
Bulletin of Mathematical Analysis and Applications

ISSN: 1821-1291, URL: http://www.bmathaa.org

Volume 8 Issue 3(2016), Pages 35-48.

BEST PROXIMITY POINT SOLUTIONS FOR CERTAIN

CLASSES OF CYCLIC CONTRACTIONS IN ORDERED METRIC

SPACES

(COMMUNICATED BY NASEER SHAHZAD)

MOOSA GABELEH, OLIVIER OLELA OTAFUDU

Abstract. In this work we survey some best proximity point theorems for
various classes of cyclic contractions by using a geometric notion of monotone

proximally property on a nonempty pair of subsets in a metric space equipped

with a partially ordered relation. We also extend and improve the main results
of Sadiq Basha [S. Sadiq Basha, Discrete optimization in partially ordered sets,

J. Global Optim. 54, 511-517, (2012)]. Examples are given to support our main

conclusions.

1. Introduction and Preliminaries

In [15] Kirk et al. established an interesting extension of Banach contraction
principle as follows:

Theorem 1.1. Let A and B be two nonempty closed subsets of a complete metric
space (X, d). Suppose that T : A∪B → A∪B is a cyclic mapping, that is T (A) ⊆ B
and T (B) ⊆ A, such that d(Tx, Ty) ≤ αd(x, y) for some α ∈ (0, 1)and for all
x ∈ A, y ∈ B. Then T has a unique fixed point in A ∩B.

It is interesting to find out about what happens when A∩B = ∅ in Theorem 1.1.
The answer to this question is clear that T has no fixed point. Indeed the notion
of best proximity point for cyclic mappings was derived from this observation.

Definition 1.1. Let A,B be two nonempty subsets of a metric space (X, d) and
T : A∪B → A∪B be a cyclic mapping. A point p ∈ A∪B is called a best proximity
point of T if d(p, Tp) = dist(A,B), where dist(A,B) := inf{d(x, y) : x ∈ A, y ∈ B}.

Indeed best proximity point theorems have been studied to find necessary con-
ditions such that the minimization problem minx∈A∪B d(x, Tx) has at least one
solution.
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Submitted May 10, 2016. Published July 22, 2016.

35



36 M. GABELEH, O. OLELA OTAFUDU

Let A and B be two nonempty subsets of a metric space (X, d). We set

d(x,A) = dist({x}, A), ∀x ∈ X,

PA(z) = {x ∈ A : d(x, z) = d(z,A)}, ∀z ∈ X,

A0 := {x ∈ A : d(x, y) = dist(A,B) for some y ∈ B},

B0 := {y ∈ B : d(x, y) = dist(A,B) for some x ∈ A}.
Note that if (A,B) is a nonempty, weakly compact and convex pair of subsets of

a Banach space X, then A0 and B0 are also nonempty, closed and convex subsets
of X.

Definition 1.2. Let A and B be nonempty subsets of a metric space (X, d). We
say that A is Chebyshev set w.r.t. B provided that PA(x) is singleton for any x ∈ B.

For instance, if A and B are two nonempty, weakly compact and convex sets in
a strictly convex Banach space X, then A is Chebyshev set w.r.t. B and B is also
Chebyshev set w.r.t. A.

In [30] Suzuki et al. introduced a notion of property UC on metric spaces as
follows.
Definition 1.3.([30]) Let A and B be nonempty subsets of a metric space (X, d).
Then (A,B) is said to satisfy the property UC provided if {xn} and {zn} are se-
quences in A and {yn} is a sequence in B such that limn d(xn, yn) = dist(A,B) and
limn d(zn, yn) = dist(A,B), then limn d(xn, zn) = 0.

Example 1.3.([7]) Let A and B be nonempty subsets of a uniformly convex Banach
space X. Assume that A is convex. Then (A,B) satisfies the property UC.

Next lemma was proved in [30] which will be used in the sequel.

Lemma 1.2. Let A and B be two nonempty subsets of a metric space (X, d) such
that (A,B) satisfies the property UC. Let {xn} and {yn} be sequences in A and B,
respectively, such that either of the following holds:

lim
m→∞

sup
n≥m

d(xm, yn) = dist(A,B) or lim
n→∞

sup
m≥n

d(xm, yn) = dist(A,B).

Then {xn} is a Cauchy sequence.

