A NEW SUMMABILITY FACTOR THEOREM FOR TRIGONOMETRIC FOURIER SERIES

HÜSEYİN BOR

Abstract

In this paper, a known theorem dealing with $\left|\bar{N}, p_{n}\right|_{k}$ summability factors of trigonometric Fourier series has been generalized to $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}$ summability. Some new results have also been obtained.

1. Introduction

Let $\sum a_{n}$ be a given infinite series with partial sums $\left(s_{n}\right)$. We denote by u_{n}^{α} the nth Cesàro mean of order α, with $\alpha>-1$, of the sequence $\left(s_{n}\right)$, that is (see [5]),

$$
\begin{equation*}
u_{n}^{\alpha}=\frac{1}{A_{n}^{\alpha}} \sum_{v=0}^{n} A_{n-v}^{\alpha-1} s_{v} \tag{1.1}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{n}^{\alpha}=\frac{(\alpha+1)(\alpha+2) \ldots(\alpha+n)}{n!}=O\left(n^{\alpha}\right), \quad A_{-n}^{\alpha}=0 \quad \text { for } \quad n>0 \tag{1.2}
\end{equation*}
$$

A series $\sum a_{n}$ is said to be summable $|C, \alpha|_{k}, k \geq 1$, if (see [6])

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k-1}\left|u_{n}^{\alpha}-u_{n-1}^{\alpha}\right|^{k}<\infty \tag{1.3}
\end{equation*}
$$

If we take $\alpha=1$, then we obtain $|C, 1|_{k}$ summability. Let $\left(p_{n}\right)$ be a sequence of positive numbers such that

$$
\begin{equation*}
P_{n}=\sum_{v=0}^{n} p_{v} \rightarrow \infty \quad \text { as } \quad n \rightarrow \infty, \quad\left(P_{-i}=p_{-i}=0, i \geq 1\right) \tag{1.4}
\end{equation*}
$$

The sequence-to-sequence transformation

$$
\begin{equation*}
t_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v} \tag{1.5}
\end{equation*}
$$

defines the sequence $\left(t_{n}\right)$ of the Riesz mean or simply the $\left(\bar{N}, p_{n}\right)$ mean of the sequence $\left(s_{n}\right)$ generated by the sequence of coefficients $\left(p_{n}\right)$ (see [7]). Let $\left(\theta_{n}\right)$

[^0]be any sequence of positive constants. The series $\sum a_{n}$ is said to be summable $\left|\bar{N}, p_{n} ; \theta_{n}\right|_{k}, k \geq 1$, if (see [8])
\[

$$
\begin{equation*}
\sum_{n=1}^{\infty} \theta_{n}^{k-1}\left|t_{n}-t_{n-1}\right|^{k}<\infty \tag{1.6}
\end{equation*}
$$

\]

If we take $\theta_{n}=\frac{P_{n}}{p_{n}}$, then $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}$ summability reduces to $\left|\bar{N}, p_{n}\right|_{k}$ summability (see [1]). Also, if we take $\theta_{n}=n$ and $p_{n}=1$ for all values of n, then we get $|C, 1|_{k}$ summability. Furthermore, if we take $\theta_{n}=n$, then $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}$ summability reduces to $\left|R, p_{n}\right|_{k}$ summability (see [2]). Finally, if we take $k=1$ (resp. $p_{n}=$ $1 / n+1$), then $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}$ summability is the same as $\left|\bar{N}, p_{n}\right|$ (resp. $|R, \operatorname{logn}, 1|$ $)$ summability. For any sequence $\left(\lambda_{n}\right)$ we write that $\Delta^{2} \lambda_{n}=\Delta \lambda_{n}-\Delta \lambda_{n+1}$ and $\Delta \lambda_{n}=\lambda_{n}-\lambda_{n+1}$. The sequence $\left(\lambda_{n}\right)$ is said to be convex if $\Delta^{2} \lambda_{n} \geq 0$ for every positive integer n (see [9]).
Let $f(x)$ be a periodic function with period 2π and Lebesgue integrable over $(-\pi, \pi)$. Without loss of generality we may assume that the constant term in the Fourier series of $f(x)$ is zero, so that

$$
\begin{equation*}
\int_{-\pi}^{\pi} f(x) d x=0 \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
f(x) \sim \sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)=\sum_{n=1}^{\infty} A_{n}(x) \tag{1.8}
\end{equation*}
$$

