AN EXAMINATION ON HELIX AS INVOLUTE, BERTRAND MATE AND MANNHEIM PARTNER OF ANY CURVE α IN E ${ }^{3}$

SÜLEYMAN ŞENYURT, ŞEYDA KILIÇOĞLU

Abstract

In this study we consider three offset curves of a curve α such as the involute curve α^{*}, Bertrand mate α_{1} and Mannheim partner α_{2}. We examined and find the conditions of Frenet apparatus of any curve α which has the involute curve α^{*}, Bertrand mate α_{1} and Mannheim partner α_{2} are the general helix.

1. Introduction and Preliminaries

In science and nature helix is very famous and fascinating curve. A curve α with $\tau(s) \neq 0$ is called a cylindrical helix if the tangent lines of make a constant angle with a fixed direction. Also cylindrical helix or general helix is a helix which lies on the cylinder. If the curve is a general helix, the ratio of the first curvature of the curve to the torsion of the curve must be constant. Further if both τ and κ are non-zero constant, we call a curve a circular helix. In 1 general Helices in the Sol Space $S o l^{3}$ are examined.The quantities $\{T, N, B, \kappa, \tau\}$ are collectively Frenet-Serret apparatus of a curve α. The Frenet formulae are also well known as

$$
\left[\begin{array}{l}
T^{\prime} \tag{1.1}\\
N^{\prime} \\
B^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
0 & \kappa & 0 \\
-\kappa & 0 & \tau \\
0 & -\tau & 0
\end{array}\right]\left[\begin{array}{l}
T \\
N \\
B
\end{array}\right]
$$

1.1. Involute curve and Frenet apparatus. The involute of a given curve is a well-known concept in Euclidean 3 -space. Let α and α^{*} are the arclengthed curves with the arcparametres s and s^{*}, respectively. The quantities $\{T, N, B, \kappa, \tau\}$ and $\left\{T^{*}, N^{*}, B^{*}, \kappa^{*}, \tau^{*}\right\}$ are collectively Frenet-Serret apparatus of the curve α and α^{*}, respectively. If the curve α^{*} which lies on the tangent surface intersect the tangent lines orthogonally is called an involute of α. If a curve α^{*} is an involute of α.

$$
\begin{equation*}
\alpha^{*}(s)=\alpha(s)+(c-s) T(s) \tag{1.2}
\end{equation*}
$$

is the equation of involute of the curve α. For more detail see in [2, 5].

[^0]Theorem 1.1. The Frenet vectors of the involute α^{*}, based on the its evolute curve α [2] are

$$
\left\{\begin{array}{l}
T^{*}=N \tag{1.3}\\
N^{*}=\frac{-\kappa}{\sqrt{\kappa^{2}+\tau^{2}}} T+\frac{\tau}{\sqrt{\kappa^{2}+\tau^{2}}} B \\
B^{*}=\frac{\tau}{\sqrt{\kappa^{2}+\tau^{2}}} T+\frac{\kappa}{\sqrt{\kappa^{2}+\tau^{2}}} B
\end{array}\right.
$$

The first and second curvature of involute α^{*}, respectively, are

$$
\begin{equation*}
\kappa^{*}=\frac{\sqrt{\kappa^{2}+\tau^{2}}}{(c-s) \kappa}, \quad \tau^{*}=\frac{-\tau^{2}\left(\frac{\kappa}{\tau}\right)^{\prime}}{(c-s) \kappa\left(\kappa^{2}+\tau^{2}\right)} \tag{1.4}
\end{equation*}
$$

Also

$$
\begin{equation*}
\frac{d s}{d s^{*}}=\frac{1}{(c-s) \kappa} \tag{1.5}
\end{equation*}
$$

1.2. Bertrand curve and Frenet apparatus. The curves $\left\{\alpha, \alpha_{1}\right\}$ defined Bertrand pairs curve if they have common principal normal lines. If the α_{1} is called Bertrand mate of α, then we have

$$
\begin{equation*}
\alpha_{1}(s)=\alpha(s)+\lambda N(s) \tag{1.6}
\end{equation*}
$$

If α is a Bertrand curve if and only if there exist non-zero real numbers λ and β such that constant

$$
\begin{equation*}
\lambda \kappa+\beta \tau=1, \beta=\frac{1-\lambda \kappa}{\tau} \tag{1.7}
\end{equation*}
$$

for any $s \in I$. It follows from this fact that a circular helix is a Bertrand curve, [2, 5, 6].

