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NEW FIXED-CIRCLE RESULTS ON S-METRIC SPACES

NIHAL YILMAZ ÖZGÜR, NIHAL TAŞ, UFUK ÇELIK

Abstract. In this paper our aim is to study some fixed-circle theorems on S-
metric spaces. For this purpose we give new examples of S-metric spaces and
investigate some relationships between circles on metric and S-metric spaces.
Then we investigate some existence and uniqueness conditions for fixed circles
of self-mappings on S-metric spaces.

1. Introduction

Recently Sedghi, Shobe and Aliouche introduced the concept of an S-metric
space as a generalization of a metric space as follows:

Definition 1.1. [8] Let X be a nonempty set and S : X ×X ×X → [0,∞) be a
function satisfying the following conditions for all x, y, z, a ∈ X :

(1) S(x, y, z) = 0 if and only if x = y = z,
(2) S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a).

Then S is called an S-metric on X and the pair (X,S) is called an S-metric
space.

For example, let R be the real line. If we consider the following function

S(x, y, z) = |x− z|+ |y − z|
for all x, y, z ∈ R, then this function defines an S-metric on R and it is called the
usual S-metric [9].

Sedghi, Shobe and Aliouche investigated some fixed-point results on an S-metric
space in [8]. Then Özgür and Taş studied some generalizations of the Banach’s
contraction principle on S-metric spaces in [7]. Also they introduced new fixed-point
theorems for the Rhoades’ contractive condition on S-metric spaces in [3]. After,
it was generalized these fixed-point theorems for generalized Rhoades’ contractive
conditions in [4].

More recently, the notion of a fixed circle have been defined on metric and S-
metric spaces in [5] and [6], respectively. It is important to investigate some fixed-
circle theorems on various metric spaces to obtain new generalizations of known
fixed-point results. Some interesting fixed-circle theorems were studied on metric
spaces and S-metric spaces by Özgür and Taş (see [5] and [6] for more details).
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Submitted March 7, 2017. Published April 18, 2017.
Communicated by Uday Chand De.

10



NEW FIXED-CIRCLE RESULTS ON S-METRIC SPACES 11

They studied some existence and uniqueness conditions for the fixed circles of self-
mappings.

Our aim in this paper is to obtain new fixed-circle theorems for self-mappings on
S-metric spaces. In Section 2 we recall some basic facts and give new examples of
S-metric spaces. We draw some circles on these new S-metric spaces [10]. Also we
investigate some relationships between circles on various metric spaces. In Section 3
we study some existence and uniqueness theorems for fixed circles. Some illustrative
examples of self-mappings with a fixed circle are also given.

2. Comparisons of Circles on Metric and S-Metric Spaces

In this section we give new examples of S-metric spaces to determine some
comparisons of circles on metric and S-metric spaces.

We recall the notion of a circle on an S-metric space.

Definition 2.1. [6] Let (X,S) be an S-metric space and x0 ∈ X, r ∈ (0,∞). We
define the circle centered at x0 with radius r as

CS
x0,r

= {x ∈ X : S(x, x, x0) = r}.
Now we recall the following basic lemmas.

Lemma 2.2. [8] Let (X,S) be an S-metric space. Then we get

S(x, x, y) = S(y, y, x).

Lemma 2.2 can be considered as the symmetry condition on an S-metric space.
In the following lemma, we see the relationships between a metric and an S-metric.

Lemma 2.3. [2] Let (X, d) be a metric space. Then the following properties are
satisfied:

(1) Sd(x, y, z) = d(x, z) + d(y, z) for all x, y, z ∈ X is an S-metric on X.
(2) xn → x in (X, d) if and only if xn → x in (X,Sd).
(3) {xn} is Cauchy in (X, d) if and only if {xn} is Cauchy in (X,Sd).
(4) (X, d) is complete if and only if (X,Sd) is complete.

The metric Sd was called as the S-metric generated by d [4].
Now we give new examples of S-metric spaces and draw some circles.

