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MULTIPLICITY OF SOLUTIONS FOR LINEAR PARTIAL

DIFFERENTIAL EQUATIONS USING (GENERALIZED) ENERGY

OPERATORS

JEAN-PHILIPPE MONTILLET

Abstract. Families of energy operators and generalized energy operators
have recently been introduced in the definition of the solutions of linear Par-
tial Differential Equations (PDEs) with a particular application to the wave
equation [15]. To do so, the author has introduced the notion of energy spaces

included in the Schwartz space S
−(R). In this model, the key is to look at

which ones of these subspaces are reduced to {0} with the help of energy opera-
tors (and generalized energy operators). It leads to define additional solutions
for a nominated PDE. Beyond that, this work intends to develop the concept
of multiplicity of solutions for a linear PDE through the study of these energy
spaces (i.e. emptiness). The main concept is that the PDE is viewed as a gen-
erator of solutions rather than the classical way of solving the given equation
with a known form of the solutions together with boundary conditions. The
theory is applied to the wave equation with the special case of the evanescent
waves. The work ends with a discussion on another concept, the duplication
of solutions and some applications in a closed cavity.

1. Introduction

The energy operator was initially called the Teager-Kaiser energy operator [10]
and the family of Teager-Kaiser energy operators in [12]. It was first introduced in
signal processing to detect transient signals [6] and filtering modulated signals [3].
After three decades of research, it has shown multiple applications in various areas
(i.e. speech analysis[6], transient signal detection[9], image processing [5], optic
[17], localization [18]). This energy operator is defined as Ψ−

2 in [13], [14], [15] and
through this work. [13] defined the conjugate operator Ψ+

2 in order to rewrite the
wave equation with these two operators. Furthermore, [14] defined the family of
energy operator (Ψ−

k )k∈Z and (Ψ+
k )k∈Z in order to decompose the successive deriva-

tives of a finite energy function fn (n in Z+ − {0, 1}) in the Schwartz space. [15]
introduced the concept of generalized energy operators. In the same work, it was
shown that there is a possible application of the energy operators and generalized
energy operators to define new sets of solutions for linear PDEs.
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This work is the sequel of [15]. It intends to define the concept of Energy Spaces ,
which are sets (in the Schwartz space) of solutions for a nominated linear PDE.
Theorem 2 states the mechanism for the functions fn and ∂k

t f
n to be solutions of

a nominated linear PDE. Then, the work is extended to the case when the energy
operator families (applied to f , Ψ+

p (f), Ψ
−
p (f)) and generalized energy operator

families can also be solution of the same equation via the Corollary 1. An overview
of the concept in the particular case of the wave equation is to consider these addi-
tional solutions as waves generated by a given PDE (i.e. the d’ Alembert operator
for the wave equation �(f) = 0 [4]) with lower energy. This approach differs with
the traditional way of solving a PDE using boundary conditions with a known form
of the solutions. When using the definition of energy space (Definition 3, [15]), the

formulation of finding each solution (e.g., fn, ∂k
t f

n,
(

Ψ+
1 (f)

)n
, ∂k

t

(

Ψ+
1 (f)

)n
) can

be reformulated in looking into which energy space is not reduced to {0}. Section
6 of [15] is the proof of concept using the wave equation and the evanescent waves
as special type of solutions. The last section concludes with a discussion on the
potential of using this model with non-linear PDEs.

2. Preliminaries

2.1. Energy Operators and Generalized Energy Operators in S−(R). Through-
out this work, fn for any n in Z+−{0} is supposed to be a smooth real-valued and
finite energy function, and in the Schwartz space S−(R) defined as:

S−(R) = {f ∈ C∞(R), supt<0|t
k||∂j

t f(t)| < ∞, ∀k ∈ Z+, ∀j ∈ Z+}
(2.1)

Sometime fn can also be analytic if its development in Taylor-Series is necessary
(e.g, the application to closed cavity in Section 4.3). The choice of fn (for any n
in Z+ − {0, 1}) in the Schwartz space S−(R) is based on the development in [14],
Section 2, because we are dealing with multiple integrals or derivatives of fn when
applying the energy operators (Ψ−

k )k∈Z+ , (Ψ+
k )k∈Z+ and later on the generalized

energy operators.
In the following, let us call the set F(S−(R),S−(R)) all functions/operators defined
such as γ : S−(R) → S−(R). Let us recall some definitions and important results
given in [14] and [15].

Section 2 in [14] and Section 4 in [15] defined the energy operators Ψ+
k , Ψ

−
k (k in

Z) and the generalized energy operators [[.]p]+k and [[.]p]−k (p in Z+). [15] defined:

Ψ+
k (.) = ∂t.∂

k−1
t .+ .∂k

t ., k ∈ Z

[., .]
+
k = Ψ+

k (.)

[., .]
+
k = [.]+k
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Ψ−
k is the operator conjugate of Ψ+

k . Furthermore, [15] defined the generalized

energy operators [[.]1]+k and [[.]1]−k :

[[., .]+k , [., .]
+
k ]

+

k
= ∂tΨ

+
k (.)∂

k−1
t Ψ+

k (.) + Ψ+
k (f)∂

k
t Ψ

+
k (.)

[[., .]+k , [., .]
+
k ]

+

k
= ∂t[[.]

0]+k ∂
k−1
t [[.]0]+k + [[.]0]+k ∂

k
t [[.]

0]+k

= [[.]1]+k

[[., .]−k , [., .]
−
k ]

−

k
= ∂tΨ

−
k (.)∂

k−1
t Ψ−

k (.)−Ψ−
k (.)∂

k
t Ψ

−
k (.)

