take anv = pv

Pn
,

then |A, pn; δ|k summability is the same as |N̄ , pn; δ|k summability.
Before stating the main theorem we must first introduce some further notations.
Given a normal matrix A = (anv), we associate two lover semimatrices Ā = (ānv)

and Â = (ânv) as follows:

ānv =

n∑
i=v

ani, n, v = 0, 1, ... (1.7)

and

â00 = ā00 = a00, ânv = ānv − ān−1,v, n = 1, 2, ... (1.8)

It may be noted that Ā and Â are the well-known matrices of series-to-sequence
and series-to-series transformations, respectively. Then, we have

An(s) =

n∑
v=0

anvsv =

n∑
v=0

ānvav (1.9)

and

∆̄An(s) =

n∑
v=0

ânvav. (1.10)

2. Known Result

In [3], Bor has proved the following theorem for
∣∣N̄ , pn∣∣k summability factors of

infinite series.

Theorem 2.1. Let (Xn) be a positive non-decreasing sequence and let there be
sequences (βn) and (λn) such that

| ∆λn |≤ βn, (2.1)

βn → 0 as n→∞, (2.2)

∞∑
n=1

n | ∆βn | Xn <∞, (2.3)

| λn | Xn = O(1). (2.4)
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If

n∑
v=1

| tv |k

v
= O(Xn) as n→∞, (2.5)

where (tn) is the nth (C, 1) mean of the sequence (nan), and (pn) is a sequence such
that

Pn = O(npn), (2.6)

Pn∆pn = O(pnpn+1), (2.7)

then the series
∑∞
n=1 an

Pnλn

npn
is summable | N̄ , pn |k, k ≥ 1.

3. Main Result

The aim of this paper is to generalize Theorem 2.1 for |A, pn; δ|k summability
by using almost increasing sequence. For this we need the concept of an almost
increasing sequence. A positive sequence (bn) is said to be almost increasing if
there exist a positive increasing sequence (cn) and two positive constants A and B
such that Acn ≤ bn ≤ Bcn (see [1]). Obviously every increasing sequence is almost
increasing. However, the converse need not be true as can be seen by taking the
example, say bn = ne(−1)

n

.
Now, we shall prove the following theorem.

Theorem 3.1. Let (Xn) be an almost increasing sequence. The conditions (2.1)-
(2.4) and (2.6)-(2.7) of Theorem 2.1 and the conditions

m∑
n=1

(
Pn
pn

)δk−1
|tn|k = O(Xm) as m→∞, (3.1)

m+1∑
n=v+1

(
Pn
pn

)δk
|∆vânv| = O

{(
Pv
pv

)δk−1}
as m→∞, (3.2)

where (tn) as is in Theorem 2.1, are satisfied. If A = (anv) is a positive normal
matrix such that

an0 = 1, n = 0, 1, ..., (3.3)

an−1,v ≥ anv, for n ≥ v + 1, (3.4)

ann = O

(
pn
Pn

)
, (3.5)

| ân,v+1 |= O(v | ∆v(ânv) |), (3.6)

then the series
∑∞
n=1 an

Pnλn

npn
is summable |A, pn; δ|k, k ≥ 1 and 0 ≤ δ < 1/k.

We need the following lemmas for the proof of Theorem 3.1.
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Lemma 3.2. ([6]) If (Xn) is an almost increasing sequence, then under the condi-
tions (2.2)-(2.3) we have that

nXnβn = O(1), (3.7)

∞∑
n=1

βnXn <∞. (3.8)

Lemma 3.3. ([3]) If conditions (2.6) and (2.7) are satisfied, then we have

∆

(
Pn
n2pn

)
= O

(
1

n2

)
. (3.9)

Lemma 3.4. ([3]) If conditions (2.1)-(2.4) are satisfied, then we have that

λn = O(1), (3.10)

∆λn = O

(
1

n

)
. (3.11)

4. Proof of Theorem 3.1

Let (In) denotes A-transform of the series
∑∞
n=1

anPnλn

npn
. Then, we have by (1.9)

and (1.10)

∆̄In =

n∑
v=1

ânv
avPvλv
vpv

.

Applying Abel’s transformation to this sum, we get that

∆̄In =

n∑
v=1

ânv
vavPvλv
v2pv

=

n−1∑
v=1

∆v

(
ânvPvλv
v2pv

) v∑
r=1

rar +
ânnPnλn
n2pn

n∑
r=1

rar

=

n−1∑
v=1

∆v

(
ânvPvλv
v2pv

)
(v + 1)tv +

annPnλn
n2pn

(n+ 1)tn

=
annPnλn
n2pn

(n+ 1)tn +

n−1∑
v=1

∆v(ânv)
(v + 1)

v2
Pvλv
pv

tv

+

n−1∑
v=1

ân,v+1Pv
pv

∆λvtv
(v + 1)

v2
+

n−1∑
v=1

ân,v+1λv+1∆

(
Pv
v2pv

)
tv(v + 1)

= In,1 + In,2 + In,3 + In,4.

