CONSERVATIVE AND DISSIPATIVE FOR T-NORM AND T-CONORM AND RESIDUAL FUZZY CO-IMPLICATION

IQBAL H. JEBRIL

Abstract

In this paper new concepts called conservative, dissipative, power stable for t-norm and t-conorm are considered. Also, residual fuzzy co-implication in dual Heyting algebra are investigated. Some examples as well as application are given as well.

1. Introduction

In fuzzy logic, the basic theory of connective like conjunction (\wedge) is interpreted by a triangular norm, disjunction (V) by triangular conorm, negation (\neg) by strong negations these important notions in fuzzy set theory is that of t-norm (T), t conorms (S) and strong negations $\left(N_{C}\right)$ that are used to define a generalized intersection, union and negation of fuzzy sets (see [3] and 4]. The notion of t-norm and t-conorm turned out to be basic tools for probabilistic metric spaces (see 8] and [10]) but also in several other parts and have found diverse applications in the theory of fuzzy sets, fuzzy decision making, in models of certain many-valued logics or in multivariate statistical analysis (see [3, and [14]). Also, implication and co-implication functions play an important notion in fuzzy logic, approximate reasoning, fuzzy control, intuitionistic fuzzy logic and approximate reasoning of expert system (see ([1], 2], [5], [6], 7], and [15]). The conjunction and disjunction in fuzzy logic are often modeled as follows.

Definition 1.1. [8] A mapping T from $[0,1]^{2}$ into $[0,1]$ is a triangular norm (in short, t- norm), iff T are commutative, nondecreasing in both arguments, associative and which satisfies $T(p, 1)=p$, for all $p \in[0,1]$.

Definition 1.2. [8] A mapping S from $[0,1]^{2}$ into $[0,1]$ is a triangular norm (in short, t- norm), iff T are commutative, nondecreasing in both arguments, associative and which satisfies $S(p, 0)=p$, for all $p \in[0,1]$.

The standard examples of t-norms and dual t-conorms are stated in the following 1. Minimum t-norm, $M(p, q)=\min (p, q)$.
2. Probabilistic Product t-norm, $\Pi(p, q)=p q$.

[^0]3. Drastic or weak t-norm, $W(p, q)= \begin{cases}p & \text { if } q=1, \\ q & \text { if } p=1, \\ 0 & \text { if } p, q \in[0,1) \text {. }\end{cases}$
4. Nilpotent t-norm, $N(p, q)=\left\{\begin{array}{cc}\min (p, q) & \text { if } p+q \geq 1, \\ 0 & \text { if } p+q<1 .\end{array}\right.$
5. Lukasiewicz t-norm, $L(p, q)=\max (p+q-1,0)$.
6. Hamacher t-norm, $H(p, q)=\left\{\begin{array}{cl}0 & \text { if } p=q=0, \\ \frac{p q}{p+q-p q} & \text { otherwise. }\end{array}\right.$
7. Dubois-Prade t-norm, $D_{\alpha}(p, q)=\frac{p q}{\max (p, q, \alpha)}, \alpha \in(0,1)$.
8. Maximum t-conorm, $M(p, q)=S_{M}(p, q)=\max (p, q)$.
9. Probabilistic sum t-conorm, $S_{\Pi}(p, q)=p+q-p q$.
10. Drastic or largest t-conorm, $S_{W}(p, q)= \begin{cases}p & \text { if } q=0, \\ q & \text { if } p=0, \\ 1 & \text { if } p, q \in(0,1] \text {. }\end{cases}$
11. Nilpotent t-conorm, $S_{N}(p, q)=\left\{\begin{array}{cl}\max (p, q) & \text { if } p+q<1, \\ 0, & \text { if } p+q \geq 1 .\end{array}\right.$
12. Bounded Sum t-conorm, $S_{L}(p, q)=\min (p+q, 1)$.
13. Hamacher t-conorm, $S_{H}(p, q)=\left\{\begin{array}{cl}0 & \text { if } p=q=0, \\ \frac{p+q-2 p q}{1-p q} & \text { otherwise. }\end{array}\right.$
14. Dubois-Prade t-conorm, $S_{D_{\alpha}}(p, q)=1-\frac{(1-p)(1-q)}{\max (1-p, 1-q, \alpha)}, \alpha \in(0,1)$.