[[., .]−k , [., .]
−
k ]

−

k
= ∂t[[.]

0]−k ∂
k−1
t [[.]0]−k + [[.]0]−k ∂

k
t [[.]

0]−k

= [[.]1]−k
(2.2)

By iterating the bracket [.], [15] defined the generalized operator [[.]p]−k and the

conjugate [[.]p]+k with p in Z+. Note that [[f ]p]−1 = 0 for all p in Z+.
In addition, the derivative chain rule property and bilinearity of the energy oper-
ators and generalized operators are shown respectively in [14], Section 2 and [15],
Proposition 3.

Definition 1 [14]: For all f in S−(R), for all v ∈ Z+ − {0}, for all n ∈ Z+ and
n > 1, the family of operators (Ψk)k∈Z (with (Ψk)k∈Z ⊆ F(S−(R),S−(R))) decom-

poses ∂v
t f

n in R, if it exists (Nj)j∈Z+∪{0} ⊆ Z+, (Ci)
Nj

i=−Nj
⊆ R, and it exists (αj)

and l in Z+ ∪ {0} (with l < v)

such as ∂v
t f

n =
∑v−1

j=0

(v−1

j

)

∂v−1−j
t fn−l

∑Nj

k=−Nj
CkΨk(∂

αk

t f).

In addition, one has to define s−(R) as:

s−(R) = {f ∈ S−(R)|f /∈ (∪k∈ZKer(Ψ+
k )) ∪ (∪k∈Z−{1}Ker(Ψ−

k ))} (2.3)

Ker(Ψ+
k ) and Ker(Ψ−

k ) are the kernels of the operators Ψ+
k and Ψ−

k (k in Z) (see
[14], Properties 1 and 2 ). One can also underline that s−(R) ( S−(R) Following
Definition 1, the uniqueness of the decomposition in s−(R) with the families of
differential operators can be stated as:

Definition 2 [14]: For all f in s−(R), for all v ∈ Z+ − {0}, for all n ∈ Z+ and
n > 1, the families of operators (Ψ+

k )k∈Z and (Ψ−
k )k∈Z ((Ψ+

k )k∈Z and (Ψ−
k )k∈Z ⊆

F(s−(R),S−(R))) decompose uniquely ∂v
t fn in R, if for any family of operators

(Sk)k∈Z ⊆ F(S−(R),S−(R)) decomposing ∂v
t fn in R, there exists a unique couple

(β1, β2) in R2 such as:

Sk(f) = β1Ψ
+
k (f) + β2Ψ

−
k (f), ∀k ∈ Z (2.4)

Two important results shown in [14] (Lemma and Theorem) are:

Lemma 0: For f in S−(R), the family of DEO Ψ+
k (k = {0,±1,±2, ...}) decom-

poses the successive derivatives of the n-th power of f for n ∈ Z+ and n > 1.

Theorem 0: For f in s−(R), the families of DEO Ψ+
k and Ψ−

k (k = {0,±1,±2, ...})
decompose uniquely the successive derivatives of the n-th power of f for n ∈ Z+

and n > 1.
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The Lemma 0 and Theorem 0 were then extended in [15] to the family of gener-
alized operator with :

Lemma 1: For f in S−
p (R), p in Z+, the families of generalized energy operators

[[.]p]+k (k = {0,±1,±2, ...}) decompose the successive derivatives of the n-th power

of [[f ]p−1]+1 for n ∈ Z+ and n > 1.

Theorem 1: For f in s−p (R), for p in Z+, the families of generalized operators

[[.]p]+k and [[.]p]−k (k = {0,±1,±2, ...}) decompose uniquely the successive deriva-

tives of the n-th power of [[f ]p−1]+1 for n ∈ Z+ and n > 1.

S−
p (R) and s−p (R) (p in Z+) are energy spaces in S−(R) defined in the next section.

Note that as underlined in [14] (Section 3, p.74) and [15] (Section 4), one can ex-
tend the Theorem 0, Theorem 1, Lemma 0 and Lemma 1 for fn with n in Z.
The appendix A recalls the discussion in [15] (Section 4). Here, n is restricted to
Z+ − {0, 1} in order to easy the whole mathematical development.
Some time, the finite energy function fn (n in Z+ − {0, 1}) can also be considered
analytic. In other words, there are (p,q) (p > q) in R2 such as fn can be developed
in Taylor Series [11]:

fn(p) = fn(q) +
∞
∑

k=1

∂k
t f

n(q)
(p− q)k

k!

(2.5)

Proposition 1, [15] states:

Proposition 1: If for any n ∈ Z+, fn ∈ S−(R) is analytic and finite energy; for
any (p,q) ∈ R2 (with τ in [q, p]) and E(fn) in S−(R) is analytic, where

E(fn(τ)) =

∫ τ

q

(fn(t))2dt < ∞ (2.6)

then

E(fn(p)) = E(fn(q)) +

∞
∑

k=0

∂k
t (f

n(q))2
(p− q)k

k!
< ∞

(2.7)

is a convergent series.

This property is specifically used in the applications of this work described in Sec-
tion 4.

