A NEW NOTE ON LOCAL PROPERTY OF FACTORED FOURIER SERIES

ŞEBNEM YILDIZ

Abstract

The aim of this paper is to generalize a main theorem dealing with local property of Fourier series to the $\left|A, \theta_{n}\right|_{k}$ summability. Also some new and known results are obtained dealing with some basic summability methods.

1. Introduction

Let $\sum a_{n}$ be a given infinite series with partial sums $\left(s_{n}\right)$, and let $\left(p_{n}\right)$ be a sequence of positive numbers such that

$$
\begin{equation*}
P_{n}=p_{0}+\ldots+p_{n} \rightarrow \infty \quad \text { as } \quad n \rightarrow \infty \tag{1.1}
\end{equation*}
$$

The sequence-to-sequence transformation

$$
\begin{equation*}
T_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v} \tag{1.2}
\end{equation*}
$$

defines the sequence $\left(T_{n}\right)$ of the Riesz mean or simply the $\left(\bar{N}, p_{n}\right)$ mean of the sequence $\left(s_{n}\right)$ generated by the sequence of coefficients $\left(p_{n}\right)$ (see [6]).
The series $\sum a_{n}$ is said to be summable $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}, k \geq 1$, if (see [9)

$$
\begin{equation*}
\sum_{n=1}^{\infty} \theta_{n}^{k-1}\left|T_{n}-T_{n-1}\right|^{k}<\infty \tag{1.3}
\end{equation*}
$$

In the special case when $\theta_{n}=\frac{P_{n}}{p_{n}}$ and $\theta_{n}=n$, we obtain $\left|\bar{N}, p_{n}\right|_{k}$ (see [1]) and $\left|R, p_{n}\right|_{k}$ (see [3]) summabilities, respectively. Also, if we take $\theta_{n}=n$ and $p_{n}=1$ for all values of n, then we get $|C, 1|_{k}$ summability (see [5]).
Let f be a periodic function with period 2π, and Lebesgue integrable over $(-\pi, \pi)$. Without loss of generality, we may assume that the constant term of the Fourier

[^0]series of f is zero, that is
\[

$$
\begin{align*}
\int_{-\pi}^{\pi} f(t) d t & =0 \\
f(t) \sim \sum_{n=1}^{\infty}\left(a_{n} \cos n t+b_{n} \sin n t\right) & =\sum_{n=1}^{\infty} C_{n}(t) \tag{1.4}
\end{align*}
$$
\]

A sequence $\left(\lambda_{n}\right)$ is said to be convex if $\Delta^{2} \lambda_{n} \geq 0$ for every positive integer n, where $\Delta \lambda_{n}=\lambda_{n}-\lambda_{n+1}$. Given a normal matrix $A=\left(a_{n v}\right)$, we associate two lower semimatrices $\bar{A}=\left(\bar{a}_{n v}\right)$ and $\hat{A}=\left(\hat{a}_{n v}\right)$ as follows:

$$
\begin{equation*}
\bar{a}_{n v}=\sum_{i=v}^{n} a_{n i}, \quad n, v=0,1, \ldots \quad \bar{\Delta} a_{n v}=a_{n v}-a_{n-1}, v \quad a_{-1,0}=0 \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{a}_{00}=\bar{a}_{00}=a_{00}, \quad \hat{a}_{n v}=\bar{\Delta} \bar{a}_{n v}=\bar{a}_{n v}-\bar{a}_{n-1, v}, \quad n=1,2, \ldots \tag{1.6}
\end{equation*}
$$

It may be noted that \bar{A} and \hat{A} are the well-known matrices of series-to-sequence and series-to-series transformations, respectively. Then, we have

$$
\begin{equation*}
A_{n}(s)=\sum_{v=0}^{n} a_{n v} s_{v}=\sum_{v=0}^{n} \bar{a}_{n v} a_{v} \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\Delta} A_{n}(s)=\sum_{v=0}^{n} \hat{a}_{n v} a_{v} \tag{1.8}
\end{equation*}
$$

