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A GENERALIZATION OF CONTRACTION PRINCIPLE IN

QUASI-METRIC SPACES

HAMZA SAFFAJ, KARIM CHAIRA, MOHAMMED AAMRI, EL MILOUDI MARHRANI

Abstract. We prove a fixed point theorem for some contraction mapping
in complete quasi-metric space with w-distance, and a common fixed point

theorem for two and three self mappings.

1. Introduction

The concept of w-distance has introduced by Kada, Suzuki and
Takahashi in metric space [1]. Some authors used this concept
in some results, Alegre, Romeguera and Tirado proved for multi-
valued maps and w-distances on complete quasi-metric space [5],
also Alegre, Marinard and Romeguera [2] obtained some results
of fixed point theorem, they used w-distance and type function of
Meir-Keeler and Jachymski type.
In [7] Azam and Shakeel proved the existence of common coin-
cidence point and common fixed point for mapping satisfying a
generalized weak contraction in metric space. Dutta and Choud-
hury [5]obtained the following generalization of some result ob-
tained in[7].The authors in[8] have proved some fixed point theo-
rems both for single-valued and multi-valued mapping in complete
metric space and convex metric space.
The propose of this article is to study fixed point in quasi-metric
space, we inspire our result from some result obtained in metric
space[[4]-[8]], we avoid the concept of symmetry and we use the w-
distance. We present also a common fixed point of maps satisfying
some conditions, and we show a fixed point result for multi-valued
mapping.

2. Preliminaries

Definition 1. Let X be a nonempty set and let d : X ×X −→ R+ be a function
satisfying following conditions :
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(i) d(x, y) = 0⇔ x = y
(ii) d(x, y) ≤ d(x, z) + d(z, y)
Then d is called a quasi-metric on X.

Definition 2. Let (X, d) be a quasi-metric space and q : X × X −→ R+ be a
function satisfying following conditions :
(w1) q(x, y) ≤ q(x, z) + q(z, y), for all (x, y, z) ∈ X3,
(w2) q is lower semi-continuous in its second variable,
(w3) for each ε > 0, there exists δ > 0 such that q(x, y) 6 δ and q(x, z) 6 δ imply
d(y, z) ≤ ε.
Then q is called a w-distance on X.

Remark. • Any metric space is quasi-metric, but the converse is not true in
general.
• Note that if d is a metric on X, then it is a w-distance on (X, d) unfortu-

nately this does not hold for quasi-metric spaces.
• In general for x, y ∈ X, q(x, y) 6= q(y, x) and not either of the implications
q(x, y) = 0⇔ x = y necessarily holds.
• ds(x, y) = max{d(x, y), d(y, x)}, for all x, y ∈ X, is a metric on X.
• The function d−1 defined by d−1(x, y) = d(y, x), for all x, y ∈ X, is also a

quasi-metric on X.
• If a quasi-metric d on X is also a w-distance on (X, d), then the topologies

induced by d and by the metric ds coincide, the base of the topology τd is
open balls {Bd(x, r) ; x ∈ X, ε > 0}, where Bd(x, ε) = {y ∈ X ; d(x, y) <
ε}, for all x ∈ X and ε > 0.

There exist many different notions of completeness for quasi-metric space(see[9]),
In this paper we shall use the following general notion.

Definition 3. Let (X, d) be a quasi-metric space.
(X, d) is called complete if each Cauchy sequence in (X, ds) converges with respect
to the topology τd−1(there exists z ∈ X such that d(xn, z)→ 0)

Definition 4. Let (X, d) be a quasi-metric space and q is a w-distance on X.
If q(x, y) = q(y, x), for all x, y ∈ X, we say that is a symmetric w-distance on
(X, d).

Definition 5. (see[3])Let X be a non-empty set and T, f : X −→ X. be a self
mappings on X.

(1) A point y ∈ X is called a point of coincidence of T and f if there exists
a point x ∈ X such that y = Tx = fx. The point x is called coincidence
point of T and f .

(2) The mappings T and f are said to be weakly compatible if they commute at
their coincidence point ( that is, Tfx = fTx whenever Tx = fx ).

Definition 6. An element x ∈ X is said to be a fixed point of a multi-valued
mapping T : X −→ 2X if x ∈ T (x).

Lemma 2.1. If q is a w-distance on a quasi-metric space (X, d), then for
each ε > 0, there exists δ > 0 such that :{

q(x, y) ≤ δ
q(x, z) ≤ δ

imply ds(y, z) ≤ ε
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3. Main Results

We consider two functions φ, ψ : [0,+∞[→ [0,+∞[ satisfied :

(1) φ is lower semi-continuous,
(2) ψ is monotone nondecreasing and continuous,
(3) ψ(t) = 0 (resp. φ(t) = 0) if and only if t = 0.

Theorem 3.1. Let (X, d) be a complete quasi-metric space. If there exist q w-
distance and T : X → X be a self-mapping such that for all x, y ∈ X,

ψ(q(Tx, Ty)) ≤ ψ(q(x, y))− φ(q(x, y)), (3.1)

then T has a unique fixed point z ∈ X. Moreover q(z, z) = 0.