Very recently, a weaker notion of property UC was introduced in [8] as follows.
Definition 1.4. Let A and B be nonempty subsets of a metric space (X, d). The
pair (A,B) is said to satisfies the property WUC if for any sequence {xn} in A such
that for every ε > 0 there exists y ∈ B satisfying that d(xn, y) ≤ dist(A,B) + ε for
n ≥ N , then it is the case that {xn} is convergent.

It was proved that if A and B are two nonempty subsets of a complete pointwise
uniformly convex geodesic metric space (X, d) with monotone modulus of convexity
such that A is convex, then (A,B) satisfies the property WUC (see Proposition
3.15 of [8]).
Definition 1.5. Let (X,�) be a partially ordered set. A self mapping T : X → X
is said to be monotone nondecreasing iff T (x) � T (y) whenever x, y ∈ X,x � y.
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Here, we state the main result of [1] which establishes the existence and con-
vergence of best proximity points for cyclic contraction type mappings in partially
ordered metric spaces.

Theorem 1.3. ([1]) Let (X,�) be a partially ordered set and d be a metric on X.
Let A, B be two nonempty subsets of X such that (A,B) satisfies the property UC,
and A is complete. Assume that X satisfies the condition

if a nondecreasing sequence xn → x ∈ X, then xn � x ∀n. (1.1)

Let T : A ∪B → A ∪B be a cyclic mapping such that T and T 2 are nondecreasing
on A. Moreover,

d(T x́, T 2x) ≤ αd(x́, Tx) + (1− α)dist(A,B),

and

d(T ý, T 2y) ≤ αd(ý, T y) + (1− α)dist(A,B),

for some α ∈]0, 1[ and for all (x, x́) ∈ A × A, (y, ý) ∈ B × B with x � x́, y � ý.
If there exists x0 ∈ A such that x0 � T 2x0 and xn+1 = Txn, then T has a best
proximity point p ∈ A and x2n → p.

We refer to [2, 18] for some generalizations of Theorem 1.3 and [3, 4, 9, 10, 20,
26, 27] for more information to the same problem. Some of recent results related
to existence of fixed points for cyclic mappings can be found in [6, 11, 12, 13, 14,
21, 22, 23, 24].

This paper is organized as follows: in Section 2 we introduce a geometric notion
of monotone proximally property on a nonempty pair of subsets in partially ordered
metric which is an extension of the property WUC ([8]) and generalize and improve
the main results of [1]. In Section 3, we study the existence of best proximity
points for a class of cyclic mappings which are contractions in the sense of Meir-
Keeler ([17]) in the metric spaces equipped a partially ordered relation and so
extend the results of [5]. Finally, in Section 4 we introduce a new class on non-
self mappings, called generalized ordered proximal contractions in ordered metric
spaces, and prove a best proximity point theorem for this class of non-self mappings.
Thereby, we improve and extend the main conclusions of [25]. Example are also
given to useability of our main results.

2. Cyclic contractions

In this section we consider generalized cyclic contraction type mappings and
study existence and convergence of best proximity points for this class of mappings
which contains the class of mappings in Theorem 1.6 as a subclass. We begin with
the following auxiliary lemma.

Lemma 2.1. Let A,B be nonempty subsets of a metric space (X, d) and ”�” be a
partially ordered relation on A. Let T : A ∪ B → A ∪ B be a cyclic mapping such
that T 2 is nondecreasing on A and

d(T x́, T 2x) ≤ αmax{d(x́, Tx), d(x́, T x́), d(T 2x, Tx)}+ (1− α)dist(A,B),

for some α ∈ (0, 1) and for all x, x́ ∈ A with x � x́. If there exists x0 ∈ A with
x0 � T 2x0 and xn+1 = Txn, then d(xn, xn+1)→ dist(A,B).
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Proof. Since T 2 is nondecreasing on A and x0 � T 2x0,

x0 � T 2x0 � · · · � T 2nx0 � · · · .

Put rn = d(xn, xn+1). We have

r2n = d(x2n, x2n+1) = d(T (x2n), T 2(x2n−2))

≤ αmax{d(x2n, x2n−1), d(x2n, x2n+1), d(x2n, x2n−1)}+ (1− α)dist(A,B)

= αmax{r2n−1, r2n}+ (1− α)dist(A,B).

If there exists n0 ∈ N such that r2n0−1 ≤ r2n0 , then we obtain

r2n0
≤ αmax{r2n0−1, r2n0

}+ (1− α)dist(A,B) = αr2n0
+ (1− α)dist(A,B).