Example 2.4. Let X = R+ and the function S1 : X ×X ×X → [0,∞) be defined
by

S1(x, y, z) =
∣

∣x2 − y2
∣

∣+
∣

∣x2 + y2 − 2z2
∣

∣ ,

for all x, y, z ∈ R+. Then S1 is an S-metric on R+ which is not generated by any
metric and the pair (R+, S1) is an S-metric space.

Conversely, assume that there exists a metric d such that

S1(x, y, z) = d(x, z) + d(y, z),

for all x, y, z ∈ R+. Then we obtain

S1(x, x, z) = 2d(x, z) and so d(x, z) =
∣

∣x2 − z2
∣

∣

and
S1(y, y, z) = 2d(y, z) and so d(y, z) =

∣

∣y2 − z2
∣

∣ ,

for all x, y, z ∈ R+. So we get
∣

∣x2 − y2
∣

∣+
∣

∣x2 + y2 − 2z2
∣

∣ =
∣

∣x2 − z2
∣

∣+
∣

∣y2 − z2
∣

∣ ,
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which is a contradiction. Hence S1 is not generated by any metric.

In the following example we extend the S-metric S1 defined in Example 2.4 to
the three dimensional case.

Figure 1. The circle C
S∗

1

0,12 on (X∗, S∗

1
).

Example 2.5. Let us consider the set X∗ = R+× R+ × R+ and the function
S∗

1 : X∗ ×X∗ ×X∗ → [0,∞) be defined as

S∗

1 (x, y, z) =

3
∑

i=1

(∣

∣x2
i − y2i

∣

∣+
∣

∣x2
i + y2i − 2z2i

∣

∣

)

,

for all x = (x1, x2, x3), y = (y1, y2, y3) and z = (z1, z2, z3) on X∗. Then S∗

1 is an
S-metric on X∗ and the pair (X∗, S∗

1) is an S-metric space.
If we choose x0 = 0 = (0, 0, 0) and r = 12, then we get

C
S∗

1

0,12 = {x ∈ X∗ : S∗

1 (x, x, 0) = 12}
= {x ∈ X∗ : x2

1 + x2
2 + x2

3 = 6},
as shown in Figure 1.

If we choose x0 = (2, 1, 1) and r = 12, then we get

C
S∗

1

x0,12
= {x ∈ X∗ : S∗

1 (x, x, x0) = 12}
= {x ∈ X∗ :

∣

∣x2
1 − 4

∣

∣+
∣

∣x2
2 − 1

∣

∣+
∣

∣x2
3 − 1

∣

∣ = 6},
as shown in Figure 2. Notice that the shape of the circles can be changed according
to the center.

Example 2.6. Let X = R+ and the function S2 : X ×X ×X → [0,∞) be defined
by

S2(x, y, z) =

∣

∣

∣

∣

ln
x

y

∣

∣

∣

∣

+
∣

∣

∣
ln

xy

z2

∣

∣

∣
,
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Figure 2. The circle C
S∗

1

x0,12
on (X∗, S∗

1
).

for all x, y, z ∈ R+. Then S2 is an S-metric on R+ which is not generated by any
metric and the pair (R+, S2) is an S-metric space.

Conversely, suppose that there exists a metric d such that

S2(x, y, z) = d(x, z) + d(y, z),

for all x, y, z ∈ R+. Then we obtain

S2(x, x, z) = 2d(x, z) and so d(x, z) =
∣

∣

∣
ln

x

z

∣

∣

∣

and

S2(y, y, z) = 2d(y, z) and so d(y, z) =
∣

∣

∣
ln

y

z

∣

∣

∣

for all x, y, z ∈ R+. So we get
∣

∣

∣

∣

ln
x

y

∣

∣

∣

∣

+
∣

∣

∣
ln

xy

z2

∣

∣

∣
=

∣

∣

∣
ln

x

z

∣

∣

∣
+
∣

∣

∣
ln

y

z

∣

∣

∣
,

which is a contradiction. Hence S2 is not generated by any metric.
Now we consider X∗ = R+× R+ × R+ and the function S∗

