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CONSERVATIVE AND DISSIPATIVE FOR T-NORM AND

T-CONORM AND RESIDUAL FUZZY CO-IMPLICATION

IQBAL H. JEBRIL

Abstract. In this paper new concepts called conservative, dissipative, power
stable for t-norm and t-conorm are considered. Also, residual fuzzy co-implication
in dual Heyting algebra are investigated. Some examples as well as application
are given as well.

1. Introduction

In fuzzy logic, the basic theory of connective like conjunction (∧) is interpreted
by a triangular norm, disjunction (∨) by triangular conorm, negation (¬) by strong
negations these important notions in fuzzy set theory is that of t-norm (T ), t-
conorms (S) and strong negations (NC) that are used to define a generalized in-
tersection, union and negation of fuzzy sets (see [3] and [4]. The notion of t-norm
and t-conorm turned out to be basic tools for probabilistic metric spaces (see [8]
and [10]) but also in several other parts and have found diverse applications in
the theory of fuzzy sets, fuzzy decision making, in models of certain many-valued
logics or in multivariate statistical analysis (see [3, , and [14]). Also, implication
and co-implication functions play an important notion in fuzzy logic, approximate
reasoning, fuzzy control, intuitionistic fuzzy logic and approximate reasoning of ex-
pert system (see ([1], [2], [5], [6], [7], and [15]). The conjunction and disjunction in
fuzzy logic are often modeled as follows.

Definition 1.1. [8] A mapping T from [0, 1]2 into [0, 1] is a triangular norm (in
short, t- norm), iff T are commutative, nondecreasing in both arguments, associative
and which satisfies T (p, 1) = p, for all p ∈ [0, 1].

Definition 1.2. [8] A mapping S from [0, 1]
2
into [0, 1] is a triangular norm (in

short, t- norm), iff T are commutative, nondecreasing in both arguments, associative
and which satisfies S (p, 0) = p, for all p ∈ [0, 1].

The standard examples of t-norms and dual t-conorms are stated in the following
1. Minimum t-norm, M (p, q) = min (p, q) .
2. Probabilistic Product t-norm, Π (p, q) = pq.
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3. Drastic or weak t-norm, W (p, q) =







p if q = 1,
q if p = 1,
0 if p, q ∈ [0, 1) .

4. Nilpotent t-norm, N (p, q) =

{

min (p, q) if p+ q ≥ 1,
0 if p+ q < 1.

5. Lukasiewicz t-norm, L (p, q) = max (p+ q − 1, 0) .

6. Hamacher t-norm, H (p, q) =

{

0 if p = q = 0,
pq

p+q−pq otherwise.

7. Dubois-Prade t-norm, Dα (p, q) = pq
max(p,q,α) , α ∈ (0, 1) .

8. Maximum t-conorm, M (p, q) = SM (p, q) = max (p, q) .
9. Probabilistic sum t-conorm, SΠ (p, q) = p+ q − pq.

10. Drastic or largest t-conorm, SW (p, q) =







p if q = 0,
q if p = 0,
1 if p, q ∈ (0, 1] .

11. Nilpotent t-conorm, SN (p, q) =

{

max (p, q) if p+ q < 1,
0, if p+ q ≥ 1.

12. Bounded Sum t-conorm, SL (p, q) = min (p+ q, 1) .

13. Hamacher t-conorm, SH (p, q) =

{

0 if p = q = 0,
p+q−2pq

1−pq otherwise.

14. Dubois-Prade t-conorm, SDα
(p, q) = 1− (1−p)(1−q)

max(1−p,1−q,α) , α ∈ (0, 1) .

For other family of t-norms (not needed here) we refer the reader to [11] for

instance. If T1 < T2 (ST1
< ST2

) and there is at least one pair (p, q) ∈ [0, 1]2 such
that T1 (p, q) < T2 (p, q) (ST1

(p, q) < ST2
(p, q)) then we briefly T1 < T2 (ST1

< ST2
)

write. With this, the above t-norms and t-conorms satisfy the next known chain of
inequalities

W < L < Π < H < M < SM < SH < SΠ < SL < SW .
Two t-norms (t-conorms) are called comparable if

T1 ≤ T2 or T1 ≥ T2 (ST1
≤ ST2

or ST1
≥ ST2

),
holds. The above chain of inequalities shows that W,L,Π, H,M, SM , SH , SΠ, SL,
and SW are comparable. It is not hard to see that for example Π and N are not
comparable, while W,N and M comparable with W < N < M [9].

