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ON THE LIE DERIVATIVE OF FORMS OF BIDEGREE

BUI CAO VAN

Abstract. The aim of this work is to study some properties of the Lie de-
rivative of forms of bidegree on a n−dimensional complex manifold M . More

precisely, we give sufficient conditions such that the Lie derivative LXω of

bidegree (p, p) form ω along the vector field X is also the bidegree (p, p) form.

1. Introduction

The Lie derivative on differential forms is important operation. This is a gener-
alization of the notion of directional derivative of a function. The Lie differentiation
theory plays an important role in studying automorphisms of differential geometric
structures. Moreover, the Lie derivative also is an essential tool in the Riemann-
ian geometry. The Lie derivative of forms and its application was investigated by
many authors (see [5], [6], [7], [8], [11], [12], [13] and the references given therein).
Recently, the authors of [1] constructed the Lie derivative of the real currents on
Riemann manifolds and given some applications on Lie groups. The main goal of
the present work is to investigate some properties of the Lie derivative of differential
forms of bidegree. More precisely, we shall give a sufficient conditions such that
the Lie derivative LXω of bidegree (p, p) form ω along vector field X is also the
bidegree (p, p) form (Theorem 3.5). We would like to emphasize that our interest
for studying the Lie derivative of forms of bidegree stems from the ideas for con-
struction of Lie derivative of the currents of bidegree. It will be useful in studying
of the pluripotential theory.

2. Preliminaries

Let M be a n-dimensional complex manifold and let (U, {z1, z2, ..., zn}), zj =
xj + iyj , j = 1, n be local complex coordinates on an open U ⊂ M . If we identify
Cn with R2n then the linear forms dxj , dyj can be written in a unique way as linear
combinations with complex coefficients of dzj = dxj + idyj and dzj = dxj − idyj .
For each j = 1, ..., n, we use operators

∂

∂zj
:=

1

2

( ∂

∂xj
− i ∂

∂yj

)
;

∂

∂zj
:=

1

2

( ∂

∂xj
+ i

∂

∂yj

)
,
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the second operator is called Cauchy-Riemann operator. Let I = {j1, ..., jr} ⊂
{1, ..., n} be multi-index. We denote dzI = dzj1 ∧ ... ∧ dzjr , dzI = dzj1 ∧ ... ∧ dzjr .
Then any k-form ω on M can be written locally in a unique way as

ω =
∑

|J|+|K|=k

ϕJKdzJ ∧ dzK ,

where ϕJK ∈ C∞(M,C) are functions with complex values. We say that ω is a
form of bidegree (p, q) if ϕJK = 0 when either |J | 6= p and |K| 6= q.

Note that, every differential form of degree k can be written uniquely as sum of
differential forms of types (p, q), where p + q = k. We denote by Ω(p,q)(M,C) the
space of differential forms of bidegree (p, q) onM and Ωk(M,C) =

⊕
p+q=k

Ω(p,q)(M,C).

If ω ∈ Ω(p,q)(M,C) then ω can be written as

ω =
∑

|J|=p, |K|=q

ωJKdzJ ∧ dzK .

Next, we need recalling the differential operators. For each differential (p, q)−form
ω, we set

∂ω =
∑

|J|=p, |K|=q

∂ϕJK ∧ dzJ ∧ dzK =
∑

|J|=p, |K|=q

n∑
j=1

∂ϕIJ

∂zj
dzj ∧ dzJ ∧ dzK ;

∂ω =
∑

|J|=p, |K|=q

∂ϕJK ∧ dzJ ∧ dzK =
∑

|J|=p, |K|=q

n∑
j=1

∂ϕIJ

∂zj
dzj ∧ dzJ ∧ dzK ,

and

dω =
∑

|J|=p,|K|=q

dϕJK ∧ dzJ ∧ dzK .