2 : X∗ ×X∗ ×X∗ →
[0,∞) be defined by

S∗

2 (x, y, z) =
3

∑

i=1

(∣

∣

∣

∣

ln
xi

yi

∣

∣

∣

∣

+

∣

∣

∣

∣

ln
xiyi

z2i

∣

∣

∣

∣

)

,

for all x = (x1, x2, x3), y = (y1, y2, y3) and z = (z1, z2, z3) in X∗. Then S∗

2 is an
S-metric on X∗ and the pair (X∗, S∗

2) is an S-metric space.
If we choose x0 = (1, 1, 1) and r = 1, then we get

C
S∗

2

x0,1
= {x ∈ X∗ : S∗

2 (x, x, x0) = 1}
= {x ∈ X∗ :

∣

∣lnx2
1

∣

∣+
∣

∣lnx2
2

∣

∣+
∣

∣lnx2
3

∣

∣ = 1},
as shown in Figure 3.
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Figure 3. The circle C
S∗

2

x0,1
on (X∗, S∗

2
).

Using Lemma 2.3, we obtain the following proposition for the comparison of the
circles on a metric space and the corresponding S-metric space generated by the
metric.

Proposition 2.7. Let (X,S) be an S-metric space such that S is generated by a
metric d. Then any circle CS

x0,r
on the S-metric space is the circle Cx0,

r

2
on the

metric space (X, d).

Proof. By Definition 2.1 and Lemma 2.2 we have

S(x, x, x0) = d(x, x0) + d(x, x0) = 2d(x, x0) = 2r.

Then the proof follows easily. �

Corollary 2.8. The circle Cx0,r on a metric space (X, d) is the circle CS
x0,2r

on
the S-metric space which is generated by d.

We give an example to show that a circle Cx0,r in a metric space can be a
circle with the same center and same radius in an S-metric space which can not be
generated by d.

Example 2.9. Let X = R, (X,S) be the usual S-metric space and the function
d : X ×X → [0,∞) be defined by

d(x, y) = 2 |x− y| ,
for all x, y ∈ X. Then (X, d) is a metric space and the usual S-metric is not
generated by d. Conversely, assume that S is generated by d such that

S(x, y, z) = d(x, z) + d(y, z),

for all x, y, z ∈ X. Then we obtain

|x− z|+ |y − z| = 2 |x− z|+ 2 |y − z| ,
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which is a contradiction. Therefore the usual S-metric is not generated by d. If we
consider the unit circles on the metric space (X, d) and the usual S-metric space,
respectively, then we get

C0,1 = {x ∈ X : d(x, 0) = 1} =

{

−1

2
,
1

2

}

and

CS
0,1 = {x ∈ X : S(x, x, 0) = 1} =

{

−1

2
,
1

2

}

.

Consequently, we have C0,1 = CS
0,1.

Let (X,S) be any S-metric space. In [1], it was shown that every S-metric on
X defines a metric dS on X as follows:

dS(x, y) = S(x, x, y) + S(y, y, x), (2.1)

for all x, y ∈ X . However Özgür and Taş showed that the function dS(x, y) defined
in (2.1) does not always define a metric because of the reason that the triangle
inequality does not satisfied for all elements of X everywhen [4].

If the S-metric is generated by a metric d on X then it can be easily seen that
the function dS is explicitly a metric on X , especially we have

dS(x, y) = 4d(x, y).

But, if we consider an S-metric which is not generated by any metric then dS can
be or can not be a metric on X . This metric dS is called as the metric generated
by S in the case dS is a metric.