Let $A=\left(a_{n v}\right)$ be a normal matrix, i.e., a lower triangular matrix of nonzero diagonal entries. Then A defines the sequence-to-sequence transformation, mapping the sequence $s=\left(s_{n}\right)$ to
$A s=\left(A_{n}(s)\right)$, where

$$
\begin{equation*}
A_{n}(s)=\sum_{v=0}^{n} a_{n v} s_{v}, \quad n=0,1, \ldots \tag{1.9}
\end{equation*}
$$

Let $\left(\theta_{n}\right)$ be any sequence of positive real numbers. The series $\sum a_{n}$ is said to be summable $\left|A, \theta_{n}\right|_{k}, k \geq 1$, if (see [8])

$$
\begin{equation*}
\sum_{n=1}^{\infty} \theta_{n}^{k-1}\left|\bar{\Delta} A_{n}(s)\right|^{k}<\infty \tag{1.10}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{\Delta} A_{n}(s)=A_{n}(s)-A_{n-1}(s) . \tag{1.11}
\end{equation*}
$$

Remark. If we take $\theta_{n}=\frac{P_{n}}{p_{n}}$ and $a_{n v}=\frac{p_{v}}{P_{n}}$, then we get $\left|\bar{N}, p_{n}\right|_{k}$ summability. Also, if we take $\theta_{n}=n$ and $a_{n v}=\frac{p_{v}}{P_{n}}$, then we get $\left|R, p_{n}\right|_{k}$ summability.

2. The Known Results

Some known results have been proved dealing with local property of Fourier series (see [2], [11). Furthermore, in [4, Bor has proved the following result.

Theorem 2.1. Let $k \geq 1$ and $\left(p_{n}\right)$ be a sequence satisfying the conditions

$$
\begin{align*}
P_{n} & =O\left(n p_{n}\right) \tag{2.1}\\
P_{n} \Delta p_{n} & =O\left(p_{n} p_{n+1}\right) \tag{2.2}
\end{align*}
$$

If $\left(\theta_{n}\right)$ is any sequence of positive constants such that

$$
\begin{align*}
& \sum_{v=1}^{m}\left(\frac{\theta_{v} p_{v}}{P_{v}}\right)^{k-1} \frac{1}{v}\left(\lambda_{v}\right)^{k}=O(1) \tag{2.3}\\
& \sum_{v=1}^{m}\left(\frac{\theta_{v} p_{v}}{P_{v}}\right)^{k-1} \Delta \lambda_{v}=O(1) \tag{2.4}\\
& \sum_{v=1}^{m}\left(\frac{\theta_{v} p_{v}}{P_{v}}\right)^{k-1} \frac{1}{v}\left(\lambda_{v+1}\right)^{k}=O(1) \tag{2.5}\\
& \sum_{n=v+1}^{m+1}\left(\frac{\theta_{n} p_{n}}{P_{n}}\right)^{k-1} \frac{p_{n}}{P_{n} P_{n-1}}=O\left(\left(\frac{\theta_{v} p_{v}}{P_{v}}\right)^{k-1} \frac{1}{P_{v}}\right) \tag{2.6}
\end{align*}
$$

then the summability $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}$ of the series $\sum_{n=1}^{\infty} C_{n}(t) \lambda_{n} P_{n} / n p_{n}$ at a point can be ensured by local property, where $\left(\lambda_{n}\right)$ is convex sequence such that $\sum n^{-1} \lambda_{n}$ is convergent.

By using the above result, Sarıgöl has obtained the following theorem (see [7]).
Theorem 2.2. Let $k \geq 1$ and let $\left(p_{n}\right)$ be a sequence satisfying the conditions

$$
\begin{equation*}
\Delta\left(P_{n} / n p_{n}\right)=O(1 / n) \tag{2.7}
\end{equation*}
$$

Let $\left(\lambda_{n}\right)$ be a convex sequence such that $\sum n^{-1} \lambda_{n}$ is convergent. If $\left(\theta_{n}\right)$ is any sequence of positive constants such that

$$
\begin{align*}
& \sum_{v=1}^{m} \theta_{v}^{k-1} \frac{P_{v}}{v^{k} p_{v}} \Delta \lambda_{v}<\infty \tag{2.8}\\
& \sum_{v=1}^{m} \theta_{v}^{k-1}\left(\frac{\lambda_{v}}{v}\right)^{k}<\infty \tag{2.9}\\
& \sum_{n=v+1}^{m+1}\left(\frac{\theta_{n} p_{n}}{P_{n}}\right)^{k-1} \frac{p_{n}}{P_{n} P_{n-1}}=O\left(\left(\frac{\theta_{v} p_{v}}{P_{v}}\right)^{k-1} \frac{1}{P_{v}}\right) \tag{2.10}
\end{align*}
$$

then the summability $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}$ of the series $\sum_{n=1}^{\infty} C_{n}(t) \lambda_{n} P_{n} / n p_{n}$ at a point can be ensured by local property of f.