2.2. Energy Spaces. The energy spaces were introduced in [15], Definition 3 and
[15], equation (24). The definition reads:

Definition 3: The energy space Ep, with p in Z+, is equal to Ep =
⋃

i∈Z+∪{0} M
i.

with Mi ( S−(R) for i in Z+ defined

Mi = {g ∈ S−(R)| g = ∂i
t

([

[f ]p
]+

1

)n
,
[

[f ]p
]+

1
∈ S−(R), n ∈ Z+ − {0, 1}} (2.8)
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If g is a general solution of some linear PDEs, then fn can be identified as a special
form of the solution (conditionally to its existence). One can further define the
subspace S−

p (R) ( S−(R) for p in Z+ (see [15], equation (25)):

S−
p (R) = {Ep =

⋃

i∈Z+∪{0}

Mi 6= {0}} (2.9)

The energy space Ep is said associated with E(
[

[.]p+1
]+

1
). Note that Ep is not

empty, because the assumption is that
([

[f ]p
]+

1

)n
is a solution of a given linear

PDE throughout this work. Thus, the energy space cannot be defined without a
nominated PDE. Now, one can define the subset s−p (R) defined as:

s−p (R) = {f ∈ S−
p (R)|f /∈ (∪k∈ZKer([[f ]p]+k ) ∪ (∪k∈Z−{1}Ker([[f ]p]−k ))} (2.10)

The subset s−p (R) is also defined such as Ep 6= {0}. Thus, one can see that s−p (R) (

S−
p (R). Note that s

−
0 (R) ( s−(R), because S−

p (R) ( S−(R) (p in Z+). Furthermore,
one can also define the special case:

Ni = {g ∈ S−(R)| g = ∂i
t

(

f)n, fn ∈ S−(R), n ∈ Z+ − {0, 1}} (2.11)

Following Section 4 in [15], E =
⋃

i∈Z+∪{0} N
i 6= {0}, E ( S−(R). Finally, the

energy space E is said associated with E(
[

[.]0
]+

1
).

3. Theorems of Multiplicity of the Solutions for a given PDE

3.1. Multiplicty of the Solutions. To recall the first section, a possible appli-
cation of the theory of the energy operator is to look at the solutions for various
values of n and i instead of solving the equation for specific values (e.g., boundary
conditions). According to Equation (2.8) and Definition 3, it is equivalent to find
which subspace Mi (i ∈ Z+) of Ep (p in Z+) is reduced to {0} (or respectively Ni

of E). Thus using Theorem 0 and Theorem 1, one can use the energy operator
in order to find the subspaces Ni or Mi reduced to {0}. For example, let us define
for i in Z+

Li = {g ∈ S−(R)| g = ∂i
tf

2 = ∂i1−1
t (Ψ+

1 (f) + Ψ−
1 (f)), f ∈ S−(R)} (3.1)

with Equation (2.8), Li ⊆ Ni. If |Ψ+
1 (f)| = 0 then Li = {0}. Using Definition 1

and Theorem 0, one can write if it exists i1 in Z+ such as |∂i1
t Ψ+

1 (f)| = 0, then
Li1 = {0}. Subsequently for all i2 ≥ i1, L

i2 = {0}.

3.2. Statement of the Theorem on Multiplicity of the Solutions for a
linear PDE. If f is a solution of a linear PDE, let us call this statement ∆2f = 0.
One can summarize the philosophy of multiple solutions generated by a linear PDE
:

Theorem 2 : f in s−(R). Then, ∂i
tf

n (i in Z+, n in Z+ −{0, 1}) is solution for (t,
τ) in [a, b]2 (a < b, (a, b) in R2) if it is assumed

1. (general condition to be a solution) ∆2∂i
tf

n(τ) = 0
2. (Solutions in S−(R) ), ∂i

tf
n is a finite energy function such as E(∂i

tf
n)(τ) <

∞
3. (3 ⇔ 2) it exists mi in R, for i in Z+ such as mi = sup{∀n∈Z+−{0,1},τ∈[a,b]}

(E(∂i
tf

n)(τ))
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4. (Superposition of solutions and energy conservation ) F (τ) =
∑

k∈Z+ ∂k
t f

n(τ),
then E(F (τ)) < ∞

5. (5 ⇒ 4) ∃ i1 in Z+ such as ∀ i ≥ i1, N
i = {0}

From the statement (5.), one can then define the energy space E =
⋃

i∈[0,i1−1] N
i.

Now, if we want to use the decomposition of the solutions ∂i
tf

n with the energy
operators (e.g, Theorem 0) in order to find i1 such as Ni1 is reduced to {0}, then
the definition of the subspace Ni reads

Ni = {g ∈ S−(R)| g = ∂i
t

(

f)n = αn(∂
i−1
t fn−2(Ψ+

1 (f) + Ψ−
1 (f)),

f ∈ s−(R), n ∈ Z+ − {0, 1}, αn ∈ R} (3.2)

That is why we define Theorem 2 with f in s−(R). Furthermore, Theorem 2
can be extended to the generalized operators as solutions of the linear PDE. With
p in Z+ and the energy space definition (e.g, Definition 3), the Corollary 1 of
Theorem 2 reads

Corollary 1: For p in Z+, f in s−p (R), ∂
i
t([[f ]

p]+1 )
n (i in Z+, n in Z+ − {0, 1}) is

solution for (t, τ) in [a, b]2 (a < b, (a, b) in R2) if

1. (general condition to be a solution) for i in Z+ and n in Z+ − {0, 1},
∆2∂i

t([[f ]
p]+1 )

n = 0
2. (Solutions in S−(R) ) for i in Z+ and n in Z+ − {0, 1}, ∂i

t([[f ]
p]+1 )

n is a
finite energy function such as E(∂i

t([[f ]
p]+1 )

n)(τ) < ∞
3. (3 ⇔ 2) it exists mi in R, for i in Z+ such as mi = sup{∀n∈Z+−{0,1}}