Example 2.10. Let X = {a, b, c} and the function S : X × X × X → [0,∞) be
defined as:

S(x, y, z) =























7 ; x = y = a, z = b or x = y = b, z = a

3 ;
x = y = a, z = c or x = y = c, z = a or
x = y = b, z = c or x = y = c, z = b

0 ; x = y = z

1 ; otherwise

,

for all x, y, z ∈ X. Then the function S is an S-metric which is not generated by
any metric and the pair (X,S) is an S-metric space. But the function dS defined
in (2.1) is not a metric on X. Indeed, for x = a, y = b, z = c we get

dS(a, b) = 14 � dS(a, c) + dS(c, b) = 12.

We give the following proposition for a circle.

Proposition 2.11. Let (X, dS) be a metric space such that dS is generated by an
S-metric S. Then any circle Cx0,r on the metric space (X, dS) is the circle CS

x0,
r

2

on the S-metric space (X,S).

Proof. By the Definition 2.1, the equality (2.1) and Lemma 2.2 we have

dS(x, x0) = S(x, x, x0) + S(x0, x0, x) = 2S(x, x, x0)

and

S(x, x, x0) =
r

2
.

Then the proof follows easily. �
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Corollary 2.12. The circle CS
x0,r

on an S-metric space (X,S) is the circle Cx0,2r

on the metric space (X, dS) where dS is generated by S.

3. Some Existence and Uniqueness Conditions for Fixed Circles on
S-Metric Spaces

In this section we recall the notion of a fixed circle on an S-metric space and
present some fixed-circle theorems.

Definition 3.1. [6] Let (X,S) be an S-metric space, CS
x0,r

be a circle on X and

T : X → X be a self-mapping. If Tx = x for all x ∈ CS
x0,r

then we call the circle

CS
x0,r

as the fixed circle of T .

We give the following existence theorem for fixed circles on an S-metric space.

Theorem 3.2. Let (X,S) be an S-metric space and CS
x0,r

be any circle on X. Let
us define the mapping

ϕ : X → [0,∞), ϕ(x) = S(x, x, x0), (3.1)

for all x ∈ X. If there exists a self-mapping T : X → X satisfying
(SC1) S(x, x, Tx) ≤ ϕ(x) − ϕ(Tx)

and
(SC2) S(Tx, Tx, x0) ≥ r,

for all x ∈ CS
x0,r

, then CS
x0,r

is a fixed circle of T .

Proof. Let x ∈ CS
x0,r

. Using the condition (SC1) we obtain

S(x, x, Tx) ≤ ϕ(x) − ϕ(Tx) (3.2)

= S(x, x, x0)− S(Tx, Tx, x0)

= r − S(Tx, Tx, x0).

x

T x

T x

r

x0

Figure 4. The geometric description of the condition (SC1).

Because of the condition (SC2), the point Tx should be lie on or exterior of
the circle CS

x0,r
. If S(Tx, Tx, x0) > r then using the inequality (3.2) we have a

contradiction. Therefore it should be S(Tx, Tx, x0) = r. In this case, using the
inequality (3.2) we get

S(x, x, Tx) ≤ r − S(Tx, Tx, x0) = r − r = 0

and so Tx = x.
Hence we obtain Tx = x for all x ∈ CS

x0,r
. Consequently, the self-mapping T

fixes the circle CS
x0,r

.



NEW FIXED-CIRCLE RESULTS ON S-METRIC SPACES 17

x

r

T x

T x

x0

Figure 5. The geometric description of the condition (SC2).

x

r

T x

x0

Figure 6. The geometric description of the condition (SC1) ∩ (SC2).

�

Remark. Notice that the condition (SC1) guarantees that Tx is not in the exterior
of the circle CS

x0,r
for each x ∈ CS

x0,r
. Similarly, the condition (SC2) guarantees

that Tx is not in the interior of the circle CS
x0,r

for each x ∈ CS
x0,r

. Consequently,

Tx ∈ CS
x0,r

for each x ∈ CS
x0,r

and so we have T (CS
x0,r

) ⊂ CS
x0,r

(see Figures 4, 5
and 6).

