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Abstract. We use the notion of Hausdorff metric on the family of closed

bounded subsets of a dualistic partial metric space (DPMS) and establish

a common fixed point theorem of a pair of multivalued mappings satisfying
Mizoguchi and Takahashi’s contractive conditions. Our result extends some

well-known results in the literature.

1. Introduction

In 1922, Banach established the most famous fundamental fixed point theorem
(the so-called the Banach contraction principle [9]) which has played an important
role in various fields of applied mathematical analysis. It is known that the Ba-
nach contraction principle has been extended in many various directions by several
authors (see [1]-[29]).

In the other hand, the study of metric spaces expressed the most important role
to many fields both in pure and applied science such as biology, medicine, physics
and computer science. Some generalizations of the notion of a metric space have
been proposed by some authors, such as, rectangular metric spaces, semi metric
spaces, pseudo metric spaces, probabilistic metric spaces, fuzzy metric spaces, quasi
metric spaces, quasi semi metric spaces, D-metric spaces, and cone metric spaces
(see [ [1],[12],[15],[27],). Branciari [11] introduced the notion of a generalized metric
space replacing the triangle inequality by a rectangular type inequality. He then
extended Banach’s contraction principle in such spaces.

In the last thirty years, the theory of multivalued functions has advanced in a
variety of ways. In 1969, the systematic study of Banach-type fixed theorems of
multivalued mappings started with the work of Nadler [24]. He used the concept of
the Hausdorff metric to establish the multivalued contraction principle containing
the Banach contraction principle as a special case. His finidings were followed by
Azam et al.[8] and many others (see, e.g.,[16],[20],[28]).
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In 1994, Matthews [22] intoduced the concept of partial metric spaces and ob-
tained various fixed point theorems. In particular, he established the precise re-
lationship between partial metric spaces and the so-called weightable quasi-metric
spaces, and proved a partial metric generalization of Banach’s contraction mapping
theorem. Later on, Neill in [25] introduced the concept of dualistic partial metric
spaces (DPMS) by extending the range R+ → R. He developed several connections
between partial metrics and the topological aspects of domain theory. In 2004,
Oltra et al.,[26] established Banach fixed point theorem for complete DPMS. Re-
cently many authors developed some fixed point theorems using complete DPMS
for Banach’s contraction principle and partial order respectively. For the sake of
continuity of work on DPMS, we establish some common fixed point theorems of
a pair of multivalued mappings satisfying Mizoguchi and Takahashi’s contractive
conditions in the setting of DPMS.

2. Preliminaries

Throughout this paper the letters R, R+ and N will denote the set of real num-
bers, the set of nonnegative real numbers and the set of natural numbers, respec-
tively.

Definition 2.1. [25] Let X be a nonempty set. Suppose that the mapping D :
X ×X → R, satisfies:

(1) x = y ⇔ D (x, x) = D (y, y) = D (x, y) ;
(2) D(x, x) ≤ D(x, y) for all x, y ∈ X;
(3) D (x, y) = D (y, x) for all x, y ∈ X;
(4) D(x, z) ≤ D(x, y) +D(y, z)−D (y, y) , for all x, y, z ∈ X.

Then D is called a dualistic partial metric on X, and (X,D) is called a DPMS.
Note that if R is replaced by R+ then D is known as partial metric on X. To

make a difference between partial metric and dualistic partial metric, we discuss an
example. Let us define D : X ×X → R by D (x, y) = Sup{x, y}. Now if X = R,
then D is dualistic partial metric but nor partial metric on X, for if x = −1 and
y = −3 then Sup{−1, −3} = −1 = D (x, y) which is not possible in partial metric.
Each dualistic partial metricD onX generates a τ0 topology τ (D) onX which has a
base topology of open D−balls {BD (x, ε) : x ∈ X, ε > 0} and BD (x, ε) = {y ∈ X :
D (x, y) < ε+D (x, x)}. From this fact it fallows that a sequence (xn)n in a DPMS
converges to a point x ∈ X if and only if D (x, x) = limn→∞D (x, xn) .

Definition 2.2. Let X be a nonempty set. Suppose that the mapping d :
X ×X → R+, satisfies:

(1) d (x, y) = d (y, x) = 0 ⇔ x = y, for all x, y ∈ X;
(2) d(x, z) ≤ d(x, y) + d (y, z) for all x, y, z ∈ X.