For other family of t-norms (not needed here) we refer the reader to [11] for instance. If $T_{1}<T_{2}\left(S_{T_{1}}<S_{T_{2}}\right)$ and there is at least one pair $(p, q) \in[0,1]^{2}$ such that $T_{1}(p, q)<T_{2}(p, q)\left(S_{T_{1}}(p, q)<S_{T_{2}}(p, q)\right)$ then we briefly $T_{1}<T_{2}\left(S_{T_{1}}<S_{T_{2}}\right)$ write. With this, the above t-norms and t-conorms satisfy the next known chain of inequalities

$$
W<L<\Pi<H<M<S_{M}<S_{H}<S_{\Pi}<S_{L}<S_{W}
$$

Two t-norms (t-conorms) are called comparable if

$$
T_{1} \leq T_{2} \text { or } T_{1} \geq T_{2} \quad\left(S_{T_{1}} \leq S_{T_{2}} \text { or } S_{T_{1}} \geq S_{T_{2}}\right)
$$

holds. The above chain of inequalities shows that $W, L, \Pi, H, M, S_{M}, S_{H}, S_{\Pi}, S_{L}$, and S_{W} are comparable. It is not hard to see that for example Π and N are not comparable, while W, N and M comparable with $W<N<M$ 9.
Definition 1.3. [13] Let T a left-continuous t-norm. Then, the residual implication or R-implication derived form is given by

$$
\begin{equation*}
I_{T}(p, q)=\sup \{r \in[0,1] \mid T(r, p) \leq q\}, \text { for all } p, q \in[0,1] \tag{R}
\end{equation*}
$$

i.e. $T(r, p) \leq q \Leftrightarrow r \leq I_{T}(p, q)$, for all $p, q, r \in[0,1]$.

2. Main Results

In the following section we will study the relation between power stable aggregation functions and power stable t-norm and t-conorm, then introduce some new concepts for t-norm and t-conorm as conservative, dissipative.
Definition 2.1. [16] A mapping A from $[0,1]^{2}$ into $[0,1]$ is aggregation function, iff A are increasing in each variable, $A(0,0)=0$, and $A(1,1)=1$.
Definition 2.2. [16] An aggregation function $A:[0,1]^{2} \rightarrow[0,1]$ is called power stable whenever for any constant $p \in(0, \infty)$ and $p, q \in[0,1]^{2}$ it hold,

$$
A\left(p^{r}, q^{r}\right)=(A(p, q))^{r}
$$

Proposition 2.1. [16] Power stable aggregation functions are exactly those which are invariant under power transformations, i.e., aggregation function satisfying for all powers $\varphi_{r}:[0,1] \rightarrow[0,1], \varphi_{r}(p)=p^{r} \in(0, \infty)$ and all $p, q \in[0,1]^{2}$ the property

$$
A(p, q)=\varphi_{r}^{-1}\left(A\left(\varphi_{r}(p), \varphi_{r}(q)\right)\right)
$$

Definition 2.3. Let $\Phi:[0,1] \rightarrow[0, \infty]$ be a continuous strictly decreasing function such that $\Phi(1)=0$. Let $\Phi^{(-1)}$ be the pseudo-inverse of Φ defined by

$$
\Phi^{(-1)}(p)=\left\{\begin{array}{cl}
\Phi^{-1}(p) \text { if } & p \in[0, \Phi(0)] \\
0, & \text { otherwise }
\end{array}\right.
$$

For all $p, q \in[0,1]$, we set

$$
T(p, q)=\Phi^{(-1)}(\Phi(p)+\Phi(q))
$$

then T is a t-norm and Φ is called an additive generator of T.
Definition 2.4. Let $\Psi:[0,1] \rightarrow[0, \infty]$ be a continuous strictly increasing function such that $\Psi(0)=0$. Let $\Psi^{(-1)}$ be the pseudo-inverse of Ψ defined by

$$
\Psi^{(-1)}(p)=\left\{\begin{array}{cl}
\Psi^{-1}(p) \text { if } & p \in[0, \Psi(1)] \\
1, & \text { otherwise }
\end{array}\right.
$$

For all $p, q \in[0,1]$, we set

$$
S_{T}(p, q)=\Psi^{(-1)}(\Psi(p)+\Psi(q)),
$$

then S_{T} is a t-conorm and Ψ is called an additive generator of S_{T}.
Proposition 2.2. Let T be a t-norm, S_{T} be a t-conorm and $\Phi:[0,1] \rightarrow[0, \infty]$ an additive generator of T. The function $\Psi:[0,1] \rightarrow[0, \infty]$ defined by $\Psi(t)=$ $\Phi(1-t)$ is an additive generator of S_{T}.