Now we give an example of a self-mapping which has a fixed circle on an S-metric
space.

Example 3.3. Let (X,S) be an S-metric space, CS
x0,r

be a circle on X and α be a
constant such that

S(α, α, x0) 6= r.

If we define the self-mapping T : X → X as

Tx =

{

x ; x ∈ CS
x0,r

α ; otherwise
,

for all x ∈ X, then it can be easily checked that the conditions (SC1) and (SC2)
are satisfied. Consequently, CS

x0,r
is the fixed circle of T .

We give another example of a self-mapping which has a fixed circle as follows:

Example 3.4. Let X = R and the function S : X ×X ×X → [0,∞) be defined by

S(x, y, z) = α |x− z|+ β |x+ z − 2y| ,
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for all x, y, z ∈ R and α, β > 0 with α ≤ β. Then S is an S-metric on R which is
not generated by any metric and the pair (R, S) is an S-metric space.

Let us consider the circle CS
10,α+β and define the self-mapping T : R → R as

Tx =

{

x ; x ∈ CS
10,α+β

12 ; otherwise
,

for all x ∈ R. Then the self-mapping T satisfies the conditions (SC1) and (SC2).
Hence CS

10,α+β is a fixed circle of T .

Example 3.5. Let (X, d) be a metric space and (X,S) be an S-metric space. Let
us consider a circle CS

x0,r
satisfying

d(x, x0) 6= S(x, x, x0)

and define the self-mapping T : X → X as

Tx = x− S(x, x, x0) + r,

for all x ∈ X. Then the self-mapping T satisfies the conditions (SC1) and (SC2).
Therefore CS

x0,r
is a fixed circle of T . But T does not fix a circle Cx0,r on the metric

space (X, d).

Now, in the following example, we give an example of a self-mapping which
satisfies the condition (SC1) and does not satisfy the condition (SC2).

Example 3.6. Let X = R+ and the function S : X×X×X → [0,∞) be defined in
Example 2.6. Let us consider a circle CS

x0,r
and define the self-mapping T : X → X

as

Tx =

{

x0 ; x ∈ CS
x0,r

β ; otherwise
,

for all x ∈ X where S(β, β, x0) < r. Then the self-mapping T satisfies the condition
(SC1) but does not satisfy the condition (SC2). Clearly T does not fix the circle
CS

x0,r
.

In the following examples, we give some examples of self-mappings which satisfy
the condition (SC2) and do not satisfy the condition (SC1).

Example 3.7. Let (X,S) be any S-metric space and CS
x0,r

be any circle on X. Let
k be chosen such that S(k, k, x0) = m > r and consider the self-mapping T : X → X

defined by

Tx = k,

for all x ∈ X. Then the self-mapping T satisfies the condition (SC2) but does not
satisfy the condition (SC1). Clearly T does not fix the circle CS

x0,r
.

Example 3.8. Let X = R and the function S : X ×X ×X → [0,∞) be defined by

S(x, y, z) = α |x− z|+ β |x+ z − 2y| ,
for all x, y, z ∈ R and some α, β ∈ R with α+ β > 0. Then S is an S-metric on R
which is not generated by any metric and the pair (R, S) is an S-metric space.

Let us consider a circle CS
x0,r

and define the self-mapping T : R → R as

Tx =

{

k1 ; x ∈ CS
x0,r

k2 ; otherwise
,
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for all x ∈ R, where S(k1, k1, x0) = 2r and k2 is a constant such that k2 6= k1. Then
the self-mapping T satisfies the condition (SC2) but does not satisfy the condition
(SC1). Clearly T does not fix the circle CS

x0,r
.

