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HADAMARD AND FEJER-HADAMARD INEQUALITIES AND
RELATED RESULTS VIA CAPUTO FRACTIONAL
DERIVATIVES

GHULAM FARID, ANUM JAVED, SAIRA NAQVI

ABSTRACT. In this paper we prove the Hadamard and the Fejér-Hadamard
inequalities for convex functions via Caputo fractional derivatives. We also
derive some related inequalities for n-time differentiable functions f(™) such
that \f<")|q,q > 1 is convex, by using Caputo fractional derivatives.

1. INTRODUCTION

A function f : [a,b] — R is said to be convex if

FQz+(1=Ny) <Af(x) + (1 =N f(y)
holds, for all z,y € [a,b] and A € [0,1]. If —f is convex, then f is called concave
function and vice versa.
In literature double integral inequality

1(*57) it [ o < A0 -y

where f: I — R is a convex function on the interval I of real numbers and a,b € T
with a < b, is known as the Hadamard inequality. If f is concave, then the above
inequalities hold in the reverse direction.

In [I4] Fejér gave the following generalization of the Hadamard inequality.

Theorem 1.1. Let f : [a,b] — R be a convex function over [a,b] with a < b and
g : [a,b] = R is a nonnegative, integrable and symmetric to “;b. Then the following
inequality holds:

/ (“;b> / glo)de < / ' falgla)da < LTI / Yy (12)

In literature above inequality is known as the Fejér-Hadamard inequality.
The Hadamard inequality and the Fejér-Hadamard inequality got the attention of
many mathematicians and many generalizations and refinements have been found
so far, for details see, [1L 2] 3, Bl [6, [7, 8, @, 12] and the references therein.
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In [5] Dragomir et al. proved the following results which give the bounds of a
difference of the Hadamard inequality.

Theorem 1.2. Let f: I° C R — R be a differentiable function on I°, a,b € I°
and a < b. If f' € L(a,b), then the following inequality holds:

fla) + f(b) )
| b—a/f Ydx| <

5 < (I @)+ 1 ®)) - (1.3)

Theorem 1.3. Let f : I° C R — R be a differentiable mapping on I°, a,b € I°
with a < b, f' € L(a,b). If the mapping |f’|ﬁ, where p > 1, is convex on [a,b|,
then the following inequality holds:

f();rf b—a/f

/(@) 7T + |/ (b) 7T
2

p—1
P

b—a
T 2p+1)r

Fractional calculus is as much important as calculus. Actually, fractional calcu-
lus is a natural extension of classical calculus. Fractional integration and fractional
differentiation appear as tools in the subject of partial differential equations [10, [1T].
In 1967, M. Caputo made the most significant contribution to fractional calculus.
One of the main drawback of the Riemann-Liouville definition of fractional deriv-
ative is the strange set of initial conditions. Caputo reformulated the more classic
definition of the Riemann-Liouville fractional derivative in order to use classical
initial conditions [4].

In the following we give the definition of Caputo fractional derivatives [10].
Definition 1.4. Let o > 0 and « ¢ {1,2,3,..}, n = [a] + 1, f € AC"[a, ], the

space of functions having nth derivatives absolutely continuous. The right-sided
and left-sided Caputo fractional derivatives of order o are defined as follows:

(1.4)

z (n)
©D D) = s | : I s (15)

I(n—a) x —t)e—ntl

and

— b (n)
C po (=" / fA)
D = dt b. 1.6
( b7f>($> F(Tl*OL) . (t*.T)D‘*TH’l T < ( )
Ifa=nc{l1,2,3,..} and usual derivative f™ (z) of order n exists, then Caputo
fractional derivative (° D2, f)(x) coincides with f™(x) whereas (°D_f)(z) coin-
cides with f)(z) with ezactness to a constant multiplier (—1)". In particular we
have

(“Day f)(@) = (“Dy_f)(z) = f(z) (1.7)

where n =1 and o = 0.

Recently, Fractional integral inequalities have been studied extensively via frac-
tional integral operators. These inequalities provide upper as well as lower bounds
for solutions of the fractional boundary value problems. In this paper in Section
2 we give the Hadamard and the Hadamard type inequalities for convex functions
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via Caputo fractional derivatives. In Section 3 we derive the Fejér-Hadamard and
the Fejér-Hadamard type inequalities for Caputo fractional derivatives.