Proof. For any x0 ∈ X, we construct the sequence (xn)n≥0 by xn = Txn−1, n ∈ IN∗.
First case : We show

q(xn+1, xn) and q(xn, xn+1) → 0 as n→∞
Substituting x = xn−1 and y = xn in (3.1), we obtain :

ψ(q(xn, xn+1)) ≤ ψ(q(xn−1, xn))− φ(q(xn−1, xn)) (3.2)

ψ(q(xn, xn+1)) ≤ ψ(q(xn−1, xn))

Which implies

q(xn, xn+1) ≤ q(xn−1, xn)

the same x = xn and y = xn−1 in (3.1), we obtain :

ψ(q(xn+1, xn)) ≤ ψ(q(xn, xn−1))− φ(q(xn, xn−1)) (3.3)

ψ(q(xn+1, xn)) ≤ ψ(q(xn, xn−1))

which implies

q(xn+1, xn) ≤ q(xn, xn−1)

It follows that the sequence (q(xn, xn+1))n and (q(xn+1, xn))n is monotone decreas-
ing and consequently there exists r ≥ 0 and r′ ≥ 0 such that :

q(xn, xn+1)→ r as n→ ∞
And

q(xn+1, xn)→ r′ as n→∞

Letting n→∞ in (3.2) and (3.3), we obtain :

ψ(r) ≤ ψ(r)− lim inf
n→+∞

φ(q(xn, xn+1)) ≤ ψ(r)− φ(r)

ψ(r′) ≤ ψ(r′)− lim inf
n→+∞

φ(q(xn+1, xn)) ≤ ψ(r′)− φ(r′)

Which is a contradiction unless r = r′ = 0

Hence

q(xn+1, xn) and q(xn, xn+1) → 0 as n→∞

Second case : We show that for each ε ∈ (0, 1), there exists nε ∈ N such that :

q(xn, xm) < ε whenever m > n ≥ nε.
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Assume the contrary, then there exists ε0 ∈ (0, 1) such that, for each k ∈ N, there
exists n(k),m(k) ∈ N such that : m(k) > n(k) > k and

q(xn(k), xm(k)) ≥ ε0 (3.4)

Since lim
n→+∞

q(xn, xn+1) = 0, there exists nε0 ∈ N such that q(xn, xn+1) < ε0, for

all n ≥ nε0

We can choose m(k) is the smallest integer with m(k) > n(k) > k and satisfy-
ing (3.4) such that :

q(xn(k), xm(k)−1) < ε0

We have :

ε0 ≤ q(xn(k), xm(k)) ≤ q(xn(k), xm(k)−1) + q(xm(k)−1, xm(k))

ε0 ≤ q(xn(k), xm(k)) < ε0 + q(xm(k)−1, xm(k))

Then,
q(xn(k), xm(k))→ ε0 as k →∞

Again

q(xn(k)−1, xm(k)−1) ≤ q(xn(k)−1, xn(k)) + q(xn(k), xm(k)) + q(xm(k), xm(k)−1)

q(xn(k), xm(k)) ≤ q(xn(k), xn(k)−1) + q(xn(k)−1, xm(k)−1) + q(xm(k)−1, xm(k))

Then,
q(xn(k)−1, xm(k)−1)→ ε0 as k →∞

Setting x = xn(k)−1, y = xm(k)−1in (3.1)

ψ(q(xn(k), xm(k))) ≤ ψ(q(xn(k)−1, xm(k)−1))− φ(q(xn(k)−1, xm(k)−1))

We make k to +∞, which gives :

ψ(ε0) ≤ ψ(ε0)− lim inf
k→+∞

φ(q(xn(k)−1, xm(k)−1)) ≤ψ(ε0)− φ(ε0)

Thus, φ(ε0) ≤ 0, which is contradiction.

Third case : We show that (xn)n∈N is a Cauchy sequence in the metric space (X, ds).

Let ε > 0. From lemma 2.1), there exists δ = δ(ε) > 0 such that :{
q(x, y) ≤ δ
q(x, z) ≤ δ

imply ds(y, z) ≤ ε

For this δ, there exists nδ ∈ IN such that, for all integers n,m ≥ nδ,{
q(xn(δ), xn) < δ

q(xn(δ), xm) < δ

And then, ds(xn, xm) < ε.
Consequently (xn)n∈N is a Cauchy sequence in (X, ds). Since (X, d) is complete,
there exists z ∈ X such that lim

n→+∞
d(xn, z) = 0.

Fourth case : Next we show that lim
n→+∞

q(xn, z) = 0.
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Let ε > 0, there exists nε ∈ N such as, for each n,m ≥ nε, q(xn, xm) < ε. Therefore,
for each n ≥ nε,

lim inf
m→+∞

q(xn, xm) ≤ ε

Since lim
m→∞

ds(xm, z) = 0 and q is lower semi-continuous in its second variable,

∀n ≥ nε, q(xn, z) ≤ lim inf
m→+∞

q(xn, xm) ≤ ε

Consequently q(xn, z)→ 0 as n→∞

Substituting x = xn and y = z in (3.1), we obtain :

ψ(q(xn+1, T z)) ≤ ψ(q(xn, z))− φ(q(xn, z))

So lim
n→+∞

q(xn+1, T z) = 0.