Definition 1.3. [13] Let T a left-continuous t-norm. Then, the residual implication
or R-implication derived form is given by

IT (p, q) = sup {r ∈ [0, 1] |T (r, p) ≤ q} , for all p, q ∈ [0, 1]. (R)

i.e. T (r, p) ≤ q ⇔ r ≤ IT (p, q), for all p, q, r ∈ [0, 1].

2. Main Results

In the following section we will study the relation between power stable aggre-
gation functions and power stable t-norm and t-conorm, then introduce some new
concepts for t-norm and t-conorm as conservative, dissipative.

Definition 2.1. [16] A mapping A from [0, 1]
2
into [0, 1] is aggregation function,

iff A are increasing in each variable, A (0, 0) = 0, and A (1, 1) = 1.

Definition 2.2. [16] An aggregation function A : [0, 1]
2
→ [0, 1] is called power

stable whenever for any constant p ∈ (0,∞) and p, q ∈ [0, 1]
2
it hold,

A (pr, qr) = (A (p, q))
r
.



80 IQBAL H. JEBRIL

Proposition 2.1. [16] Power stable aggregation functions are exactly those which
are invariant under power transformations, i.e., aggregation function satisfying for
all powers ϕr : [0, 1] → [0, 1] , ϕr (p) = pr ∈ (0,∞) and all p, q ∈ [0, 1]2 the property

A (p, q) = ϕ−1
r (A (ϕr (p) , ϕr (q))) .

Definition 2.3. Let Φ : [0, 1] → [0,∞] be a continuous strictly decreasing function
such that Φ (1) = 0. Let Φ(−1) be the pseudo-inverse of Φ defined by

Φ(−1) (p) =

{

Φ−1 (p) if p ∈ [0,Φ (0)] ,
0, otherwise.

For all p, q ∈ [0, 1], we set
T (p, q) = Φ(−1) (Φ (p) + Φ (q)) ,

then T is a t-norm and Φ is called an additive generator of T.

Definition 2.4. Let Ψ : [0, 1] → [0,∞] be a continuous strictly increasing function
such that Ψ (0) = 0. Let Ψ (−1) be the pseudo-inverse of Ψ defined by

Ψ (−1) (p) =

{

Ψ−1 (p) if p ∈ [0,Ψ (1)] ,
1, otherwise.

For all p, q ∈ [0, 1], we set
ST (p, q) = Ψ (−1) (Ψ (p) +Ψ (q)) ,

then ST is a t-conorm and Ψ is called an additive generator of ST .

Proposition 2.2. Let T be a t-norm, ST be a t-conorm and Φ : [0, 1] → [0,∞]
an additive generator of T . The function Ψ : [0, 1] → [0,∞] defined by Ψ (t) =
Φ (1− t) is an additive generator of ST .

Definition 2.5. Let T (ST ) be a t-norm (t-conorm) and µ : [0, 1] → [0, 1] be a
continuous strictly increasing map. If for all p, q ∈ [0, 1], we set

Tµ (p, q) = µ−1 (T (µ (p) , µ (q))) ,

STµ
(p, q) = µ−1 (ST (µ (p) , µ (q))) ,

then Tµ is a t-norm (STµ
is a t-conorm).

Proposition 2.3. Let T (ST ) and R (SR) are t-norms (t-conorms), and µ : [0, 1] →
[0, 1] be continuous strictly increasing function. Then

1. If Tµ = Rµ then T = R.
2. If STµ

= SRµ
then ST= SR.

3. If T ≤ S then Tµ≤ Rµ.
4. If ST≤ SR then STµ

≤ SRµ
.

5. (Tµ)µ−1 = T and
(

STµ

)

µ−1
= ST .

Some example of continuous strictly increasing function µ : [0, 1] → [0, 1] are
given

1.µ (t) = 2t
t+1 , 2.µ (t) = 1− (1− t)

x
, x > 0.

3.µ (t) = tx, x > 0. 4.µ (t) = xt
−1

x−1 , x > 0, x 6= 0.

5.µ (t) = log(1+xtα)
log(1+x) , x > −1, α > 0.

Take µ (t) = tx (x > 0) then µ−1 (t) = t1/x, we get

Lµ (p, q) = µ−1 (max (px + qx − 1, 0)) = (max (px + qx − 1, 0))
1/x

.
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Take µ (t) = 1− (1− t)x (x > 0) then µ−1 (t) = 1− (1− t)1/x, we get

Πµ (p, q) = 1− ((1− p)x + (1− q)x − (1− p)x(1− q)x)
1/x

.