2. Known Results

The following two theorems concerning the $\left|\bar{N}, p_{n}\right|_{k}$ summability factors of trigonometric Fourier series are known.
Theorem 2.1 ([3]). If $\left(\lambda_{n}\right)$ is a convex sequence such that $\sum p_{n} \lambda_{n}<\infty$, where $\left(p_{n}\right)$ is a sequence of positive numbers such that $P_{n} \rightarrow \infty$ as $\mathrm{n} \rightarrow \infty$, and $\sum_{v=1}^{n} P_{v} A_{v}(x)=O\left(P_{n}\right)$ as $\mathrm{n} \rightarrow \infty$, then the series $\sum A_{n}(x) P_{n} \lambda_{n}$ is summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$.
Theorem 2.2 ([4]). If $\left(\lambda_{n}\right)$ is a non-negative and non-increasing sequence such that $\sum p_{n} \lambda_{n}<\infty$, where $\left(p_{n}\right)$ is a sequence of positive numbers such that $P_{n} \rightarrow$ $\infty \quad$ as $\quad \mathrm{n} \rightarrow \infty$, and $\sum_{v=1}^{n} P_{v} A_{v}(x)=O\left(P_{n}\right)$ as $\quad \mathrm{n} \rightarrow \infty$, then the series $\sum A_{n}(x) P_{n} \lambda_{n}$ is summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$.
It should be noted that the conditions on the sequence $\left(\lambda_{n}\right)$ in Theorem 2.2, are more general than in Theorem 2.1.

3. Main result

The aim of this paper is to generalize Theorem 2.2 in the following form.
Theorem 3.1. Let $\left(\frac{\theta_{n} p_{n}}{P_{n}}\right)$ be a non-increasing sequence. If $\left(\lambda_{n}\right)$ is a non-negative and non-increasing sequence such that $\sum p_{n} \lambda_{n}<\infty$, where $\left(p_{n}\right)$ is a sequence of positive numbers such that $P_{n} \rightarrow \infty \quad$ as $\quad \mathrm{n} \rightarrow \infty$, and $\sum_{v=1}^{n} P_{v} A_{v}(x)=O\left(P_{n}\right) \quad$ as $\quad \mathrm{n} \rightarrow$ ∞, then the series $\sum A_{n}(x) P_{n} \lambda_{n}$ is summable $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}, k \geq 1$.
In the proof of Theorem 3.1, we will use the following lemma from [4].
Lemma 3.2. If $\left(\lambda_{n}\right)$ is a non-negative and non-increasing sequence such that $\sum p_{n} \lambda_{n}$ is convergent, where $\left(p_{n}\right)$ is a sequence of positive numbers such that
$P_{n} \rightarrow \infty \quad$ as $\quad \mathrm{n} \rightarrow \infty$, then $P_{n} \lambda_{n}=O(1) \quad$ as $\quad n \rightarrow \infty \quad$ and $\quad \sum P_{n} \Delta \lambda_{n}<\infty$.
Remark. It should be noted that, since

$$
\sum_{v=1}^{n-1} P_{v} P_{v} \Delta \lambda_{v} \leq P_{n-1} \sum_{v=1}^{n-1} P_{v} \Delta \lambda_{v}
$$

it follows by Lemma 3.2 that

$$
\begin{equation*}
\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} P_{v} P_{v} \Delta \lambda_{v} \leq \sum_{v=1}^{n-1} P_{v} \Delta \lambda_{v}=O(1) \quad \text { as } \quad m \rightarrow \infty \tag{3.1}
\end{equation*}
$$

4. Proof of Theorem 3.1

Let $T_{n}(x)$ denote the $\left(\bar{N}, p_{n}\right)$ mean of the series $\sum A_{n}(x) P_{n} \lambda_{n}$. Then, by definition, we have

$$
T_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} \sum_{r=0}^{v} A_{r}(x) P_{r} \lambda_{r}=\frac{1}{P_{n}} \sum_{v=0}^{n}\left(P_{n}-P_{v-1}\right) A_{v}(x) \lambda_{v} P_{v}
$$

Then, for $n \geq 1$, we have

$$
T_{n}(x)-T_{n-1}(x)=\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} P_{v-1} P_{v} A_{v}(x) \lambda_{v}
$$