Since

{
q(xn+1, z)→ 0

q(xn+1, T z)→ 0
, by using lemma 2.1), ds(Tz, z) = 0 i.e. z = Tz

We have : ψ(q(z, z)) ≤ ψ(q(z, z))− φ(q(z, z)), so φ(q(z, z)) ≤ 0. Thus, q(z, z) = 0.

Uniqueness of the fixed point : Let u ∈ X such that u = Tu and u 6= z .
Suppose q(u, z) > 0. Putting x = u and y = z, we have :

ψ(q(u, z)) = ψ(q(Tu, Tz)) ≤ ψ(q(u, z)))− φ(q(u, z)))

Then φ(q(u, z)) ≤ 0, which is contradiction. So q(u, z) = 0. And since q(z, z) = 0,
we deduce from lemma 2.1), that ds(u, z) = 0 i.e. u = z.
We conclude that z is the unique fixed point of T .

Example 3.2. Let X = R+ and d(x, y) = max (y − x, 0), for all (x, y) ∈ R2
+.

(X, d)is complete quasi-metric space.

Let T : X → X be defined as :

Tx =

{x− x2

2 if 0≤x≤1

√
x−1 if x>1

φ : [0,∞)→ [0,∞) be defined as :

φ(t) =

{t2/2 if 0≤t≤1

1
2 if t>1

ψ : [0,∞)→ [0,∞) be defined as :

ψ(t) = t

q : [0,∞)× [0,∞)→ [0,∞) be defined as :

q(x, y) = y

Let x ∈ R.
Case 1 : y ∈ [0, 1]
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We have q(Tx, Ty) = Ty = y − y2/2,

ψ(q(Tx, Ty)) = y − y2

2
, φ((q(x, y)) =

y2

2
and ψ(q(x, y)) = y

So,

ψ(q(Tx, Ty)) = ψ(q(x, y))− φ((q(x, y))

Case 2 : y > 1
We have :q(Tx, Ty) = Ty =

√
y − 1,

ψ(q(Tx, Ty)) =
√
y − 1, φ((q(x, y)) = 1/2 and ψ(q(x, y)) = y

So,

ψ(q(Tx, Ty)) =
√
y − 1 < y − 1/2⇒ ψ(q(Tx, Ty)) < ψ(q(x, y))− φ((q(x, y))

0 is unique fixed point of T .

Theorem 3.3. Let (X, d) be a complete quasi-metric space and q be a symmetric
w-distance. Let S, T : X −→ X be a self mappings satisfying the inequality :

∀(x, y) ∈ X2, ψ(q(Tx, Sy)) ≤ ψ(q(x, y))− φ(q(x, y)). (3.5)

Then, there exists a unique point z ∈ X such that T (z) = z = S(z). Moreover
q(z, z) = 0.

Proof. For any x0 ∈ X, we construct the sequence (xn)n∈N in X by taking{x2n+1=Tx2n

x2n+2=Sx2n+1

First case : We show

q(xn, xn+1) → 0 as n→∞
Substituting x = x2n and y = x2n+1 in(3.5), we obtain

ψ(q(x2n+1, x2n+2)) ≤ ψ(q(x2n, x2n+1))− φ(q(x2n, x2n+1)) (3.6)

ψ(q(x2n+1, x2n+2)) ≤ ψ(q(x2n, x2n+1))

q(x2n+1, x2n+2) ≤ q(x2n, x2n+1)

Then, (q(xn, xn+1))n is monotone decreasing. Consequently there exists r ≥ 0 such
that

q(xn, xn+1)→ r as n→ ∞
Letting n→∞ in (3.6), we obtain :

ψ(r) ≤ ψ(r)− lim inf
n→+∞

φ(q(xn, xn+1)) ≤ ψ(r)− φ(r),

which is a contradiction unless r = 0

Second case : Now we show that for each ε ∈ (0, 1), there exists nε ∈ N such
that :

q(x2n, x2m) < ε whenever m > n ≥ nε
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Assume the contrary, then there exists ε0 ∈ (0, 1) such that, for each k ∈ N, there
exist two sequences of positives integers (n(k))k, (m(k))k with m(k) > n(k) > k
and

q(x2n(k), x2m(k)) ≥ ε0 (3.7)

We can choose m(k) is the smallest integer with m(k) > n(k) > k and satisfying
(3.7) such that :

q(x2n(k), x2m(k)−2) < ε0

We have :

q(x2n(k), x2m(k)) ≤ q(x2n(k), x2m(k)−2)+q(x2m(k)−2, x2m(k)−1)+q(x2m(k)−1, x2m(k))

ε0 ≤ q(x2n(k), x2m(k)) < ε0 + q(x2m(k)−2, x2m(k)−1) + q(x2m(k)−1, x2m(k))

Then,

q(x2n(k), x2m(k))→ ε0

Again

q(x2n(k), x2m(k)+1) ≤ q(x2n(k), x2m(k)) + q(x2m(k), x2m(k)+1)

q(x2n(k), x2m(k)) ≤ q(x2n(k), x2m(k)+1) + q(x2m(k)+1, x2m(k))