(E(∂i
t([[f ]

p]+1 )
n)(τ))

4. (superposition of solutions and energy conservation )
F (τ) =

∑

k∈Z+ ∂k
t ([[f ]

p]+1 )
n)(τ) < ∞

5. (5 ⇒ 4) ∃ i1 in Z+ such as ∀ i ≥ i1, M
i = {0}

To recall the remark at the end of the statement of Theorem 2, one can justify that
f in s−p (R) in order to use the decomposition with the generalized energy operators

(e.g, Theorem 1). Thus, the definition of the subspace Mi reads

Mi = {g ∈ S−(R)| g = ∂i
t

([

[f ]p
]+

1

)n
=

αn(∂
i−1
t

([

[f ]p
]+

1

)n−2
(
[

[f ]p+1
]+

1
+
[

[f ]p+1
]−

1
),

f ∈ s−p (R), n ∈ Z+ − {0, 1}, αn ∈ R}

(3.3)

Theorem 2 and Corollary 1 could then be applied to a given linear PDE by re-
placing the first statement (∆2(.) = 0). The next section highlights the assumptions
behind each assertion in Theorem 2 and Corollary 1.

3.3. Underlining Hypothesis of the Theorems and Proofs. This section dis-
cusses each statement in Theorem 2 and Corollary 1. We are not attempting
to give a formal proof, because we conjecture the existence of solutions for a given
PDE such as the energy spaces S−

p (R) and s−p (R) (p in Z+) are not reduced to {Ø}.
Keeping that in mind, one can give the following explanations to understand the
previous section.
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3.3.1. Theorem 2.

Proof. 1. This is the definition of a solution for a nominated PDE.
2. All the solutions considered in this work are finite energy functions in order

to apply the decomposition using the energy operators stated in Theorem
0 and Theorem 1. Note that it does not rule out that for some solutions
(particular values of i and n), one can have (E(∂i

tf
n)(τ)) ∼ ∞. In this case,

the solutions cannot be accepted.
3. The existence of the upper bound of E(∂i

tf
n)(τ) ( τ in [a, b], ∀n ∈ Z+ −

{0, 1}) comes from the definition. However, let us define the subspaces Hi

(i in Z+), Hi ( R such as

Hi = {z ∈ R|z = E(∂i
tf

n)(τ) < ∞, fn ∈ S(R−), n ∈ Z+ − {0}, τ ∈ [a, b]} (3.4)

One can then define mi in R [8] such as

mi = sup{∀n∈Z+−{0,1},τ∈[a,b]}(E(∂
i
tf

n)(τ)) (3.5)

Furthermore, we can also define M such as

M = max∀i∈Z+−{0}(mi) (3.6)

Then,

M = sup{∀n∈Z+−{0,1},τ∈[p,q],∀i∈Z+}(E(∂
i
tf

n)(τ)) (3.7)

4. This statement is to guarantee that there is a finite sum of energy. In other
words, there is no infinite number of solutions. Thus with the development
in statement (3.), one can use the Minkowski inequality (e.g, [7], Theorem
202) for τ in [a, b]

E(F (τ)) =

∫ τ

a

|
∑

i∈Z+

∂i
tf

n(t)|2dt

(

E(F (τ))
)0.5

≤
∑

i∈Z+

(

∫ τ

a

|∂i
tf

n(t)|2dt
)0.5

(

E(F (τ))
)0.5

≤
∑

i∈Z+

m0.5
i (3.8)

Thus, (4.) stands if and only if
∑

i∈Z+ m0.5
i < ∞. As for all i ∈ Z+, mi is

in R+, it then exists io in Z+ such as ∀i > io, then mi = 0.
5. Following the discussion in Section 2.2 (e.g, Definition 3), one can see that

if it exists i1 such as for all i ≥ i1, N
i = {0} then E(∂i

tf
n) = 0. Or with

the above development in (4.), the sum of coefficients m0.5
i becomes finite:

(

E(F (τ))
)0.5

≤
∑

i∈Z+

m0.5
i

(

E(F (τ))
)0.5

≤

i1−1
∑

i=0

m0.5
i (3.9)

�
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3.3.2. Corollary 1.

Proof. The structure of the Corollary 1 is very similar to Theorem 2. In order
to avoid repetitions, some explanations are shortened. For p in Z+,

1. This is the definition of a solution for a nominated PDE.
2. All the solutions considered in this work are finite energy functions in order

to apply the decomposition using the energy operators stated in Theorem
0 and Theorem 1.

3. Similarly as in the previous discussion, the existence of the upper bound of
E(∂i

t([[f ]
p]+1 )

n)(τ) ( τ in [a, b], ∀n ∈ Z+−{0, 1}) comes from the definition.
Similarly to the statement (3.) of Theorem 2, one can define Hp

i (i in
Z+), Hp

i ( R such as

Hp
i = {z ∈ R|z = E(∂i

t([[f ]
p]+1 )

n)(τ) < ∞, fn ∈ S(R−), n ∈ Z+ − {0}, τ ∈ [a, b]}
(3.10)

Subsequently, with mi,p in R

mi,p = sup{∀n∈Z+−{0,1},τ∈[a,b]}(E(∂
i
t([[f ]

p]+1 )
n)(τ)) (3.11)

and defining M such as

Mp = max∀i∈Z+−{0}(mi,p) (3.12)