In 10, Sulaiman has proved the following theorem covering all the results before this.

Theorem 2.3. Let $k \geq 1$, and let the sequences $\left(p_{n}\right),\left(\theta_{n}\right),\left(\lambda_{n}\right)$ and $\left(\varphi_{n}\right)$ where $\theta_{n}>0$, are all satisfying the following conditions

$$
\begin{align*}
&\left|\lambda_{n+1}\right|=O\left(\left|\lambda_{n}\right|\right), \tag{2.11}\\
& \sum_{n=1}^{\infty} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k}\left|\lambda_{n}\right|^{k}\left|\varphi_{n}\right|^{k}<\infty \tag{2.12}\\
& \sum_{n=1}^{\infty} \theta_{n}^{k-1}\left|\lambda_{n}\right|^{k}\left|\Delta \varphi_{n}\right|^{k}<\infty \tag{2.13}\\
& \sum_{v=1}^{n-1} \theta_{v}^{1-1 / k}\left|\varphi_{v}\right|\left(\frac{P_{v}}{p_{v}}\right)^{(1 / k)-1}\left|\Delta \lambda_{v}\right|<\infty \tag{2.14}\\
& \sum_{n=v+1}^{m+1}\left(\frac{\theta_{n} p_{n}}{P_{n}}\right)^{k-1} \frac{p_{n}}{P_{n} P_{n-1}}=O\left(\left(\frac{\theta_{v} p_{v}}{P_{v}}\right)^{k-1} \frac{1}{P_{v}}\right), \tag{2.15}
\end{align*}
$$

then the summability $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}$ of the series $\sum_{n=1}^{\infty} C_{n}(t) \lambda_{n} \varphi_{n}$ at a point can be ensured by local property of f.

3. The Main Result

The aim of this paper is to generalize Theorem 2.3 for $\left|A, \theta_{n}\right|_{k}$ summability factors of Fourier series in the following form.

Theorem 3.1. Let $k \geq 1$ and let $A=\left(a_{n v}\right)$ be a positive normal matrix such that

$$
\begin{gather*}
\bar{a}_{n o}=1, n=0,1, \ldots \tag{3.1}\\
a_{n-1, v} \geq a_{n v}, \text { for } n \geq v+1, \tag{3.2}\\
a_{n n}=O\left(\frac{p_{n}}{P_{n}}\right), \tag{3.3}\\
\sum_{v=1}^{n-1} a_{v v} \hat{a}_{n, v+1}=O\left(a_{n n}\right) . \tag{3.4}
\end{gather*}
$$

If the conditions (2.11)-(2.14) of Theorem 2.3 are satisfied and $\left(\theta_{n}\right)$ holds the following conditions,

$$
\begin{align*}
& \sum_{n=v+1}^{\infty}\left(\theta_{n} a_{n n}\right)^{k-1} \hat{a}_{n, v+1}=O\left\{\left(\theta_{v} a_{v v}\right)^{k-1}\right\} \tag{3.5}\\
& \sum_{n=v+1}^{\infty}\left(\theta_{n} a_{n n}\right)^{k-1}\left|\bar{\Delta} a_{n v}\right|=O\left\{\left(\theta_{v} a_{v v}\right)^{k-1} a_{v v}\right\} \tag{3.6}
\end{align*}
$$

then the series $\sum C_{n}(t) \lambda_{n} \varphi_{n}$ is summable $\left|A, \theta_{n}\right|_{k}, k \geq 1$.