Then,

q(x2n(k), x2m(k)+1)→ ε0

We have :

q(x2n(k)+1, x2m(k)+2) ≤ q(x2n(k)+1, x2n(k))+q(x2n(k), x2m(k)+1)+q(x2m(k)+1, x2m(k)+2)

q(x2n(k), x2m(k)+1) ≤ q(x2n(k), x2n(k)+1)+q(x2n(k)+1, x2m(k)+2)+q(x2m(k)+2, x2m(k)+1)

Then,

q(x2n(k)+1, x2m(k)+2)→ ε0

Setting x = x2n(k), y = y2m(k)+1in (3.5),

ψ(q(x2n(k)+1, x2m(k)+2)) ≤ ψ(q(x2n(k), x2m(k)+1))− φ(q(x2n(k), x2m(k)+1))

We make k to +∞, which gives :

ψ(ε0) ≤ ψ(ε0)− lim inf
k→+∞

φ(q(x2n(k), x2m(k)−1)) ≤ψ(ε0)− φ(ε0)

Then φ(ε0) ≤ 0, which is contradiction.

Third case : We show that (x2n)n∈N is a Cauchy sequence in the metric space
(X, ds).
Let ε > 0. From lemma 2.1), there exists δ = δ(ε) > 0 such that :{

q(x, y) ≤ δ
q(x, z) ≤ δ

imply ds(y, z) ≤ ε

For this δ, there exists nδ ∈ IN such that, for all integers n, m ≥ nδ,{
q(x2n(δ), x2n) < δ

q(x2n(δ), x2m) < δ



A GENERALIZATION OF CONTRACTION PRINCIPLE IN QMS 99

And then, ds(x2n, x2m) < ε.
Consequently (x2n)n∈N is a Cauchy sequence in (X, ds). Since (X, d) is complete,
there exists z ∈ X such that lim

n→+∞
d(x2n, z) = 0.

Fourth case : Next we show that lim
n→+∞

q(x2n, z) = 0.

Let ε > 0, there exists nε ∈ N such as, for each n, m ≥ nε, q(x2n, x2m) < ε.
Therefore, for each n ≥ nε,

lim inf
m→+∞

q(x2n, x2m) ≤ ε

Since lim
m→∞

ds(x2m, z) = 0 and q is lower semi-continuous in its second variable,

∀n ≥ nε, q(x2n, z) ≤ lim inf
m→+∞

q(x2n, x2m) ≤ ε

Consequently q(x2n, z) → 0 as n → ∞, and since q(x2n, x2n+1) → 0 as n → ∞,
we obtain : q(x2n+1, z) → 0 as n→∞.
Substituting x = x2n and y = z in (3.5), we obtain :

ψ(q(x2n+1, Sz)) ≤ ψ(q(x2n, z))− φ(q(x2n, z))

So lim
n→+∞

q(x2n+1, Sz) = 0.

Since

{
q(x2n+1, z)→ 0

q(x2n+1, Sz)→ 0
, by using lemma 2.1), ds(Sz, z) = 0 i.e. z = Sz.

Substituting x = z and y = x2n+1 in (3.5), we obtain :

ψ(q(x2n+2, T z)) ≤ ψ(q(x2n+1, z))− φ(q(x2n+1, z))

So q(x2n+2, T z)→ 0. Hence ds(Tz, z) = 0 i.e. z = Tz.
Thus,

Tz = z = Sz

We have : ψ(q(z, z)) ≤ ψ(q(z, z))− φ(q(z, z)), so φ(q(z, z)) ≤ 0. Thus, q(z, z) = 0.

Suppose there exists an point v ∈ X such that T (v) = v = S(v). We have :

ψ(q(z, v)) = ψ(q(T (z), S(v))) ≤ ψ(q(z, v))− φ(q(z, v))⇒ φ(q(z, v)) ≤ 0

So q(z, v) = 0. And since q(z, z) = 0, we deduce from lemma 2.1), that ds(z, v) = 0
i.e. z = v.
Thus, z = v.

Theorem 3.4. Let (X, d) be a quasi-metric space. Let q be a w-distance on (X, d)
and T , f a self-mappings of X such that, for all (x, y) ∈ X2,

ψ(q(Tx, Ty)) ≤ ψ(q(fx, fy))− φ(q(fx, fy)), (3.8)

Assume that (fX, d) is a complete quasi-metric space and TX ⊆ fX.
Then T and f have a unique common coincidence point z ∈ X. Moreover, if T and
f are weakly compatible, then T and f have a unique common fixed point.

Proof. Let x0 ∈ X. We define two sequences (xn)n≥0 and (yn)n≥0 in X by

yn = fxn+1 = Txn n ∈ {0, 1, 2, ...}
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This can be done, since TX ⊆ fX.
First case : We show

q(yn+1, yn) and q(yn, yn+1) → 0 as n→∞
Substituting x = xn and y = xn+1 in (3.8), for all n ≥ 1 we obtain :

ψ(q(Txn, Txn+1)) ≤ ψ(q(fxn, fxn+1))− φ(q(fxn, fxn+1))

ψ(q(yn, yn+1)) ≤ ψ(q(yn−1, yn))− φ(q(yn−1, yn)) (3.9)

Which implies
q(yn, yn+1) ≤ q(yn−1, yn)