In the whole paper we consider C"[a,b] the space of functions f : [a,b] — R
which are n-time differentiable and f(™ are continuous on [a, b).

2. HADAMARD AND HADAMARD TYPE INEQUALITIES VIA CAPUTO FRACTIONAL
DERIVATIVES

First we prove the following lemmas which will be useful to prove the required
results.

Lemma 2.1. Let g : [a,b] = R, a < b, be a function such that g € C™[a,b]. If g™

is symmetric to GTH’, then we have

1

“Dg(b) = (-1)"“Dig(a) = 5[“DZg(b) + (~1)"“ Di_g(a)].

Proof. By symmetricity of (™ we have g™ (a + b — 2) = ¢ (z), where = € [a, b].
In the following integral we have

1 b ) ()

C na _ g

Dio) = gy [, G e
1 /bg(”)(a+bx)dx

I'(n—a) (x —a)x—ntl

1 A CI RN
T'(n—a) /a (x — a)‘x—”‘Hd

= (~=1)"“Dj_g(a).

From which we get the required equality. ([

Lemma 2.2. Let f:[a,b] = R, 0 <a <D, be the function such that f € C"[a,b].
Also let {1 be positive and convex function on [a,b]. Then the following equality
for Caputo fractional derivatives holds:

f™ @)+ fM0b) T(h—a+1)
2 20b—a)" "

/1 (1= t)m= — =) fO D) (ta + (1 — t)b)dt.
0

7bfa
2

Proof. One can note that

S / ((1 =)= = ¢770) F0+D) g + (1 — t)b)dt
b o /O (=) ™D (ta + (1 — £)b)dt,

where by simple calculation one can get
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1

St e [ (52 ]

f(")(b)_F(n—a—i-l) _1\nC nHa

= e CV D@

and
1

— bga/o P f D (tg 4 (1 — t)b)dt

_b—a [f™(a) P b—a\" f ()

2 [b—a —(n—a)/a (b—a) b—adx

") Thh—a+1l)g,,

= e DS
Hence can be established. O

In the following we give the Hadamard inequality for Caputo fractional deriva-
tives.

Theorem 2.3. Let f : [a,b] —» R,0 < a < b be the function such that f € C™[a,b].
Also let ™) be positive and convex function on [a,b]. Then the following inequality
for Caputo fractional derivatives holds:

o (a ;F b) (2.2)

F'n—a+1)
=
LIDEYL)

{cDng ) (b) + (71)"CD§‘_f(n)(a)}

Proof. Tt is given that f(™ is convex, therefore for ,y € [a,b] we have
2 - 2 '

Let © = ta+ (1 —t)b,y = (1 —t)a+tb for t € [0,1]. Then z,y € [a,b] and (2.3)
gives

(2.3)

2 <a2+b) < f(ta+ (1= 1)b) + [ (1 = t)a + 1), (2.4)

multiplying both sides of above inequality with t*~*~! and integrating over [0, 1]
we get

1
2f(n) <a+b>/ gn—a—1g
2 0

1 1
g/ oM (g + (1 —t)b)dt+/ ot M (1 — t)a + th)dt.
0 0
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It follows by change of variables

(n) a+b F(Tl—()l+1) C na _1\nC nao a
/ ( ! )s o DRSO+ (1D @] 25)

On the other hand convexity of f() gives
F™(ta+ (1 —t)b) + £ ((1 = t)a + tb) (2.6)
<t (@) + (1= F W 0) + (1= 1) (a) + £ (),

multiplying both sides of above inequality with t"~2~1 and integrating over [0, 1]
we have

1 1
/t"‘“‘lf(”)(ta+(l—t)b)dt+/ "o O (1 = t)a + th)dt
0 0

< [f<”>(a) +f<">(b)] / ey

0

from which one can have

I'n—a-+1 o n N f(n)a+f(vl)b
(77172 (“Dgy f(b) + (1) Dy f(a)) < (a) ® (2.7)
2(b—a) 2

Inequalities (2.5)) and (2.7)) give the inequality (2.2)). O

Theorem 2.4. Let f : [a,b] = R, 0 < a < b be the function such that f €
C™*a,b). Also let |f+D)]| is convex on [a,b]. Then the following inequality for
Caputo fractional derivatives holds:

f™ @)+ f™b) Th-a+tl)
2 2(b—a)"

< ety <1 - 2n1a) 70D @)+ 17 )]

(D2, £(8) + (~1)"C Dg_f(a)] ‘ (2.8)

Proof. From Lemma and the convexity of |f("+1)|, we have,

’ f™ @)+ f™0b) Th-a+l)
2 2(b—a)*™"

/O (1=t =" )| | /" (ta+ (1 — t)b)| dt.