Then,

Mp = sup{∀n∈Z+−{0,1},τ∈[p,q],∀i∈Z+}(E(∂
i
t([[f ]

p]+1 )
n)(τ)) (3.13)

Following statement [3.] and the previous discussion, one can use the
Minkowski inequality (e.g, [7], Theorem 202) for τ in [a, b]

E(F (τ)) =

∫ τ

a

|
∑

i∈Z+

∂i
t([[f(t)]

p]+1 )
n|2dt

(

E(F (τ))
)0.5

≤
∑

i∈Z+

(

∫ τ

a

|∂i
t([[f(t)]

p]+1 )
n|2dt

)0.5

(

E(F (τ))
)0.5

≤
∑

i∈Z+

mi,p
0.5 (3.14)

As previously underlined, (4.) stands if and only if
∑

i∈Z+ mi,p
0.5 < ∞. In

other words, it then exists io in Z+ such as ∀i > io, then mi,p = 0.
5. Following previous discussions for Theorem 2 and the above development,

the sum of coefficients m0.5
i,p becomes finite:

(

E(F (τ))
)0.5

≤
∑

i∈Z+

m0.5
i,p

(

E(F (τ))
)0.5

≤

i1−1
∑

i=0

m0.5
i,p (3.15)

�
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3.4. Discussion on non-linear PDEs. The current work started with the pre-
liminary study in [13] where the energy operators showed how to decompose the
Helmholtz equation. The Helmholtz equation was chosen as an easy application,
because of its linearity and the form of the solutions. In [15], the preliminary results
were extended. However with the additional development in this current work, the
introduction of the energy space with the definition based on the solution of a nom-
inated PDE does not justify anymore the assumption that the PDE must be linear.
In addition, the assumption on the linearity of the nominated PDE in Theorem
2 and Corollary 1 does not play any role. Thus, one should also be able to apply
this model to non-linear PDEs.

4. Application to linear PDEs

4.1. Comments on functions of two variables solutions of linear and Non-
linear PDEs. In this section and the remainder of this work, the finite energy
functions of one variable described in Section 2.1, are now functions of two vari-
ables referring to the space dimension (r) and time (t). One has to add in the
notation of the operators the symbol t or r to indicate which variable the deriva-
tives refer to. For example, the operators Ψ−,r

k (.) and [[.]p]+,r
k (k in Z, p in Z+)

refer to their derivatives in space, whereas Ψ−,t
k (.) and [[.]p]+,t

k (k in Z, p in Z+)
refer to their derivatives in time. Following the discussion in [15] (Section 6), one
can then define the Schwartz space S−(R2) for function of two variables such as:

S−(R2) = {f ∈ C∞(R), ∀(r0, t0) ∈ R+| supt<0|t
k||∂j

t f(r0, t)| < ∞,

and supr<0|r
k||∂j

rf(r, t0)| < ∞, ∀k ∈ Z+, ∀j ∈ Z+}
(4.1)

Following this definition, the extension of the subspace s−(R2) ⊆ S−(R2) is:

s−(R2) = {f ∈ S−(R2)| ∀ k ∈ Z, Ψ+,t
k (f) 6= {0}

∀ k ∈ Z− {1}, Ψ−,t
k (f) 6= {0}}

⋃

{f ∈ S−(R2)| ∀ k ∈ Z, Ψ+,r
k (f) 6= {0}

∀ k ∈ Z− {1}, Ψ−,r
k (f) 6= {0}}

In [15], it was emphasized that Definition 0, Definition 1, Lemma 0, Lemma 1,
Theorem 0 and Theorem 1 can easily be extended to the function of two variables
using the above definitions of s−(R2) and S−(R2). We will not state formally all
the work previously done for the case of the functions of two variables in S−(R2).
It is only a matter of replacing the variables from time to space.
According to the previous section, one can state in the case of a function of two
variables that it exists (αn1, αn2) in R2 such as for f ∈ s−(R2), n ∈ Z+ − {0, 1}:







∂i
tf

n = αn1

(

∂i−1
t

(

fn−2(Ψt,+
1 (f) + Ψt,−

1 (f))
)

)

,

∂i
rf

n = αn2

(

∂i−1
r

(

fn−2(Ψr,+
1 (f) + Ψr,−

1 (f))
)

) (4.2)

The definition of the energy space E (e.g, Definition 3) is defined in S−(R2)

Ni
1 = {g ∈ S−(R2), ∀t ∈ R+, r0 ∈ R|g(r0, t) = ∂i

tf
n(r0, t),

f ∈ s−(R2), n ∈ Z+ − {0, 1}}

Ni
2 = {g ∈ S−(R2), ∀r ∈ R, t0 ∈ R+|g(r, t0) = ∂i

rf
n(r, t0),

f ∈ s−(R2), n ∈ Z+ − {0, 1}}
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Thus, E = {
⋃

i∈Z+∪{0} N
i
1 6= {0}}∪{

⋃

i∈Z+∪{0} N
i
2 6= {0}}, E ( S−(R2). Similarly,

one can further extend the definition of energy space with the generalized energy
operators in S−

p (R
2) (p in Z+) with defining Mi

1 and Mi
2.

Furthermore, it is worth underlining that if f is a solution of a given linear PDE,
then fn(r0, t) is in N0

1 and fn(r, t0) is in N0
2. Choosing a wise choice for the

definition of f (i.e. amplitude not equal to 0) leads to N0
1 and N0

2 not equal to {0}.
One can then conclude that the energy space E 6= {Ø} and E 6= {0} .