The same x = xn+1 and y = xn in (3.8),

ψ(q(Txn+1, Txn)) ≤ ψ(q(fxn+1, fxn))− φ(q(fxn+1, fxn))

ψ(q(yn+1, yn)) ≤ ψ(q(yn, yn−1))− φ(q(yn, yn−1)) (3.10)

which implies
q(yn+1, yn) ≤ q(yn, yn−1)

It follows that the sequence {q(xn, xn+1)}and {q(xn+1, xn)}is monotone decreasing
and consequently there exists r ≥ 0 and r′ ≥ 0 such that :

q(yn, yn+1)→ r as n→ ∞
and

q(yn+1, yn)→ r′ as n→ ∞
Letting n→∞ in (3.9) and (3.10), we obtain :

ψ(r) ≤ ψ(r)− lim inf
n→+∞

φ(q(yn, yn+1)) ≤ ψ(r)− φ(r)

ψ(r′) ≤ ψ(r′)− lim inf
n→+∞

φ(q(yn+1, yn)) ≤ ψ(r′)− φ(r′)

Which is a contradiction unless r = r′ = 0.
Hence

q(yn+1, yn) and q(yn, yn+1) → 0 as n→∞

Second case : We show that for each ε ∈ (0, 1), there exists nε ∈ N such chat :

q(yn, ym) < ε whenever m > n ≥ nε
Assume the contrary, then there exists ε0 ∈ (0, 1) such that, for each k ∈ N, there
exists (n(k),m(k)) ∈ N2 such that m(k) > n(k) > k and

q(yn(k), ym(k)) ≥ ε0 (3.11)

We follow the same steps as in the proof of the previous theorem 3.1) to justify the

q(yn(k), ym(k))→ ε0

and
q(yn(k)−1, ym(k)−1)→ ε0

Setting x = xn(k), y = xm(k) in (3.8)

ψ(q(Txn(k), Txm(k))) ≤ ψ(q(fxn(k), fxm(k)))− ϕ(q(fxn(k), fxm(k)))
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ψ(q(yn(k), ym(k))) ≤ ψ(q(yn(k)−1, ym(k)−1))− ϕ(q(yn(k)−1, ym(k)−1))

We make k to +∞, which gives :

ψ(ε0) ≤ ψ(ε0)− lim inf
k→+∞

φ(q(yn(k)−1, ym(k)−1)) ≤ ψ(ε0)− φ(ε0)

Which is a contradiction.

Since (fX, d) is complete, there exists z ∈ X such that lim
n→+∞

d(yn, fz) = 0.

Third case : We follow the same steps as in the proof of the previous theorem
3.1) to justify the :

lim
n→+∞

q(yn, fz) = 0

Substituting x = xn+1 and y = z in (3.8), we obtain :

ψ(q(Txn+1, T z)) ≤ ψ(q(fxn+1, fz))− φ(q(fxn+1, fz))

ψ(q(yn+1, T z)) ≤ ψ(q(yn, fz))− φ(q(yn, fz))

We make n to +∞, which gives :

lim
n→+∞

q(yn+1, T z) = 0

Since

{
q(yn+1, T z)→ 0

q(yn+1, fz)→ 0
, by using lemma 2.1), ds(Tz, fz) = 0 i.e. Tz = fz, We

put w = Tz = fz. Hence, we proved w is a point of coincidence of T and f .
Since ψ(q(w,w)) ≤ ψ(q(w,w))− φ(q(w,w)), so φ(q(w,w)) ≤ 0. Thus, q(w,w) = 0.

Fourth case : Now we show that w is a unique point of coincidence.

Let w1 be point of coincidence in X such that w1 = fv = Tv, where v ∈ X.
Suppose that w 6= w1, then fv 6= fw. From (3.8), we have :

ψ(q(Tz, Tv)) ≤ ψ(q(fz, fv))− φ(q(fz, fv))

ψ(q(w,w1)) ≤ ψ(q(w,w1))− φ(q(w,w1))

Then φ(q(w,w1)) ≤ 0, which is contradiction. So q(w,w1) = 0. And since
q(w,w) = 0, we deduce from lemma 2.1), that ds(w,w1) = 0 i.e. w = w1.
Thus we proved that T and f have a unique point of coincidence.

If T and f are weakly compatible, then from fz = Tz = w we have Tfz = fTz,
that is, Tw = fw.
Since w is a unique point of coincidence of T and f , then w = Tw = fw. Thus we
proved that w is the unique common fixed point of T and f .

Example 3.5. Let X = R+ and d(x, y) = max (y − x, 0), for all (x, y) ∈ R2
+.

Let T : X → X be defined as :

Tx =

{ sin(x)
4 if 0≤x≤1

sin(1)
8 if x>1
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f : X → X be defined as :

f(x) =
x

2
φ : [0,∞)→ [0,∞) be defined as :

φ(t) =
t2

4

ψ : [0,∞)→ [0,∞) be defined as :

ψ(t) = t2

q : [0,∞)× [0,∞)→ [0,∞) be defined as :

q(x, y) = y

TX = [0, sin(1)4 ] and fX = R+, so TX ⊆ fX

We have (fX, d)is complete quasi-metric space.

Let x ∈ R.