Thus r2n0 = dist(A,B). Besides,

r2n0+1 = d(x2n0+1, x2n0+2) = d(T (x2n0), T 2(x2n0))

≤ αmax{d(x2n0
, x2n0+1), d(x2n0

, x2n0+1), d(x2n0+2, x2n0+1)}+ (1− α)dist(A,B)

= αr2n0+1 + (1− α)dist(A,B).

Therefore, r2n0+1 = dist(A,B). Analogously, we conclude that rn = dist(A,B),
for all n ≥ n0. Similar argument implies that if there exists n0 ∈ N such that
r2n0−2 ≤ r2n0−1 then rn = dist(A,B), for all n ≥ n0 and hence rn → dist(A,B).
Let r2n < r2n−1 and r2n−1 < r2n−2 for all n ∈ N. Thus

r2n ≤ αmax{r2n−1, r2n}+ (1− α)dist(A,B)

= αr2n−1 + (1− α)dist(A,B) = αd(T (x2n−2), T 2(x2n−2)) + (1− α)dist(A,B)

≤ α[αmax{d(x2n−2, x2n−1), d(x2n−2, x2n−1), d(x2n, x2n−1)}+(1−α)dist(A,B)]+(1−α)dist(A,B)

= α2r2n−2 + (1− α2)dist(A,B) ≤ ... ≤ α2nr0 + (1− α2n)dist(A,B).

Now if n → ∞, we obtain r2n → dist(A,B). Similarly, we see that r2n−1 →
dist(A,B). Hence, rn = d(xn, xn+1)→ dist(A,B). �

We now establish the following existence theorem.

Theorem 2.2. Let A,B be nonempty closed subsets of a metric space (X, d) and
let ”�” be a partially ordered relation on A. Assume that T is a cyclic mapping on
A ∪B such that T 2 is nondecreasing on A and

d(T x́, T 2x) ≤ αmax{d(x́, Tx), d(x́, T x́), d(T 2x, Tx)}+ (1− α)dist(A,B),

for some α ∈ (0, 1) and for all x, x́ ∈ A with x � x́. Suppose that there exists
x0 ∈ A with x0 � T 2x0 and define xn+1 = Txn. If A satisfies the Condition (1)
and either A or B is boundedly compact, then T has a best proximity point.

Proof. We assume that A is boundedly compact. Then there exists a subsequence
{x2nk

} of {x2n} converging to some p ∈ A. Thus

dist(A,B) ≤ d(p, x2nk−1) ≤ d(p, x2nk
) + d(x2nk

, x2nk−1).

Now if k →∞, then by Lemma 2.1 we have d(p, x2nk−1)→ dist(A,B). Since T 2 is
nondecreasing and the Condition (1) holds,

d(x2nk
, Tp) = d(Tp, T 2x2nk−2)

≤ αmax{d(p, x2nk−1), d(p, Tp), d(x2nk
, x2nk−1)}+ (1− α)dist(A,B).

Letting k →∞, we obtain d(p, Tp) = dist(A,B). �
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Remark. It is worthwhile to note that if in the above theorem PA(y) is singleton
for any y ∈ B0, then T 2p = p, that is, p is a fixed point of T 2.

Proof. Since d(p, Tp) = dist(A,B), we have PA(Tp) = {p}. Now from the contrac-
tive condition on T we obtain

d(Tp, T 2p) ≤ αmax{d(p, Tp), d(p, Tp), d(T 2p, Tp)}+ (1− α)dist(A,B)

= αd(T 2p, Tp) + (1− α)dist(A,B),

which implies that d(Tp, T 2p) = dist(A,B). Thereby, T 2p ∈ PA(Tp) and so T 2p =
p.

�

Motivated by Definition 1.4, we introduce the concept of monotone proximally
property in partially ordered metric spaces.

Definition 2.1. Let A and B be nonempty subsets of a partially metric space
(X, d). The pair (A,B) is said to have monotone proximally property if for any
increasing sequence {xn} in A such that for every ε > 0 there exist y ∈ B and
N ∈ N satisfying that d(xn, y) ≤ dist(A,B) + ε for n ≥ N , then it is the case that
{xn} is convergent.

Let us illustrate the above notion with the following examples.