4.2. Evanescent waves and the wave equation. The evanescent waves were
already chosen in the numerical example in Section 6 of [15]. Here, this type of
solutions of the Helmholtz equation is used as an application of the multiplicity
theorem stated in Theorem 2. From [16] or [1], the Helmholtz equation can be
formulated :















∂2
rg(r, t) − 1

c2
∂2
t g(r, t) = 0,

or �g(r, t) = 0,
t ∈ [0, T ], r ∈ [r1, r2], (r1, r2, T ) ∈ R3, r1 < r2

t0 ∈ [0, T ], r0 ∈ [r1, r2]

(4.3)

c is the speed of light. Note that the values of t and r are restricted to some interval,
because it is conventional to solve the equation for a restricted time interval in R+

and a specific region in space. Furthermore, it is well-known that the general
solution g(r, t) of this equation is a sum of two waves traveling in opposite direction
such as g(r, t) = f1(t− r/c) + f1(t+ r/c) (e.g., [16]). With the development in the
previous sections and taking the wave traveling along the increasing positive axis
(if the other solutions is considered to travel along the increasing negative axis), we
are interested in the solutions of the kind g(r, t) = ∂i

tf
n
1 (r, t) (n in Z+ −{0, 1}, p in

Z+).
As underlined in [15], solutions in S−(R2) of equation (4.3) are finite energy

functions such as the ones decaying for large values of r and t. This is a very
limiting condition. For example, planar waves are not included.

Now, let us apply the multiplicity theorem (e.g, Theorem 2) to the evanescent
waves [1] :

{

f(r, t) = Real{A exp (k2r) exp (j(ωt− k1r))},
t ∈ [0, T ], r ∈ [r1, r2], (r1, r2) ∈ R2, r1 < r2

(4.4)

k1 and k2 are the wave numbers, ω is the angular frequency and A is the amplitude
of this wave [16]. Assuming ω and (k1, k2) known, one can add some boundary
conditions in order to estimate k1, k2 and A. However, our interest is just the
general form assuming that all the parameters are known.

The solutions in Ni
1 and Ni

2 can be stated














∂i
tf

n(r0, t) = (jωn)ifn(r0, t)},
∂i
rf

n(r, t0) = (n(k2 − jk1))
ifn(r, t0)},

t ∈ [0, T ], r ∈ [r1, r2], (r1, r2, T ) ∈ R3, r1 < r2
t0 ∈ [0, T ], r0 ∈ [r1, r2], n ∈ Z+ − {0, 1}, i ∈ Z+ − {0}

(4.5)
It is well-known that a traveling wave solution of equation (4.3) should satisfy the
dispersion relationship between k1, k2 and ω [16]. Note that i is in ∈ Z+ − {0},
because we are doing an application where the energy operators should help to
determine which energy space is not empty. For i equal 0, the energy operators are
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not involved. This space can be seen as the form of desired solutions (with n in
Z+ − {0, 1}).
If we replace the general solution g in equation (4.3) with solutions in Ni

1 and Ni
2

(see Section 4.1), one can study the dispersion relationship for different solutions
of the form ∂i

tf
n(r, t) or ∂i

rf
n(r, t) :

�∂i
tf

n(r, t) = 0

Real{
(jωn)2

c
− (n(k2 − jk1))

2} = 0

Real{
(jω)2

c
− ((k2 − jk1))

2} = 0

�∂i
rf

n(r, t) = 0

Real{
(jωn)2

c
− (n(k2 − jk1))

2} = 0

Real{
(jω)2

c
− ((k2 − jk1))

2} = 0 (4.6)

It means that the dispersion relationship for this type of solutions is a function
neither of the degree of the derivatives i nor the power n for the special case of the
evanescent waves. Furthermore, one can also calculate the closed-form expression
∂i
tΨ

+,t
1 (r, t) and ∂i

rΨ
+,r
1 (r, t) such as

∂i
tΨ

+,t
1 (r0, t) = Real{(j2iω)f2(r0, t)}

∂i
rΨ

+,r
1 (r, t0) = Real{(2i(k2 − jk1))f

2(r, t0)}

t ∈ [0, T ], r ∈ [r1, r2], (r1, r2, T ) ∈ R3, r1 < r2

t0 ∈ [0, T ], r0 ∈ [r1, r2], n ∈ Z+ − {0, 1}, i ∈ Z+ − {0} (4.7)

These expressions can help to determine which subspaces Ni
1 and Ni

2 can be re-
duced to {0} according to the model explained in Section 3 (e.g, Theorem 1).

Now, let us estimate numerically i1 such as |∂i1
t Ψ+,t

1 (f)| = 0 and i2 such as

|∂i2
r Ψ+,r

1 (f)| = 0 for fixed values of A, k1, k2, ω (in R) and a given region in
space and interval in time. Note that it is mathematically more accurate to state
|∂i1

t Ψ+,t
1 (f)| ∼ 0 and |∂i2

r Ψ+,r
1 (f)| ∼ 0 rather than using the symbol ’=’, because we

are estimating numerically the different solutions. Thus, one can decide implicitly
that it exists ǫ in R such as if |∂i1

t Ψ+,t
1 (f)| < ǫ , then |∂i1

t Ψ+,t
1 (f)| = 0 (reciprocally

|∂i1
r Ψ+,r

1 (f)| < ǫ , then |∂i1
r Ψ+,r

1 (f)| = 0).
The parameters displayed in Table 1 are for two scenarios. The parameters in