The pair (X, d) is called quasi metric space.
Each quasi metric d on X generates a τ0 topology τ (d) on X which has a base

topology of open d−balls {Bd (x, ε) : x ∈ X, ε > 0} and Bd (x, ε) = {y ∈ X :
d (x, y) < ε}.

Moreover if d is quasi metric, then ds (x, y) = max {d (x, y) , d (y, x)} is a metric
on X.



FIXED POINTS OF MULTIVALUED MAPPINGS IN DUALISTIC PARTIAL METRIC SPACES51

Let us define modulus of a dualistic partial metric by

|D (x, y)| =
{

D (x, y) if D (x, y) > 0;
−D (x, y) if D (x, y) < 0.

.

Lemma 2.3. [26] If (X,D) is a DPMS, then the function dp : X × X → R+

defined by

dp (x, y) = D (x, y)−D (x, x) ,

for all x, y ∈ X, is a quasi metric on X such that τ (D) = τ (dp) . Now if dp is
quasi metric on X then dsp (x, y) = max{dp (x, y) , dp (y, x)} is metric on X.

Lemma 2.4. [26] (i) The sequence {xn} in DPMS (X,D) converges to a point
x if and only if D (x, x) = limn→∞D (xn, x) .

(ii) The sequence {xn} in DPMS is called cauchy sequence if limn,m→∞D (xn, xm)
exists.

(iii) The DPMS is complete if and only if the metric
(
X, dsp

)
is complete and fur-

ther limn→∞ dsp (xn, x) = 0 iffD (x, x) = limn→∞D (xn, x) = limn,m→∞D (xn, xm) .
A subset A of X is called closed in (X,D) if it is closed with respect to τ (D) .

A is called bounded in (X,D) if there exists x0 ∈ X and M > 0 such that a ∈
BD (x0,M) for all a ∈ A, i.e,
D (x0, a) < D (x0, x0) +M for all a ∈ A.
Let CBD (X) be the collection of all nonempty, closed and bounded subsets of

X with respect to the dualistic partail metric D. For A ∈ CBD (X) , we define
D (x,A) = infy∈AD (x, y) .
For A,B ∈ CBD (X) ,
δD (A,B) = supa∈AD (a,B) ,
δD (B,A) = supb∈B D (b, A) ,
HD (A,B) = max {δD (A,B) , δD (B,A)} .
Note that D (x,A) = 0 =⇒ dsp (x,A) = 0, where dsp (x,A) = infy∈A d

s
p (x, y) .

Proposition 2.5.[7] Let (X,D) be a partial metric space. For any A, B, C ∈
CBD (X) , we have

(i) δD (A,A) = sup {D (a, a) : a ∈ A} ;
(ii) δD (A,A) ≤ δD (A,B) ;
(iii) δD (A,B) = 0 =⇒ A ⊆ B;
(iv) δD (A,B) ≤ δD (A,C) + δD (C,B)− infc∈C D (c, c) .
Proposition 2.6.[7] Let (X,D) be a partial metric space. For any A, B, C ∈

CBD (X) , we have
(i) HD (A,A) ≤ HD (A,B) ;
(ii) HD (A,B) ≤ HD (B,A) ;
(iii) HD (A,B) ≤ HD (A,C) +HD (C,B)− infc∈C D (c, c) .
Remark 2.7.[7] Let (X,D) be a partial metric space and A be any nonempty

set in (X,D) , then a ∈ A if and only if
D (a,A) = D (a, a) ,
where A denotes the clouser of A with respect to partial metric D. Note that A

is closed in (X,D) if and only if A = A.
Lemma.2.8. Let A and B be nonempty, closed and bounded subsets of a

DPMS (X,D) and 0 < h ∈ R. Then for every a ∈ A, there exists b ∈ B such that
D (a, b) ≤ HD (A,B) + h.
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Proof. We argue by contradiction. Suppose there exist h > 0, such that for any
b ∈ B we have

D (a, b) > HD (A,B) + h.

Then,

D (a,B) = inf {D (a, b) , b ∈ B} ≥ HD (A,B) + h ≥ δD (A,B) + h,

which is a contradiction. Hence, there exists b ∈ B such that D (a, b) ≤ HD (A,B)+
h.

Definition 2.9. [13] A function ϕ : [0,+∞) −→ [0, 1) is said to be MT−function
if it satisfies Mizoguchi and Takahashi’s conditions (i.e., lim supr→t+ ϕ (r) < 1 for
all t ∈ [0,+∞) ).