Example 2.1. Consider X = R with the usual metric and with the natural
partially ordered relation ≤. Suppose A = [−1, 0] ∪ {2} and B = {1}. Then
dist(A,B) = 1 and A0 = {0, 2}, B0 = {1}. Let ε > 0 be given. We just have the
following two cases:
Case 1. Consider the nondecreasing sequence {xn} defined with xn = − 1

n . Then
for y = 1 we have limn→∞ d(xn, y) = 1 and so, there exists N ∈ N such that
d(xn, y) ≤ dist(A,B) + ε for all n ≥ N . We note that xn → 0.
Case 2. Let {xn} be a sequence in A for which xn = 2 for all n ∈ N except perhaps
finite numbers. In this case we have xn → 2 and that limn→∞ d(xn, y) = 1.
Therefore, (A,B) has the monotone proximally property. We now claim that (A,B)
does not satisfy the property WUC. To prove it, let us the sequence {zn} in A as

zn =

{
− 1

n if n is odd,

2 if n is even.

Then we have limn→∞ d(zn, y) = dist(A,B) but the sequence {zn} is not conver-
gent.

The following lemma will be used in the sequel. We omit the proof since it
follows similar patterns to those given by the proof of Proposition 3.3 of [7].

Lemma 2.3. Let (X,�) be a partially ordered set and d be a metric on X. Let
T : A ∪B → A ∪B be a cyclic mapping such that T 2 is nondecreasing on A and

d(T x́, T 2x) ≤ αd(x́, Tx) + (1− α)dist(A,B),

for some α ∈ (0, 1) and for all x, x́ ∈ A with x � x́. If there exists x0 ∈ A with
x0 � T 2x0 and if xn+1 = Txn, then the sequences {x2n−1} and {x2n} are bounded.

Next theorem improves and extends Theorem 1.3.
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Theorem 2.4. Let (X,�) be a partially ordered set and d be a metric on X.
Suppose that (A,B) is a nonempty pair of subsets of X such that (A,B) has the
monotone proximally property and A is complete. Assume that the condition (1)
holds on X and T : A ∪ B → A ∪ B is a cyclic mapping such that T and T 2 are
nondecreasing on A and

d(T x́, T 2x) ≤ αd(x́, Tx) + (1− α)dist(A,B),

for some α ∈ (0, 1) and for all (x, x́) ∈ A × A and (x, x́) ∈ B × B with x � x́.
If there exists x0 ∈ A such that x0 � T 2x0 and xn+1 = Txn, then T has a best
proximity point p ∈ A and x2n → p.

Proof. Consider n ∈ N. Then for all k ∈ N by the fact that the sequences {x2n−1}
and {x2n} are nondecreasing and bounded, we have

d(x2n+2k, x2n+1) = d(T 2n+2kx0, T
2n+1x0) = d(T (x2n+2k−1), T 2(x2n−1))

≤ αd(x2n+2k−1, x2n) + (1− α)dist(A,B) (since x2n−1 � x2n+2k−1)

= αd(Tx2n+2k−2, T
2x2n−2) + (1− α)dist(A,B)

≤ α2d(x2n+2k−2, x2n−1) + (1− α2)dist(A,B) (since x2n−2 � x2n+2k−2)

≤ ... ≤ α2nd(x2k, x1) + (1− α2n)dist(A,B) ≤ α2nM + (1− α2n)dist(A,B),

where M := sup{d(x2k, x1) : k ∈ N}. Thus for all ε > 0 there exists n0 ∈ N such
that d(x2n0+2k, x2n0+1) ≤ ε+ dist(A,B) which implies that

x2n0+2k ∈ B(x2n0+1, ε+ dist(A,B)), ∀k ∈ N.
Since (A,B) has the monotone proximally property, we conclude that {x2n} is
convergent to a point such as p ∈ A. It now follows from a similar argument of
Theorem 2.2 that p is a best proximity point of T and this completes the proof.

�

Example 2.2. Suppose X = R2 and define the metric d on X by

d((x1, y1), (x2, y2)) = max{|x1 − x2|, |y1 − y2|}, ∀ (x1, y1), (x2, y2) ∈ R2.

We know that X is not strictly convex. Consider the partially ordered relation on
X with

(x1, y1) � (x2, y2)⇔ x1 ≤ x2, y1 ≤ y2.
Let

A = {(0, 1− 1

2n
) : n ∈ N} ∪ {(0, n) : n ∈ N}, B = {(2, y) : 0 ≤ y ≤ 1}.

Then dist(A,B) = 2 and A0 = {(0, 1− 1
2n ) : n ∈ N}∪{(0, n) : n ∈ {1, 2, 3}}, B0 = B.