Case 1 : y ∈ [0, 1]

We have q(Tx, Ty) = Ty = sin(y)
4 ,

ψ(q(Tx, Ty)) =
sin(y)2

16
, φ((q(fx, fy)) =

y2

16
and ψ(q(fx, fy)) = (fy)2 =

y2

4
So,

ψ(q(Tx, Ty)) ≤ ψ(q(fx, fy))− φ((q(fx, fy))

Case 2 : y > 1

We have q(Tx, Ty) = Ty = sin(1)
8 ,

ψ(q(Tx, Ty)) =
sin(1)2

64
, φ((q(fx, fy)) =

y2

16
and ψ(q(fx, fy)) =

y2

4

Since ψ(q(Tx, Ty)) = sin(1)2

64 < y2

4 −
y2

16 , so

ψ(q(Tx, Ty)) < ψ(q(fx, fy))− φ((q(fx, fy))

0 is unique common fixed point of T and f .

Theorem 3.6. Let (X, d) be quasi-metric space and q be a symmetric w-distance.
Let S, T, f : X −→ X be a self mappings satisfying the inequality :

∀(x, y) ∈ X2, ψ(q(Tx, Sy)) ≤ ψ(q(fx, fy))− φ(q(fx, fy)). (3.12)

Assume that (fX, d) is a complete quasi-metric space and TX ∪ SX ⊆ fX.
Then T , f , S have a unique common coincidence point z ∈ X. Moreover, if (T, f)
and (S, f) are weakly compatible, then T , S and f have a unique common fixed
point.

Proof. Let x0 ∈ X. We define two sequences (xn)n≥0 and (yn)n≥0 in X by
taking {y2n+1=Tx2n=fx2n+1

y2n+2=Sx2n+1=fx2n+2

First case :
q(xn, xn+1) → 0 as n→∞
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Substituting x = x2n and y = x2n+1 in (3.12), we obtain :

ψ(q(Tx2n, Sx2n+1)) ≤ ψ(q(fx2n, fx2n+1))− φ(q(fx2n, fx2n+1))

ψ(q(y2n+1, y2n+2)) ≤ ψ(q(y2n, y2n+1))− φ(q(y2n, y2n+1)) (3.13)

Which implies

q(y2n+1, x2n+2) ≤ q(y2n, y2n+1)

Then, (q(yn, yn+1))n is monotone decreasing. Consequently there exists r ≥ 0 such
that

q(yn, yn+1)→ r as n→ ∞

Letting n→∞ in (3.13), we obtain :

ψ(r) ≤ ψ(r)− lim inf
n→+∞

φ(q(y2n, y2n+1)) ≤ ψ(r)− φ(r),

which is a contradiction unless r = 0

Second case : We show that, for each ε ∈ (0, 1), there exists nε ∈ N such that

q(y2n, y2m) < ε whenever 2m > 2n ≥ nε
Assume the contrary, then there exists ε0 ∈ (0, 1) such that, for each k ∈ N, there
exist two sequences of positives integers (n(k))n, (m(k))n with 2m(k) > 2n(k) > k
and

q(y2n(k), y2m(k)) ≥ ε0 (3.14)

We follow the same steps as in the proof of the previous theorem 3.3) to justify the:

q(y2n(k), y2m(k)) q(y2n(k), y2m(k)+1) and q(y2n(k)+1, y2m(k)+2)→ ε0 as k →∞

Setting x = x2n(k) and y = x2m(k)+1 in (3.12), we obtain :

ψ(q(Tx2n(k), Sx2m(k)+1)) ≤ ψ(q(fx2n(k), fx2m(k)+1))− φ(q(fx2n(k), fx2m(k)+1))

ψ(q(y2n(k)+1, y2m(k)+2)) ≤ ψ(q(y2n(k), y2m(k)+1))− φ(q(y2n(k), y2m(k)+1))

We make k to +∞,

ψ(ε0) ≤ ψ(ε0)− lim inf
k→+∞

φ(q(y2n(k), y2m(k)+1)) ≤ψ(ε0)− φ(ε0)

Then φ(ε0) ≤ 0, which is contradiction.

Since (fX, d) is complete, there exists z ∈ X such that lim
n→+∞

d(y2n, fz) = 0.

Third case : We follow the same steps as in the proof of the previous theorem 3.3)
to justify the :

lim
n→+∞

q(y2n, fz) = 0

Substituting y = z and x = x2n in (3.12), we obtain :

ψ(q(Tx2n, Sz)) ≤ ψ(q(fx2n, fz))− φ(q(fx2n, fz))

ψ(q(y2n+1, Sz)) ≤ ψ(q(y2n, fz))− φ(q(y2n, fz))
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Imply lim
n→+∞

q(y2n+1, Sz) = 0

Since

{
q(y2n+1, fz)→ 0

q(y2n+1, Sz)→ 0
, by using lemma 2.1), ds(Sz, fz) = 0 i.e. fz = Sz.

Substituting x = z and y = x2n+1 in (3.12), we obtain :

ψ(q(Sx2n+1, T z)) ≤ ψ(q(fx2n+1, fz))− φ(q(fx2n+1, fz))

ψ(q(y2n+2, T z)) ≤ ψ(q(y2n+1, fz))− φ(q(y2n+1, fz))

Imply lim
n→+∞

q(y2n+2, T z) = 0

Since

{
q(y2n+2, fz)→ 0

q(y2n+2, T z)→ 0
, by using lemma 2.1), ds(Tz, fz) = 0 i.e. fz = Tz.