Theorem 1.2. Let α_{1} be the Bertrand mate of the curve α. The quantities $\{T, N, B, \kappa, \tau\}$ and $\left\{T_{1}, N_{1}, B_{1}, \kappa_{1}, \tau_{1}\right\}$ are collectively Frenet-Serret apparatus of the curves α and the Bertrand mate α_{1}, respectively, then [6]

$$
\left\{\begin{array}{l}
T_{1}=\frac{\beta}{\sqrt{\lambda^{2}+\beta^{2}}} T+\frac{\lambda}{\sqrt{\lambda^{2}+\beta^{2}}} B \tag{1.8}\\
N_{1}=N \\
B_{1}=\frac{-\lambda}{\sqrt{\lambda^{2}+\beta^{2}}} T+\frac{\beta}{\sqrt{\lambda^{2}+\beta^{2}}} B
\end{array}\right.
$$

and the first and second curvatures of the offset curve α_{1} are given by

$$
\begin{equation*}
\kappa_{1}=\frac{\beta \kappa-\lambda \tau}{\left(\lambda^{2}+\beta^{2}\right) \tau}, \quad \tau_{1}=\frac{1}{\left(\lambda^{2}+\beta^{2}\right) \tau} \tag{1.9}
\end{equation*}
$$

Also

$$
\begin{equation*}
\frac{d s}{d s_{1}}=\frac{1}{\tau \sqrt{\lambda^{2}+\beta^{2}}} \tag{1.10}
\end{equation*}
$$

1.3. Mannheim curve and Frenet apparatus. Let $T_{2}\left(s_{2}\right), N_{2}\left(s_{2}\right), B_{2}\left(s_{2}\right)$ be the Frenet frames of the α_{2}, respectively. If the principal normal vector N of the curve α is linearly dependent on the binormal vector B^{*} of the curve α^{*}, then the pair $\left\{\alpha, \alpha_{2}\right\}$ is said to be Mannheim pair, then α is called a Mannheim curve and α^{*} is called Mannheim partner curve of α where $\left\langle T, T_{2}\right\rangle=\cos \theta$ and besides the equality $\frac{\kappa}{\kappa^{2}+\tau^{2}}=$ constant is known the offset property, for some non-zero constant 3]. Mannheim partner curve of α can be represented

$$
\begin{equation*}
\alpha_{2}(s)=\alpha(s)-\lambda^{*} N(s) \tag{1.11}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda^{*}=-\frac{\kappa}{\kappa^{2}+\tau^{2}} \tag{1.12}
\end{equation*}
$$

Frenet-Serret apparatus of Mannheim partner curve α^{*}, based in Frenet-Serret vectors of Mannheim curve α are

$$
\left\{\begin{array}{l}
T_{2}=\cos \theta T-\sin \theta B \tag{1.13}\\
N_{2}=\sin \theta T+\cos \theta B \\
B_{2}=N .
\end{array}\right.
$$

The curvature and the torsion have the following equalyties,

$$
\left\{\begin{array}{l}
\kappa_{2}=-\frac{d \theta}{d s^{*}}=\frac{\theta^{\prime}}{\cos \theta} \tag{1.14}\\
\tau_{2}=\frac{\kappa}{\lambda^{*} \tau}=\frac{\kappa^{2}+\tau^{2}}{-\tau}
\end{array}\right.
$$

we use dot to denote the derivative with respect to the arc length parameter of the curve α. Also

$$
\begin{equation*}
\frac{d s}{d s_{2}}=\frac{1}{\cos \theta}=\frac{1}{\sqrt{1+\lambda^{*} \tau}} \tag{1.15}
\end{equation*}
$$

For more detail see in 4].
2. Helices as Involute, Bertrand and Mannheim pairs of any curve

Let $\left\{\alpha, \alpha^{*}\right\}$ be evolute-involute curves. If involute α^{*} is an general helix, lets say α^{*} is involute helix.