(€ D8, f(5) + (~1)"CDg_f(a)] \

b—a
2
b—a
2

<

<

/01 (1= )m=e — )| (t ’f("“)(a)‘ +(1—t) ‘f("“)(b)’) dt.

_b-a
2

b—a
2

[ a=orme—emy (e @)+ 0]t ar)

+ /11 (1= t)n=e — =) (t ‘f("ﬂ)(a)’ F(1-1) ’f(”“)(b)‘ dt) . (2.9)
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Now

1

/0 (1 =ty =) (¢ f @) + (1= ) [0 )| at)

= ‘f(n+1)((l)| [/02 t(l _ t)n_adt _ /E tn—a+1dt1

0

i) | [Ta-o=e - [Fas t)t”_“dt]
0 0
_ (nt1) 1 B (1)n—a+1]
=l +1(a)|{(n—oz—l—l)(n—oz—i—Q) n2—a+1
(nt1) r 1 (%)nfaJrl
+1f () _na+2_na+1]

Similarly we have

Jfl((l—»w"“-—t”“)(thW+1Ma)y+(1—-w‘j‘”*”(bw(h)

1
2

1\n—a+1

=U““N®[n_i+2—i%a+l}
+re ) | 1 Sar
(n—a+1l)(n—a+2) n—a+l1]’

Therefore from ([2.9) we have

f(n)(a)+f(”)(b) F(nfa“i’l) C na nC na
‘ 2 TRy L DafOF D Db_f(a)]‘

<2 (;

1 B (%)n—a-&-l
n—a+l)(n—a+2) n—a+l
1 B (%)n7a+1
n—a+2 n—a+l1l
1 (l)n—a-&-l
(n+1) N2
I/ (a)|<n—a+2 n—oa+1

. e
+ [0 0)] ((n—a—l—l)l(n—OH'z) _n—oH—l)}

—-a
2

e ) (

From which after a little computation one can have (2.8]).

3. FEJER-HADAMARD INEQUALITIES FOR CONVEX FUNCTIONS VIA CAPUTO

FRACTIONAL DERIVATIVES

21

In this section we assume that ||g(™ || o = Supgefap) |9 ()], where g : [a,b] — R
be such that g € C"[a, b]. Also we define the following convolution f*g of functions
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f and g for Caputo fractional derivatives

1 ARG

CD3+(f *g)(x) = T(n—a)), (x—tpe—n+1

dt,z > a (3.1)

and

SR RO

CDl?f(f*gxx) = F(’/l—Oé) ” (t—l?)o‘_n+1

dt,z < b. (3.2)
Lemma 3.1. [I5] For 0 < A <1 and 0 <a < b, we have

la* — b < (b —a).

Theorem 3.2. Let f : [a,b] = R,a < b be the function such that f € C"[a,].
Also let f™) be positive and convex function on [a,b]. If g : [a,b] — R is a function
such that g € C"[a,b] and g™ is nonnegative, integrable and symmetric to 92

2 s
then following inequalities for Caputo fractional derivatives hold:

70 (432) D o(t) + (-1 Df gta)

< [°D (f % 9)(b) + (=1)"“ D (f * g)(a)]

PARC) ;L F (b)

[€Dg, g(b) + (-1)"C Dy_g(a)] (3.3)

Proof. By convexity of f(") we have

m (a+b\ o (tat(I—b+tb+(1—t)a
o R

_ fMta+ (1= 0)b) + f"(Eb + (1~ t)a)
— 2 9,

where t € [0, 1]. Multiplying both sides of above inequality with 2t"~*~1g(™ (tb +
(1 —t)a) and integrating the resulting inequality with respect to ¢ over [0, 1] we get

1
2 (a;rb>/ =g (th 4 (1 — t)a)dt

0

< /1 "o M (ka4 (1 — 1)b)g™ (tb + (1 — t)a)dt
0

1
n / ==L £ (4 4 (1 — £)a)g™ (th + (1 — t)a)dt.
0
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By setting tb + (1 — t)a = & we have

b
= W l/ (@ —a)" " (a+ b —a)g" (a)da

b
¥ / (&~ a) oty <x>g<"><x>dw]

f(”):cg(”)a+b—x @)
_ an+1 x_aa n+1 (E

_ U o xg<”> fO @) ), >g<n< >d4.