But the most interesting applications when µ (t) = tx for some t > 0. We then
have the next related result.

Definition 2.6. Let T (ST ) b e a t-norm (t-conorm) for any constant x ∈ (0,∞)
and all p, q ∈ [0, 1]. T is called T -power stable if holds T (px, qx) = (T (p, q))

x
. ST

is called ST -power stable if holds,
ST (px, qx) = (ST (p, q))

x
.

Probabilistic product t-norm is T -power stable, for any constant x ∈ (0,∞) and
all p, q ∈ [0, 1], then Π (px, qx) = pxqx = (pq)

x
= (Π (p, q))

x
, and the following

groups illustrate that.

Let T be a given power stable t-norm where it doesn’t necessary that ST -power
stable t-conorm. Probabilistic product t-norm is T -power stable but probabilistic
product t-conorm is not ST -power stable and the following groups illustrate that.

Maximum t-conorm is ST -power stable, for any constant x ∈ (0,∞) and all
p, q ∈ [0, 1], then SM (px, qx) = max (px, qx) = (max (p, q) )

x
= (SM (p, q) )

x
, and

the following groups illustrate that.
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Definition 2.7. Let T be a given power stable t-norm. We say that T is closed if
the following limits

T0 (p, q) = limx→0Tx (p, q) and T∞ (p, q) = limx→∞Tx (p, q) ,

where Tx (p, q) = (T (px, qx))
1

x , exist for all p, q ∈ [0, 1].

Proposition 2.4. Let T be a T -power stable t-norm. Then the following assertions
are met for all p, q ∈ [0, 1].

(1) (Tx)y (p, q) = Txy (p, q) = (Ty)x (p, q) . In particular, (Tx)1/x (p, q) = T1 (p, q) =

T (p, q) for x > 0.
(2) If T and S be two T-power stable t-norms such that Tx (p, q) = Sx (p, q)

for some x > 0 then T (p, q) = S (p, q) .
(3) Tx (p, q) = Ty (p, q) does not ensure x = y.

Definition 2.8. Let ST be a given power stable t-conorm. We say that ST is
closed if the following limits

ST0
(p, q) = limx→0STx

(p, q) and ST∞
(p, q) = limx→∞STx

(p, q) ,

where STx
(p, q) = (ST (px, qx))

1

x , exist for all p, q ∈ [0, 1].

Definition 2.9. Let T (ST ) be a closed t-norm (t-conorm).
i. T (ST ) is called to be conservative if

T0 (p, q) = T∞ (p, q) = Tx (p, q)

ST0
(p, q) = ST∞

(p, q) = STx
(p, q)

for all p, q ∈ [0, 1].
ii. We say that T (ST ) is dissipative if there exist two conservative t-norm (t-
conorm) U (SU ) and V (SV ) that

T0 (p, q) = U (p, q) and T∞ (p, q) = V (p, q) ,

ST0
(p, q) = SU (p, q) and ST∞

(p, q) = SV (p, q) ,

for all p, q ∈ [0, 1]. In this case we say that T is (U, V )-dissipative and ST is
(SU , SV )- dissipative.

Proposition 2.5. i. Every conservative t-norm T (ST ) is (T, T )- dissipative
((ST , ST )- dissipative).
ii. Let T (ST ) be a closed t-norms (t-conorm), if T (ST ) is (U, V )- dissipative
((SU , SV )- dissipative) then Tx (STx

) is also (U, V )-dissipative ((SU , SV )- dis-
sipative) for each r > 0, Tx (STx

) conservative whenever T (ST ) is conservative.
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Example 2.1. M and SM are conservative.

Proof. It easy to see thatMx (p, q) = (M (px, qx))
1

x and SMx
(p, q) = (SM (px, qx))

1

x

for all p, q ∈ [0, 1] and x > 0. Then

M (p, q) = M0 (p, q) = M∞ (p, q) .

SM (p, q) = SM0
(p, q) = SM∞

(p, q) .

�

Example 2.2. Π is Conservative but SΠ is not Conservative.

Proof. It easy to see that that Πx (p, q) = (Π (px, qx))
1

x for all p, q∈ [0, 1] and x > 0.
Then Π (p, q) = Π0 (p, q) = Π∞ (p, q) . But SΠ (p, q) 6= SΠ0

(p, q) 6= SΠ∞
(p, q) ,. �

Example 2.3. The t-norm L is (Π ,W )-dissipative.