By Abel's transformation, we have

$$
\begin{aligned}
T_{n}(x)-T_{n-1}(x) & =\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} \Delta\left(P_{v-1} \lambda_{v}\right) \sum_{r=1}^{v} P_{r} A_{r}(x)+\frac{p_{n}}{P_{n}} \lambda_{n} \sum_{v=1}^{n} P_{v} A_{v}(x) \\
& =O(1)\left\{\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1}\left(P_{v} \lambda_{v}-p_{v} \lambda_{v}-P_{v} \lambda_{v+1}\right) P_{v}\right\}+O(1) p_{n} \lambda_{n} \\
& =O(1)\left\{\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} P_{v} P_{v} \Delta \lambda_{v}-\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} P_{v} p_{v} \lambda_{v}+p_{n} \lambda_{n}\right\} \\
& =O(1)\left\{T_{n, 1}(x)+T_{n, 2}(x)+T_{n, 3}(x)\right\}
\end{aligned}
$$

To complete the proof of Theorem 3.1, by Minkowski's inequality, it is sufficient to show that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \theta_{n}^{k-1}\left|T_{n, r}(x)\right|^{k}<\infty, \quad \text { for } \quad r=1,2,3 \tag{4.1}
\end{equation*}
$$

Now, when $k>1$, applying Hölder's inequality with indices k and k^{\prime}, where $\frac{1}{k}+\frac{1}{k^{\prime}}=$ 1, we get that

$$
\begin{aligned}
\sum_{n=1}^{m} \theta_{n}^{k-1}\left|T_{n, 1}(x)\right|^{k} & \leq \sum_{n=2}^{m+1} \theta_{n}^{k-1} \frac{p_{n}^{k}}{P_{n}^{k} P_{n-1}}\left(\sum_{v=1}^{n-1} P_{v} P_{v} \Delta \lambda_{v}\right) \times\left(\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} P_{v} P_{v} \Delta \lambda_{v}\right)^{k-1} \\
& =O(1) \sum_{n=2}^{m+1} \theta_{n}^{k-1} \frac{p_{n}^{k}}{P_{n}^{k} P_{n-1}} \sum_{v=1}^{n-1} P_{v} P_{v} \Delta \lambda_{v} \\
& =O(1) \sum_{v=1}^{m} P_{v} P_{v} \Delta \lambda_{v} \sum_{n=v+1}^{m+1}\left(\frac{\theta_{n} p_{n}}{P_{n}}\right)^{k-1} \frac{p_{n}}{P_{n} P_{n-1}} \\
& =O(1) \sum_{v=1}^{m} P_{v} P_{v} \Delta \lambda_{v}\left(\frac{\theta_{v} p_{v}}{P_{v}}\right)^{k-1} \sum_{n=v+1}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}} \\
& =O(1)\left(\frac{\theta_{1} p_{1}}{P_{1}}\right)^{k-1} \sum_{v=1}^{m} P_{v} \Delta \lambda_{v}=O(1) \sum_{v=1}^{m} P_{v} \Delta \lambda_{v}=O(1) \quad a s \quad m \rightarrow \infty
\end{aligned}
$$

by Lemma 3. 2. Again we have that

$$
\begin{aligned}
\sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|T_{n, 2}(x)\right|^{k} & \leq \sum_{n=2}^{m+1} \theta_{n}^{k-1} \frac{p_{n}{ }^{k}}{P_{n}{ }^{k} P_{n-1}}\left(\sum_{v=1}^{n-1}\left(P_{v} \lambda_{v}\right)^{k} p_{v}\right) \times\left(\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_{v}\right)^{k-1} \\
& =O(1) \sum_{v=2}^{m+1} \theta_{n}^{k-1} \frac{p_{n}{ }^{k}}{P_{n}{ }^{k} P_{n-1}} \sum_{v=1}^{n-1}\left(P_{v} \lambda_{v}\right)^{k} p_{v} \\
& =O(1) \sum_{v=1}^{m}\left(P_{v} \lambda_{v}\right)^{k} p_{v} \sum_{n=v+1}^{m+1}\left(\frac{\theta_{n} p_{n}}{P_{n}}\right)^{k-1} \frac{p_{n}}{P_{n} P_{n-1}} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{\theta_{v} p_{v}}{P_{v}}\right)^{k-1}\left(P_{v} \lambda_{v}\right)^{k} p_{v} \sum_{n=v+1}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}} \\
& =O(1)\left(\frac{\theta_{1} p_{1}}{P_{1}}\right)^{k-1} \sum_{v=1}^{m}\left(P_{v} \lambda_{v}\right)^{k} \frac{p_{v}}{P_{v}} \\
& =O(1) \sum_{v=1}^{m}\left(P_{v} \lambda_{v}\right)^{k-1} p_{v} \lambda_{v}=O(1) \sum_{v=1}^{m} p_{v} \lambda_{v}=O(1) \quad \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