It is easy to see that if ω is a form of bidegree of (p, q) then ∂ω and ∂ω are forms
of bidegree of (p+ 1, q) and (p, q+ 1) respectively. As in the case of real differential
forms, if the degree of ω is positive, i.e if ω is not a scalar valued function, then the
operator d of exterior differentiation has to be distinguished from the differential d.
In particular, the former satisfies d2 = dd = 0. Furthermore, d = ∂ + ∂ and hence

0 = d2ω = ∂2ω +
(
∂∂ + ∂∂

)
ω + ∂

2
ω

Since all three terms are of different types, we conclude that ∂2 = 0; ∂
2

= 0; ∂∂ =
−∂∂

Another important, differential operator that will be used the paper is the op-
erator dc defined by dc = i

(
∂ − ∂

)
. Note that ddc = 2i∂∂ and that, if u ∈ C2(U),

then

ddcu = 2i

n∑
j,k=1

∂2u

∂zj∂z̄k
dzj ∧ dz̄k.

The set of vector fields on M is denoted by BC(M) and the set of holomorphic
functions on M is denoted by O(M). A vector field X = (X1, ..., Xn) is called a
holomorphic vector field if the functions Xj : M → C are holomorphic, Xj ∈ O(M).

The set of holomorphic vector fields on M is denoted by B
(1,0)
hol (M). We denote

set of holomorphic p-forms on M by let Ωp
hol(M), whose coordinate functions are
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holomorphic; that is, if U ⊆ M is a coordinate neighborhood, with holomorphic
local coordinates (z1, z2, ..., zn) then ω ∈ Ωp

hol(M) implies

ω =
∑

1≤i1≤...≤ip≤n

ωi1...ipdzi1 ∧ dzi2 ∧ ... ∧ dzip , ωi1...ip ∈ O(M).

f ∈ Ω0
hol(M) = O(M) if and only if ∂f = 0. More generally,

ω ∈ Ωp
hol(M)⇔ ω ∈ Ω(p,0)(M) ∩ ker ∂.

Next, we recall the concept and basis properties of Lie derivative of forms along
vector field X.

Definition 2.1. Suppose that X ∈ BC(M), ω ∈ Ωk(M,C) and let {ϕt} be an
one-parameter group of transformations on M generated by X. The map

LXω : M →
k∧
TpM

p 7→ (LXω)p

is called the Lie derivative of ω with respect to X and is denoted by LXω, where
(LXω)p is defined by:

(LXω)p = lim
t→0

(ϕt)
∗ωp − ωp

t
=

d

dt

(
(ϕt)

∗ωp

)∣∣∣
t=0

,∀p ∈M,

where (ϕt)
∗ω is the pull-back of ω along ϕt.

For f ∈ C∞(M,C), ϕ∗t f = foϕt also belongs to C∞(M,C). Then the Lie deriv-
ative of f with respect to X, is denoted by LXf and is defined by:

(LXf)x = lim
t→0

f(ϕt(x))− f(x)

t
= lim

t→0

f(ϕ(x, t))− f(x)

t

= lim
t→0

f(ϕx(t))− f(ϕx(0))

t
=

d

dt
(ϕxf)|t=0 = Xx[f ] = (X[f ])(x)

Obviously, LX : Ωk(M,C)→ Ωk(M,C) is a linear map.
We now state a number of properties of Lie derivatives without proofs. Most

of these proofs are fairly straightforward computations, often tedious, and can be
found in most texts, including Warner [14], Morita [15] and Gallot, Hullin and
Lafontaine [16].

Proposition 2.2. For every vector field X ∈ BC(M), the following properties hold:

i) For all ω ∈ Ωk(M,C) and all µ ∈ Ωr(M,C),

LX(ω ∧ µ) = (LXω) ∧ µ+ ω ∧ (LXµ),

that is, LX is a derivation.
ii) For all ω ∈ Ωk(M,C), for all X,X1, X2, ..., Xk ∈ BC(M),

(LXω)(X1, ..., Xk) = LX(ω(X1, ..., Xk))−
k∑

i=1

ω(X1, ..., LXXi, ..., Xk).

iii) The Lie derivative commutes with d: LX ◦ d = d ◦ LX .
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Definition 2.3. For every vector field X ∈ BC(M), for all k ≥ 1, there is a linear
map, iX : Ω(k)(M,C)→ Ωk−1(M,C), defined so that, for all ω ∈ Ωk(M,C), for all
p ∈M , for all u1, u2, ..., uk−1 ∈ TpM,

(iXω)p(u1, u2, ..., uk−1) = ωp(Xp, u1, u2, ..., uk−1).