Definition 2.5. Let $T\left(S_{T}\right)$ be a t-norm (t-conorm) and $\mu:[0,1] \rightarrow[0,1]$ be a continuous strictly increasing map. If for all $p, q \in[0,1]$, we set

$$
\begin{aligned}
T_{\mu}(p, q) & =\mu^{-1}(T(\mu(p), \mu(q))) \\
S_{T_{\mu}}(p, q) & =\mu^{-1}\left(S_{T}(\mu(p), \mu(q))\right)
\end{aligned}
$$

then T_{μ} is a t-norm $\left(S_{T_{\mu}}\right.$ is a t-conorm).
Proposition 2.3. Let $T\left(S_{T}\right)$ and $R\left(S_{R}\right)$ are t-norms (t-conorms), and $\mu:[0,1] \rightarrow$ $[0,1]$ be continuous strictly increasing function. Then

1. If $T_{\mu}=R_{\mu}$ then $T=R$.
2. If $S_{T_{\mu}}=S_{R_{\mu}}$ then $S_{T}=S_{R}$.
3. If $T \leq S$ then $T_{\mu} \leq R_{\mu}$.
4. If $S_{T} \leq S_{R}$ then $S_{T_{\mu}} \leq S_{R_{\mu}}$.
5. $\left(T_{\mu}\right)_{\mu^{-1}}=T$ and $\left(S_{T_{\mu}}\right)_{\mu^{-1}}=S_{T}$.

Some example of continuous strictly increasing function $\mu:[0,1] \rightarrow[0,1]$ are given

$$
\begin{array}{ll}
1 . \mu(t)=\frac{2 t}{t+1}, & 2 \cdot \mu(t)=1-(1-t)^{x}, x>0 . \\
3 \cdot \mu(t)=t^{x}, x>0 . & 4 . \mu(t)=\frac{x^{t}-1}{x-1}, x>0, x \neq 0 . \\
5 \cdot \mu(t)=\frac{\log \left(1+x t^{\alpha}\right)}{\log (1+x)}, x>-1, \alpha>0 . &
\end{array}
$$

Take $\mu(t)=t^{x} \quad(x>0)$ then $\mu^{-1}(t)=t^{1 / x}$, we get

$$
L_{\mu}(p, q)=\mu^{-1}\left(\max \left(p^{x}+q^{x}-1,0\right)\right)=\left(\max \left(p^{x}+q^{x}-1,0\right)\right)^{1 / x}
$$

Take $\mu(t)=1-(1-t)^{x} \quad(x>0)$ then $\mu^{-1}(t)=1-(1-t)^{1 / x}$, we get

$$
\Pi_{\mu}(p, q)=1-\left((1-p)^{x}+(1-q)^{x}-(1-p)^{x}(1-q)^{x}\right)^{1 / x}
$$

But the most interesting applications when $\mu(t)=t^{x}$ for some $t>0$. We then have the next related result.

Definition 2.6. Let $T\left(S_{T}\right)$ b e a t-norm (t-conorm) for any constant $x \in(0, \infty)$ and all $p, q \in[0,1]$. T is called T-power stable if holds $T\left(p^{x}, q^{x}\right)=(T(p, q))^{x}$. S_{T} is called S_{T}-power stable if holds,

$$
S_{T}\left(p^{x}, q^{x}\right)=\left(S_{T}(p, q)\right)^{x}
$$

Probabilistic product t -norm is T-power stable, for any constant $x \in(0, \infty)$ and all $p, q \in[0,1]$, then $\Pi\left(p^{x}, q^{x}\right)=p^{x} q^{x}=(p q)^{x}=(\Pi(p, q))^{x}$, and the following groups illustrate that.

Let T be a given power stable t-norm where it doesn't necessary that S_{T}-power stable t-conorm. Probabilistic product t-norm is T-power stable but probabilistic product t-conorm is not S_{T}-power stable and the following groups illustrate that.

Maximum t-conorm is S_{T}-power stable, for any constant $x \in(0, \infty)$ and all $p, q \in[0,1]$, then $S_{M}\left(p^{x}, q^{x}\right)=\max \left(p^{x}, q^{x}\right)=(\max (p, q))^{x}=\left(S_{M}(p, q)\right)^{x}$, and the following groups illustrate that.

Definition 2.7. Let T be a given power stable t-norm. We say that T is closed if the following limits

$$
T_{0}(p, q)=\lim _{x \rightarrow 0} T_{x}(p, q) \text { and } T_{\infty}(p, q)=\lim _{x \rightarrow \infty} T_{x}(p, q)
$$

where $T_{x}(p, q)=\left(T\left(p^{x}, q^{x}\right)\right)^{\frac{1}{x}}$, exist for all $p, q \in[0,1]$.
Proposition 2.4. Let T be a T-power stable t-norm. Then the following assertions are met for all $p, q \in[0,1]$.
(1) $\left(T_{x}\right)_{y}(p, q)=T_{x y}(p, q)=\left(T_{y}\right)_{x}(p, q)$. In particular, $\left(T_{x}\right)_{1 / x}(p, q)=T_{1}(p, q)=$ $T(p, q)$ for $x>0$.
(2) If T and S be two T-power stable t-norms such that $T_{x}(p, q)=S_{x}(p, q)$ for some $x>0$ then $T(p, q)=S(p, q)$.
(3) $T_{x}(p, q)=T_{y}(p, q)$ does not ensure $x=y$.