Proof of Theorem 3.1

Proof. Let $\left(I_{n}\right)$ denotes the A-transform of the series $\sum_{n=1}^{\infty} C_{n}(t) \lambda_{n} \varphi_{n}$. Then, by (1.7) and (1.8), we have

$$
\bar{\Delta} I_{n}=\sum_{v=1}^{n} \hat{a}_{n v} a_{v} \lambda_{v} \varphi_{v}
$$

Applying Abel's transformation to this sum, we get that

$$
\begin{aligned}
\bar{\Delta} I_{n} & =\sum_{v=1}^{n-1} \Delta\left(\hat{a}_{n v} \lambda_{v} \varphi_{v}\right) \sum_{r=1}^{v} a_{r}+\hat{a}_{n n} \lambda_{n} \varphi_{n} \sum_{v=1}^{n} a_{v} \\
& =\sum_{v=1}^{n-1} \Delta\left(\hat{a}_{n v} \lambda_{v} \varphi_{v}\right) s_{v}+\hat{a}_{n n} \lambda_{n} \varphi_{n} s_{n} \\
& =\sum_{v=1}^{n-1} \bar{\Delta} a_{n v} \lambda_{v} \varphi_{v} s_{v}+\sum_{v=1}^{n-1} \hat{a}_{n, v+1} \Delta \lambda_{v} \varphi_{v} s_{v}+\sum_{v=1}^{n-1} \hat{a}_{n, v+1} \lambda_{v+1} \Delta \varphi_{v} s_{v}+a_{n n} \lambda_{n} s_{n} \varphi_{n} \\
& =I_{n, 1}+I_{n, 2}+I_{n, 3}+I_{n, 4}
\end{aligned}
$$

To complete the proof of Theorem 3.1, by Minkowski's inequality, it is sufficient to show that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \theta_{n}^{k-1}\left|I_{n, r}\right|^{k}<\infty, \quad \text { for } \quad r=1,2,3,4 \tag{3.7}
\end{equation*}
$$

First, by applying Hölder's inequality with indices k and k^{\prime}, where $k>1$ and $\frac{1}{k}+\frac{1}{k^{\prime}}=1$, we have that

$$
\begin{aligned}
\sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|I_{n, 1}\right|^{k} & =\sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|\sum_{v=1}^{n-1} \bar{\Delta} a_{n v} \lambda_{v} \varphi_{v} s_{v}\right|^{k} \\
& \leq \sum_{n=2}^{m+1} \theta_{n}^{k-1} \sum_{v=1}^{n-1}\left|\bar{\Delta} a_{n v}\right|\left|\lambda_{v}\right|^{k}\left|\varphi_{v}\right|^{k}\left|s_{v}\right|^{k} \times\left\{\sum_{v=1}^{n-1}\left|\bar{\Delta} a_{n v}\right|\right\}^{k-1}
\end{aligned}
$$

On the other hand, since by (3.1) and (3.2), we have

$$
\begin{equation*}
\sum_{v-1}^{n-1}\left|\bar{\Delta} a_{n v}\right| \leq a_{n n} \tag{3.8}
\end{equation*}
$$

Therefore, using condition (2.12), (3.6) and (3.8), we get

$$
\begin{aligned}
& \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|I_{n, 1}\right|^{k}=O(1) \sum_{n=2}^{m+1}\left(\theta_{n} a_{n n}\right)^{k-1}\left\{\sum_{v=1}^{n-1}\left|\bar{\Delta} a_{n v}\right|\left|\lambda_{v}\right|^{k}\left|\varphi_{v}\right|^{k}\right\} \\
& =O(1) \sum_{v=1}^{m}\left|\lambda_{v}\right|^{k}\left|\varphi_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left(\theta_{n} a_{n n}\right)^{k-1}\left|\bar{\Delta} a_{n v}\right| \\
& =O(1) \sum_{v=1}^{m}\left(\theta_{v} a_{v v}\right)^{k-1} a_{v v}\left|\lambda_{v}\right|^{k}\left|\varphi_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m} \theta_{v}^{k-1} a_{v v}^{k}\left|\varphi_{v}\right|^{k}\left|\lambda_{v}\right|^{k}=O(1) \quad \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

by virtue of the hypotheses of Theorem 3.1. Now, using Hölder's inequality and then using condition (2.14) we have that