Next, we give some more interested properties of LX . For this, we have to define
the interior multiplication by a vector field iX .

Obviously, iX is C∞(M,C)-linear in M and it is easy to check that iXω is indeed
a smooth (k − 1)-form. When k = 0, we set iXω = 0. Observe that iXω is also
given by (iXω)p = iXpωp,∀p ∈ M, where iXp is the interior product (or insertion
operator). As a consequence, the operator iX is an anti-derivation of degree -1, that
is, we have i2X = 0; iX iY +iY iX = 0; iX(ω∧µ) = iXω∧µ+(−1)kω∧iXµ; iX(ω+µ) =
iXω + iXµ; iX+Y ω = iXω + iY ω; iXdϕ = LXϕ; iϕXω = ϕiXω; iX(ϕω) = ϕiXω, for
all X,Y ∈ BC(M), for all ω, µ ∈ Ωk(M,C), for all ϕ ∈ C∞(M,C).

The following proposition is the well known result.

Theorem 2.4. (Cartan’s formula) For every vector field X ∈ BC(M) and for
every ω ∈ Ωk(M,C), we have

LXω = diXω + iXdω,

that is, LX = doiX + iXod.

3. The Lie derivative of differential form of bidegree

Let ω ∈ Ω(p,p)(M,C). In general case, LXω /∈ Ω(p,p)(M,C), the illustrated
example will be mentioned late. Our main goal is to find conditions on X such that
LXω belongs to Ω(p,p)(M,C).

The following theorem is a key for proving the main result of this section.

Theorem 3.1. Let ω =
n∑

j,k=1

ϕjkdzj ∧ dzk ∈ Ω(1,1)(M,C), X = (X1, X2, ..., Xn) ∈

BC(M). Then we have

LXω =

n∑
j,k=1

[
X [ϕjk] dzj ∧ dzk + ϕjk

(
dXj ∧ dzk − dXk ∧ dzj

)]
. (3.1)

Proof. For every Y ∈ BC(M), we have

(iXω)(Y ) = ω(X,Y ) =

n∑
j,k=1

ϕjkdzj ∧ dzk (X,Y ) =

n∑
j,k=1

ϕjk

∣∣∣∣ dzj(X) dzj(Y )
dzk(X) dzk(Y )

∣∣∣∣
=

n∑
j,k=1

ϕjk

∣∣∣∣ Xj Yj
Xk Y k

∣∣∣∣ =

n∑
j,k=1

ϕjk

(
XjY k −XkYj

)
=

n∑
j,k=1

ϕjk

(
Xjdzk(Y )−Xkdzj(Y )

)

=

 n∑
j,k=1

ϕjk

(
Xjdzk −Xkdzj

) (Y ) ,∀Y ∈ B(M).
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Thus iXω =
n∑

j,k=1

ϕjk

(
Xjdzk −Xkdzj

)
. Hence

d(iXω) =

n∑
j,k=1

(
d(ϕjkXj) ∧ dzk − d(ϕjkXk) ∧ dzj

)
=

n∑
j,k=1

n∑
l=1

[
∂ (ϕjkXj)

∂zl
dzl +

∂ (ϕjkXj)

∂zl
dzl

]
∧ dzk

−
n∑

j,k=1

n∑
l=1

[
∂
(
ϕjkXk

)
∂zl

dzl +
∂
(
ϕjkXk

)
∂zl

dzl

]
∧ dzj

=

n∑
j,k=1

[
n∑

l=1

Xj∂ϕjk

∂zl
dzl ∧ dz̄k +

n∑
l=1

ϕjk∂Xj

∂zl
dzl ∧ dz̄k +

n∑
l=1

Xj∂ϕjk

∂z̄l
dz̄l ∧ dz̄k+

+

n∑
l=1

ϕjk∂Xj

∂z̄l
dz̄l ∧ dz̄k −

n∑
l=1

Xk∂ϕjk

∂zl
dzl ∧ dzj −

n∑
l=1

ϕjk∂Xk

∂zl
dzl ∧ dzj−

−
n∑

l=1

Xk∂ϕjk

∂zl
dzl ∧ dzj −

n∑
l=1

ϕjk∂Xk

∂zl
dzl ∧ dzj

]
.

