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PICARD OPERATORS IN »-METRIC SPACES VIA DIGRAPHS

SUSHANTA KUMAR MOHANTA AND SHILPA PATRA

ABSTRACT. In this paper we prove some fixed point theorems in b-metric
spaces endowed with a graph which are generalizations of the Banach Con-
traction Principle. We also prove Edelstein theorem in the setting of b-metric
spaces.

1. INTRODUCTION

The notion of a b-metric space was introduced by Bakhtin[I] and Czerwik[4].
This is a generalization of the usual notion of a metric space. Several authors
reformulated many problems of fixed point theory in b-metric spaces. In 2005,
Echenique[6] studied fixed point theory by using graphs. Afterwards, Espinola and
Kirk[7] applied fixed point results in graph theory. Recently, Jachymski[9] proved a
sufficient condition for a selfmap f of a metric space (X, d) to be a Picard operator
and applied it to the Kelisky-Rivlin theorem on iterates of the Bernstein operators
on the space C[0,1]. Motivated by the idea given in[d], we reformulated some
important fixed point results in metric spaces to b-metric spaces endowed with a
graph. We also prove b-metric version of Edelstein theorem. Finally, an example is
provided to support our main result.

2. SOME BASIC CONCEPTS
We begin with some basic notations and definitions in b-metric spaces.

Definition 2.1. [4] Let X be a nonempty set and s > 1 be a given real number.
A functiond : X x X — R7T is said to be a b-metric on X if the following conditions
hold:

(i) d(z,y) =0 if and only if x = y;
(ii) d(z,y) = d(y,xz) for all z,y € X;
(iil) d(z,y) < s(d(z,z) +d(z,y)) for all z,y,z € X.
The pair (X, d) is called a b-metric space.

If s = 1, then the triangle inequality in a metric space is satisfied, however it
does not hold true when s > 1.
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Definition 2.2. [2] Let (X, d) be a b-metric space, x € X and (x,,) be a sequence
in X. Then

(i) (zn) converges to x if and only if lim d(z,,x) = 0. We denote this by
n— oo

lim x, =z or z, — z(n — ).
n— oo

(ii) (xn) is Cauchy if and only if lim d(x,,2m) = 0.
n,Mm—00
(iii) (X,d) is complete if and only if every Cauchy sequence in X is convergent.

Definition 2.3. The sequences (x,) and (y,) in a b-metric space (X,d) are
called Cauchy equivalent if each of them is a Cauchy sequence and d(Zn,yn) — 0
as n — oo.

Definition 2.4. Let (X,d) be a b-metric space. A mapping f : X — X is called
a Picard operator (abbr., PO) if f has a unique fized point u € X and lim f"z=u
n—oo

forallx € X.

We next review some basic notions in graph theory.

Let (X, d) be a metric space. We assume that G is a directed graph (digraph) with
the set V(G) of its vertices coincides with X and a set of edges E(G) contains all
the loops, i.e., E(G) 2 A, where A = {(x,z) : x € X}. We also assume that G has
no parallel edges and so we can identify G with the pair (V(G), E(G)). G may be
considered as a weighted graph by assigning to each edge the distance between its
vertices. By G~! we denote the graph obtained from G by reversing the direction
of edges ie., E(G™") = {(z,y) € X x X : (y,z) € E(G)}. We treat G as a
directed graph for which the set of its edges is symmetric. Under this convention,
E(G) = E(G)UE(G™1). Our graph theory notations and terminology are standard
and can be found in all graph theory books, like [3L 5] §]. If x, y are vertices of the
digraph G, then a path in G from z to y of length n (n € N) is a sequence (z;)?"_, of
n + 1 vertices such that xg = z, x, =y and (z;-1,2;) € E(G) fori=1,2, --- ,n.
A graph G is connected if there is a path between any two vertices of G. G is
weakly connected if G is connected. If G is such that E(G) is symmetric and z is
a vertex in GG, then the subgraph G, consisting of all edges and vertices which are
contained in some path beginning at = is called the component of G containing x.
We note that V(G,) = [z]g, where [z]¢ is the equivalence class of the following
relation R defined on V(G) by the rule:

yRz if there is a path in G from y to z.
Clearly, G is connected.