Definition 2.8. Let S_{T} be a given power stable t-conorm. We say that S_{T} is closed if the following limits

$$
S_{T_{0}}(p, q)=\lim _{x \rightarrow 0} S_{T_{x}}(p, q) \text { and } S_{T_{\infty}}(p, q)=\lim _{x \rightarrow \infty} S_{T_{x}}(p, q)
$$

where $S_{T_{x}}(p, q)=\left(S_{T}\left(p^{x}, q^{x}\right)\right)^{\frac{1}{x}}$, exist for all $p, q \in[0,1]$.
Definition 2.9. Let $T\left(S_{T}\right)$ be a closed t-norm (t-conorm).
i. $T\left(S_{T}\right)$ is called to be conservative if

$$
\begin{aligned}
T_{0}(p, q) & =T_{\infty}(p, q)=T_{x}(p, q) \\
S_{T_{0}}(p, q) & =S_{T_{\infty}}(p, q)=S_{T_{x}}(p, q)
\end{aligned}
$$

for all $p, q \in[0,1]$.
ii. We say that $T\left(S_{T}\right)$ is dissipative if there exist two conservative t-norm (t conorm) $U\left(S_{U}\right)$ and $V\left(S_{V}\right)$ that

$$
\begin{aligned}
T_{0}(p, q) & =U(p, q) \text { and } T_{\infty}(p, q)=V(p, q) \\
S_{T_{0}}(p, q) & =S_{U}(p, q) \text { and } S_{T_{\infty}}(p, q)=S_{V}(p, q)
\end{aligned}
$$

for all $p, q \in[0,1]$. In this case we say that T is (U, V)-dissipative and S_{T} is $\left(S_{U}, S_{V}\right)$ - dissipative.

Proposition 2.5. i. Every conservative t-norm $T\left(S_{T}\right)$ is (T, T) - dissipative (($\left.S_{T}, S_{T}\right)$-dissipative).
ii. Let $T\left(S_{T}\right)$ be a closed t-norms (t-conorm), if $T\left(S_{T}\right)$ is (U, V)-dissipative ($\left(S_{U}, S_{V}\right)$-dissipative) then $T_{x}\left(S_{T_{x}}\right)$ is also ($\left.U, V\right)$-dissipative $\left(\left(S_{U}, S_{V}\right)\right.$-dissipative) for each $r>0, T_{x}\left(S_{T_{x}}\right)$ conservative whenever $T\left(S_{T}\right)$ is conservative.

Example 2.1. M and S_{M} are conservative.
Proof. It easy to see that $M_{x}(p, q)=\left(M\left(p^{x}, q^{x}\right)\right)^{\frac{1}{x}}$ and $S_{M_{x}}(p, q)=\left(S_{M}\left(p^{x}, q^{x}\right)\right)^{\frac{1}{x}}$ for all $p, q \in[0,1]$ and $x>0$. Then

$$
\begin{aligned}
M(p, q) & =M_{0}(p, q)=M_{\infty}(p, q) \\
S_{M}(p, q) & =S_{M_{0}}(p, q)=S_{M_{\infty}}(p, q)
\end{aligned}
$$

Example 2.2. Π is Conservative but S_{Π} is not Conservative.
Proof. It easy to see that that $\Pi_{x}(p, q)=\left(\Pi\left(p^{x}, q^{x}\right)\right)^{\frac{1}{x}}$ for all $p, q \in[0,1]$ and $x>0$. Then $\Pi(p, q)=\Pi_{0}(p, q)=\Pi_{\infty}(p, q)$. But $S_{\Pi}(p, q) \neq S_{\Pi_{0}}(p, q) \neq S_{\Pi_{\infty}}(p, q),$.