(3.2)
On other hand, for every vector fields Y, Z ∈ BC(M), we have

(iXdω) (Y,Z) = dω(X,Y, Z) =

n∑
j,k=1

dϕjk ∧ dzj ∧ dz̄k (X,Y, Z)

=

n∑
j,k=1

∣∣∣∣∣∣
dϕjk (X) dϕjk (Y ) dϕjk (Z)
dzj (X) dzj (Y ) dzj (Z)
dz̄k (X) dz̄k (Y ) dz̄k (Z)

∣∣∣∣∣∣ =

n∑
j,k=1

∣∣∣∣∣∣
X [ϕjk] Y [ϕjk] Z [ϕjk]
Xj Yj Zj

Xk Y k Zk

∣∣∣∣∣∣
=

n∑
j,k=1

[
X [ϕjk]

∣∣∣∣ Yj Zj

Y k Zk

∣∣∣∣−Xj

∣∣∣∣ Y [ϕjk] Z [ϕjk]

Y k Zk

∣∣∣∣+Xk

∣∣∣∣ Y [ϕjk] Z [ϕjk]
Yj Zj

∣∣∣∣]

=

n∑
j,k=1

[
X [ϕjk]

∣∣∣∣ dzj dzj
dz̄k dz̄k

∣∣∣∣−Xj

∣∣∣∣ dϕjk dϕjk

dz̄k dz̄k

∣∣∣∣+Xk

∣∣∣∣ dϕjk dϕjk

dzj dzj

∣∣∣∣] (Y,Z)

=

 n∑
j,k=1

(
X [ϕjk] dzj ∧ dz̄k −Xjdϕjk ∧ dz̄k +Xkdϕjk ∧ dzj

) (Y,Z) ,∀Y,Z ∈ BC(M).
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Thus

iXdω =

n∑
j,k=1

(
X [ϕjk] dzj ∧ dz̄k −Xjdϕjk ∧ dz̄k +Xkdϕjk ∧ dzj

)
=

n∑
j,k=1

[
n∑

l=1

(
∂ϕjk

∂zl
Xl +

∂ϕjk

∂z̄l
Xl

)
dzl ∧ dz̄k −Xj

n∑
l=1

(
∂ϕjk

∂zl
dzl +

∂ϕjk

∂z̄l
dz̄l

)
∧ dz̄k+

+Xk

n∑
l=1

(
∂ϕjk

∂zl
dzl +

∂ϕjk

∂z̄l
dz̄l

)
∧ dzj

]

=

n∑
j,k=1

[
n∑

l=1

Xl∂ϕjk

∂zl
dzl ∧ dz̄k +X l

n∑
l=1

∂ϕjk

∂z̄l
dzj ∧ dz̄k −

n∑
l=1

Xj∂ϕjk

∂zl
dzl ∧ dz̄k−

−
n∑

l=1

Xj∂ϕjk

∂z̄l
dz̄l ∧ dz̄k +

n∑
l=1

Xk∂ϕjk

∂zl
dzl ∧ dzj +

n∑
l=1

Xk∂ϕjk

∂z̄l
dz̄l ∧ dzj

]
.