$$
\begin{aligned}
& \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|I_{n, 2}\right|^{k} \leq \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left\{\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\left\|\Delta \lambda_{v}\right\| \varphi_{v}\right|\left|s_{v}\right|\right\}^{k} \\
& \leq \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left\{\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|^{k}\left|\Delta \lambda_{v} \| \varphi_{v}\right|\left|s_{v}\right|^{k} \theta_{v}^{\left(1-\frac{1}{k}\right)(1-k)}\left(\frac{P_{v}}{p_{v}}\right)^{(k-1)\left(1-\frac{1}{k}\right)}\right\} \\
& \times\left\{\sum_{v=1}^{n-1} \theta_{v}^{1-1 / k}\left|\varphi_{v}\right|\left(\frac{P_{v}}{p_{v}}\right)^{(1 / k)-1}\left|\Delta \lambda_{v}\right|\right\}^{k-1} \\
& =O(1) \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left\{\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|^{k-1}\left|\hat{a}_{n, v+1} \|\left|\varphi_{v}\right|\right| \Delta \lambda_{v} \left\lvert\, \theta_{v}^{\left(1-\frac{1}{k}\right)(1-k)}\left(\frac{P_{v}}{p_{v}}\right)^{(k-1)\left(1-\frac{1}{k}\right)}\right.\right\} \\
& =O(1) \sum_{n=2}^{m+1} \theta_{n}^{k-1} a_{n n}^{k-1}\left\{\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|\left|\varphi_{v}\right|\left|\Delta \lambda_{v}\right| \theta_{v}^{\left(1-\frac{1}{k}\right)(1-k)}\left(\frac{P_{v}}{p_{v}}\right)^{(k-1)\left(1-\frac{1}{k}\right)}\right\} \\
& =O(1) \sum_{v=1}^{m}\left|\varphi_{v} \| \Delta \lambda_{v}\right| \theta_{v}^{\left(1-\frac{1}{k}\right)(1-k)}\left(\frac{P_{v}}{p_{v}}\right)^{(k-1)\left(1-\frac{1}{k}\right)} \sum_{n=v+1}^{m+1}\left(\theta_{n} a_{n n}\right)^{k-1}\left|\hat{a}_{n, v+1}\right|
\end{aligned}
$$

The elements $\hat{a}_{n v} \geq 0$ for each v, n. In fact, it is easily seen from the positiveness of the matrix, (3.1) and (3.2), that $\hat{a}_{00}=1$,

$$
\begin{align*}
\hat{a}_{n v} & =\bar{a}_{n 0}-\bar{a}_{v-1,0}+\sum_{i=0}^{v-1}\left(a_{n-1, i}-a_{n i}\right) \\
& =\sum_{i=0}^{v-1}\left(a_{n-1, i}-a_{n i}\right) \geq 0 \quad \text { for } \quad 1 \leq v \leq n . \tag{3.9}
\end{align*}
$$

So, using the conditions (2.14) and (3.5), we get

$$
\begin{aligned}
& \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|I_{n, 2}\right|^{k}=O(1) \sum_{v=1}^{m}\left|\varphi_{v}\right|\left|\Delta \lambda_{v}\right| \theta_{v}^{\left(1-\frac{1}{k}\right)(1-k)}\left(\frac{P_{v}}{p_{v}}\right)^{(k-1)\left(1-\frac{1}{k}\right)}\left(\theta_{v} a_{v v}\right)^{k-1} \\
& =O(1) \sum_{v=1}^{m} \theta_{v}^{1-1 / k}\left|\varphi_{v}\right|\left(\frac{P_{v}}{p_{v}}\right)^{\left(\frac{1}{k}\right)-1}\left|\Delta \lambda_{v}\right|=O(1) \quad \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

by virtue of the hypotheses of Theorem 3.1. Furthermore, using the conditions (2.11), (2.13), (3.4)-(3.5), and (3.9), we have that

$$
\begin{aligned}
& \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|I_{n, 3}\right|^{k} \leq \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left\{\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|\left|\Delta \varphi_{v}\right|\left|\lambda_{v+1}\right|\left|s_{v}\right|\right\}^{k} \\
& \leq \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left\{\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|\left(\frac{P_{v}}{p_{v}}\right)^{k-1}\left|\Delta \varphi_{v}\right|^{k}\left|\lambda_{v+1}\right|^{k}\left|s_{v}\right|^{k}\right\} \times\left\{\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right| \frac{p_{v}}{P_{v}}\right\}^{k-1} \\
& =O(1) \sum_{n=2}^{m+1} \theta_{n}^{k-1} a_{n n}^{k-1} \sum_{v=1}^{n-1}\left(\frac{P_{v}}{p_{v}}\right)^{k-1}\left|\hat{a}_{n, v+1}\right|\left|\Delta \varphi_{v}\right|^{k}\left|\lambda_{v}\right|^{k}
\end{aligned}
$$