Also, it is easy to see that (A,B) has the monotone proximally property. Define
the mapping T : A ∪B → A ∪B with

T (0, 1− 1

2n
) = (2,

1

2n
), T (0, n) = (2, 0) and T (2, y) = (0, 1).

Now for any (x, x́) ∈ A×A ∪B ×B with x � x́ and α ∈ (0, 1) we have

d(T x́, T 2x) = 2 ≤ αd(x́, Tx) + (1− α)dist(A,B).

Moreover, for any x0 ∈ {(0, 1− 1
2n ) : n ∈ N} we have x0 � T 2x0. It now follows from

Theorem 2.4 that T has a best proximity point in A and if we define xn+1 = Txn,
then x2n converges to the best proximity point of T in A. It is worth noticing that
any point of the set {(0, 1− 1

2n ) : n ∈ N} is a best proximity point of T .
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3. Cyclic Meir-Keeler contractions

The class of cyclic Meir-Keeler contractions were introduced by Di Bari et al.
in [5] in order to study of existence and convergence of best proximity points in
uniformly convex Banach spaces (see Theorem 2 of [5]).

Before we state the main result of them, we recall the following essentials.

Definition 3.1.(Lim [16]) A function ϕ : [0,∞)→ [0,∞) is called an L-function if
ϕ(0) = 0, ϕ(s) > 0 for s ∈ (0,∞), and for every s > 0 there exists δ > 0 such that
ϕ(t) ≤ s for all t ∈ [s, s+ δ].

Lemma 3.1. ([16, 28]) Let Y be a nonempty set and let f and g be functions from
Y into [0,∞). Then the following equivalent.
(i) For each ε > 0, there exists δ > 0 such that

x ∈ Y, f(x) < ε+ δ implies g(x) < ε.

(ii) There exists a (nondecreasing, continuous) L-function ϕ such that

x ∈ Y, f(x) > 0 implies g(x) < ϕ(f(x))

and

x ∈ Y, f(x) = 0 implies g(x) = 0.

Lemma 3.2. ([28]) Let ϕ be an L-function. Let {sn} be a nondecreasing sequence
of nonnegative real numbers. Suppose sn+1 < ϕ(sn) for all n ∈ N with sn > 0.
Then limn sn = 0.

Next theorem is the main result of [5].

Theorem 3.3. (Theorem 4 of [5]) Let X be a uniformly convex Banach space and
let A and B be nonempty subsets of X. Suppose that A is closed and convex. Let
T : A ∪B → A ∪B be a cyclic mapping so that for every ε > 0, there exists δ > 0
such that

‖x− y‖ < dist(A,B) + δ + ε implies ‖Tx− Ty‖ < dist(A,B) + ε,

and

‖Tx− Ty‖ < ‖x− y‖ whenever ‖x− y‖ > dist(A,B),

for any (x, y) ∈ A×B. Then T has a best proximity point in A and for any x0 ∈ A
if we define xn+1 = Txn, then x2n converges to the best proximity point of T .

At the end of this section, we attempt to generalize Theorem 2.4 to metric spaces
equipped with the partially ordered relation. We begin with the following lemma.

Lemma 3.4. Let A,B be nonempty subsets of a metric space (X, d) and ”�” be a
partially ordered relation on A. Let T : A ∪ B → A ∪ B be a cyclic mapping such
that T 2 is nondecreasing on A and for every ε > 0, there exists δ > 0 such that

d∗(x́, Tx) < δ + ε implies d∗(T x́, T 2x) < ε,

and

d(T x́, T 2x) < d(x́, Tx) whenever d∗(x́, Tx) > 0,

for all x, x́ ∈ A with x � x́, where d∗(a, b) := d(a, b)−dist(A,B) for all (a, b) ∈ A×
B. If there exists x0 ∈ A with x0 � T 2x0 and if xn+1 = Txn, then d(xn, xn+1) →
dist(A,B).
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Proof. By Lemma 3.1 we have

d∗(x́, Tx) > 0 implies d∗(T x́, T 2x) < ϕ(d∗(x́, Tx))

and

d∗(x́, Tx) = 0 implies d∗(T x́, T 2x) = 0,

for all x, x́ ∈ A with x � x́. According to the fact that T 2 is nondecreasing on A,
{x2n} is a nondecreasing sequence. Set sn = d∗(xn, xn+1). If there exists n0 ∈ N
such that sn0 = 0, then we conclude that d(xn, Txn) = dist(A,B) for all n ≥ n0
and we are finished. Now, suppose sn > 0 for all n ∈ N. Thus

s2n = d∗(x2n, x2n+1) = d∗(Tx2n, T
2x2n−2) (x2n−2 � x2n)

< ϕ(d∗(x2n, Tx2n−2)) = ϕ(s2n−1) ≤ s2n−1
= d∗(x2n−1, x2n) = d∗(Tx2n−2, T

2x2n−2) < ϕ(d∗(x2n−2, x2n−1)) = ϕ(s2n−2).