Scenario 1 are used in the simulation to estimate i1 and reciprocally Scenario 2 for
i2. As previously mentioned in the definition of the energy spaces (e.g, Definition
3), the energy function is said ”associate” with the energy space. In other words,

one can estimate the energy of ∂i
tΨ

+,t
1 (f)(r0, t) and ∂i

rΨ
+,r
1 (f)(r, t0) for the various

values of i in Z+ − {0}. Figure 1 and 2 displays the results. Note that the simula-
tions are performed using Matlab (v9.0 R2016a - mathworks.com).
The top figures in Figure 1 and 2 correspond to the numerical estimation of
the energy of the operators ∂i

tΨ
+,t
1 (f)(r0, t) (also called ∂i

t [[f ]
0]+,t

1 (r0, t))) and f

∂i
rΨ

+,r
1 (f)(r, t0) (also called ∂i

r[[f ]
0]+,r

1 (r, t0))). Thus, the results shows that for

i > 2, the values of E(∂i
tΨ

+,t
1 (f)(r0, t)) and E(∂i

rΨ
+,r
1 (f)(r, t0)) are smaller than

10−10. Thus, we can conclude that i1 = i2 = 3. This simulation concludes the case
study for the energy space E defined in Section 2.2.
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Figure 1. Results from the estimation of the energy of
∂i
tΨ

+,t
1 (f)(r0, t) and ∂i

t [[f ]
1]+,t

1 (r0, t)). The Figures correspond to
Scenario 1.

Figure 2. Results from the estimation of the energy of
∂i
rΨ

+,r
1 (f)(r, t0) and ∂i

r[[f ]
1]+,r

1 (r, t0)). The Figures correspond to
Scenario 2.
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Table 1. Parameters for the scenarios 1 and 2

Parameters Scenario 1 Scenario 2
k1 (m−1) 10−10 0.001
k2 (m−1) ) 10−10 10−5

A (m) 1 1
ω(sec−1) 0.03 3000
T (sec) 100 100
[r1, r2] ( m) [2, 140] [2, 140]

Now, if we want to use the generalized energy operators (and Theorem 2) with p
in Z+ and p > 0, then one can look at solutions in the energy space Ep (e.g, Section

2.2). It is the solutions of the kind ([[f ]p]+,t
1 )n or ([[f ]p]+,r

1 )n. Thus, the definition
of the subspaces Ni

1 and Ni
2 can be extend with p in Z+ such as

Ni
1,p = {g ∈ S−(R2), ∀t ∈ [0, T ], r0 ∈ [r1, r2]|g(r0, t) = ∂i

t([[f ]
p]+,t

1 )n(r0, t),

f ∈ s−p (R
2), n ∈ Z+ − {0, 1}}

Ni
2,p = {g ∈ S−(R2), ∀r ∈ [r1, r2], t0 ∈ [0, T ]|g(r, t0) = ∂i

r([[f ]
p]+,r

1 )n(r, t0),

f ∈ s−p (R
2), n ∈ Z+ − {0, 1}}

With this definition, let us do a similar numerical estimation of the solutions and
finding i1 and i2 for the case p = 1. The bottom figures of Figure 1 and 2 are
the results. We can see that there is a factor of 10−4 and 10−11 in Scenario 1
and 2 respectively between the estimated energy for the operators corresponding
to the case p = 0 and p = 1. Thus, one can conclude that i1 and i2 are equal to
0. Recalling the decomposition Theorem 1 (and equation (3.3)), the energy space
E0 is reduced to {0}.

4.3. Phenomenon of Duplication of Waves in a Closed Cavity. This section
reflects on the idea of propagating electromagnetic waves in a closed cavity [2]. Here,
the idea is not to revise the whole theory of electromagnetism, but rather discussing
at a theoretical level the implication of our proposed model in this example and
defining the duplication of waves.
Let us consider the form of solutions which propagates in a closed cavity. According
to [16], one possible solution is the evanescent wave described in equation (4.4). One
can notice that f and E(f) are analytic by definition for the variable t and r. With
Proposition 1, we can assume that f is finite energy and in s−(R2) with a wise
choice on the parameters A, k1, k2 and ω. One can estimate the difference of energy
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in time over dt inside the cavity at a specific location r0 (r0 in [r1, r2]) such as

E(f(r0, T )) =

∫ T

0

(f(r0, u))
2du < ∞

E(f(r0, T + dt)) = E(f(r0, T )) +

∞
∑

k=0

∂k
t (f

2(r0, T ))
(dt)k

k!
< ∞

E(f(r0, T + dt)) = E(f(r0, T )) +

∞
∑

k=0

∂k
t (f

2(r0, T ))
(dt)k

k!
< ∞

E(f(r0, T + dt)) = E(f(r0, T )) + f2(r0, T )dt+

∞
∑

k=1

∂k−1
t

(

Ψ+,t
1 (f)(r0, T )

+Ψ−,t
1 (f)(r0, T )

)(dt)k+1

k + 1!
< ∞

E(f(r0, T + dt)) ≃ E(f(r0, T )) + f2(r0, T )dt (4.8)

Note that by definition Ψ−,t
1 (f)(r0, T ) = 0. Here the symbol ’≃’ means that

∃ ǫ ∈ R+, ǫ << 1, ∀k ∈ Z+, k > 0| |∂k−1
t

(

Ψ+,t
1 (f)(r0, T )

)

| < ǫ|f2(r0, T )| (4.9)

Now, let us do a hypothesis that E(f(r0, T + dt)) increases significantly over dt
modifying the approximation in (4.9)

∃ ǫ ∈ R+, ǫ << 1, ∀k ∈ Z+, k > 1| |∂k−1
t Ψ+,t

1 (f)(r0, T )| < ǫ|Ψ+,t
1 (f)(r0, T )|

(4.10)
and then,

E(f(r0, T + dt)) ≃ E(f(r0, T )) + f2(r0, T )dt+Ψ+,t
1 (f)(r0, T )

dt2

2
(4.11)

Now, using theTheorem 1 and the model based on the energy space in the previous
sections, one can say that the subspace N1

1 defined in Section 4.1 is not reduced
to {0}. Thus, the solutions from this subspace has to be taken into account. The
duplication of wave can be formulated as an approximation for taking into account
additional solutions produced by the wave equation.