(3.3)
From (3.2), (3.3) and applying Cartan’s formula, we obtain

LXω = d(iXω) + iX(dω)

=

n∑
j,k=1

[
n∑

l=1

Xj∂ϕjk

∂zl
dzl ∧ dz̄k +

n∑
l=1

ϕjk∂Xj

∂zl
dzl ∧ dz̄k +

n∑
l=1

Xj∂ϕjk

∂z̄l
dz̄l ∧ dz̄k+

+

n∑
l=1

ϕjk∂Xj

∂z̄l
dz̄l ∧ dz̄k −

n∑
l=1

Xk∂ϕjk

∂zl
dzl ∧ dzj −

n∑
l=1

ϕjk∂Xk

∂zl
dzl ∧ dzj−

−
n∑

l=1

X̄k∂ϕjk

∂zl
dzl ∧ dzj −

n∑
l=1

ϕjk∂X̄k

∂zl
dzl ∧ dzj +

n∑
l=1

Xl∂ϕjk

∂zl
dzl ∧ dz̄k+

+ X̄l

n∑
l=1

∂ϕjk

∂z̄l
dzj ∧ dz̄k −

n∑
l=1

Xj∂ϕjk

∂zl
dzl ∧ dz̄k−

−
n∑

l=1

Xj∂ϕjk

∂z̄l
dz̄l ∧ dz̄k +

n∑
l=1

Xk∂ϕjk

∂zl
dzl ∧ dzj +

n∑
l=1

Xk∂ϕjk

∂z̄l
dz̄l ∧ dzj

]

=

n∑
j,k=1

[
n∑

l=1

(
Xl
∂ϕjk

∂zl
+Xl

∂ϕjk

∂z̄l

)
dzj ∧ dz̄ +

n∑
l=1

ϕjk

(
∂Xj

∂zl
dzl +

∂Xj

∂z̄l
dzl

)
∧ dz̄k

−ϕjk

n∑
l=1

(
∂Xk

∂zl
dzl +

∂Xk

∂z̄l
dz̄l

)
∧ dzj

]

=

n∑
j,k=1

[
X [ϕjk] dzj ∧ dzk + ϕjk

(
dXj ∧ dzk − dXk ∧ dzj

)]
.

�

We easily get the following corollary.

Corollary 3.2. Let X = (X1, X2, ..., Xn) ∈ B
(1,0)
hol (M) be a holomorphic vector

field on M and ω =
n∑

j,k=1

ϕjkdzj ∧ dzk ∈ Ω(1,1)(M,C). Then LXω ∈ Ω(1,1)(M,C)
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and LXω is defined by formula:

LXω =

n∑
j,k=1

[
LXϕjkdzj ∧ dz̄k +

n∑
l=1

ϕjk
∂Xj

∂zl
dzl ∧ dz̄k −

n∑
l=1

ϕjk
∂X̄k

∂z̄l
dz̄l ∧ dzj

]
.

(3.4)

Proof. Since X = (X1, X2, ..., Xn) ∈ B
(1,0)
hol (M) be a holomorphic vector field on

M , thus
∂Xj

∂z̄l
= 0; ∂X̄k

∂zl
= 0,∀j, k, l = 1, n. Hence, applying Theorem 3.1, we have

LXω =

n∑
j,k=1

[
X [ϕjk] dzj ∧ dzk + ϕjk

(
dXj ∧ dzk − dXk ∧ dzj

)]
=

n∑
j,k=1

[
X [ϕjk] dzj ∧ dz̄k + ϕjk

(
n∑

l=1

∂Xj

∂zl
dzl ∧ dz̄+

n∑
l=1

∂Xj

∂z̄l
dz̄l ∧ dz̄k−

−
n∑

l=1

∂X̄k

∂zl
dzl ∧ dzj−

n∑
l=1

∂X̄k

∂z̄l
dz̄l ∧ dzj

)]

=

n∑
j,k=1

[
LXϕjkdzj ∧ dz̄k +

n∑
l=1

ϕjk
∂Xj

∂zl
dzl ∧ dz̄k −

n∑
l=1

ϕjk
∂X̄k

∂z̄l
dz̄l ∧ dzj

]
.

So that LXω ∈ Ω(1,1)(M,C). �

Example 3.3. Let M = C2, ω = z2
1dz1 ∧ dz1, X = (z1, z2). Calculate the Lie

derivative of differential form ω?