Remark. Let (X,S) be an S-metric space and CS
x0,r

, CS
x1,ρ

be two circles on X.
There exists at least one self-mapping T : X → X which fixes both of the circles
CS

x0,r
and CS

x1,ρ
. Indeed, let us define the mappings ϕ1, ϕ2 : X → [0,∞) as

ϕ1(x) = S(x, x, x0)

and

ϕ2(x) = S(x, x, x1),

for all x ∈ X. Let us consider the self-mapping T : X → X defined as

Tx =

{

x ; x ∈ CS
x0,r

∪ CS
x1,ρ

k ; otherwise
,

for all x ∈ X, where k is a constant satisfying S(k, k, x0) 6= r and S(k, k, x1) 6= ρ.
It can be easily verified that the self-mapping T satisfies the conditions (SC1) and
(SC2) in Theorem 3.2 for the circles CS

x0,r
and CS

x1,ρ
with the mappings ϕ1 and

ϕ2, respectively. Clearly T fixes both of the circles CS
x0,r

and CS
x1,ρ

. The number of
fixed circles can be extended to any positive integer n using the same arguments.

In the following theorem, we give a uniqueness condition for the fixed circles in
Theorem 3.2 using Rhoades’ contractive condition on an S-metric space.

We recall the definition of Rhoades’ contractive condition.

Definition 3.9. [3] Let (X,S) be an S-metric space and T be a self-mapping of
X. Then

(S25) S(Tx, Tx, T y) < max{S(x, x, y), S(Tx, Tx, x),
S(Ty, T y, y), S(Ty, T y, x),

S(Tx, Tx, y)},
for each x, y ∈ X, x 6= y.

Theorem 3.10. Let (X,S) be an S-metric space and CS
x0,r

be any circle on X.
Let T : X → X be a self-mapping satisfying the conditions (SC1) and (SC2) given
in Theorem 3.2. If the contractive condition (S25) is satisfied for all x ∈ CS

x0,r
,

y ∈ X\CS
x0,r

by T , then CS
x0,r

is the unique fixed circle of T .

Proof. Suppose that there exist two fixed circles CS
x0,r

and CS
x1,ρ

of the self-mapping

T , that is, T satisfies the conditions (SC1) and (SC2) for each circles CS
x0,r

and

CS
x1,ρ

. Let x ∈ CS
x0,r

and y ∈ CS
x1,ρ

be arbitrary points with x 6= y. Using the
contractive condition (S25) we find

S(x, x, y) = S(Tx, Tx, T y) < max{S(x, x, y), S(Tx, Tx, x), S(Ty, T y, y),
S(Ty, T y, x), S(Tx, Tx, y)}

= S(x, x, y),

which is a contradiction. Therefore it should be x = y. Consequently, CS
x0,r

is the
unique fixed circle of T . �
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Notice that the contractive condition in Theorem 3.10 is not to be unique. For
example, if we consider the Banach’s contractive condition given in [8]

S(Tx, Tx, T y) ≤ αS(x, x, y),

for some 0 ≤ α < 1 and all x, y ∈ X in Theorem 3.10 then the fixed circle CS
x0,r

is
unique.

Now we give another existence theorem.

Theorem 3.11. Let (X,S) be an S-metric space and CS
x0,r

be any circle on X.
Let the mapping ϕ be defined as (3.1). If there exists a self-mapping T : X → X

satisfying
(SC1)∗ S(x, x, Tx) ≤ ϕ(x) + ϕ(Tx)− 2r

and
(SC2)∗ S(Tx, Tx, x0) ≤ r,

for each x ∈ CS
x0,r

, then CS
x0,r

is a fixed circle of T .

Proof. Let x ∈ CS
x0,r

be any arbitrary point. Using the condition (SC1)∗ we obtain

S(x, x, Tx) ≤ ϕ(x) + ϕ(Tx)− 2r (3.3)

≤ S(x, x, x0) + S(Tx, Tx, x0)− 2r

= S(Tx, Tx, x0)− r.

x

r

T x

T x

x0

Figure 7. The geometric description of the condition (SC1)∗.