Example 2.3. The t-norm L is (Π, W)-dissipative.
Proof. For all $p, q \in[0,1]$ and $x>0, L$ is given by

$$
L_{x}(p, q)=\left\{\begin{array}{cc}
\left(\max \left(p^{x}+q^{x}-1,0\right)\right)^{\frac{1}{x}} & \text { if } p^{x}+q^{x} \geq 1 \\
0 & \text { if } p^{x}+q^{x} \leq 1
\end{array}\right.
$$

Assume that $p, q \in(0,1]$. For x enough small we have

$$
p^{x}=\exp (x \ln p)=1+x(\ln p)+x o(1), o(1) \rightarrow 0 \text { as } x \rightarrow 0
$$

With similar expansion for x^{p}. We then obtain

$$
p^{x}+q^{x}-1=1+x \ln (p q)+x o(1) .
$$

Since $p^{x}+q^{x}>1$ for all $p, q \in(0,1]$ and x enough small, we then have

$$
\ln \left(p^{x}+q^{x}-1\right)=x \ln (p q)+x o(1)
$$

For which we deduce

$$
\left(p^{x}+q^{x}-1\right)^{\frac{1}{x}}=\exp \left((1 / x) \ln \left(p^{x}+q^{x}-1\right)\right)=p q \exp (o(1))
$$

It follows that

$$
L_{x}(p, q)=\left(p^{x}+q^{x}-1\right)^{\frac{1}{x}}=p q \exp (o(1)),
$$

and so

$$
\lim _{x \rightarrow 0} L_{x}(p, q)=p q=\Pi(p, q),
$$

for all $p, q \in(0,1]$. This, with $L_{x}(p, 0)=0$ and $L_{x}(0, q)=0$ for all $p, q \in[0,1]$, yields the desired result.

Now, if For all p is enough large then $p^{x}+q^{x}<1$ for all $p, q \in(0,1)$ and so $L_{x}(p, q)=L_{x}(0, q)=0$ and $L_{x}(p, 1)=p, L_{x}(1, q)=q$, for all $p, q \in[0,1]$, yields

$$
\lim _{x \rightarrow 0} L_{x}(x, y)=W(p, q)
$$

for all $p, q \in[0,1]$. The proof is then completed.
Example 2.4. The t-conorm S_{N} is $\left(S_{M}, S_{W}\right)$-dissipative.
Proof. For all $p, q \in[0,1]$ and $x>0$, we have

$$
S_{N_{x}}(p, q)=\max (p, q) \text { if } p^{x}+q^{x}<1, S_{N_{x}}(1, q)=1, \text { else. }
$$

It easy to see that $S_{N_{x}}(p, 1)=S_{N_{x}}(1, q)=1$, for all $p, q \in[0,1]$. Since N_{x} a t-conorm then $S_{N_{x}}(p, 0)=p$ and $S_{N_{x}}(0, q)=q$ for all $p, q \in[0,1]$. Now, if $p, q \in(0,1)$ and x
is enough small, we have $p^{x}+q^{x}<1$ and so $S_{N_{x}}(p, q)=\max (p, q)$. Summarizing, we then obtain

$$
S_{N_{0}}(p, q)=\lim _{x \rightarrow 0} S_{N_{x}}(p, q)=\max (p, q)=S_{M}(p, q)
$$

for all $p, q \in(0,1)$.
Now, if x is enough large then $p^{x}+q^{x} \geq 1$ for all $p, q \in(0,1)$ and so $S_{N_{x}}(p, q)=1$. It follows that

$$
S_{N_{\infty}}(p, q)=\lim _{x \rightarrow 0} S_{N_{p}}(p, q)=1
$$

for all $p, q \in(0,1)$. Summarizing, we have shown that

$$
S_{N_{\infty}}(p, q)=S_{W}(p, q),
$$

for all $p, q \in[0,1]$, so completes the proof.

Theorem 2.6. The t-norm H is (Π, M)-dissipative.
Proof. We have, for all $p, q \in(0,1]$ and $x>0$,

$$
H_{x}(p, q)=\frac{p q}{\left(p^{x}+q^{x}-p^{x} q^{x}\right)^{1 / x}}
$$

We first show that $H_{0}=\Pi$. For all $p, q \in(0,1]$ and x enough small we can write

$$
p^{x}=\exp (x \ln p)=1+x \ln p+\frac{1}{2} x^{2}(\ln p)^{2}+x^{2} o(1)
$$

with similar expansions for q^{x} and $(p q)^{x}$. After all computation and reduction we obtain

$$
p^{x}+q^{x}-p^{x} q^{x}=1+x^{2}(\ln p)(\ln q)+x^{2} o(1)
$$

and so

$$
\ln \left(p^{x}+q^{x}-p^{x} q^{x}\right)=x^{2}(\ln p)(\ln q)+x^{2} o(1)
$$

It follows that
$\left(p^{x}+q^{x}-p^{x} q^{x}\right)^{1 / x}=\exp \left((1 / x) \ln \left(p^{x}+q^{x}-p^{x} q^{x}\right)\right)=\exp (x(\ln p)(\ln q)+x o(1))$,
from which we deduce that $\left(p^{x}+q^{x}-p^{x} q^{x}\right)^{1 / x}$ tends to 1 when $x \downarrow 0$. This, with $H_{x}(0, q)=H_{x}(p, 0)=0$, yields $H_{0}(p, q)=p q:=\Pi(p, q)$ for all $p, q \in[0,1]$.