$$
\begin{aligned}
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{k-1}\left|\Delta \varphi_{v}\right|^{k}\left|\lambda_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left(\theta_{n} a_{n n}\right)^{k-1}\left|\hat{a}_{n, v+1}\right| \\
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{k-1}\left(\theta_{v} a_{v v}\right)^{k-1}\left|\Delta \varphi_{v}\right|^{k}\left|\lambda_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m} \theta_{v}^{k-1}\left|\Delta \varphi_{v}\right|^{k}\left|\lambda_{v}\right|^{k}=O(1) \quad \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

by virtue of the hypotheses of Theorem 3.1. Finally, using the conditions (2.12) and (3.3), we have that
$\sum_{n=1}^{m} \theta_{n}^{k-1}\left|I_{n, 4}\right|^{k} \leq \sum_{n=1}^{m} \theta_{n}^{k-1} a_{n n}^{k}\left|\lambda_{n}\right|^{k}\left|s_{n}\right|^{k}\left|\varphi_{n}\right|^{k}=O(1) \sum_{n=1}^{m} \theta_{n}^{k-1} a_{n n}^{k}\left|\lambda_{n}\right|^{k}\left|\varphi_{n}\right|^{k}=O(1) \quad$ as $\quad m \rightarrow \infty$,
by virtue of hypotheses of the Theorem 3.1. Since the behaviour of the Fourier series concerns the convergence for a particular value of x depends on the behaviour on the function in the immediate neighborhood of this point only, this justifies (1.4) and valid. This completes the proof of Theorem 3.1.

Acknowledgments. The authors would like to thank the anonymous referee for his/her comments that helped us improve this article.

References

[1] H. Bor, On two summability methods, Math. Proc. Cambridge Philos Soc. 97 (1985) 147-149.
[2] H. Bor, Local property of $\left|\bar{N}, p_{n}\right|_{k}$ summability of the factored Fourier series, Bull. Inst. Math. Acad. Sinica 17 (1989) 165-170.
[3] H. Bor, On the relative strength of two absolute summability methods, Proc. Amer. Math. Soc. 113 (1991) 1009-1012.
[4] H. Bor, On the local property of Fourier series, Bull. Math. Anal. Appl. 1 (2009) 15-21.
[5] T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. Lond. Math. Soc. 7 (1957) 113-141.
[6] G. H. Hardy, Divergent Series, Oxford Univ. Press Oxford (1949).
[7] M. A. Sarıgöl, On the local property of the factored Fourier series, Bull. Math. Anal. Appl. 1 (2009) 49-54.
[8] M. A. Sarıgöl, On the local properties of factored Fourier series, Appl. Math. Comp. 216 (2010) 3386-3390.
[9] W. T. Sulaiman, On some summability factors of infinite series, Proc. Amer. Math. Soc. 115 (1992) 313-317.
[10] W. T. Sulaiman, On local property of factored Fourier series, Bull. Math. Anal. Appl. 23 (2010) 27-31.
[11] Ş. Yıldız, A new theorem on local properties of factored Fourier series, Bull. Math. Anal. Appl. 82 (2016) 1-8.

Şebnem Yildiz
Mathematics Department, Ahi Evran University, Kirşehir, Turkey
E-mail address: sebnemyildiz@ahievran.edu.tr; sebnem.yildiz82@gmail.com

[^0]: 2000 Mathematics Subject Classification. 26D15, 40D15, 40F05, 40G99, 42A24.
 Key words and phrases. Summability factors, absolute matrix summability, infinite series, Fourier series, Hölder inequality, Minkowski inequality, local property.
 © 2016 Universiteti i Prishtinës, Prishtinë, Kosovë.
 Submitted November 6, 2016. Published December 20, 2016.
 Communicated by Huseyin Bor.