5. Conclusions

The core of this work is to define the notion of multiplicity of the solutions of
a linear PDE using the model associated with energy spaces and the (generalized)
energy operators. In this way, it contradicts the classical way of solving a nomi-
nated PDE with boundaries conditions, but it rather focuses on additional solutions
from these energy spaces. The multiplicity is defined through Theorem 2 and the
Corollary 1. The work shows how the energy operators (and generalized energy
operators) can determine which energy subspace is reduced to {0}.
The theory is then applied to the evanescent waves, a special type of solutions of
the wave equation. The last part with the closed cavity show a possible real world
applications. In this case, the duplication of waves is when additional solutions
should be taken into account due to the level of energy increasing in the cavity.
However, this work remains at a theoretical level and more work with simulations
are required to fully understand the concept of duplication .
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Furthermore, it was explained in Section 3.4 that the linearity of the PDEs does
not play any role in Theorem 2 and the Corollary 1. As a matter of fact, the
model with the energy subspace is applied directly to the form of the solutions of
the nominated PDE (i.e. evanescent waves solution of the wave equation) with the
conditions that the solutions are finite energy and in the Schwartz space S−(R2).
Thus, there is no restriction theoretically speaking to use this model with non-
linear PDEs. Our next interest is to apply our model to the type of solutions of the
Korteweg de Vries equation called solitons which filled in the properties required to
apply this model (e.g, finite energy function, solution in the Schwartz space S−(R2)
).
To conclude, the multiplicity of the solutions applied to the wave equation is only
the first step before wondering if the receiving waves in a transmitter-receiver sys-
tem, can be a sum of all those solutions. In other words, one can ask if the signal
is generated by receiving not one type of solution/wave, but the additional solu-
tions/waves coming from other energy subspaces.
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Appendix A. Discussion about n in Z

Here is the discussion written in [15] (Section 4) in the case of the generalized
energy operators about extending Theorem 1 and Lemma 1 with n in Z. The
extension of Theorem 0 and Lemma 0 can be found in [14] (Section 3, p. 74).
Let us recall:

Discussion n < −1: In this case, one can define:

∀f ∈ S−
p (R), ∀t ∈ R, p ∈ Z+, ([[f(t)]p]+1

)n
6= 0, ∀n ∈ Z+, n > 1,

1
(

[[f(t)]p]+1
)n

(A.1)
This set of functions can also be described as: f in S−

p (R) and f not inKer
(

[[f(t)]p]+1
)

for p in Z+. Note that one could also chose to have f in s−p (R). However, this is
more restrictive than the set defined in (A.1). Using an intermediary function, h

such as h = 1
[[f(t)]p]+

1

, the problem of decomposing ∂k
t

(

[[f(t)]p]+1
)−n

(k in Z+−{0})

is equivalent to resolving ∂k
t h

n, which has been demonstrated in the Lemma 1 and
Theorem 1.

Discussion n = 1 or n = −1: As already underlined in [14], one can use a general
formula for f in the set defined in equation (A.1):

∂k
t

(

[[f(t)]p]+1
)

= ∂k
t

(

(

[[f(t)]p]+1
)3

(

[[f(t)]p]+1
)2

)

k = 1, ∂t
(

[[f(t)]p]+1
)

=
(

[[f(t)]p]+1
)−2

∂t
(

[[f(t)]p]+1
)3

+
(

[[f(t)]p]+1
)3
∂t
(

[[f(t)]p]+1
)−2

k = 2, ∂2
t

(

[[f(t)]p]+1
)

= 2∂t
(

[[f(t)]p]+1
)−2

∂t
(

[[f(t)]p]+1
)3

+
(

[[f(t)]p]+1
)3
∂2
t

(

[[f(t)]p]+1
)−2

+
(

[[f(t)]p]+1
)−2

∂2
t

(

[[f(t)]p]+1
)3

(A.2)

The example for k = {1, 2} in Equation (A.2) shows that ∂k
t

(

[[f(t)]p]+1
)

can be de-

composed into a product of successive derivatives of
(

[[f(t)]p]+1
)3

and
(

[[f(t)]p]+1
)−2

.
Those derivatives can be decomposed into a sum of generalized energy operators
based on the Lemma 1 and Theorem 1 plus the previous discussion (for the case
n < −1 ).
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Now for the case n = −1, it is easy to see that :

∂k
t

(

[[f(t)]p]+1
)−1

= ∂k
t

(

(

[[f(t)]p]+1
)2

(

[[f(t)]p]+1
)3

)

(A.3)

With the discussion for the case n = 1, we can conclude that ∂k
t

(

[[f(t)]p]+1
)−1

can be decomposed into a product of successive derivatives of
(

[[f(t)]p]+1
)2

and
(

[[f(t)]p]+1
)−3

.
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