It now follows from Lemma 3.2 that s2n → 0 and so s2n−1 → 0. Therefore,
sn → 0. �

Theorem 3.5. Under the assumptions of Lemma 3.4 if A,B are closed, A satisfies
the Condition (1) and either A or B is boundedly compact, then T has a best
proximity point.

Proof. Let {x2nk
} be a subsequence of {x2n} converging to some p ∈ A. Similar

argument of Theorem 2.2 implies that d∗(p, x2nk−1)→ 0. Hence

d∗(x2nk
, Tp) = d∗(Tp, T 2(x2nk−2)) (x2nk−2 � p)

< ϕ(d∗(p, x2nk−1)) ≤ d∗(p, x2nk−1).

Letting k →∞, we obtain d∗(x2nk
, Tp)→ 0. Then d(p, Tp) = dist(A,B). �

Next result is another extension of Theorem 1.3.

Theorem 3.6. Let (X,�) be a partially ordered set and d be a metric on X.
Suppose that (A,B) is a nonempty pair of subsets of X such that (A,B) satisfies
the property UC and A is complete. Assume that the condition (1) holds on A and
T : A ∪ B → A ∪ B is a cyclic mapping such that T and T 2 are nondecreasing on
A and for every ε > 0, there exists δ > 0 such that

d∗(x́, Tx) < δ + ε implies d∗(T x́, T 2x) < ε,

and

d(T x́, T 2x) < d(x́, Tx) whenever d∗(x́, Tx) > 0,

for all (x, x́) ∈ A × A and (x, x́) ∈ B × B with x � x́. If there exists x0 ∈ A such
that x0 � T 2x0 and xn+1 = Txn, then T has a best proximity point p ∈ A and
x2n → p.

Proof. By Lemma 3.4 for the nondecreasing sequences {x2n} and {x2n−1} we have

d∗(x2n, x2n+1)→ 0, d∗(x2n+2, x2n+1)→ 0.

Since (A,B) satisfies the property UC, d(x2m, x2m+2)→ 0. Let ε > 0 be given and
choose δ ∈ (0, 1) satisfying ϕ(ε+δ) ≤ 2ε. Let k ∈ N be such that d∗(x2m, x2m+1) <
ε , d∗(x2m+2, x2m+1) < ε and d(x2m, x2m+2) < δ, for all m ≥ k. Fix m ∈ N with
m ≥ k. We now prove that

d∗(x2m, x2n+1) < 3ε (3.1)
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for all n ≥ m. If n = m, then (2) holds. Assume that (2) holds for n ≥ m. We
have

d∗(x2m+2, x2n+3) ≤ d∗(T (x2n+2), T 2(x2m)) (x2m � x2n+2)

≤ ϕ(d∗(x2n+2, x2m+1)) ≤ d∗(x2n+2, x2m+1)

= d∗(T (x2n+1), T 2(x2m−1)) ≤ ϕ(d∗(x2m, x2n+1)) (x2m−1 � x2n+1)

≤ ϕ(ε+ δ) ≤ 2ε.

This implies that

d∗(x2m, x2n+3) ≤ d(x2m, x2m+2) + d∗(x2m+2, x2n+3)

≤ δ + 2ε < 3ε,

that is (2) holds. Therefore limm→∞ supn≥m d∗(x2m, x2n+1) = 0. It follows from
Lemma 1.2 that {x2n} is a Cauchy sequence and by the completeness of the set A,
there exists p ∈ A such that x2n → p. Since the condition (1) holds on A, we have
x2n � p, for all n ∈ N. Thus

d∗(p, Tp) = lim
n→∞

d∗(x2n, Tp) = lim
n→∞

d∗(Tp, T 2(x2n−2)) (x2n−2 � p)

≤ lim
n→∞

ϕ(d∗(p, x2n−1)) ≤ lim
n→∞

d∗(p, x2n−1)

≤ lim
n→∞

(d(p, x2n) + d∗(x2n, x2n−1)) = 0.