Proposition 2.10. [13] Let ϕ : [0,+∞) −→ [0, 1) be a function. Then the
following statements are equivalent.

1. ϕ is an MT−function.

2. For each t ∈ [0,∞), there exists r
(1)
t ∈ [0, 1) and ε

(1)
t > 0 such that ϕ (s) ≤ r(1)t

for all s ∈
(
t, t+ ε

(1)
t

)
.

3. For each t ∈ [0,∞), there exists r
(2)
t ∈ [0, 1) and ε

(2)
t > 0 such that ϕ (s) ≤ r(2)t

for all s ∈
(
t, t+ ε

(2)
t

)
.

4. For each t ∈ [0,∞), there exists r
(3)
t ∈ [0, 1) and ε

(3)
t > 0 such that ϕ (s) ≤ r(3)t

for all s ∈
(
t, t+ ε

(3)
t

)
.

5. For each t ∈ [0,∞), there exists r
(4)
t ∈ [0, 1) and ε

(4)
t > 0 such that ϕ (s) ≤ r(4)t

for all s ∈
(
t, t+ ε

(4)
t

)
.

6. For any nonincreasing sequence {xn}n∈N in [0,∞), we have 0 ≤ supn∈N ϕ (xn) <
1.

7. ϕ is a function of contractive factor [14], that is, for any strictly decreasing
sequence {xn}n∈N in [0,∞), we have 0 ≤ supn∈N ϕ (xn) < 1.

3. The Results

Mizoguchi and Takahashi proved the following theorem on complete metric
spaces in [23].

Theorem. 3.1. Let (X, d) be a complete metric space and let the map-
ping S : X → CB(X) be a multivalued map and ϕ : [0,+∞) −→ [0, 1) be an
MT−function. Assume that

H(Sx, Sy) ≤ ϕ (d (x, y)) d (x, y) ; (3.1)

for all x, y ∈ X, Then S has a fixed point in X.
We use the notion of Hausdorff metric on the family of closed bounded subsets

of a dualistic partial metric space and establish a common fixed point theorem of a
pair of multivalued mappings satisfying MT-function. Following is our main result.

Theorem. 3.2. Let (X,D) be a complete DPMS. S, T : X → CBD(X) be
multivalued mappings and ϕ : [0,+∞) −→ [0, 1) be an MT−function. Assume that

HD(Sx, Ty) ≤ ϕ (D (x, y))D (x, y) ; (3.2)

for all x, y ∈ X, then there exists z ∈ X such that z ∈ Sz and z ∈ Tz.
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Proof: Let x0 ∈ X and x1 ∈ Sx0. If D (x0, x1) = 0, then x0 = x1 and

HD(Sx0, Tx1) ≤ ϕ (D (x0, x1))D (x0, x1) = 0.

Thus, Sx0 = Tx1, which implies that
x1 = x0 ∈ Sx0 = Tx1 = Tx0, and we finished. Assume that D (x0, x1) > 0. By

Lemma 2.8, we can take x2 ∈ Tx1 such that

|D (x1, x2)| ≤ HD(Sx0, Tx1) + |D (x0, x1)|
2

. (3.3)

If D (x1, x2) = 0, then x1 = x2 and

HD(Tx1, Sx2) ≤ ϕ (D (x1, x2))D (x1, x2) = 0,

then Tx1 = Sx2. That is x2 = x1 ∈ Tx1 = Sx2 = Sx2 and we finished.
Assume that D (x1, x2) > 0. Again By Lemma 2.8, we can take x3 ∈ Sx2 such

that

|D (x2, x3)| ≤ HD(Tx1, Sx2) + |D (x1, x2)|
2

. (3.4)

By repeating this process, we can construct a sequence xn of points in X and a
sequence An of elements in CBD (X) such that

xj+1 ∈ Aj =

{
Sxj , j = 2k, k ≥ 0

Txj , j = 2k + 1, k ≥ 0
, (3.5)

and

|D (xj , xj+1)| ≤ HD (Aj−1, Aj) + |D (xj−1, xj)|
2

, (3.6)

with j ≥ 0, along with the assumption that D (xj , xj+1) > 0 for each j ≥ 0. Now
for j = 2k + 1, we have

|D (xj , xj+1)| ≤ HD (Aj−1, Aj) + |D (xj−1, xj)|
2

,

≤ HD (Sx2k, Tx2k+1) + |D (x2k, x2k+1)|
2

,

≤ ϕ (D(x2k, x2k+1)) (D(x2k, x2k+1) + |D (x2k, x2k+1)|
2

,

≤
(
ϕ (D (xj−1, xj)) + 1

2

)
|D (xj−1, xj)| ,

≤ D (xj−1, xj) .