Proof. For all p, q∈ [0, 1] and x > 0, L is given by

Lx (p, q) =

{

(max (px + qx − 1, 0))
1

x if px + qx ≥ 1,
0 if px + qx ≤ 1.

Assume that p, q∈(0, 1]. For x enough small we have

px = exp (xlnp) = 1 + x (lnp) + xo (1) , o (1) → 0 as x → 0,

With similar expansion for xp. We then obtain

px + qx − 1 = 1 + xln (pq) + xo (1) .

Since px + qx > 1 for all p, q∈(0, 1] and x enough small, we then have

ln (px + qx − 1) = xln (pq) + xo (1) ,

For which we deduce

(px + qx − 1)
1

x = exp ((1/x) ln (px + qx − 1)) = pqexp (o (1)) .

It follows that

Lx (p, q) = (px + qx − 1)
1

x = pqexp (o (1)) ,

and so

lim x→0Lx (p, q) = pq = Π (p, q) ,

for all p, q∈(0, 1]. This, with Lx (p, 0) = 0 and Lx (0, q) = 0 for all p, q∈ [0, 1], yields
the desired result.

Now, if For all p is enough large then px + qx < 1 for all p, q ∈ (0, 1) and so
Lx (p, q) = Lx (0, q) = 0 and Lx (p, 1) = p, Lx (1, q) = q, for all p, q∈ [0, 1], yields

lim x→0Lx (x, y) = W (p, q) ,

for all p, q∈ [0, 1]. The proof is then completed. �

Example 2.4. The t-conorm SN is (SM , SW )–dissipative.

Proof. For all p, q∈ [0, 1] and x > 0, we have

SNx
(p, q) = max (p, q) if px + qx < 1, SNx

(1, q) = 1, else.

It easy to see that SNx
(p, 1) = SNx

(1, q)= 1, for all p, q∈ [0, 1]. SinceNx a t-conorm
then SNx

(p, 0) = p and SNx
(0, q) = q for all p, q∈ [0, 1]. Now, if p, q∈ (0, 1) and x
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is enough small, we have px + qx < 1 and so SNx
(p, q) = max (p, q). Summarizing,

we then obtain

SN0
(p, q) = lim

x→0
SNx

(p, q) = max (p, q) = SM (p, q) ,

for all p, q ∈ (0, 1).
Now, if x is enough large then px+qx ≥ 1 for all p, q ∈ (0, 1) and so SNx

(p, q) = 1.
It follows that

SN∞
(p, q) = lim

x→0
SNp

(p, q) = 1,

for all p, q ∈ (0, 1). Summarizing, we have shown that

SN∞
(p, q) = SW (p, q) ,

for all p, q∈ [0, 1], so completes the proof. �

Theorem 2.6. The t-norm H is (Π,M)-dissipative.

Proof. We have, for all p, q ∈ (0, 1] and x > 0,

Hx(p, q) =
pq

(

px + qx − pxqx
)1/x

.

We first show that H0 = Π. For all p, q ∈ (0, 1] and x enough small we can write

px = exp
(

x ln p
)

= 1 + x ln p+
1

2
x2(ln p)2 + x2o(1),

with similar expansions for qx and (pq)x. After all computation and reduction we
obtain

px + qx − pxqx = 1 + x2(ln p)(ln q) + x2o(1)

and so

ln
(

px + qx − pxqx
)

= x2(ln p)(ln q) + x2o(1).

It follows that
(

px+qx−pxqx
)1/x

= exp
(

(1/x) ln
(

px+qx−pxqx
)

)

= exp
(

x(ln p)(ln q)+x o(1)
)

,

from which we deduce that (px + qx − pxqx)1/x tends to 1 when x ↓ 0. This, with
Hx(0, q) = Hx(p, 0) = 0, yields H0(p, q) = pq := Π(p, q) for all p, q ∈ [0, 1].

Now, we will prove that H∞ = M . For p ∈ {0, 1} or q ∈ {0, 1}, the desired result
is obvious. For p = q, it is easy to see that Hx(p, p) = p. Assume that p, q ∈ (0, 1)
with q < p. We then write

Hx(p, q) =
pq

(

px + qx − pxqx
)1/x

=
q

(

1 + (q/p)x − qx
)1/x

.