oz (o — q)oa—n+1 u (x_a)a n+1

By using Lemma we get first inequality of ([3.3]).
For second inequality of (3.3 we proceed as follows:
Convexity of f(") gives

F™(ta+ (1= 1)) + f™ (80 + (1~ t)a) < [ (a) + 1™ (),

23

where ¢ € [0, 1]. Multiplying both sides of above equation with t*~*~1g(™) (th+ (1 —

t)a) and integrating the resulting inequality with respect to ¢ over [0, 1] we get,

/1 tn,aflf(n) (ta+ (1 — t)b)g(") (tb+ (1 — t)a)dt
0

- /1 oM (b 4 (1 — 8)a)g™ (tb + (1 — t)a)dt
0

< (f™(a) + ™ (0)) /1 =g (b + (1~ t)a)dt,

0
which after little computation gives the required result.

Next we need the following lemma.

Lemma 3.3. Let f : [a,b] — R,a < b be a function such that f € C""a,b].
Also let that f"+1) be positive and convex function on [a,b]. If g : [a,b] = R is a
function such that g € C™[a,b] and g™ is nonnegative, integrable and symmetric

to “T'H’, then following equality for Caputo fractional derivatives hold:

() (q) + F(0)
PR T (€ g o) + (-1 Dg_g(a)

— (D (f *9)(®) + (=1)"“ D (f * g)(a))

/ (s a>"-a-1g<"><s>ds] FD ()t

with « > 0.
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Proof. One can note that

F(%_a) / b [ / (b o) (5)ds (3.4)
- / (o a>"-a-1g<n><s>ds] £ ) dt
- ﬁ [ / b ( / b s>"-a-lg<"><s>ds) Fo @ (3.5)

b b
+ / (— / (s _a>wlg<n><s>ds> f(”“)(t)dt] .

By simple calculation one can get

/ b / t(b—s)” a=1g(m)(s >ds) 7 @)t
K g<n (s ) / f<n> g<n> ]
_ a n+1 a n+1

= I(n— ) [/ (D) DG, g0) - CD5;+<fg>(b>}

= r(n - a) | 250002 o0) + (1D g(a] - D2, fat0)]

and

b b

(— / (s — a)"=o~1g™)s >ds> £ (bt
) (s b r(n) (n)
_ g ey g™ (@)
< S _ a a n+1> f (a) /a (t _ a)ozfnJrl dt
o f(n ( ) C nHa _1\nC na _ Cpa

=I'(n—a) (" Dgyg(b) + (=1)"" Dy_g(a)] =~ Dg, fg(a))| -

Hence one can establish the required equality. ([

Theorem 3.4. Let f : [a,b] — R,a < b be a function such that f € C"*]a,b]. If
|| s convex on [a,b] and g : [a,b] — R is a function such that g € C"[a,b]
and g™ is nonnegative, integrable and symmetric to “+b , then following inequality
for Caputo fractional derivatives hold:

(n) a (")
PR@ T e b gh) + (-1 Dig(a)]

~[°Dg (f * 9)(b) + (=1)"“Di_(f * g)(a)]]

(b_a)a+1“g(n)||00 1 n n
< ol (1 L) [ @i+ o)

with « > 0.
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Proof. Using Lemma [3.3] we have

SO I fe e gs)+ (-1 D3

~CDL(F + )®) + (~1"D}(F *g)(a)]
b t
v || [ o

— / b(sa)"alg(")(s)dsl FOFD(t)dt.

Using convexity of | f(*+1D| we have

@] < @) +

t—a, .,
<= T f )]

b—

where t € [a, b].
From symmetricity of ¢(™ we have

b a+b— t _
/ (s —a)" g™ (s)ds / (atb—s) ——— ds
t

_Sa n+1

This gives

t b
[ o=ty = [ -yt s)ds

a+b—t
[ i
t

LT = s)rmetig(s)ds, € o, 5]
- t n—a— n a
Jooo [0 =)= g™ (s)]ds, ¢ € [=52,0].

a+b— t
/ ey (5)ds.