Hence d(p, Tp) = dist(A,B) which completes the proof. �

We finish this section by raising the next problem.

Question 3.1. It is interesting to find out if Theorem 3.6 still holds whenever the
pair (A,B) has the monotone proximally property.

4. Generalized ordered proximal contractions

In the last section of the current work, we are going to extend the main results
of [25]. We start by recalling the following notions.
Definition 4.1.([25]) Let (X,�) be a partially ordered set and d be a metric on X
and assume that A,B are nonempty subsets of X. A mapping T : A → B is said
to be a proximally increasing if it satisfies the condition that

x � y,
d(u, Tx) = dist(A,B),

d(v, Ty) = dist(A,B),

⇒ u � v,

for all x, y, u, v ∈ A.

Definition 4.2.([25]) A non-self mapping T : A → B is said to be an ordered
proximal contraction if for all u, v, x, y ∈ A with

x � y, d(u, Tx) = dist(A,B) and d(v, Ty) = dist(A,B),

we have

d(u, v) ≤ rd(x, y). (4.1)

Here, we introduce the concept of generalized ordered proximal contractions as
below.
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Definition 4.3. Consider a strictly decreasing function η from [0, 1) onto (1
2 , 1] by

η(r) = 1
1+r . The non-self mapping T : A → B is said to be a generalized ordered

proximal contraction if for all u, v, x, y ∈ A with

x � y, d(u, Tx) = dist(A,B) and d(v, Ty) = dist(A,B),

we have

η(r)d∗(x, Tx) ≤ d(x, y) implies d(u, v) ≤ rd(x, y). (4.2)

Remark. It is clear that the class of generalized ordered proximal contractions
contains the class of ordered proximal contraction as a subclass.

Example 4.1. Consider X = R2 with the partially ordered relation and the
metric as in Example 2.2. Assume that A := {(0, 0), (4, 5), (5, 5)} and B :=
{(0, 0), (4, 5), (4, 0)}. Let T : A→ B be a mapping defined as

T (x) =

{
(4, 5) if x = (5, 5),

(0, 0) if x 6= (5, 5).

Note that dist(A,B) = 0. Then T is generalized ordered proximal contraction for
each 1

5 ≤ r < 1. To this end, we consider two following cases.
Case 1. Let (u,x) = ((0, 0), (0, 0)) and (v,y) = ((4, 5), (5, 5)). Then we have
x � y and d(u, Tx) = d(v, Ty) = dist(A,B). Also,

d(u,v) = 1 ≤ r × 5 = rd(x,y).

Case 2. Let (u,x) = ((0, 0), (4, 5)) and (v,y) = ((4, 5), (5, 5)). Then we have
x � y and d(u, Tx) = d(v, Ty) = dist(A,B). Also,

η(r)d∗(x, Tx) =
5

1 + r
> 1 = d(x,y).

Hence, T is a generalized ordered proximal contraction mapping. It is interesting
to note that T is not ordered proximal contraction. Indeed, in Case 2 we have

d(u,v) = 5 > r × 1 = rd(x,y).

We now establish the following existences theorem.

Theorem 4.1. (Compare with Theorem 3.1 of [25]) Let (X,�) be a partially or-
dered set and d be a metric on X. Assume that A,B are nonempty subsets of X
such that A0 is nonempty, closed and the condition (1) holds on A. Let T : A→ B
be a non-self mapping satisfies the following conditions.
(i) T is a proximally increasing and generalized ordered proximal contraction and
T (A0) ⊆ B0.
(ii) There exist elements x0, x1 ∈ A0 such that

d(x1, Tx0) = dist(A,B) and x0 � x1.

Then T has a best proximity point.

Proof. By condition (ii) there exist x0, x1 ∈ A0 such that x0 � x1 and d(x1, Tx0) =
dist(A,B). Since Tx1 ∈ B0, there exists x2 ∈ A0 such that d(x2, Tx1) = dist(A,B).
By the fact that T is proximally increasing we conclude that x1 � x2. Continuing
this process, we can find a sequence {xn} in A0 such that

d(xn+1, Txn) = dist(A,B), xn � xn+1, for all n ∈ N ∪ {0}. (4.3)
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For all n ∈ N ∪ {0} we have

d(xn, Txn) ≤ d(xn, xn+1) + d(xn+1, Txn) = d(xn, xn+1) + dist(A,B).