Since

|In,1 + In,2 + In,3 + In,4|k ≤ 4k(|In,1|k + |In,2|k + |In,3|k + |In,4|k)

to complete the proof of Theorem 3.1, it is sufficient to show that

∞∑
n=1

(
Pn
pn

)δk+k−1
| In,r |k<∞, for r = 1, 2, 3, 4. (4.1)
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First, by using Abel’s transformation, we have that

m∑
n=1

(
Pn
pn

)δk+k−1
| In,1 |k = O(1)

m∑
n=1

(
Pn
pn

)δk+k−1
aknn

(
Pn
pn

)k
|λn|k

|tn|k

nk

= O(1)

m∑
n=1

(
Pn
pn

)δk−1
|λn|k−1|λn||tn|k

= O(1)

m∑
n=1

(
Pn
pn

)δk−1
|λn||tn|k

= O(1)

m−1∑
n=1

∆|λn|
n∑
r=1

(
Pr
pr

)δk−1
|tr|k +O(1)|λm|

m∑
n=1

(
Pn
pn

)δk−1
|tn|k

= O(1)

m−1∑
n=1

|∆λn|Xn +O(1)|λm|Xm

= O(1)

m−1∑
n=1

βnXn +O(1)|λm|Xm

= O(1) as m→∞,

by (2.1), (2.4), (2.6), (3.1), (3.5), (3.8), (3.10) and (3.11).
Now, using the fact that Pv = O(vpv) by (2.6), we have that

m+1∑
n=2

(
Pn
pn

)δk+k−1
| In,2 |k = O(1)

m+1∑
n=2

(
Pn
pn

)δk+k−1(n−1∑
v=1

|∆v(ânv)| |λv| |tv|

)k
.

Now, applying Hölder’s inequality with indices k and k′, where k > 1 and 1
k + 1

k′
= 1,

as in In,1, we have that

m+1∑
n=2

(
Pn
pn

)δk+k−1
|In,2|k = O(1)

m+1∑
n=2

(
Pn
pn

)δk+k−1(n−1∑
v=1

|∆v(ânv)||λv||tv|

)k

= O(1)

m+1∑
n=2

(
Pn
pn

)δk+k−1(n−1∑
v=1

|∆v(ânv)||λv|k|tv|k
)
×

(
n−1∑
v=1

|∆v(ânv)|

)k−1

= O(1)

m+1∑
n=2

(
Pn
pn

)δk(n−1∑
v=1

|∆v(ânv)||λv|k|tv|k
)

= O(1)

m∑
v=1

|λv|k−1|λv||tv|k
m+1∑
n=v+1

(
Pn
pn

)δk
|∆v(ânv)|

= O(1)

m∑
v=1

(
Pv
pv

)δk−1
|λv||tv|k

= O(1) as m→∞,
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by (2.1), (2.4), (3.1), (3.2), (3.3), (3.4), (3.5), (3.8) and (3.11).
Now, using Hölder’s inequality, we have that

m+1∑
n=2

(
Pn
pn

)δk+k−1
|In,3|k = O(1)

m+1∑
n=2

(
Pn
pn

)δk+k−1(n−1∑
v=1

|ân,v+1||∆λv||tv|

)k

= O(1)

m+1∑
n=2

(
Pn
pn

)δk+k−1(n−1∑
v=1

v|∆v(ânv)|βv|tv|k
)
×

(
n−1∑
v=1

v|∆v(ânv)|βv

)k−1

= O(1)

m+1∑
n=2

(
Pn
pn

)δk(n−1∑
v=1

v|∆v(ânv)|βv|tv|k
)

= O(1)

m∑
v=1

vβv|tv|k
m+1∑
n=v+1

(
Pn
pn

)δk
|∆v(ânv)|

= O(1)

m∑
v=1

vβv|tv|k
(
Pv
pv

)δk−1

= O(1)

m−1∑
v=1

∆ (vβv)

v∑
r=1

(
Pr
pr

)δk−1
|tr|k +O(1)mβm

m∑
v=1

(
Pv
pv

)δk−1
|tv|k

= O(1)

m−1∑
v=1

∆ (vβv)Xv +O(1)mβmXm

= O(1)

m−1∑
v=1

(v + 1)|∆βv|Xv +O(1)

m−1∑
v=1

βvXv +O(1)mβmXm

= O(1) as m→∞,

by (2.1), (2.3), (2.6), (3.1), (3.2), (3.5), (3.6), (3.7) and (3.8).

Finally, since ∆
(

Pv

v2pv

)
= O

(
1
v2

)
by Lemma 3.3, as in In,1, we have that

m+1∑
n=2

(
Pn
pn

)δk+k−1
|In,4|k = O(1)

m+1∑
n=2

(
Pn
pn

)δk+k−1(n−1∑
v=1

|ân,v+1||λv+1|
|tv|
v

)k

= O(1)

m+1∑
n=2

(
Pn
pn

)δk+k−1(n−1∑
v=1

|∆vânv||λv+1||tv|

)k

= O(1)

m+1∑
n=2

(
Pn
pn

)δk+k−1(n−1∑
v=1

|∆vânv||λv+1|k|tv|k
)
×

(
n−1∑
v=1

|∆vânv|

)k−1

= O(1)

m+1∑
n=2

(
Pn
pn

)δk(n−1∑
v=1

|∆vânv||λv+1|k|tv|k
)

= O(1)

m∑
v=1

|λv+1|k−1|λv+1||tv|k
m+1∑
n=v+1

(
Pn
pn

)δk
|∆v(ânv)|

= O(1)

m∑
v=1

(
Pv
pv

)δk−1
|λv+1||tv|k = O(1) as m→∞,
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by (2.1), (2.4), (2.6), (3.1), (3.2), (3.5), (3.6) and (3.11).
Therefore we get

m∑
n=1

(
Pn
pn

)δk+k−1
| In,r |k= O(1) as m→∞, for r = 1, 2, 3, 4.

This completes the proof of Theorem 3.1.

If we take anv = pv
Pn

and δ = 0, then we get a result of Bor [4] for |N̄ , pn|k
summability factors. Also, if we take δ = 0, then we get a result of Özarslan [8]
for |A, pn|k summability factors. Furthermore, if we take (Xn) as a positive non-
decreasing sequence, then we get a new result dealing with |A, pn; δ|k summability
factors.
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HİKMET SEYHAN ÖZARSLAN
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