Similarly for j = 2k + 2, we obtain

|D (xj , xj+1)| ≤ HD (Tx2k+1, Sx2k+2) + |D (xj−1, xj)|
2

,

≤
(
ϕ (D (xj−1, xj)) + 1

2

)
|D (xj−1, xj)| ,

≤ D (xj−1, xj) .

It fallows that the sequence {D (xn, xn+1)} is decreasing and converges to a
nonnegative real number t ≥ 0. Define a function ψ : [0,∞) −→ [0, 1) as fallows:

ψ (ζ) =
ϕ (ζ) + 1

2
.
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Then
lim sup

ζ→t+
ψ (ζ) < 1.

Using Proposition 2.10, for t ≥ 0, we can find δ (t) > 0, λt < 1, such that
t ≤ r ≤ δ (t) + t implies ψ (r) < λt and there exists a natural number N such that
t ≤ D (xn, xn+1) ≤ δ (t) + t, when ever n > N. Hence

ψ (D (xn, xn+1)) < λt, whenever n > N.

Then for n = 1, 2, 3, · · ··

|D (xn, xn+1)| ≤
(
ϕ (D (xn−1, xn)) + 1

2

)
|D (xn−1, xn)| ,

≤ ψ (D (xn−1, xn)) |D (xn−1, xn)| ,

≤ max
{

N
max
n=1

ψ (D (xn−1, xn)) , λt

}
|D (xn−1, xn)| ,

≤
[
max

{
N

max
n=1

ψ (D (xn−1, xn)) , λt

}]2
|D (xn−2, xn−1)| ,

≤
[
max

{
N

max
n=1

ψ (D (xn−1, xn)) , λt

}]n
|D (x0, x1)| .

Put max
{

maxNn=1 ψ (D (xn−1, xn)) , λt
}

= Φ, then Φ < 1,

|D (xn, xn+1)| ≤ Φn |D (x0, x1)| . (3.7)

Also we can deduce from the contraction that

|D (xn, xn)| ≤ 2Φn−1 |D (x0, x1)| . (3.8)

To prove that {xn} is a cauchy sequence in (X,D) , we will prove that {xn} is a
cauchy sequence in

(
X, dsp

)
. Since

dp(x, y) = D (x, y)−D (x, x) .

Therefore

dp (xn, xn+1) = D (xn, xn+1)−D (xn, xn) ,

dp (xn, xn+1) +D (xn, xn) = D (xn, xn+1) ,

≤ |D (xn, xn+1)| .
By (3.7), we have

dp (xn, xn+1) +D (xn, xn) ≤ Φn |D (x0, x1)| ,
dp (xn, xn+1) ≤ Φn |D (x0, x1)| −D (xn, xn) ,

≤ Φn |D (x0, x1)|+ |D (xn, xn)| .
By using (3.8), we have

dp (xn, xn+1) ≤ Φn |D (x0, x1)|+ 2Φn−1 |D (x0, x1)| .
This implies that

dp (xn, xn+1) ≤ Φn (3− 2ϕ) |D (x0, x1)| , (3.9)

and
dp (xn+1, xn+2) ≤ Φn+1 (3− 2ϕ) |D (x0, x1)| . (3.10)

Continuing in the same way, we have

dp (xn+γ−1, xn+γ) ≤ Φn+γ−1 (3− 2ϕ) |D (x0, x1)| . (3.11)
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Now using the triangular inequality and equations (3.10)-(3.11), we have

dp (xn, xn+γ) ≤ dp (xn, xn+1) + dp (xn+1, xn+2) + · · · ·+dp (xn+γ−1, xn+γ) ,

≤ Φn (3− 2ϕ) |D (x0, x1)|+ Φn+1(3− 2ϕ) |D (x0, x1)|+ · · ·+
λn+γ−1 (3− 2ϕ) |D (x0, x1)| ,

≤ Φn

1− Φ
(3− 2ϕ) |D (x0, x1)| .

Similarly, we can conclude that

dp (xn+γ , xn) ≤ Φn

1− Φ
(3− 2ϕ) |D (x0, x1)| .

Now taking limit as n→∞ of last two inequalities, we obtain that

lim
n→∞

dp (xn, xn+γ) = 0 = lim
n→∞

dp (xn+γ , xn) .