Thus,
Tz = fz = Sz = w

Hence, we proved w is a point of coincidence of T ,S and f .
Since ψ(q(w,w)) ≤ ψ(q(w,w))− φ(q(w,w)), so φ(q(w,w)) ≤ 0. Thus, q(w,w) = 0.
Fourth case : We proved w is a unique point of coincidence
If there exists an other point k ∈ X such that k = T (v) = f(v) = S(v), we have :

ψ(q(w, k)) = q(T (z), S(v))) ≤ ψ(q(w, k))− φ(q(w, k))

φ(q(w, k)) ≤ 0

Which is a contradiction.
So q(w, k) = 0. And since q(w,w) = 0, we deduce from lemma 2.1), that ds(w, k) =
0 i.e. k = w
Thus we proved that T ,S and f have a unique point of coincidence.
T and f are weakly compatible, then from fz = Tz = w we have Tfz = fTz, that
is, Tw = fw.
also S and f are weakly compatible, then from fz = Sz = w we have Sfz = fSz,
that is, Sw = fw.
Since w is a unique point of coincidence of T , fand S, then w = Sw = Tw = fw.
Thus we proved that w is the unique common fixed point of T , S and f .
Now, we prove theorem 3.1 for T is a multi-valued mapping in (X, d) with a sym-
metric w-distance.

Theorem 3.7. Let (X, d) be a complete quasi-metric space, and T : X → 2X be a
multi-valued map such that for all x ∈ X, T (x) is a nonempty τs-closed subset of
X.
If there exists q symmetric w-distance on X such that, for all (x, y) ∈ X2 and for
all u ∈ T (x), there exists v ∈ T (y) such that :

ψ(q(u, v)) ≤ ψ(q(x, y))− φ(q(x, y)),

Then T has a fixed point z ∈ X. Moreover q(z, z) = 0.

Proof. Fix x0 and let x1 ∈ Tx0. Then, there exists x2 ∈ Tx1 such that

ψ(q(x1, x2)) ≤ ψ(q(x0, x1))− φ(q(x0, x1))

Following this process, we obtain a sequence (xn)n≥0 with xn ∈ Txn−1, for all
n ∈ IN∗, and

ψ(q(xn, xn+1)) ≤ ψ(q(xn−1, xn))− φ(q(xn−1, xn))
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As in previous theorem q(xn, xn+1)→ 0 as k →∞.
Now, we show that for each ε ∈ (0, 1), there exists nε ∈ N such that q(xn, xm) < ε
whenever m > n > nε.
Assume the contrary, then there exists ε0 ∈ (0, 1) such that, for each k ∈ N, there
exists n(k),m(k) ∈ N such that : m(k) > n(k) > k and

q(xn(k), xm(k)) ≥ ε0 (3.15)

We have :

q(xn(k), xm(k))→ ε0 as k →∞
and

q(xn(k)−1, xm(k)−1)→ ε0 as k →∞

Since xn(k) ∈ Txn(k)−1, xm(k) ∈ Txm(k)−1,

ψ(q(xn(k), xm(k))) ≤ ψ(q(xn(k)−1, xm(k)−1))− φ(q(xn(k)−1, xm(k)−1))

We make k to +∞, which gives :

ψ(ε0) ≤ ψ(ε0)− lim inf
k→+∞

φ(q(xn(k)−1, xm(k)−1)) ≤ψ(ε0)− φ(ε0)

Thus, φ(ε0) ≤ 0, which is contradiction.

From lemma 2.1), (xn)n≥0 is a Cauchy sequence in (X, ds) (see theorem 3.1) so
there exists z ∈ X such that d(xn, z)→ 0 and thus q(xn, z)→ 0.
For each n ∈ N there exists vn+1 ∈ T (z) such that :

ψ(q(xn+1, vn+1)) ≤ ψ(q(xn, z))− φ(q(xn, z))

Since q(xn, z)→ 0 we have q(xn+1, vn+1)→ 0, so lim
n→+∞

ds(z, vn) = 0 from lemma

2.1). Hence, z ∈ T (z), because Tz is closed in (X, ds).

Now we prove that q(z, z) = 0 where z ∈ T (z).
For such yo = z, there exists y1 ∈ T (z) such that :

ψ(q(z, y1)) ≤ ψ(q(z, z))− φ(q(z, z))

As above we obtain a sequence (yn)n≥0 in X such that yn+1 ∈ T (yn), for all n ∈ IN,
and

ψ(q(z, yn+1)) ≤ ψ(q(z, yn))− φ(q(z, yn))

Hence (q(z, yn))n≥0 is non-increasing sequence in (0,∞) that converge to 0. Then
(yn)n≥0 is a Cauchy sequence in (X, ds) (using lemma 2.1)); there exists u ∈ X
such that lim

n→+∞
d(yn, u) = 0.

From w2, we have : q(z, u) ≤ lim inf
n→+∞

q(z, yn) = 0, so q(z, u) = 0.