by virtue of the hypotheses of Theorem 3.1 and the Lemma 3.2. Finally, as in $T_{n, 1}(x)$, we have that

$$
\begin{aligned}
\sum_{n=1}^{m} \theta_{n}^{k-1}\left|T_{n, 3}(x)\right|^{k} & =\sum_{n=1}^{m}\left(\frac{\theta_{n} p_{n}}{P_{n}}\right)^{k-1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left(p_{n} \lambda_{n}\right)^{k-1} p_{n} \lambda_{n} \\
& =\left(\frac{\theta_{1} p_{1}}{P_{1}}\right)^{k-1} \sum_{n=1}^{m}\left(P_{n} \lambda_{n}\right)^{k-1} p_{n} \lambda_{n}=O(1) \sum_{n=1}^{m} p_{n} \lambda_{n}=O(1) \quad \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

This completes the proof of Theorem 3.1.

5. Conclusions

1. If we take $\theta_{n}=\frac{P_{n}}{p_{n}}$, then Theorem 3.1 reduces to Theorem 2.2. In this case the condition " $\left(\frac{\theta_{n} p_{n}}{P_{n}}\right)$ is a non-increasing sequence" is trivial. Similarly by assigning specific values to parameters in Theorem 3.1 we obtain several interesting results about trigonometric Fourier series. For example;
2. If in Theorem 3.1 we put $\theta_{n}=n$ and $p_{n}=1$, then we get a new result about $|C, 1|_{k}$ summability factors of trigonometric Fourier series.
3. If in Theorem 3.1 we take $k=1$ and $p_{n}=1 /(n+1)$, then we get another new result related to $|R, \operatorname{logn}, 1|$ summability factors of trigonometric Fourier series.
4. If in Theorem 3.1 we set $\theta_{n}=n$, then we get a new result about $\left|R, p_{n}\right|_{k}$ summability factors of trigonometric Fourier series.
Acknowledgement. The author expresses his thanks to the referee for his/her useful comments and suggestions for the improvement of this paper.

References

[1] H. Bor, On two summability methods, Math. Proc. Cambridge Philos. Soc., 97 (1985), 147149.
[2] H. Bor, On the relative strength of two absolute summability methods, Proc. Amer. Math. Soc., 113 (1991), 1009-1012.
[3] H. Bor, Local properties of Fourier series, Int. J. Math. Math. Sci., 23 (2000), 703-709.
[4] H. Bor, On the absolute summability factors of Fourier series, J. Comput. Anal. Appl., 8 (2006), 223-227.
[5] E. Cesàro, Sur la multiplication des séries, Bull. Sci. Math., 14 (1890), 114-120.
[6] T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc., 7 (1957), 113-141.
[7] G. H. Hardy, Divergent Series, Oxford (1949).
[8] W. T. Sulaiman, On some summability factors of infinite series, Proc. Amer. Math. Soc., 115 (1992), 313-317.
[9] A. Zygmund, Trigonometric Series, Inst. Mat. Polskiej Akademi Nauk, Warsaw, (1935).
HÜSEYİN BOR
P. O. Box 121, TR-06502 BahÇElievler

Ankara, Turkey
E-mail address: hbor33@gmail.com

[^0]: 2010 Mathematics Subject Classification. 26D15, 40D15, 40G99, 42A24, 42B15.
 Key words and phrases. Riesz mean, Cesàro mean; absolute summability; infinite series; trigonometric Fourier series; convex sequence; Hölder inequality; Minkowski inequality.
 © 2016 Universiteti i Prishtinës, Prishtinë, Kosovë.
 Submitted October 8, 2016. Published December 2, 2016.
 Communicated by Hajrudin Fejzic.