Definition 2.5. Let (X,d) be a b-metric space with the coefficient s > 1 and
let G = (V(Q),E(GQ)) be a graph. A mapping f : X — X is called a Banach
G-contraction or simply G-contraction if f preserves edges of G, i.e.,

Vr,y € X, ((z,y) € E(G) = (f, fy) € E(G)),

and f decreases weights of edges of G in the following way:

there exists o € (0, %) such that

d(fz, fy) < ad(z,y)
for all z,y € X with (z,y) € E(G).
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Any Banach contraction is a Gg-contraction, where the graph Gy is defined by
E(Gp) = X x X. But it is worth mentioning that a Banach G-contraction need
not be a Banach contraction (see Remark [3.9).

_ Remark 2.6. If f s a G-contraction, then f is both a G~ -contraction and a
G-contraction.

Definition 2.7. Let (X, d) be a b-metric space with the coefficient s > 1 and let
f: X — X be a given mapping. We say that f is continuous at xg € X if for every
sequence (x,) in X, we have T, — xg as n — 00 = fx, = fxg asn —oco. If f
is continuous at each point xg € X, then we say that f is continuous on X.

Definition 2.8. Let (X,d) be a b-metric space with the coefficient s > 1. A
mapping f : X — X is called orbitally continuous if for all x,y € X and any
sequence (kn)nen of positive integers,

frra — y implies f(f*x) = fy as n — co.

Definition 2.9. Let (X,d) be a b-metric space with the coefficient s > 1. A

mapping f : X — X is called G-continuous if given x € X and a sequence (Zn)nen,
Tp = x and (Ty,Tn+1) € E(G) for n € Nimply fz, — fx.

Definition 2.10. Let (X,d) be a b-metric space with the coefficient s > 1. A
mapping [+ X — X is called orbitally G-continuous if for all z,y € X and any
sequence (kp)nen of positive integers,

fFr =y and (fx, fF+12) € B(G) for n € Nimply f(f*x) — fy.

It is easy to observe the following relations:
continuity = orbital continuity = orbital G-continuity;
continuity = G-continuity = orbital G-continuity.

3. MAIN RESULTS

In this section we always assume that (X,d) is a b-metric space, and G is a
directed graph such that V(G) = X and E(G) 2 A.
We begin with the following lemma.

Lemma 3.1. Let (X,d) be a b-metric space with the coefficient s > 1 and f :
X — X be a G-contraction with a constant « € (0, %) Then, given x € X and
y € [x]a, there is r(x,y) > 0 such that

d(f*z, f*y) < a"r(z,y), Yn € N.
Proof. Let * € X and y € [z]s. Then there is a path (mi)fio in G from z to

y, ie., x9 =z, zny = y and (z;_1,2;) € E(G) for i = 1,2,--- ,N. Since f is a
G-contraction, it is also a G-contraction. By mathematical induction, we have

(f"@iz1, [M2i) € BE(G) and d(f"wi—1, fM2i) < o™ d(@i-1, ;)
foralmeNandi=1,2,---,N.
Now,
d(f ", fry) < sd(fMwo, fhar) + 87 d(fMwy, frag) + -

+sV T (e, ffan—1) + 8N T d(f e No1, faN)
N
a” Zsid(xi_l,xi), since s > 1.

=1

IN



PICARD OPERATORS IN b-METRIC SPACES - - - 45

N
If we set r(z,y) = Z s'd(x;_1,2;), then
i=1
d(f"z, f"y) < a"r(z,y), Yn € N,
(I

Theorem 3.2. Let (X,d) be a complete b-metric space with the coefficient s > 1,

and let the triple (X, d, G) has the following property:
(¥) For any sequence (xy,) in X, if v, — x and (Tpn,Tpy1) € E(G) for alln > 1,
then there exists a subsequence (xy,) of (x,) such that (zy,,z) € E(G) for all
n>1.
Let f: X — X be a G-contraction, and Xy = {z € X : (z, fx) € E(G)}. Then,

(i) for any x € Xy, f |2} s @ G -contraction and f |21 78 a PO.

(ii) if Xy # 0 and G is weakly connected, then f is a PO.

Proof. (i) Let x € Xy. Then (z, fr) € E(G) and so fr € [z]s. Consequently, it
follows that [z]s = [fz]a.

We first show that f |, is a G,-contraction.