From w1, we have : q(xn, u) ≤ q(xn, z) + q(z, u), for all n ∈ IN, and since
q(xn, z) → 0, so q(xn, u) → 0; by the lemma 2.1), we obtain ds(u, z) = 0. Hence,
u = z and q(z, z) = 0.

Marin, Romaguera and Tirado showed the version of Boyd-Wong’s in T0 quasi-
pseudo metric space (see [[6],theorem 2.2]). The authors had used the notion of
Q-function instead the distance (Q-function satisfying w1, w3 in definition 2 and
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if x ∈ X, M > 0, and (yn)n∈N is a sequence in X that τ−1 converges to a point
y ∈ X and satisfies q(x, yn) ≤M for all n ∈ N, then q(x, y) ≤M)
Now, we extend this version to quasi-metric space, we change the distance by w-
distance and we obtain :

Theorem 3.8. Let (X, d) be a a complete quasi-metric space. If there exist a
w-distance q on (X, d) and a self-mapping T of X such that, for all (x, y) ∈ X2,

q(Tx, Ty) ≤ Φ(q(x, y)) (3.16)

Where Φ : [0,+∞[→ [0,+∞[ Φ is right upper semi-continuous function,and Φ(0) =
0 and Φ(t) < t, for all t > 0. Then, T has a unique fixed point z ∈ X. Moreover
q(z, z) = 0.

In [2] the authors also proved theorem 3.8 (see[[2],Corollary3]), But they used
another concept in the proof (function of Meir-Keeler and Jachymski type).

Theorem 3.9. Let (X, d) be a a complete quasi-metric space. If there exist a
symmetric w-distance q on (X, d) and a self-mappings T and S of X such that, for
all (x, y) ∈ X2,

q(Tx, Sy) ≤ Φ(q(x, y)) (3.17)

Where Φ : [0,+∞[→ [0,+∞[ Φ is right upper semi-continuous function,and Φ(0) =
0 and Φ(t) < t, for all t > 0. Then, there exists a unique point z ∈ X such that
T (z) = z = S(z). Moreover q(z, z) = 0.

Proof. For any x0 ∈ X, we construct the sequence (xn)n∈N in X by taking{x2n+1=Tx2n

x2n+2=Sx2n+1

First case :

q(xn, xn+1) → 0 as n→∞
Substituting x = x2n and y = x2n+1 in (3.17), we obtain :

q(x2n+1, x2n+2) ≤ Φ(q(x2n, x2n+1)) ≤ q(x2n, x2n+1) (3.18)

q(x2n+1, x2n+2) ≤ q(x2n, x2n+1)

Then, (q(xn, xn+1))n is monotone decreasing. Consequently there exists r ≥ 0 such
that

q(xn, xn+1)→ r as n→ ∞

Letting n→∞ in (3.18), we obtain :

r = lim sup
n→+∞

q(x2n+1, x2n+2) ≤ lim sup
n→+∞

Φ(q(x2n, x2n+1)) ≤ Φ(r)
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Which is a contradiction unless r = 0

Second case : We show that, for each ε ∈ (0, 1), there exists nε ∈ N such that:

q(x2n, x2m) < ε whenever 2m > 2n ≥ nε
Assume the contrary, then there exists ε0 ∈ (0, 1) such that, for each k ∈ N, there
exist two sequences of positives integers (n(k))n, (m(k))n with 2m(k) > 2n(k) > k
and

q(x2n(k), x2m(k)) ≥ ε0 (3.19)

We follow the same steps as in the proof of the previous theorem 3.3) to justify the:

q(x2n(k)+1, x2m(k)+2)→ ε0

and
q(x2n(k)+1, x2m(k)+2) ≤ Φ(q(x2n(k), x2m(k)+1))

We make k to +∞,
ε0 ≤ φ(ε0)

Which is a contradiction.

Since (X, d) is complete, there exists z ∈ X such that lim
n→+∞

d(x2n, z) = 0.

Third case : We follow the same steps as in the proof of the previous theorem
3.3) to justify the :

lim
n→+∞

q(x2n, z) = 0

Substituting x = x2n and y = z in (3.17), we obtain :

q(x2n+1, Sz) ≤ Φ(q(x2n, z))

So lim
n→+∞

q(x2n+1, Sz) = 0.

Since

{
q(x2n+1, z)→ 0

q(x2n+1, Sz)→ 0
, by using lemma 2.1), ds(Sz, z) = 0 i.e. z = Sz.

Substituting x = z and y = x2n+1 in (3.17), we obtain :

q(x2n+2, T z) ≤ Φ(q(x2n+1, z))

So q(x2n+2, T z)→ 0. Hence ds(Tz, z) = 0 i.e. z = Tz.
Thus,

Tz = z = Sz

If q(z, z) 6= 0, then q(z, z) ≤ Φ(q(z, z)) < q(z, z), which is contradiction.

If there exists an other point v ∈ X such that T (v) = v = S(v), we have :

q(z, v) = q(T (z), S(v))) ≤ Φ(q(z, v)) < q(z, v)

Which is a contradiction.
So q(z, v) = 0. And since q(z, z) = 0, we deduce from lemma 2.1), that ds(z, v) = 0
i.e. z = v Thus, there exists a unique point z ∈ X such that T (z) = z = S(z).
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