Applying Theorem 3.1, we obtain

LXω =

2∑
j,k=1

[
X [ϕjk] dzj ∧ dzk + ϕjk

(
dXj ∧ dzk − dXk ∧ dzj

)]
= X

[
z2

1

]
dz1 ∧ dz1 + z2

1

(
dX1 ∧ dz̄1 − dX̄1 ∧ dz1

)
= 2z2

1dz1 ∧ dz1 + z2
1 (dz1 ∧ dz̄1 − dz1 ∧ dz1) = 4z2

1dz1 ∧ dz1

Example 3.4. Let M = C2, ω = z1z2dz2 ∧ dz2, X = (z2, z1). Calculate the Lie
derivative of differential form ω?

Note that X is not a holomorphic vector field. Applying Theorem 3.1, we obtain

LXω =

2∑
j,k=1

[
X [ϕjk] dzj ∧ dzk + ϕjk

(
dXj ∧ dzk − dXk ∧ dzj

)]
= X [z1z2] dz2 ∧ dz2 + z1z2

(
dX2 ∧ dz̄2 − dX̄2 ∧ dz2

)
=

2∑
l=1

[
∂ (z1z2)

∂zl
Xl +

∂ (z1z2)

∂zl
Xl

]
dz2 ∧ dz̄2 + z1z2 (dz1 ∧ dz̄2 − dz1 ∧ dz2)

= (z2X1 + 0) dz2 ∧ dz̄2 + (z1X2 + 0) dz2 ∧ dz̄2 + z1z2dz1 ∧ dz̄2 − z1z2dz1 ∧ dz2

=
(
|z1|2 + |z2|2

)
dz2 ∧ dz̄2 + z1z2dz̄1 ∧ dz̄2 − z1z2dz1 ∧ dz2.

This shows that

LXω /∈ Ω(1,1)(C2,C).

Now, we state the main result of this section.
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Theorem 3.5. If X = (X1, X2, ..., Xn) ∈ B
(1,0)
hol (M) is a holomorphic vector field

on M and ω =
∑

|J|=|K|=p

ϕJKdzJ ∧ dzK ∈ Ω(p,p)(M,C) be the differential forms of

bidegree (p, p) then LXω ∈ Ω(p,p)(M,C).

Proof. We will prove Theorem 3.5 by induction. The case n = 1 is easily followed
by Corollary 3.2. Assume that there is a k ≥ 1 such that LXω ∈ Ω(k,k)(M,C),∀ω ∈
Ω(k,k)(M,C). We shall prove that the formula

LXω ∈ Ω(k+1,k+1)(M,C),∀ω ∈ Ω(k+1,k+1)(M,C).

Indeed, let

ω =
∑

|J|=k+1

ϕj1.j2...jk+1
dzj1 ∧ dzj2 ∧ ... ∧ dzjk ∧ dzjk+1

∧ dz̄j1 ∧ dz̄j2 ∧ ... ∧ dz̄jk ∧ dz̄jk+1

= (−1)
k
∑

|J|=k+1

ϕj1.j2...jk+1
dzj1 ∧ dzj2 ∧ ... ∧ dzjk ∧ dz̄j1 ∧ dz̄j2 ∧ ... ∧ dz̄jk ∧

(
dzjk+1

∧ dz̄jk+1

)
,

where J = (1 ≤ j1 ≤ ... ≤ jk+1 ≤ n) . We have

LXω = (−1)
k
∑

|J|=k+1

[
LX

((
ϕj1.j2...jk+1

dzj1 ∧ ... ∧ dzjk ∧ dz̄j1 ∧ ... ∧ dz̄jk
)
∧
(
dzjk+1

∧ dz̄jk+1

))]
= (−1)

k
∑

|J|=k+1

[(
LX

(
ϕj1.j2...jk+1

dzj1 ∧ ... ∧ dzjk ∧ dz̄j1 ∧ ... ∧ dz̄jk
))
∧
(
dzjk+1

∧ dz̄jk+1

)
+

+
(
ϕj1.j2...jk+1

dzj1 ∧ ... ∧ dzjk ∧ dz̄j1 ∧ ... ∧ dz̄jk
)
∧ LX

(
dzjk+1

∧ dz̄jk+1

)]
.