Note that η(r) ≤ 1, thus

xn � xn+1,

{
d(xn+1, Txn) = dist(A,B),

d(xn+2, Txn+1) = dist(A,B),
& η(r)d∗(xn, Txn) ≤ d(xn, xn+1).

By the fact that T is generalized ordered proximal contraction,

d(xn+1, xn+2) ≤ rd(xn, xn+1), ∀n ∈ N ∪ {0}.
By induction we conclude that

d(xn, xn+1) ≤ rnd(x0, x1),

which implies that

Σ∞n=1d(xn, xn+1) ≤ Σ∞n=1r
nd(x0, x1) <∞.

Thus, {xn} is a Cauchy and increasing sequence A0. Since A0 is closed and X is
complete, we deduce that {xn} is a convergent sequence. Let p ∈ A0 be such that
xn → p. Since the condition (1) holds on A, xn � p for each n ∈ N∪{0}. We prove
that

d∗(p, Tx) ≤ rd(p, x), ∀x ∈ A0 with xn � x � p, ∀n ∈ N ∪ {0}. (4.4)

Let x ∈ A0 be such that xn � x for all n ∈ N ∪ {0} and x � p. By the fact that
T (A0) ⊆ B0, there exists y ∈ A0 such that d(y, Tx) = dist(A,B). Since xn → p,
there exists N1 ∈ N such that

d(xn, p) ≤
1

3
d(x, p), ∀n ≥ N1.

Now, for each n ≥ N1 we have

η(r)d∗(xn, Txn) ≤ d∗(xn, Txn)

≤ d(xn, p) + d(p, xn+1) + d∗(xn+1, Txn)

= d(xn, p) + d(p, xn+1) ≤ 2

3
d(x, p)

= d(x, p)− 1

3
d(x, p) ≤ d(x, p)− d(xn, p)

≤ d(xn, x).

Thereby, for each n ≥ N1

xn � x,

{
d(xn+1, Txn) = dist(A,B),

d(y, Tx) = dist(A,B),
& η(r)d∗(xn, Txn) ≤ d(xn, x).

Again, since T is generalized ordered proximal contraction,

d(xn+1, y) ≤ rd(xn, x).

Thus,
d(p, Tx) = lim

n→∞
d(xn+1, Tx) ≤ lim

n→∞
[d(xn+1, y) + d(y, Tx)]

≤ lim
n→∞

[rd(xn, x) + d(y, Tx)] = rd(p, x) + dist(A,B)

Hence,

d∗(p, Tx) ≤ rd(p, x), ∀x ∈ A0, with xn � x � p,∀n ∈ N ∪ {0},
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which implies that, (6) holds. We now have

d∗(xn, Txn) ≤ d(xn, p) + d∗(p, Txn)

≤ d(xn, p) + rd(p, xn) = (1 + r)d(p, xn).

So,

η(r)d∗(xn, Txn) ≤ d(p, xn). (4.5)

On the other hand, since p ∈ A0 and T (A0) ⊆ B0, there exists q ∈ A0 such that
d(q, Tp) = dist(A,B). Therefore,

xn � p,

{
d(xn+1, Txn) = dist(A,B),

d(q, Tp) = dist(A,B),
& η(r)d∗(xn, Txn) ≤ d(xn, p),

which deduces that

d(xn+1, q) ≤ rd(xn, p).

Since xn → p, by the above relation we must have xn → q. This implies that p = q
and so,

d(p, Tp) = dist(A,B),

that is, p is a best proximity point of T and the proof completes.
�

The following result is an extension of Suzuki’s fixed point theorem ([29]) in
partially ordered metric spaces.

Corollary 4.2. Let (X,�) be a partially ordered set and d be a metric on X such
that (X, d) is complete and the condition (1) holds on X. Let T : X → X be a
nondecreasing mapping for which

η(r)d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤ rd(x, y),

for every x, y ∈ X with x � y. If there exists x0 ∈ X with x0 � Tx0, then T has a
fixed point.

Finally, we obtain the following fixed point theorem due to Nieto and Rodriguez-
Lopez ([19]).

Corollary 4.3. Let (X,�) be a partially ordered set and d be a metric on X such
that (X, d) is complete and the condition (1) holds on X. Let T : X → X be a
nondecreasing mapping for which

d(Tx, Ty) ≤ rd(x, y),

for every x, y ∈ X with x � y and for some r ∈ (0, 1). If there exists x0 ∈ X with
x0 � Tx0, then T has a fixed point.
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