Clearly, qx → 0 and (q/p)x → 0 when x ↑ ∞. It follows that Hx(p, q) → q =
min(p, q) when x ↑ ∞. By symmetry, we have Hx(p, q) → p = min(p, q) if p < q.
The desired result is obtained and the proof is completed. �

Corollary 2.7. Let T be a t-norm such that H ≤ T . Then T∞ = M .

Proof. If H ≤ T then H∞ = M ≤ T∞ ≤ M . So T∞ = M . �

Theorem 2.8. The t-norm D is (M,Π)-dissipative for every α ∈ (0, 1).
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Proof. It is easy to see that

Dx(p, q) =
pq

max
(

p, q, α1/x
) ,

for all p, q ∈ [0, 1] and α ∈ (0, 1). Obviously, α1/x → 0 when x ↓ 0 and α1/x → 1
when x ↑ ∞. The desired result follows after a simple manipulation. �

Corollary 2.9. Let T be a t-norm such that D ≤ T for some α ∈ (0, 1). Then
T0 = M .

Proof. D ≤ T implies D0 ≤ T0 and so M ≤ T0 ≤ M i.e. T0 = M . �

3. Residual fuzzy co-implication

The following properties are generalization of fuzzy implication and fuzzy co
implication from classical logic.

Definition 3.1. [12] A mapping I : [0, 1]× [0, 1] → [0, 1] is a fuzzy implication if,
for all p, q, r ∈ [0, 1], the following conditions are satisfied:

I1 : I(1, 1) = I(0, 1) = I(0, 0) = 1 and I(1, 0) = 0.
I2 : I(p, q) ≥ I(r, q) if p ≤ r.
I3 : I(p, q) ≤ I(p, r) if q ≤ r.
The set of all fuzzy implications is denoted by ̥I.

Definition 3.2. [14] A mapping J : [0, 1]× [0, 1] → [0, 1] is a fuzzy implication if,
for all p, q, r ∈ [0, 1], the following conditions are satisfied:

J1 : J(1, 1) = J(1, 0) = J(0, 0) = 0 and J(0, 1) = 1.
J2 : J(p, q) ≥ J(r, q) if p ≤ r.
J3 : J(p, q) ≤ I(p, r) if q ≤ r.
The set of all fuzzy co-implications is denoted by Co−̥I.
From last definition J(1, q) = J(p, 0) = 0 and J(p, p) = 0, for all p, q ∈ [0, 1].

Definition 3.3. [13] A fuzzy implication I and fuzzy co-implication J are satisfy
the following most important properties, for all p, q, r ∈ [0, 1]

I(1, q) = q, (NP) J(0, q) = q, (Co-NP)
I(p, I(q, r)) = I(q, I(p, r)), (EP) J(p, J(q, r)) = J(q, J(p, r)), (Co-EP)
I(p, p) = 1, (IP) I(p, p) = 0, (Co-IP)
I(p, q) = 1 ⇔ p ≤ q, (OP) J(p, q) = 0 ⇔ p ≥ q. (Co-OP)

Heyting algebra logic is the system on Heyting algebras and Brouweriaun alge-
bras. Heyting algebra 〈L,∧,∨,=⇒, 0, 1〉 is lattice with the bottom 0, the top 1, and
the binary operation called implication =⇒ such that, for all p, q, r ∈ L, p =⇒ q is
the relative pseudocomplement of a with respect to r [13]. That is to say

p ∧ r ≤ q ⇔ p =⇒ q, for all p, q, r ∈ L.

In other words, the set of all p ∈ L such that p ∧ r ≤ q contains the greatest
element, denoted by p =⇒ q. Precisely

p =⇒ q = sup {r ∈ L|p ∧ r ≤ q} .
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The dual of Heyting algebra is called Brouwerian algebra
〈

L,∧,∨,
∗

=⇒, 0, 1
〉

is

a lattice with 0 and 1, and the binary operation called co-implication
∗

=⇒ in dual
Heyting algebra. Satisfying for all p, q, r ∈ L,

p ∨ r ≥ q ⇔ p
∗

=⇒ q.

The set of all r in L such that p ∨ r ≥ q contains the smallest element, denoted

by p
∗

=⇒ q. Precisely

p
∗

=⇒ q = inf {r ∈ L|p ∨ r ≥ q} .