It follows that

LX

(
ϕj1.j2...jk+1

dzj1 ∧ ... ∧ dzjk ∧ dz̄j1 ∧ ... ∧ dz̄jk
)
∈ Ω(k,k)(M,C)

,

dzjk+1
∧ dz̄jk+1

∈ Ω(1,1)(M,C),

ϕj1.j2...jk+1
dzj1 ∧ ... ∧ dzjk ∧ dz̄j1 ∧ ... ∧ dz̄jk ∈ Ω(k,k)(M,C)

and

LX

(
dzjk+1

∧ dz̄jk+1

)
∈ Ω(1,1)(M,C).

Note that, if ω ∈ Ω(k,k)(M,C) and µ ∈ Ω(l,l)(M,C) then ω ∧ µ ∈ Ω(k+l,k+l)(M,C).
Therefore

LXω ∈ Ω(k+1,k+1)(M,C),∀ω ∈ Ω(k+1,k+1)(M,C).

�

The following result give an slight computation in the special case.

Proposition 3.6. Let X = (X1, X2, ..., Xn) ∈ B
(1,0)
hol (M) is a holomorphic vec-

tor field and X is bounded on M ; ω =
n∑

j,k=1

ϕjkdzj ∧ dzk ∈ Ω(1,1)(M,C) be the

differential forms of bidegree (1,1). Then we have

LXω =

n∑
j,k=1

(LXϕjk) dzj ∧ dz̄k. (3.5)
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Proof. By using Corollary 3.2, we obtain

LXω =

n∑
j,k=1

[
LXϕjkdzj ∧ dz̄k +

n∑
l=1

ϕjk
∂Xj

∂zl
dzl ∧ dz̄k −

n∑
l=1

ϕjk
∂X̄k

∂z̄l
dz̄l ∧ dzj

]
.

Since X is a holomorphic vector field and X is bounded on M , therefore applying

Liouvile, thenX is constant vector field. Hence LXω =
n∑

j,k=1

(LXϕjk) dzj ∧ dz̄k. �

Remark 3.7. Suppose that X = (X1, X2, ..., Xn) ∈ B
(1,0)
hol (M) is a holomorphic

vector field on M .
i) If f ∈ O(M) then LXf ∈ O(M).
ii) If ω ∈ Ωp

hol(M) then LXω ∈ Ωp
hol(M).

Proof. i) Since X = (X1, X2, ..., Xn) ∈ B
(1,0)
hol (M) is a holomorphic vector field

and f ∈ O(M) is a holomorphic function on M , we have ∂f
∂zj

= 0,∀j = 1, n and

∂f

∂zj
,∀j = 1, n are holomorphic functions on M . Therefore

LXf =

n∑
j=1

( ∂f
∂zj

Xj +
∂f

∂zj
Xj

)
=

n∑
j=1

∂f

∂zj
Xj

Hence
∂ (LXf)

∂zk
=

n∑
j=1

(
∂2f

∂zj∂zk
Xj +

∂f

∂zj

∂Xj

∂zk

)
= 0,∀k = 1, n. Hence LXf ∈

O(M).
ii) The result easily follows from i). �

Remark 3.8. If u ∈ C∞(M,C) then

LXdd
cu = 2i

n∑
j,k=1

∂2 (LXu)

∂zj∂z̄k
dzj ∧ dz̄k. (3.6)

Proof. Since ∂oLX = LXo∂ and ∂oLX = LXo∂, we obtain dcoLX = LXod
c. Hence,

applying Proposition 2.2, we obtain ddcoLX = LXodd
c. This implies that

LXdd
cu = ddc (LXu) = 2i

n∑
j,k=1

∂2 (LXu)

∂zj∂z̄k
dzj ∧ dz̄k.

�
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