Theorem 2.1. Let $\left\{\alpha, \alpha^{*}\right\}$ be evolute-involute curves. Involute α^{*} is a general helix under the condition

$$
\begin{equation*}
\tau^{2}\left(\kappa^{2}+\tau^{2}\right)\left(\frac{\kappa}{\tau}\right)^{\prime \prime}+\left(2 \kappa^{2} \tau \tau^{\prime}-3 \tau^{2} \tau^{\prime}+2 \tau^{3} \tau^{\prime}-3 \tau^{2} \kappa^{\prime}\right)\left(\frac{\kappa}{\tau}\right)^{\prime}=0 \tag{2.1}
\end{equation*}
$$

Proof. Involute α^{*} is a general helix if and only if $\frac{\tau^{*}}{\kappa^{*}}$ is constant. From the equation (1.4), we can write

$$
\frac{\tau^{*}}{\kappa^{*}}=\frac{\frac{-\tau^{2}\left(\frac{\kappa}{\tau}\right)^{\prime}}{(c-s) \kappa\left(\kappa^{2}+\tau^{2}\right)}}{\frac{\sqrt{\kappa^{2}+\tau^{2}}}{(c-s) \kappa}}=\frac{-\tau^{2}\left(\frac{\kappa}{\tau}\right)^{\prime}}{\left(\kappa^{2}+\tau^{2}\right)^{\frac{3}{2}}}
$$

Then

$$
\left(\frac{\tau^{*}}{\kappa^{*}}\right)_{s^{*}}^{\prime}=0
$$

Hence

$$
\begin{aligned}
& \frac{\left(\kappa^{2}+\tau^{2}\right)^{\frac{3}{2}}\left(-\tau^{2}\left(\frac{\kappa}{\tau}\right)^{\prime}\right)^{\prime}-\left(-\tau^{2}\left(\frac{\kappa}{\tau}\right)^{\prime}\right)\left(\left(\kappa^{2}+\tau^{2}\right)^{\frac{3}{2}}\right)^{\prime}}{\left(\kappa^{2}+\tau^{2}\right)^{3}(c-s) \kappa}=0 \\
\Rightarrow & \left(\kappa^{2}+\tau^{2}\right)^{\frac{3}{2}}\left(-\tau^{2}\left(\frac{\kappa}{\tau}\right)^{\prime}\right)^{\prime}-\left(-\tau^{2}\left(\frac{\kappa}{\tau}\right)^{\prime}\right)\left(\left(\kappa^{2}+\tau^{2}\right)^{\frac{3}{2}}\right)^{\prime}=0 \\
\Rightarrow & \tau^{2}\left(\kappa^{2}+\tau^{2}\right)\left(\frac{\kappa}{\tau}\right)^{\prime \prime}+\left(2 \kappa^{2} \tau \tau^{\prime}-3 \tau^{2} \tau^{\prime}+2 \tau^{3} \tau^{\prime}-3 \tau^{2} \kappa^{\prime}\right)\left(\frac{\kappa}{\tau}\right)^{\prime}=0 .
\end{aligned}
$$

Corollary 2.2. If the curve α is a general helix, then the involute α^{*} of the curve α is a planar curve. Hence involute α^{*} cant be a general helix.

Proof. It has been known that the curve $\alpha(s)$ is a general helix if and only if $\frac{\kappa}{\tau}=d$ is constant, then $\left(\frac{\kappa}{\tau}\right)^{\prime}=0$. It is trivial since

$$
\frac{\tau^{*}}{\kappa^{*}}=\frac{-\tau^{2}\left(\frac{\kappa}{\tau}\right)^{\prime}}{\left(\kappa^{2}+\tau^{2}\right)^{\frac{3}{2}}}
$$

Let $\left\{\alpha, \alpha_{1}\right\}$ be Bertrand curve and Bertrand mate If Bertrand mate α_{1} is a general helix, lets say α_{1} is Bertrand mate helix.