Let y € [z]5. Then there exists a path (z;)!_, from x to y where g =z, z, =y

and (x;_1,z;) € E(G) for i = 1,2,---,p. Since f is a G-contraction, it is also
a G-contraction. Then, (z;_1,2;) € E(G) implies (fz;_1, fz;) € E(G) for i =
1,2,---,p. This proves that (fz;)}_, is a path in G from fz to fy and hence
fy € [fzr]la = [v]a. Thus, y € [z]s = fy € [z]a.

Let (y,2) € E(G3). By our preceeding discussion, we have fy, fz € [x]5. Since
y € [z]g, there exists a path (yl)g;ol in G from x to y where yy = z, Yg—1 = Y.
This combining with (y, z) € E(G,), there is a path (yi)i_o in G from x to z where
yq = 2. Let (2;);_, be a path in G from z to fz where 20 = 2 = yo, 2, = fZ = [¥o.
As f preserves edges of G, (@, 21,22, , fx, fyr, - 5 [yq—1, fYq) is a path in G from

x to fz. In particular, (fy,—1,fys) € E(Gg) ie., (fy,fz) € E(C;‘I) Therefore,
f |5 is a Gy-contraction. Since fz € [z]s, by applying Lemma we get

d(frz, f*z) < a"r(x, fr), Vn € N. (3.1)
For m,n € N with m > n, using condition , we have
d(fra, frr) < sd(ffa, fPTe) + 82 d(f T e [ Re) 4
A2, L) (P, )

< [San + 82an+1 4+ 4 Sm—n—lam—Z + Sm—n—lam—l] T(I,fﬂ?)
< sa[L4sa+- 4 (sa)™" "+ (sa)™ " r(z, f)
Ry

—0 asm,n— oo.

Therefore, (f™x) is a Cauchy sequence in [z]5.

If y € [z]5, then fy € [z]5 = [y]s. By an argument similar to that used above,
(f"y) is a Cauchy sequence in [z]5.
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Again, by using Lemma [3.1]
d(f"z, f*y) < a"r(z,y) = 0 as n — .

Hence, (f™z) and (f™y) are Cauchy equivalent. By completeness of X, (f™z) con-
verges to some u € X.

Now,
d(f"y,u) < sd(f"y, M) + sd(f" 2, u)

gives that, lim f"y = wu. Thus, lim f"y =u, for all y € [z]4.
n—oo n—oo

As f is a G-contraction and (z, fz) € E(Q), it follows that (f"z, f**1x) € E(G)
for all n € N. By property (*), there exists a subsequence (f"”'"a?) of (f"x) such
that (fk“q:,u) € E(G). We note that (9c,fgc,f2:1c7 e ,f’“x,u) is a path in G and

hence it is also a path in G from x to u. This proves that u € [z]x.

Furthermore,

sd(u, f ) + sd(for e, fu)
sd(u, fF 1) + asd(fFrx,u)
-0 asn— oo.

d(u, fu)

<
<

This implies that, d(u, fu) = Oi.e., fu = u. Thus, f [} has a fixed point u € [z]5 .

The next is to show that the fixed point is unique. Assume that there is another
point v € [z]s such that fv = v. Since lim f"y = u, for all y € [z]5, we have
n—oQ

lim f"v =w and so, v =u. Thus, f |[m]@ is a PO.
n—oo

(1) If G is weakly connected, then [z]5 = X. Therefore, it follows from (i) that

f has a unique fixed point u in X and lim f"z = u, for all x € X. Thus, f is a
n—oo

PO. O

The following corollary is the b-metric version of Banach Contraction Principle.

Corollary 3.3. Let (X, d) be a complete b-metric space with the coefficient s > 1
and the mapping [ : X — X be such that

d(fz, fy) < ad(z,y)

for all x,y € X, where a € (0, %) is a constant. Then f has a unique fixed point u
in X and f"r — u for all x € X.

Proof. The proof can be obtained from Theorem by taking G = Gy, where Gg
is the complete graph (X, X x X). a

Corollary 3.4. Let (X,d) be a complete b-metric space with the coefficient s > 1
and let < be a partial ordering on X such that given x,y € X, there is a sequence
(xi)ilio such that xo = z, xny = y and for all i = 1,2,--- N, x;_1 and xz; are
comparable. Let f: X — X be such that f preserves comparable elements and

d(fz, fy) < ad(z,y)
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forall x,y € X withx <y ory <z and a € (o, %) s a constant. Assume that the
triple (X, d, =) has the following property:

For any sequence (x,) in X, if , — © and x,,T,41 are comparable for all
n > 1, then there exists a subsequence (xy, ) of (zn) such that x, ,x are compara-
ble for all n > 1.

n?

