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A NEW SUMMABILITY FACTOR THEOREM FOR

TRIGONOMETRIC FOURIER SERIES

HÜSEYİN BOR

Abstract. In this paper, a known theorem dealing with | N̄, pn |k summabil-

ity factors of trigonometric Fourier series has been generalized to | N̄, pn, θn |k
summability. Some new results have also been obtained.

1. Introduction

Let
∑
an be a given infinite series with partial sums (sn). We denote by uαn the

nth Cesàro mean of order α, with α > −1, of the sequence (sn), that is ( see [5]),

uαn =
1

Aαn

n∑
v=0

Aα−1n−vsv (1.1)

where

Aαn =
(α+ 1)(α+ 2)....(α+ n)

n!
= O(nα), Aα−n = 0 for n > 0. (1.2)

A series
∑
an is said to be summable | C,α |k, k ≥ 1, if (see [6])

∞∑
n=1

nk−1 | uαn − uαn−1 |k<∞. (1.3)

If we take α=1, then we obtain | C, 1 |k summability. Let (pn) be a sequence of
positive numbers such that

Pn =

n∑
v=0

pv →∞ as n→∞, (P−i = p−i = 0, i ≥ 1). (1.4)

The sequence-to-sequence transformation

tn =
1

Pn

n∑
v=0

pvsv (1.5)

defines the sequence (tn) of the Riesz mean or simply the (N̄ , pn) mean of the
sequence (sn) generated by the sequence of coefficients (pn) (see [7]). Let (θn)
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c©2016 Universiteti i Prishtinës, Prishtinë, Kosovë.
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be any sequence of positive constants. The series
∑
an is said to be summable

|N̄ , pn; θn|k, k ≥ 1, if (see [8])

∞∑
n=1

θk−1n | tn − tn−1 |k<∞. (1.6)

If we take θn = Pn

pn
, then | N̄ , pn, θn |k summability reduces to | N̄ , pn |k summa-

bility (see [1]). Also, if we take θn = n and pn = 1 for all values of n, then we get
| C, 1 |k summability. Furthermore, if we take θn = n, then | N̄ , pn, θn |k summabil-
ity reduces to | R, pn |k summability (see [2]). Finally, if we take k = 1 (resp. pn =
1/n+ 1), then | N̄ , pn, θn |k summability is the same as | N̄ , pn | (resp. | R, logn, 1 |
) summability. For any sequence (λn) we write that ∆2λn = ∆λn − ∆λn+1 and
∆λn = λn − λn+1. The sequence (λn) is said to be convex if ∆2λn ≥ 0 for every
positive integer n (see [9]).
Let f(x) be a periodic function with period 2π and Lebesgue integrable over (−π, π).
Without loss of generality we may assume that the constant term in the Fourier
series of f(x) is zero, so that ∫ π

−π
f(x)dx = 0 (1.7)

and

f(x) ∼
∞∑
n=1

(an cosnx+ bn sinnx) =

∞∑
n=1

An(x). (1.8)

2. Known results

The following two theorems concerning the | N̄ , pn |k summability factors of
trigonometric Fourier series are known.
Theorem 2.1 ([3]). If (λn) is a convex sequence such that

∑
pnλn < ∞, where

(pn) is a sequence of positive numbers such that Pn → ∞ as n→ ∞, and∑n
v=1 PvAv(x) = O(Pn) as n→ ∞, then the series

∑
An(x)Pnλn is summa-

ble | N̄ , pn |k, k ≥ 1.
Theorem 2.2 ([4]). If (λn) is a non-negative and non-increasing sequence such
that

∑
pnλn < ∞, where (pn) is a sequence of positive numbers such that Pn →

∞ as n→∞, and
∑n
v=1 PvAv(x) = O(Pn) as n→∞, then the series

∑
An(x)Pnλn

is summable | N̄ , pn |k, k ≥ 1.
It should be noted that the conditions on the sequence (λn) in Theorem 2.2, are
more general than in Theorem 2.1.

3. Main result

The aim of this paper is to generalize Theorem 2.2 in the following form.
Theorem 3.1. Let ( θnpnPn

) be a non-increasing sequence. If (λn) is a non-negative

and non-increasing sequence such that
∑
pnλn < ∞, where (pn) is a sequence of

positive numbers such that Pn →∞ as n→∞, and
∑n
v=1 PvAv(x) = O(Pn) as n→

∞, then the series
∑
An(x)Pnλn is summable | N̄ , pn, θn |k, k ≥ 1.

In the proof of Theorem 3.1 , we will use the following lemma from [4].
Lemma 3.2. If (λn) is a non-negative and non-increasing sequence such that∑
pnλn is convergent, where (pn) is a sequence of positive numbers such that
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Pn →∞ as n→∞, then Pnλn = O(1) as n→∞ and
∑
Pn∆λn <∞.