Theorem 2.3. Let $\left\{\alpha, \alpha_{1}\right\}$ be Bertrand curve and Bertrand mate. Bertrand mate α_{1} is a general helix under the condition

$$
\lambda=\frac{\left(\frac{\tau}{\kappa}\right)^{\prime}}{\left(\frac{\kappa^{2}+\tau^{2}}{\tau}\right)^{\prime}}, \quad \beta=\frac{\left(\frac{\kappa^{2}+\tau^{2}}{\tau}\right)^{\prime}-\left(\frac{\kappa}{\tau}\right)^{\prime} \kappa}{\left(\frac{\kappa^{2}+\tau^{2}}{\tau}\right)^{\prime} \tau}
$$

Proof. Bertrand mate α_{1} is a general helix if and only if $\frac{\tau_{1}}{\kappa_{1}}$ is constant. From the equation $\sqrt{1.9}$, we can write

$$
\frac{\tau_{1}}{\kappa_{1}}=\frac{\frac{1}{\left(\lambda^{2}+\beta^{2}\right) \tau}}{\frac{\beta \kappa-\lambda \tau}{\left(\lambda^{2}+\beta^{2}\right) \tau}}=\frac{1}{\beta \kappa-\lambda \tau}
$$

Then differentiating, we find

$$
\begin{aligned}
\left(\frac{\tau_{1}}{\kappa_{1}}\right)_{s_{1}}^{\prime} & =0 \\
& \Rightarrow\left(\frac{\tau_{1}}{\kappa_{1}}\right)_{s}^{\prime} \frac{d s}{d s_{1}}=0 \\
& \Rightarrow\left(\frac{1}{\beta \kappa-\lambda \tau}\right)_{s}^{\prime} \frac{1}{\tau \sqrt{\lambda^{2}+\beta^{2}}}=0, \frac{1}{\tau \sqrt{\lambda^{2}+\beta^{2}}} \neq 0 \\
& \Rightarrow\left(\frac{1}{\beta \kappa-\lambda \tau}\right)_{s}^{\prime}=0 \\
& \Rightarrow \frac{-(\beta \kappa-\lambda \tau)^{\prime}}{(\beta \kappa-\lambda \tau)^{2}}=0 \\
& \Rightarrow(\beta \kappa-\lambda \tau)^{\prime}=0 \\
& \Rightarrow\left(\frac{1-\lambda \kappa}{\tau} \kappa-\lambda \tau\right)^{\prime}=0
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad \frac{\left(\kappa-\lambda\left(\kappa^{2}+\tau^{2}\right)\right)^{\prime} \tau-\tau^{\prime}\left(\kappa-\lambda\left(\kappa^{2}+\tau^{2}\right)\right)}{\tau^{2}}=0 \\
& \Rightarrow \quad \lambda=\frac{\tau \kappa^{\prime}-\kappa \tau^{\prime}}{\left(\tau\left(\kappa^{2}+\tau^{2}\right)^{\prime}-\left(\kappa^{2}+\tau^{2}\right) \tau^{\prime}\right)}=\frac{\left(\frac{\kappa}{\tau}\right)^{\prime}}{\left(\frac{\kappa^{2}+\tau^{2}}{\tau}\right)^{\prime}}
\end{aligned}
$$

and

$$
\beta=\frac{\left(\frac{\kappa^{2}+\tau^{2}}{\tau}\right)^{\prime}-\left(\frac{\kappa}{\tau}\right)^{\prime} \kappa}{\left(\frac{\kappa^{2}+\tau^{2}}{\tau}\right)^{\prime} \tau}
$$

Let $\left\{\alpha, \alpha_{2}\right\}$ be Mannheim curve and Mannheim partner. Mannheim partner α_{2} is a general helix, lets say α_{2} is Mannheim partner helix.