If there exists xg € X with xg X fxg or frg = zg, then f is a PO.

Proof. The proof can be obtained from Theorem [3.2| by taking G = G5 = {(=,y) €
XxX:z=<yory=<uz} O

Theorem 3.5. Let (X,d) be a complete b-metric space with the coefficient s > 1,
and let f: X — X be a G-contraction such that f is orbitally G-continuous. Let
X;={x e X:(z, fzx) € E(G)}. Then,

(i) for any x € Xy and y € [x]s, (f"y) converges to a fized point of f and
lim f™y does not depend on y.

n—oo
(i) of Xy #0 and G is weakly connected, then f is a PO.

Proof. (i) Let x € Xy ie., (z, fx) € E(G). Let y € [r]s. Then proceeding as in
Theorem we can show that the sequences (f"x) and (f™y) are Cauchy equiva-
lent. By completeness of X, (f™x) converges to some u € X.

Now,

d(f"y,u) < sd(fMy, fMx) + sd(f 2, u)
—0 asn— oo,

which gives that, lim f"y = u for all y € [z]4.
n—oo

We now show that w is a fixed point of f.
Since f preserves edges of G and (z, fz) € E(G), it follows that (f"z, f"*z) €
E(G) for all n € N. Again, f being orbitally G-continuous, we have f(f"z) — fu
which implies that fu = u since, simultaneously, f(f"z) = f""'x — u. Thus,
(f™y) converges to a fixed point u of f.
(it) If x € Xy and G is weakly connected, then [z]5 = X and so by (i), f is a
PO. [

Corollary 3.6. Let (X,d) be a complete b-metric space with the coefficient s > 1
and let = be a partial ordering on X such that given x,y € X, there is a sequence
(xi)ilio such that vo = x, xy =y and for alli =1,2,--- N, x;_1 and x; are com-
parable. Let f : X — X be an orbitally continuous function such that f preserves
comparable elements and

d(fx, fy) < ad(z,y)
forallz,y € X withx <y ory <Xz and a € (o, %) is a constant. If there exists
xo € X with xg = fxg or fxg = zg, then f is a PO.

Proof. The proof can be obtained from Theorem by taking G = Gy = {(z,y) €
XxX:zx=<yory=z} O
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The following theorem is the b-metric version of Edelstein theorem.

Theorem 3.7. Let (X,d) be a complete b-metric space with the coefficient s > 1
and e-chainable for some € > 0, i.e., given x,y € X, there is N € N and a sequence

(mi)fio such that xo = x, xny = y and d(z;—1,2;) < € fori = 1,2,--- ,N. Let
[+ X — X be such that for all z,y € X,
d(z,y) < e=d(fz, fy)) < ad(z,y) (3.2)

where o € (0,1) is a constant. Then f is a PO.

Proof. Tt follows from condition (3.2)) that f is continuous on X.

Let z € X be arbitrary. If fo = z, then a fixed point of f is assured. Therefore,
we assume that fx # x. Since X is e-chainable, there exists a sequence (xi)ﬁio
such that g =z, xy = fz and d(z;—1,2;) < efor i =1,2,--- /N.

By using condition (3.2]), we have
d(fzi—1, fz;) < ad(zi—1,z;) < ae < e.
and therefore

d(f*wiv, fPe) = d(f(fria), [(fri))
< ad(fxi_1, fz;)
< o’e
In general, for any positive integer p, we get
d(fPxi—1, fPx;) < aPe, fori=1,2,--- N.
Now,

d(fPz, fr*x)

d(fPz, f*(fz))
d(fPxo, fPanN)
sd(fPxo, fPa1) + s2d(fPxy, fPas) + - -
+sN T d(fPan g, fPan—1) + sV N d(fPan—1, fPan)
< (s+82 4+ sV sNare
= kaPe, (3.3)
where k = (s + 82 +--- + sV 71 4+ V).
For m, n € N with m > n and using condition 7 we obtain
d(fz, fz) < sd(fx, fPTa) + $2d(f e, 1)+
s R, ) 5T (S e, )
< ke (sa" + 52t gmTnTlgmT2 sm*”amfl)

= kesa” (1+(SC¥)+(Sa)2+-~~+(sa)m7"*1)

IN

< kesa”l , stnce sa < 1

— 0asn— oo.