Now, we will prove that $H_{\infty}=M$. For $p \in\{0,1\}$ or $q \in\{0,1\}$, the desired result is obvious. For $p=q$, it is easy to see that $H_{x}(p, p)=p$. Assume that $p, q \in(0,1)$ with $q<p$. We then write

$$
H_{x}(p, q)=\frac{p q}{\left(p^{x}+q^{x}-p^{x} q^{x}\right)^{1 / x}}=\frac{q}{\left(1+(q / p)^{x}-q^{x}\right)^{1 / x}}
$$

Clearly, $q^{x} \rightarrow 0$ and $(q / p)^{x} \rightarrow 0$ when $x \uparrow \infty$. It follows that $H_{x}(p, q) \rightarrow q=$ $\min (p, q)$ when $x \uparrow \infty$. By symmetry, we have $H_{x}(p, q) \rightarrow p=\min (p, q)$ if $p<q$. The desired result is obtained and the proof is completed.

Corollary 2.7. Let T be a t-norm such that $H \leq T$. Then $T_{\infty}=M$.
Proof. If $H \leq T$ then $H_{\infty}=M \leq T_{\infty} \leq M$. So $T_{\infty}=M$.
Theorem 2.8. The t-norm D is (M, Π)-dissipative for every $\alpha \in(0,1)$.

Proof. It is easy to see that

$$
D_{x}(p, q)=\frac{p q}{\max \left(p, q, \alpha^{1 / x}\right)}
$$

for all $p, q \in[0,1]$ and $\alpha \in(0,1)$. Obviously, $\alpha^{1 / x} \rightarrow 0$ when $x \downarrow 0$ and $\alpha^{1 / x} \rightarrow 1$ when $x \uparrow \infty$. The desired result follows after a simple manipulation.

Corollary 2.9. Let T be a t-norm such that $D \leq T$ for some $\alpha \in(0,1)$. Then $T_{0}=M$.

Proof. $D \leq T$ implies $D_{0} \leq T_{0}$ and so $M \leq T_{0} \leq M$ i.e. $T_{0}=M$.

3. RESIDUAL FUZZY CO-IMPLICATION

The following properties are generalization of fuzzy implication and fuzzy co implication from classical logic.

Definition 3.1. [12] A mapping $I:[0,1] \times[0,1] \rightarrow[0,1]$ is a fuzzy implication if, for all $p, q, r \in[0,1]$, the following conditions are satisfied:
$I 1: I(1,1)=I(0,1)=I(0,0)=1$ and $I(1,0)=0$.
$I 2: I(p, q) \geq I(r, q)$ if $p \leq r$.
$I 3: I(p, q) \leq I(p, r)$ if $q \leq r$.
The set of all fuzzy implications is denoted by $\digamma I$.
Definition 3.2. [14] A mapping $J:[0,1] \times[0,1] \rightarrow[0,1]$ is a fuzzy implication if, for all $p, q, r \in[0,1]$, the following conditions are satisfied:
$J 1: J(1,1)=J(1,0)=J(0,0)=0$ and $J(0,1)=1$.
$J 2: J(p, q) \geq J(r, q)$ if $p \leq r$.
$J 3: J(p, q) \leq I(p, r)$ if $q \leq r$.
The set of all fuzzy co-implications is denoted by $C o-\digamma I$.
From last definition $J(1, q)=J(p, 0)=0$ and $J(p, p)=0$, for all $p, q \in[0,1]$.
Definition 3.3. [13] A fuzzy implication I and fuzzy co-implication J are satisfy the following most important properties, for all $p, q, r \in[0,1]$

$$
\begin{array}{llll}
I(1, q)=q, & (\mathrm{NP}) & J(0, q)=q, & (\mathrm{Co}-\mathrm{NP}) \\
I(p, I(q, r))=I(q, I(p, r)), & \text { (ЕP) } & J(p, J(q, r))=J(q, J(p, r)), & (\mathrm{Co}-\mathrm{EP}) \\
I(p, p)=1, & (\mathrm{IP}) & I(p, p)=0, & (\mathrm{Co}-\mathrm{IP}) \\
I(p, q)=1 \Leftrightarrow p \leq q, & (\mathrm{OP}) & J(p, q)=0 \Leftrightarrow p \geq q . & (\mathrm{Co}-\mathrm{OP})
\end{array}
$$