Theorem 2.4. Let $\left\{\alpha, \alpha_{2}\right\}$ be Mannheim curve and Mannheim partner. Mannheim partner α_{2} is a general helix under the condition

$$
\tan \theta=\frac{-\left(\tau^{\prime} \theta^{\prime}+\tau \theta^{\prime \prime}\right)\left(\kappa^{2}+\tau^{2}\right)+\tau \theta^{\prime}\left(\kappa^{2}+\tau^{2}\right)^{\prime}}{2 \tau \theta^{\prime}\left(\kappa^{2}+\tau^{2}\right)}
$$

or

$$
2 \theta^{\prime} \tan \theta-\theta^{\prime \prime}=\left(\frac{\tau}{\kappa^{2}+\tau^{2}}\right)^{\prime} \frac{\left(\kappa^{2}+\tau^{2}\right)}{\tau}
$$

Proof. Mannheim partner α_{2} is a general helix if and only if

$$
\frac{\tau_{2}}{\kappa_{2}}=\frac{-\tau \theta^{\prime}}{\left(\kappa^{2}+\tau^{2}\right) \cos \theta}=\mathrm{constant}
$$

If the derivative is taken, we can say

$$
\left(\frac{\tau_{2}}{\kappa_{2}}\right)_{s_{2}}^{\prime}=0
$$

Hence,

$$
\begin{aligned}
\left(\frac{\tau_{2}}{\kappa_{2}}\right)_{s}^{\prime} \frac{d s}{d s_{2}}=0 \Rightarrow & \left(\frac{-\tau \theta^{\prime}}{\left(\kappa^{2}+\tau^{2}\right) \cos \theta}\right)_{s}^{\prime} \frac{1}{\cos \theta}=0 \\
\Rightarrow & \left(\frac{-\tau \theta^{\prime}}{\left(\kappa^{2}+\tau^{2}\right) \cos ^{2} \theta}\right)_{s}^{\prime}=0 \\
\Rightarrow & \frac{\left(-\tau \theta^{\prime}\right)^{\prime}\left(\kappa^{2}+\tau^{2}\right) \cos ^{2} \theta+\tau \theta^{\prime}\left(\left(\kappa^{2}+\tau^{2}\right) \cos ^{2} \theta\right)^{\prime}}{\left(\left(\kappa^{2}+\tau^{2}\right) \cos ^{2} \theta\right)^{2}}=0 \\
\Rightarrow & -\left(\tau^{\prime} \theta^{\prime}+\tau \theta^{\prime \prime}\right)\left(\kappa^{2}+\tau^{2}\right) \cos ^{2} \theta+\tau \theta^{\prime}\left(\left(\kappa^{2}+\tau^{2}\right)^{\prime} \cos ^{2} \theta\right. \\
& \left.-2\left(\kappa^{2}+\tau^{2}\right) \cos \theta \sin \theta\right)=0
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \quad & -\left(\tau^{\prime} \theta^{\prime}+\tau \theta^{\prime \prime}\right)\left(\kappa^{2}+\tau^{2}\right) \cos ^{2} \theta+\tau \theta^{\prime}\left(\kappa^{2}+\tau^{2}\right)^{\prime} \cos ^{2} \theta \\
& -2 \tau \theta^{\prime}\left(\kappa^{2}+\tau^{2}\right) \cos \theta \sin \theta=0 \\
\Rightarrow \quad & {\left[-\left(\tau^{\prime} \theta^{\prime}+\tau \theta^{\prime \prime}\right)\left(\kappa^{2}+\tau^{2}\right)+\tau \theta^{\prime}\left(\kappa^{2}+\tau^{2}\right)^{\prime}\right] \cos ^{2} \theta } \\
& -2 \tau \theta^{\prime}\left(\kappa^{2}+\tau^{2}\right) \cos \theta \sin \theta=0 \\
\Rightarrow & 2 \tau \theta^{\prime}\left(\kappa^{2}+\tau^{2}\right) \frac{\theta^{\prime} \cos \theta \sin \theta}{\cos ^{2} \theta}=-\left(\tau^{\prime} \theta^{\prime}+\tau \theta^{\prime \prime}\right)\left(\kappa^{2}+\tau^{2}\right) \\
& +\tau \theta^{\prime}\left(\kappa^{2}+\tau^{2}\right)^{\prime} \\
\Rightarrow & 2 \tau \theta^{\prime 2}\left(\kappa^{2}+\tau^{2}\right) \frac{\sin \theta}{\cos \theta}=-\left(\tau^{\prime} \theta^{\prime}+\tau \theta^{\prime \prime}\right)\left(\kappa^{2}+\tau^{2}\right)+\tau \theta^{\prime}\left(\kappa^{2}+\tau^{2}\right)^{\prime} \\
\Rightarrow & \tan \theta=\frac{-\left(\tau^{\prime} \theta^{\prime}+\tau \theta^{\prime \prime}\right)\left(\kappa^{2}+\tau^{2}\right)+\tau \theta^{\prime}\left(\kappa^{2}+\tau^{2}\right)^{\prime}}{2 \tau \theta^{\prime 2}\left(\kappa^{2}+\tau^{2}\right)} \\
\Rightarrow & 2 \tan \theta=\frac{-\tau\left(\kappa^{2}+\tau^{2}\right) \theta^{\prime \prime}+\left[\tau\left(\kappa^{2}+\tau^{2}\right)^{\prime}-\tau^{\prime}\left(\kappa^{2}+\tau^{2}\right)\right] \theta^{\prime}}{\tau\left(\kappa^{2}+\tau^{2}\right) \theta^{\prime 2}} \\
\Rightarrow & \frac{\theta^{\prime \prime}}{\theta^{\prime}}-2 \tan \theta=\frac{\tau^{\prime}\left(\kappa^{2}+\tau^{2}\right)-\tau\left(\kappa^{2}+\tau^{2}\right)^{\prime}}{\left(\kappa^{2}+\tau^{2}\right)^{2}} \frac{\left(\kappa^{2}+\tau^{2}\right)}{\theta^{\prime} \tau} \\
\Rightarrow & 2 \theta^{\prime} \tan \theta-\theta^{\prime \prime}=\left(\frac{\tau}{\kappa^{2}+\tau^{2}}\right)^{\prime} \frac{\left(\kappa^{2}+\tau^{2}\right)}{\tau} .
\end{aligned}
$$