This implies

lim
n→∞

dsp (xn, xn+γ) = 0.

This implies that {xn} is a Cauchy sequence in
(
X, dsp

)
. Since

(
X, dsp

)
is complete

metric space, there exist z ∈ X such that xn −→ z as n→∞. i.e,

lim
n→∞

dsp (xn, z) = 0.

Now from Lemma 2.4, we have limn→∞ dsp (xn, z) = 0 if and only if

D (z, z) = lim
n→∞

D (xn, z) = lim
n,m→∞

D (xn, xm) .

Since

lim
n,m→∞

dp (xn, xm) = 0,

lim
n,m→∞

[D (xn, xm)−D (xn, xn)] = 0,

lim
n,m→∞

D (xn, xm) = lim
n,m→∞

D (xn, xn) .

But (3.8) implies that

lim
n,m→∞

D (xn, xn) = 0.

It fallows directly that

lim
n,m→∞

D (xn, xm) = 0.

This implies that

D (z, z) = lim
n→∞

D (xn, z) = lim
n→∞

D (xn, xn) = 0. (3.12)

Now, by (3.12) , we have

dp (z, Tz) = D (z, Tz)−D (z, z) ,

= D (z, Tz) . (3.13)

So

D (z, Tz) ≥ 0.

Now from (P2.6) and (3.2), we get
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D (Sz, z) ≤ D (Sz, x2n+2) +D (x2n+2, z)−D (x2n+2, x2n+2) ,

≤ D (x2n+2, Sz) +D (x2n+2, z) + |D (x2n+2, x2n+2)| ,
≤ sup

u∈Tx2n+1

D (u, Sz) +D (x2n+2, z) + |D (x2n+2, x2n+2)| ,

≤ δD (Tx2n+1, Sz) +D (x2n+2, z) + |D (x2n+2, x2n+2)| ,
≤ HD (Tx2n+1, Sz) +D (x2n+2, z) + |D (x2n+2, x2n+2)| ,
≤ ϕ (D (x2n+1, z))D (x2n+1, z) +D (x2n+2, z) + |D (x2n+2, x2n+2)| ,
≤ D (x2n+1, z) +D (x2n+2, z) + |D (x2n+2, x2n+2)| .

Taking limit as n −→∞, we get

D (Sz, z) = 0. (3.14)

Thus from (3.12) and (3.14), we get
D (z, z) = D (Sz, z)
Thus by remark 2.7, we get that z ∈ Sz. It fallows similarly that z ∈ Tz. This

completes the proof of the theorem.
Example 3.3. Let X = R and D (x, y) = 1

4 |x− y|+
1
2 max{x, y}, for all x, y ∈

X. Note that if dp is quasi metric on X, then dsp (x, y) = max{dp (x, y) , dp (y, x)} is

metric on X. Hence, dsp (x, y) = |x− y| and so
(
X, dsp

)
is a complete metric space.

Also define mappings S, T : X −→ CBD (X) by

Sx = B
(
0, x4

)
, T y = B

(
0, x3

)
.

Then

HD

(
B
(
0, x4

)
, B
(
0, x3

))
= max

[
x
4 ,

x
3

]
and

HD (Sx, Ty) = max
[x

4
,
x

3

]
≤ 1

12
max {x, y} ≤ kD (x, y) .

Therefore, for ϕ (t) = 1
12 , all the conditions of theorem 3.2 are satisfied. Also it is

clear that for all x ∈ X, the set Sx and Tx are bounded and closed with respect to
the topology τ (D) = τ (dp) . Hence, we can show that (3.2) holds for all x, y ∈ X.
i.e.,

HD (Sx, Ty) = HD

(
0,
[y

4
,
y

3

])
=
y

4
.

Now we deduce the result for single-valued self-mappings from Theorem 3.2.
Theorem 3.4. Let (X, d) be a complete DPMS. S, T : X → X be two self

mappings and ϕ : [0,+∞) −→ [0, 1) be an MT−function. Assume that

D(Sx, Ty) ≤ ϕ (D (x, y))D (x, y) ;

for all x, y ∈ X, then S and T have a common fixed point.
Corollary 3.5. Let (X, d) be a complete DPMS. S, T : X → CBD(X) be

multivalued mappings satisfying the following condition

HD(Sx, Ty) ≤ kD (x, y) ;

for all x, y ∈ X, and k ∈ [0, 1), then S and T have a common fixed point.
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