Heyting algebra logic is the system on Heyting algebras and Brouweriaun algebras. Heyting algebra $\langle L, \wedge, \vee, \Longrightarrow, 0,1\rangle$ is lattice with the bottom 0 , the top 1 , and the binary operation called implication \Longrightarrow such that, for all $p, q, r \in L, p \Longrightarrow q$ is the relative pseudocomplement of a with respect to r [13]. That is to say

$$
p \wedge r \leq q \Leftrightarrow p \Longrightarrow q, \text { for all } p, q, r \in L
$$

In other words, the set of all $p \in L$ such that $p \wedge r \leq q$ contains the greatest element, denoted by $p \Longrightarrow q$. Precisely

$$
p \Longrightarrow q=\sup \{r \in L \mid p \wedge r \leq q\}
$$

The dual of Heyting algebra is called Brouwerian algebra $\langle L, \wedge, \vee, \xlongequal{*}, 0,1\rangle$ is a lattice with 0 and 1 , and the binary operation called co-implication $\xlongequal{*}$ in dual Heyting algebra. Satisfying for all $p, q, r \in L$,

$$
p \vee r \geq q \Leftrightarrow p \stackrel{*}{\Longrightarrow} q .
$$

The set of all r in L such that $p \vee r \geq q$ contains the smallest element, denoted by $p \xrightarrow{*} q$. Precisely

$$
p \xlongequal{*} q=\inf \{r \in L \mid p \vee r \geq q\} .
$$

Definition 3.4. Let S is the t-conorm of right continuous T. Then, the residual co-implication (R^{*}-coimplication) derived from S, is

$$
\begin{equation*}
J_{S}(p, q)=\inf \{r \in[0,1] \mid S(r, p) \geq q\}, \text { for all } p, q \in[0,1] \tag{*}
\end{equation*}
$$

R^{*}-co-implication come from residuted lattices based on residuation property $\left(R^{*} P\right)$ that can be written as

$$
S(r, p) \geq q \Leftrightarrow r \geq J_{S}(p, q), \text { for all } p, q, r \in[0,1] . \quad\left(R^{*} P\right)
$$

The $J_{S}(p, q)$ operation is called residual co-implication of the t-conorm S. Applying the above concepts to the standard t-norms we obtain the following interesting results.

Residuum of the Maximum t-conorm $S_{M}(p, q)$

Residuum of the Probabilistic sum t-conorm $S_{\Pi}(p, q)$

Residuum of the Bounded Sum t-conorm $S_{L}(p, q)$

Residuum of the Nilpotent t-conorm $S_{N}(p, q)$

$$
S_{N}(p, q)
$$

Residuum of the Hamacher t-conorm $S_{H}(p, q)$

$S_{H}(p, q)$

Residuum of the Dubois-Prade t-conorm $S_{D}(p, q)$

In the following we introduce some properties for residual co-implication.
Theorem 3.1. For a right continuous t-conorm S then $J_{S} \in C o-F I$
Proof. We have to show that J_{1}, J_{2} and J_{3} in definition of fuzzy co-implication are satisfied for all $p, q, r \in[0,1]$.

$$
\begin{aligned}
J_{1}: J_{S}(1,1) & =J_{S}(1,0)=J_{S}(0,0), J_{S}(0,1)=1 . \\
J_{2}: p \leq r & \Longrightarrow\{t \in[0,1] \mid S(t, p) \geq q\} \subseteq\{t \in[0,1] \mid S(t, r) \geq q\} \\
& \Longrightarrow \inf \{t \in[0,1] \mid S(t, p) \geq q\} \geq \inf \{t \in[0,1] \mid S(t, r) \geq q\} \\
& \Longrightarrow J_{S}(p, q) \geq J_{S}(r, q) . \\
J_{3}: q \leq r & \Longrightarrow\{t \in[0,1] \mid S(t, p) \geq q\} \supseteq\{t \in[0,1] \mid S(t, p) \geq r\} \\
& \Longrightarrow \inf \{t \in[0,1] \mid S(t, p) \geq q\} \leq \inf \{t \in[0,1] \mid S(t, p) \geq r\} \\
& \Longrightarrow J_{S}(p, q) \leq J_{S}(p, r) .
\end{aligned}
$$

Theorem 3.2. A co-implications J_{S} satisfy (Co-NP) and (Co-IP).
Proof. For any S t-conorm and for all $p, q, r \in[0,1]$ we get $J_{S}(0, q)=\inf \{r \in[0,1] \mid S(r, 0) \geq q\}=$ $\inf \{r \in[0,1] \mid r \geq q\}=q$.

Also, $J_{S}(p, p)=\inf \{r \in[0,1] \mid S(r, p) \geq p\}=0$.

Theorem 3.3. If S is a right continuous, then J_{S} satisfy (Co-EP) and (Co-OP).