Acknowledgments. The authors would like to thank the anonymous referee for his/her comments that helped us improve this article.

References

[1] Ergüt M., Körpınar T. and Turhan E., On Normal Ruled Surfaces of General Helices In The Sol Space Sol ${ }^{3}$, TWMS J. Pure Appl. Math., 4 (2) (2013), 125-130.
[2] Hacisalihoğlu H.H., Diferensiyel Geometri, 1, Inönü Üniversity Publications (1994).
[3] Liu H. and Wang F., Mannheim partner curves in 3-space, Journal of Geometry, 88 (1-2) (2008), 120-126(7).
[4] Orbay K. and Kasap E., On Mannheim partner curves, International Journal of Physical Sciences, 4 (5)(2009), 261-264.
[5] Lipschutz M.M., Differential Geometry, Schaum's Outlines, 1969.
[6] Schief W.K., On the integrability of Bertrand curves and Razzaboni surfaces , Journal of Geometry and Physics, 45 (1-2) (2003), 130-150.

SÜLEYMAN ŞENYuRT
Faculty of Arts and Sciences, Department of Mathematics, Ordu University, Ordu, Turkey

E-mail address: senyurtsuleyman@hotmail.com
Şeyda Kiliçoğlu
Faculty of Education, Department of Mathematics, Başkent University, Ankara, Turkey
E-mail address: seyda@baskent.edu.tr

[^0]: 2000 Mathematics Subject Classification. 53A04, 53A05.
 Key words and phrases. Involute curves; Bertrand curves; Mannheim curves.
 © 2017 Universiteti i Prishtinës, Prishtinë, Kosovë.
 Submitted December 20, 2016. April 17, 2017.
 Communicated by Krishan Lal Duggal.