(3.7)
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By virtue of the Lemma [3.3] and inequalities (3.7) and (3.8 we have

(L0 (00 40+ (-1 D g(a) (39
~[ODE,(F *9)(8) + (<1 D (£ * g)(@)]

< [ (ool

(5=slr @]+ el ) d

a
b—a —a

¥ / (/ + (0= 3 () s)ds|

(=il + el a

/a 2 ((b—lt)“ (¢t —la)“)

(6=l @)+t = )l /"D @)]) dt

+/b+ ((t —1a)a - (b—lt)a) (b= 01D @)+t = "D 1)) dt} :

Now one can have

lg™ |
“I'(n—a)(b—a)

/aT ((blt)a G 1a)a> (b—t)dt

[ (- ) o

(b—a)?>® (1-« 1
T 1-a \2-a 2@ (3.10)
and
a;»b 1 1
— t—a)dt
[ (g -aa) o
b
1 1
= — b—t)dt
foo (o - =) 0
(b—a)?« 1 1
= — . A1
l—-a) \2—a 2l-@ (3:.11)
Using (3.10)), (3.11)) in (3.9) we get the required result. O

Theorem 3.5. Let f : [a,b] — R,a < b be a function such that f € C"*{a,b]. If
|f D)9 ¢ > 1 is convex on [a,b] and g : [a,b] — R is a function such that g €

C"[a,b] and g™ is nonnegative, integrable and symmetric to %b, then following
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inequality for Caputo fractional derivatives hold:

(n) a (n)
f ();f ®) 1€ pe o) + (1" D¢ g(a)]

- [“D2(f %))+ (<1 DE(f *9)(@)]|
< 20U 0 2) (17O If(”“)(b)lq)‘l’

- (1-a)T(n—a) 2 (3.12)

. 1,1 _
wzthaZOand;—i—a—l.

Proof. By using Lemma Holder inequality, inequality (3.8)) and convexity of
| f(**1)|9 respectively we have

) (q) +
LRI €08 g0 + (1D gta)]

= [9D2,(f x 9)(b) + (=1)"“Dp_(f * 9)(a)]|

[/ab /taert(b_ S)”*ﬂ*lg(n) s
- ﬁ V+ (/ta%t 6= 3>"“9(”’(s>lds> dt
- /b (/;b_t 6= S>”_“_19(”)<8)9‘")<s>|ds) dt] o

/a + </ta+b—t ‘(b—s)"_o‘_lg(")(s)‘ds> 0D (1) d

b t q
_ a1 () (nt1) (1[4
w L (L, Jom gt i dt}

lg™lee [(20—a)=e N\
“T-a) l( i—a U 2))

(S (@ 4+ [ @) b -l
( e (1-2 )) ]

1—1
dt]

If("“)(t)l“dt] q

From which after a little computation one can have the required result. [

Theorem 3.6. Let f : [a,b] — R,a < b be a function such that f € C"*[a,b].
Also let |f"*tV|9 ¢ > 1 be convex on [a,b] and g : [a,b] — R be a function such

that g € C™[a,b] and g™ is nonnegative, integrable and symmetric to “7”’, then
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following inequalities for Caputo fractional derivatives hold:
f™(a) + 1 (b)
2
—[“Dg(f * 9)(0) + (=1)"“Di_(f * g)(a)]|
2% (b — a) =2 g™ L /10D (g)[a 4 [ FFD ()] @
< PO ey (OO g
(1-ap)*T(n - a) 2
with « > 0.

(4) [“D3 1 9(b) + (1) Di_g(a)]

") (g) + F)
(i [0 (€ g ) + (-1 D_g(a)]

~[9Dg (f *9)(b) + (=1)"“ D (f * g)(a)]]

(b— a) g™ oo <f<"+1><a>|q + |f<n+1><b>|q>3
(1—ap)sT(n - a) 2

IN

(3.14)

with 0 < o < 1. where%—i—%:l.

Proof. Making use of Lemma 4, Holder inequality, inequality (3.6) and convexity
of [f(»+1)]9 we have

‘ (f WORY, (n)(b)) [© D3, g(b) + (~1)"°D§_g(a)]

~[9Dg (f *9)(b) + (=1)" D5 (f * g)(a)]]

e </ [ ] dt) | (/ s ("“><t>|th) q
S [ N ( = '@_igi)mws) )
+/b </airb—t|(b_i§i)—mr1|ds> dtr
) /ab ((:—_t @7 4 T gt (b”q) dt>;
) m V ((b—lt)a - _1a)a>pdt
+/b ((t e (bft)a)pdtr

. ) :
x [ / (:_tf("“)(a)q+Ii_ZIf("“)(b)l") dt] . (3.15)

a

IN

A

Now
(A—B)1<AT—-BY A>B>0
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gives ] _
_(b—lb‘)"‘ ot —1a)0‘_ = (b —lt)ap 0 _1a)ap (3.16)
for t € [a, GTH’]’ and
(¢ —1a)”‘ - (b—lt)a_ = (t _1a)ap G _1t)ap (3.17)

for t € [“7“’,1)]. Using |D and |D in inequality 1) and solving we get
|

required result.