Proof. For any right continuous t-conorm S and for all $p, q, r \in[0,1]$ and by using R^{*} condition we have

$$
\begin{aligned}
J_{S}\left(p, J_{S}(q, r)\right) & =\inf \left\{t \in[0,1] \mid S(t, p) \geq J_{S}(q, r)\right\}=\inf \{t \in[0,1] \mid S(S(t, p), q) \geq r\} \\
& =\inf \{t \in[0,1] \mid S(t, S(p, q)) \geq r\}=\inf \{t \in[0,1] \mid S(t, S(q, p)) \geq r\} \\
& \left.=\inf \{t \in[0,1] \mid S(S(t, q), p) \geq r\}=\inf \{t \in[0,1] \mid S(t, q)) \geq J_{S}(p, r)\right\} \\
& =J_{S}\left(q, J_{S}(p, r)\right)
\end{aligned}
$$

Now, we would like to prove that $J_{S}(p, q)=0 \Leftrightarrow p \geq q$. If $p \geq q$ then $S(p, 0)=$ $p \geq q$, so $J_{S}(p, q)=0$. Conversely, if $J_{S}(p, q)=0$ then because of R^{*} condition we get $S(p, 0) \geq q$, i.e., $p \geq q$.

4. Conclusion

The definition of power stable t-norm and t-conorm are introduced then the new concepts of dissipative and conservative for t-norm and t-conorm are studied with examples. Also, there are four usual models of fuzzy implications (S, N), residual, QL-operation and D-operations implication. In this paper we introduced residual co-implication. Now, an interesting natural question arises that to find (T, N), Co-QL-operation and Co-D-operations

Acknowledgments. The authors would like to thank the anonymous referee for his/her comments that helped us improve this article.

References

[1] M. Mas, M. Monserrat, J. Torrens, and E. Trillas, A survey on fuzzy implication functions, IEEE Transactions on Fuzzy Systems, 155 (2007) 1107-1121.
[2] L. Tsoukalas, R. Uhring and L. Zadeh, Fuzzy and neural approaches in engineering, Adaptive and Learning Systems for Signal Processing. Communications and Control, WileyInterscience, . New York (1997).
[3] E.P. Klement, R. Mesiar and E. Pap, Triangular norms, Kluwer, Academic Publisher, Dordrecht (2000).
[4] S. Weber, A general concept of fuzzy connectives, negations and implications based on T norms and T-conorms, Fuzzy Sets and Systems, 11 (1983) 115-134.
[5] B. De Baets, Coimplicators, the forgotten connectives, Tatra Mountains Mathematical Publications, 12 (1997) 229-240.
[6] K. Oh and A. Kandel, Coimplication and its applications to fuzzy expert systems, Information Sciences, 56 (1991) 247-260.
[7] F. Wolter, On logics with coimplication, Journal of Philosophical Logic, 274 (1998) 353-387.
[8] B. Schweizer and A. Sklar, Probabilistic metric spaces, North Holland, Amsterdam, (1983).
[9] I. Jebril and M. Raïssouli, On a class of generalized triangular norms, Communications of the Korean Mathematical Society, Accepted (2016).
[10] I. Jebril, M. S. Md. Noorani, and A. Saari, An example of a probabilistic metric space not induced from a random normed space, Bull. Malays Math. Sci. Soc., 262 (2003) 93-99.
[11] M.M. Gupta and J. Qi, Theory of t-norms and fuzzy inference methods, Fuzzy Sets and Systems, 40 (1991) 431-450.
[12] J.C. Fodor and M. Roubens, Fuzzy preference modelling and multicriteria decision support, Kluwer, Dordrecht, (1994).
[13] M. Baczynski and B. Jayaram, (S,N)- and R-implications: a state-of-the-art survey, Fuzzy Sets and Systems, 159 (2008) 836-859.
[14] P. Li and S. Fang, A survey on fuzzy relational equations, part I: classification and solvability, Fuzzy Optimization and Decision Making, 8 (2009) 179-229.
[15] Youg Su and Zhuden Wang, Constructing implications and coimplication on a complete lattice, Fuzzy Sets and Systems, 247 (2014) 68-80.
[16] A. Kolesarova, R. Mesiar and T. Rückschlossova, Power stable aggregation functions, Fuzzy Sets and Systems, 240 (2014) 39-50.

IqBal H. Jebril
Department of Mathematics, Science Faculty, Taibah University, Saudi Arabia.
E-mail address: iqbal501@hotmail.com

[^0]: 2000 Mathematics Subject Classification. 54E70, 46B09, 46A70.
 Key words and phrases. conservative; dissipative; power stable; residual co-implication. © 2016 Universiteti i Prishtinës, Prishtinë, Kosovë.
 Submitted September 20, 2016. Published November 24, 2016.
 Communicated by Salah Mecheri.