Because of the condition (SC2)∗ the point Tx should be lie on or interior of the
circle CS

x0,r
. If S(Tx, Tx, x0) < r then we have a contradiction using the inequality

(3.3).

x

T x

T x

r

x0

Figure 8. The geometric description of the condition (SC2)∗.
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Therefore it should be S(Tx, Tx, x0) = r. If S(Tx, Tx, x0) = r then using the
inequality (3.3) we get

S(x, x, Tx) ≤ S(Tx, Tx, x0)− r = r − r = 0

and so we find Tx = x Consequently, CS
x0,r

is a fixed circle of T .

x

r

T x

x0

Figure 9. The geometric description of the condition (SC1)∗ ∩ (SC2)∗.

�

Remark. Notice that the condition (SC1)∗ guarantees that Tx is not in the interior
of the circle CS

x0,r
for each x ∈ CS

x0,r
. Similarly the condition (SC2)∗ guarantees

that Tx is not in the exterior of the circle CS
x0,r

for each x ∈ CS
x0,r

. Consequently,

Tx ∈ CS
x0,r

for each x ∈ CS
x0,r

and so we have T (CS
x0,r

) ⊂ CS
x0,r

(see Figures 7, 8
and 9).

Now we give the following example.

Example 3.12. Let X = R and the mapping S : X ×X ×X → [0,∞) be defined
as

S(x, y, z) =
∣

∣x3 − z3
∣

∣+
∣

∣y3 − z3
∣

∣ ,

for all x, y, z ∈ X. Then (X,S) is an S-metric space. Let us consider the circle
CS

0,16 and define the self-mapping T : R → R

Tx =
3x+ 4

√
2√

2x+ 3
,

for all x ∈ R. Then it can be easily checked that the conditions (SC1)∗ and (SC2)∗

are satisfied. Therefore the circle CS
0,16 is a fixed circle of T .

In the following example, we give an example of a self-mapping which satisfies
the condition (SC1)∗ and does not satisfy the condition (SC2)∗.

Example 3.13. Let X = R and (X,S) be the S-metric space defined in Example
3.12. Let us consider the circle CS

−1,18 and define the self-mapping T : R → R as

Tx =







−3 ; x = −2
3 ; x = 2
10 ; otherwise

,

for all x ∈ R. Then the self-mapping T satisfies the condition (SC1)∗ but does not
satisfy the condition (SC2)∗. Clearly T does not fix the circle CS

−1,18.
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In the following example, we give an example of a self-mapping which satisfies
the condition (SC2)∗ and does not satisfy the condition (SC1)∗.

Example 3.14. Let X = C and the mapping S : X ×X ×X → [0,∞) be defined
as

S(z1, z2, z3) = |z1 − z3|+ |z1 + z3 − 2z2| ,
for all z1, z2, z3 ∈ C [4]. Then (C, S) is an S-metric space. Let us consider the
circle CS

0,1 and define the self-mapping T1 : C → C

T1z =

{

1
4z

; z 6= 0
0 ; z = 0

,

for all z ∈ C, where z is the complex conjugate of z. Then it can be easily checked
that the conditions (SC1)∗ and (SC2)∗ are satisfied. Therefore the circle CS

0,1 is a
fixed circle of T1. But if we define the self-mapping T2 : C → C

T2z =

{

1
4z

; z 6= 0
0 ; z = 0

,

for all z ∈ C. Then the self-mapping T2 satisfies the condition (SC2)∗ but does not
satisfy the condition (SC1)∗. Clearly T2 does not fix the circle CS

0,1. Especially, T2

maps the circle CS
0,1 onto itself while fixes the points z1 = 1

2
and z2 = − 1

2
only.

Now we determine a uniqueness condition for the fixed circles in Theorem 3.11.
We recall the following definition.

Definition 3.15. [7] Let (X,S) be a complete S-metric space and T be a self-
mapping of X. There exist real numbers a, b satisfying a+3b < 1 with a, b ≥ 0 such
that

S(Tx, Tx, T y) ≤ aS(x, x, y) + bmax{S(Tx, Tx, x), S(Tx, Tx, y),
S(Ty, T y, y), S(Ty, T y, x)}, (3.4)

for all x, y ∈ X.