ACKNOWLEDGEMENT

The research work of first author is supported by Higher Education Commission
of Pakistan under NRPU 2016, Project No. 5421.

(1
2]
(3]
[4]
(5]

(6]
(7]
(8]
(9]
[10]
(11]
(12]
(13]

[14]
[15]

[16]

REFERENCES

A. G. Azpeitia, Convez functions and the Hadamard inequality, Rev. Colomb. Mat., 28(1)
(1994), 7-12.

M. K. Bakula, M. E. Ozdemir, J. Pecari¢, Hadamard type inequalities for m-convex and
(a,m)-convex functions, J. Ineq. Pure Appl. Math., 9(4) (2008), Art. Id. 96.

M. K. Bakula, J. Pecari¢, Note on some Hadamard type inequalities, J. Ineq. Pure Appl.
Math., 5(3) (2004), Art. Id. 74.

M. Caputo, Linear models of dissipation whose Q is almost frequency independent Part II,
Geophys. J. Int., 13(5) (1967), 529-539.

S. S. Dragmoir, R. P. Agarwal, Two inequalities for differentiable mappings and applications
to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11(5) (1998),
91-95.

S. S. Dragmoir, C. E. M. Pearce, Selected topics on Hadamard inequalities and applications,
RGMIA Monographs,Victoria University, Math. Sic. Marh. Roum., 47 (2004), 3-14.

G. Farid, M. Marwan, A. U. Rehman, New mean value theorems and generalization of
Hadamard inequality via coordinated m-convex functions, J. Inequal. Appl., (1) (2015), 283.
P. M. Gill, C. E. M. Pearce, J. Pecari¢, Hadamard’s inequality for r-convex functions, J.
Math. Anal. Appl., 215(2) (1997), 461-470.

I. 1§Can, Hermite Hadamard Féjer type inequalities for convex functions via fractional inte-
grals, Stud. Univ. Babes-Bolyai Math., 60(3) (2007), 26-35.

A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differ-
ential equations, Elsevier Science Inc. New York, 204 (2006).

S. Miller, B. Ross, An introduction to fractional calculus and fractional differential equations,
John Wiley, New York, 1993.

M. E. Ozdemir, M Avci, E. Set, On some inequalities of Hermite-Hadamard type via m-
converity, Appl. Math. Lett., 23(9) (2010), 1065-1070.

E. Set, M. E. Ozdemir, S. S. Dragomir, On the Hermite-Hadamard inequality and other
integral inequalities involving two functions, J. Inequal. Appl., (2010), 9. Art. Id. 148102.

L. Fejér, Uberdie Fourierreihen, II, Math. Naturwise. Anz Ungar. Akad., Wiss, 24 (1906).
A. P. Prudnikov, Y. A. Brychkov, O. I. Marichev, Integral and series. 1. In Elementary
Functions, Nauka, Moscow; 1981.

M. Z. Sarikaya, E. Set, H. Yaldiz, N. Basak, Hermite-Hadamard’s inequalities for fractional
integrals and related fractional inequalities, J. Math. Comput. Model., 57(9) (2013), 2403-
2407.

GHULAM FARID
COMSATS INSTITUTE OF INFORMATION TECHNOLOGY, ATTOCK CAMPUS, PAKISTAN
E-mail address: faridphdsms@hotmail.com, ghlmfarid@ciit-attock.edu.pk



30 G. FARID, A. JAVED, SAIRA NAQVI

ANUM JAVED
COMSATS INSTITUTE OF INFORMATION TECHNOLOGY, ATTOCK CAMPUS, PAKISTAN
E-mail address: javedanum.38@gmail.com

SAIRA NAQVI
COMSATS INSTITUTE OF INFORMATION TECHNOLOGY, ATTOCK CAMPUS, PAKISTAN
E-mail address: naqvisaira2013@gmail.com