Remark. It should be noted that, since

n−1∑
v=1

PvPv∆λv ≤ Pn−1
n−1∑
v=1

Pv∆λv

it follows by Lemma 3.2 that

1

Pn−1

n−1∑
v=1

PvPv∆λv ≤
n−1∑
v=1

Pv∆λv = O(1) as m→∞. (3.1)

4. Proof of Theorem 3.1

Let Tn(x) denote the (N̄ , pn) mean of the series
∑
An(x)Pnλn. Then, by defi-

nition, we have

Tn =
1

Pn

n∑
v=0

pv

v∑
r=0

Ar(x)Prλr =
1

Pn

n∑
v=0

(Pn − Pv−1)Av(x)λvPv.

Then, for n ≥ 1, we have

Tn(x)− Tn−1(x) =
pn

PnPn−1

n∑
v=1

Pv−1PvAv(x)λv.

By Abel’s transformation, we have

Tn(x)− Tn−1(x) =
pn

PnPn−1

n−1∑
v=1

∆(Pv−1λv)

v∑
r=1

PrAr(x) +
pn
Pn

λn

n∑
v=1

PvAv(x)

= O(1){ pn
PnPn−1

n−1∑
v=1

(Pvλv − pvλv − Pvλv+1)Pv}+O(1)pnλn

= O(1){ pn
PnPn−1

n−1∑
v=1

PvPv∆λv −
pn

PnPn−1

n−1∑
v=1

Pvpvλv + pnλn}

= O(1){Tn,1(x) + Tn,2(x) + Tn,3(x)}.

To complete the proof of Theorem 3.1, by Minkowski’s inequality, it is sufficient to
show that

∞∑
n=1

θk−1n | Tn,r(x) |k<∞, for r = 1, 2, 3. (4.1)
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Now, when k > 1, applying Hölder’s inequality with indices k and k′, where 1
k+ 1

k′ =
1, we get that

m∑
n=1

θk−1n | Tn,1(x) |k ≤
m+1∑
n=2

θk−1n

pn
k

Pn
kPn−1

(
n−1∑
v=1

PvPv∆λv

)
×

(
1

Pn−1

n−1∑
v=1

PvPv∆λv

)k−1

= O(1)

m+1∑
n=2

θk−1n

pn
k

Pn
kPn−1

n−1∑
v=1

PvPv∆λv

= O(1)

m∑
v=1

PvPv∆λv

m+1∑
n=v+1

(
θnpn
Pn

)k−1
pn

PnPn−1

= O(1)

m∑
v=1

PvPv∆λv

(
θvpv
Pv

)k−1 m+1∑
n=v+1

pn
PnPn−1

= O(1)

(
θ1p1
P1

)k−1 m∑
v=1

Pv∆λv = O(1)

m∑
v=1

Pv∆λv = O(1) as m→∞,

by Lemma 3. 2. Again we have that

m+1∑
n=2

θk−1n | Tn,2(x) |k ≤
m+1∑
n=2

θk−1n

pn
k

Pn
kPn−1

(
n−1∑
v=1

(Pvλv)
kpv

)
×

(
1

Pn−1

n−1∑
v=1

pv

)k−1

= O(1)

m+1∑
v=2

θk−1n

pn
k

Pn
kPn−1

n−1∑
v=1

(Pvλv)
kpv

= O(1)

m∑
v=1

(Pvλv)
kpv

m+1∑
n=v+1

(
θnpn
Pn

)k−1
pn

PnPn−1

= O(1)

m∑
v=1

(
θvpv
Pv

)k−1
(Pvλv)

kpv

m+1∑
n=v+1

pn
PnPn−1

= O(1)

(
θ1p1
P1

)k−1 m∑
v=1

(Pvλv)
k pv
Pv

= O(1)

m∑
v=1

(Pvλv)
k−1pvλv = O(1)

m∑
v=1

pvλv = O(1) as m→∞,

by virtue of the hypotheses of Theorem 3.1 and the Lemma 3.2. Finally, as in
Tn,1(x), we have that

m∑
n=1

θk−1n | Tn,3(x) |k =

m∑
n=1

(
θnpn
Pn

)k−1(
Pn
pn

)k−1
(pnλn)k−1pnλn

=

(
θ1p1
P1

)k−1 m∑
n=1

(Pnλn)k−1pnλn = O(1)

m∑
n=1

pnλn = O(1) as m→∞.

This completes the proof of Theorem 3.1.
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5. Conclusions

1. If we take θn = Pn

pn
, then Theorem 3.1 reduces to Theorem 2.2. In this case the

condition ”( θnpnPn
) is a non-increasing sequence” is trivial. Similarly by assigning

specific values to parameters in Theorem 3.1 we obtain several interesting results
about trigonometric Fourier series. For example;
2. If in Theorem 3.1 we put θn = n and pn = 1, then we get a new result about
| C, 1 |k summability factors of trigonometric Fourier series.
3. If in Theorem 3.1 we take k = 1 and pn = 1/(n + 1), then we get another new
result related to | R, logn, 1 | summability factors of trigonometric Fourier series.
4. If in Theorem 3.1 we set θn = n , then we get a new result about | R, pn |k
summability factors of trigonometric Fourier series.
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