This shows that (f™x) is a Cauchy sequence in (X, d). Since (X, d) is complete,
(f™x) converges to some point u € X. Continuity of f implies that f(f"z) — fu.
This gives that, fu = u since, simultaneously, f(f"x) = f**lz — u. Thus, u is a
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fixed point of f.

We now show that u is the unique fixed point of f. If possible, suppose that
there is another point v(# u) in X such that fv = v. Then, by e-chainability,
there exists a sequence (y;)._, such that yo = u, y, = v and d(y;—1,v;) < € for
i=1,2,--
Then,

,T

d(u,v) = d(f"u, ["v)

= d(f"yo. ["yr)
sd(f"yo, ["y1) + s2d(f"y1, ["yo) +
8 (Yo, Y1) + 8N Yo, )
< (s+82+- 45 sM)ame
= ko™, whereky = (s+ 8>+ -+ 51 +5")
— 0asn— oo,

IN

which is a contradiction. Therefore, u = v.

We now show that lim f"x = u for all z € X.
If possible, suppose tha_t> hm fMy = w for some y € X. Then, by our preceding
discussion, it follows that w 15 a fixed point of f. Since u is the unique fixed point
of f, we must have u = w and hence lim f"z =u for all x € X.
Thus, f is a PO. A O

We conclude with some examples in favour of our main result.

Example 3.8. Let X = R and defined : X xX — R* by d(z,y) =| z—y |? for all
x,y € X. Then (X,d) is a complete b-metric space with the coefficient s = 2. Let G
be a directed graph such that V(G) = X and E(G) = AU{(0, 8%) in=0,1,2,---}.
Any sequence (x,,) in X with the property (Tn,xnt1) € E(G) must be a constant
sequence. Consequently it follows that the triple (X, d, G) has the property (x). Let
f: X — X be defined by

T
f.’ﬂ - ga
1

) 7
s if m—g.

For (0, g=) € E(G), we have

1 1 1 1 1 1
1(100.5(5)) = (0. 55 ) = o052 = o — 24 (0.5

where o = 6%1 € (0, %) is a constant. Also, f preserves edges of G. Therefore, f
is a Banach G-contraction. Clearly, 0 € Xy. Thus, we have all the conditions of

Theorem and f |[0]é s a PO.

Remark 3.9. In Ea:ample f is a Banach G-contraction with constant o = é
but it is not a Banach contraction. In fact, if x = %, y =1, then

49 1

7
A(fo, fy) = d(1, ) = & > oo = ad(L,1)

for any a € (0, %) So, f is not a Banach contraction.
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The next example shows that the property (*) in Theorem [3.2]is necessary.

Example 3.10. Let X = [0,1] and defined : X x X — R* by d(z,y) =| 2 —y |2
forallz, y € X. Then (X,d) is a complete b-metric space with the coefficient s = 2.
Let G be a directed graph such that V(G) = X and E(G) = {(0,0)} U {(x,y) :
(x,y) € (0,1] x (0,1], x > y}. Let f: X — X be defined by

fr = g if ze(0,1]
= 1, if =0.

Clearly, f preserves edges of G. Moreover, for (x,y) € E(G), we have

(S fy) = ed(z.v)
1

where o = % € (0, 5) is a constant. Therefore, f is a Banach G-contraction. It is
easy to verify that Xy = (0,1] and f"x — 0 for all x € X but f has no fized point.
Consequently it follows that for any v € Xy, f |[x]é is not a PO. We observe that
the property (x) does not hold. In fact, (x,) is a sequence in X with x, — 0 and
(Tn, Tnt1) € E(G) for all n € N where x,, = 2. But there exists no subsequence
(xk,) of (xy) such that (zy,,0) € E(G).

Remark 3.11. In Ezample the graph G is not weakly connected because
there is no path in G from 0 to 1. Moreover, f is a Banach G-contraction with

constant o = 215 but it is not a Banach contraction. In fact, if v =0, y =1, then
1 16
d(fx, fy) = d(1, 5) =5 > ad(0,1)

for any « € (0, %) So, f is not a Banach contraction.
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