We give the following theorem.

Theorem 3.16. Let (X,S) be an S-metric space and CS
x0,r

be any circle on X. Let
T : X → X be a self-mapping satisfying the conditions (SC1)∗ and (SC2)∗ given
in Theorem 3.11. If the contractive condition (3.4) is satisfied for all x ∈ CS

x0,r
,

y ∈ X\CS
x0,r

by T then CS
x0,r

is the unique fixed circle of T .

Proof. Assume that there exist two fixed circles CS
x0,r

and CS
x1,ρ

of the self-mapping

T , that is, T satisfies the conditions (SC1)∗ and (SC2)∗ for each circles CS
x0,r

and

CS
x1,ρ

. Let x ∈ CS
x0,r

and y ∈ CS
x1,ρ

be arbitrary points with x 6= y. Using the
contractive condition (3.4) we obtain

S(x, x, y) = S(Tx, Tx, T y) ≤ aS(x, x, y) + bmax{S(Tx, Tx, x), S(Tx, Tx, y),
S(Ty, T y, y), S(Ty, T y, x)},

= (a+ b)S(x, x, y),

which is a contradiction since a+ b < 1. Hence it should be x = y. Consequently,
CS

x0,r
is the unique fixed circle of T . �



NEW FIXED-CIRCLE RESULTS ON S-METRIC SPACES 23

Notice that the contractive condition in Theorem 3.16 is not to be unique. For
example, in Theorem 3.16, if we consider the contractive condition given in [7]

S(Tx, Tx, T y) ≤ aS(x, x, y) + bS(Tx, Tx, x) + cS(Ty, T y, y)
+dmax{S(Tx, Tx, y), S(Ty, T y, x)},

where the real numbers a, b, c, d satisfying max{a + b + c + 3d, 2b + d} < 1 with
a, b, c, d ≥ 0, for all x, y ∈ X then the fixed circle CS

x0,r
is unique.

Finally we note that the identity mapping IX defined as IX(x) = x for all x ∈ X

satisfies the conditions (SC1) and (SC2) (resp. (SC1)∗ and (SC2)∗) in Theorem
3.2 (resp. Theorem 3.11). If a self-mapping T , which has a fixed circle, satisfies
the conditions (SC1) and (SC2) (resp. (SC1)∗ and (SC2)∗) in Theorem 3.2 (resp.
Theorem 3.11) but does not satisfy the condition (IS) in the following theorem
given in [6] then the self-mapping T can not be identity map.

Theorem 3.17. [6] Let (X,S) be an S-metric space and CS
x0,r

be any circle on X.
Let the mapping ϕ be defined as (3.1). If there exists a self-mapping T : X → X

satisfying the condition

(IS) S(x, x, Tx) ≤ ϕ(x) − ϕ(Tx)

h
,

for all x ∈ X and some h > 2, then CS
x0,r

is a fixed circle of T and T = IX .
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[4] N. Y. Özgür, N. Taş, Some new contractive mappings on S-metric spaces and their relation-

ships with the mapping (S25), Math. Sci. 11 7 (2017). doi:10.1007/s40096-016-0199-4
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[7] N. Y. Özgür, N. Taş, Some Generalizations of Fixed Point Theorems on S-Metric Spaces,
Essays in Mathematics and Its Applications in Honor of Vladimir Arnold, New York, Springer,
(2016).

[8] S. Sedghi, N. Shobe, A. Aliouche, A Generalization of Fixed Point Theorems in S-Metric

Spaces, Mat. Vesnik 64 3 (2012), 258–266.
[9] S. Sedghi, N. V. Dung, Fixed Point Theorems on S-Metric Spaces, Mat. Vesnik 66 1 (2014),

113–124.
[10] Wolfram Research, Inc., Mathematica, Trial Version, Champaign, IL (2017).
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