Definition 3.4. Let S is the t-conorm of right continuous T . Then, the residual
co-implication (R∗-coimplication) derived from S, is

JS(p, q) = inf {r ∈ [0, 1] |S (r, p) ≥ q} , for all p, q ∈ [0, 1]. (R∗)

R∗-co-implication come from residuted lattices based on residuation property
(R∗P ) that can be written as

S (r, p) ≥ q ⇔ r ≥ JS(p, q), for all p, q, r ∈ [0, 1]. (R∗P )

The JS(p, q) operation is called residual co-implication of the t-conorm S. Apply-
ing the above concepts to the standard t-norms we obtain the following interesting
results.

Residuum of the Maximum t-conorm SM (p, q)

Residuum of the Probabilistic sum t-conorm SΠ(p, q)
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Residuum of the Bounded Sum t-conorm SL(p, q)

Residuum of the Nilpotent t-conorm SN (p, q)

Residuum of the Hamacher t-conorm SH(p, q)
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Residuum of the Dubois-Prade t-conorm SD(p, q)

Residuum of the Hamacher‘s parametric t-conorm STα
(p, q)

In the following we introduce some properties for residual co-implication.

Theorem 3.1. For a right continuous t-conorm S then JS ∈ Co− FI

Proof. We have to show that J1, J2 and J3 in definition of fuzzy co-implication are
satisfied for all p, q, r ∈ [0, 1].

J1 : JS (1, 1) = JS (1, 0) = JS (0, 0) , JS (0, 1) = 1.
J2 : p ≤ r =⇒ {t ∈ [0, 1]|S(t, p) ≥ q} ⊆ {t ∈ [0, 1]|S(t, r) ≥ q}

=⇒ inf {t ∈ [0, 1]|S(t, p) ≥ q} ≥ inf {t ∈ [0, 1]|S(t, r) ≥ q}
=⇒ JS(p, q) ≥ JS(r, q).

J3 : q ≤ r =⇒ {t ∈ [0, 1]|S(t, p) ≥ q} ⊇ {t ∈ [0, 1]|S(t, p) ≥ r}
=⇒ inf {t ∈ [0, 1]|S(t, p) ≥ q} ≤ inf {t ∈ [0, 1]|S(t, p) ≥ r}
=⇒ JS(p, q) ≤ JS(p, r). �

Theorem 3.2. A co-implications JS satisfy (Co-NP) and (Co-IP).

Proof. For any S t-conorm and for all p, q, r ∈ [0, 1] we get JS(0, q) = inf {r ∈ [0, 1]|S(r, 0) ≥ q} =
inf {r ∈ [0, 1]|r ≥ q} = q.

Also, JS(p, p) = inf {r ∈ [0, 1]|S(r, p) ≥ p} = 0.
�

Theorem 3.3. If S is a right continuous, then JS satisfy (Co-EP) and (Co-OP).
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Proof. For any right continuous t-conorm S and for all p, q, r ∈ [0, 1] and by using
R∗ condition we have

JS (p, JS (q, r)) = inf {t ∈ [0, 1]|S(t, p) ≥ JS (q, r)} = inf {t ∈ [0, 1]|S (S(t, p), q) ≥ r}

= inf {t ∈ [0, 1]|S (t, S(p, q)) ≥ r} = inf {t ∈ [0, 1]|S (t, S(q, p)) ≥ r}

= inf {t ∈ [0, 1]|S (S(t, q), p) ≥ r} = inf {t ∈ [0, 1]|S (t, q)) ≥ JS (p, r)}

= JS (q, JS (p, r)) .

Now, we would like to prove that JS (p, q) = 0 ⇔ p ≥ q. If p ≥ q then S (p, 0) =
p ≥ q, so JS (p, q) = 0. Conversely, if JS (p, q) = 0 then because of R∗ condition we
get S (p, 0) ≥ q, i.e., p ≥ q. �

4. Conclusion

The definition of power stable t-norm and t-conorm are introduced then the new
concepts of dissipative and conservative for t-norm and t-conorm are studied with
examples. Also, there are four usual models of fuzzy implications (S,N), residual,
QL-operation and D-operations implication. In this paper we introduced residual
co-implication. Now, an interesting natural question arises that to find (T,N),
Co-QL-operation and Co-D-operations
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[16] A. Kolesarova, R. Mesiar and T. Rückschlossova, Power stable aggregation functions, Fuzzy
Sets and Systems, 240 (2014) 39–50.

Iqbal H. Jebril
Department of Mathematics, Science Faculty, Taibah University, Saudi Arabia.

E-mail address: iqbal501@hotmail.com


	1. Introduction
	2. Main Results
	3. Residual fuzzy co-implication
	4. Conclusion
	Acknowledgments

	References

