
A CHARACTERIZATION OF CAYLEY GRAPHS
OF BRANDT SEMIGROUPS

BEHNAM KHOSRAVI1 AND BAHMAN KHOSRAVI2

Abstract. In this paper, first we characterize Cayley graphs of finite Brandt

semigroups, and we give a criterion to check whether a finite digraph is a Cay-

ley graph of a finite Brandt semigroup. Also Kelarev and Praeger gave nec-
essary and sufficient conditions for Cayley graphs of semigroups to be vertex-

transitive. Then, some authors gave descriptions for all vertex-transitive Cay-

ley graphs of some special classes of semigroups. In this note similar descrip-
tions for all vertex-transitive Cayley graphs of Brandt semigroups are given.

1. Introduction

Let S be a semigroup and C be a subset of S. Recall that the Cayley graph
Cay(S,C) of S with the connection set C is defined as the digraph with vertex set
S and arc set E(Cay(S,C)) = {(s, cs) : s ∈ S, c ∈ C}.

Cayley graphs of groups have been extensively studied and some interesting
results have been obtained (see for example, [1]). Also, the Cayley graphs of semi-
groups have been considered by some authors (see for example, [2], [3], [6]-[17]).

It is known that the Cayley graphs of groups are vertex transitive; i.e. for
every two vertices g1, g2 there exists a graph automorphism φ such that φ(g1) =
g2. In [10], Kelarev and Praeger characterized vertex transitive Cayley graphs
Cay(S,C) of semigroups S for which all principal left ideals of the subsemigroup
generated by the connection set C are finite. Using this result, in [3], [14], [15]
and [17], descriptions of vertex transitive Cayley graphs of some special classes
of semigroups are given. In this paper we give similar descriptions for all vertex-
transitive Cayley graphs of Brandt semigroups which form one of the most popular
classes of semigroups. Sabidussi in [18] presented a criterion to check whether a
digraph is a Cayley graph of a group. In [16] by presenting a characterization
of the Cayley graphs of Clifford semigroups, a similar criterion for these Cayley
graphs is obtained. Similarly in [15], a characterization of the Cayley graphs of
rectangular groups is obtained. Also in this note, we present a characterization of
Cayley graphs of finite Brandt semigroups and we give a criterion to check whether
a finite digraph is a Cayley graph of a finite Brandt semigroup.

2. Preliminaries

A digraph (directed graph) Γ is a non-empty set V = V (Γ) of vertices, together
with a binary relation E = E(Γ) on V . We denote the digraph Γ by Γ = (V,E). A
digraph is symmetric if the relation E is symmetric. Symmetric digraphs are more
conveniently viewed as (undirected) graphs. The elements a = (u, v) of E are called

1991 Mathematics Subject Classification. Primary 05C25, 05C75; Secondary 05C20.
Key words and phrases. Cayley graph, vertex transitive graph, Brandt semigroup.

1



2 BEHNAM KHOSRAVI, BAHMAN KHOSRAVI

the arcs of Γ, u is said the tail of a and v is its head. An empty digraph is one with
no arcs. Given a digraph Γ, the underlying graph of Γ which is denoted by Γ̄, is the
graph with the same vertices of Γ and (u, v), (v, u) ∈ E(Γ̄) if (u, v) or (v, u) belongs
to E(Γ). A digraph Γ is said to be connected if its underlying graph is connected.
If for each pair of vertices u, v of Γ, there exists a directed path from u to v, then
Γ is said to be strongly connected. By a connected component of a digraph Γ we
mean any component of the underlying graph of Γ. The in-degree d−Γ (v) of a vertex
v in a digraph Γ is the number of arcs with head v; the out-degree d+

Γ (v) of v is the
number of arcs with tail v.

Let Γ = (V,E) be a digraph. Suppose that V ′ is a nonempty subset of V. The
subgraph of Γ whose vertex set is V ′ and whose arc set is the set of those arcs of Γ
that have both ends in V ′ is called the subgraph of Γ induced by V ′ and is denoted
by Γ[V ′]. The union of digraphs Γ1 and Γ2, written Γ1 ∪ Γ2, is the digraph with
vertex set V (Γ1) ∪ V (Γ2) and arc set E(Γ1) ∪E(Γ2). If Γ1 and Γ2 are disjoint, we
denote their union by Γ1 + Γ2. In this paper, the i-th projection map is denoted
by πi.

Let S be a semigroup, and C be a non-empty subset of S. The Cayley digraph
Cay(S,C) of S relative to C (which is simply called Cayley graph) is defined as
the digraph with vertex set S and arc set E(C) consisting of those ordered pairs
(s, t) such that cs = t, for some c ∈ C. The set C is called the connection set of
Cay(S,C) (see [7]). Obviously, if C is an empty set, then Cay(S,C) is an empty
digraph.

Let Γ1 = (V1, E1) and Γ2 = (V2, E2) be digraphs. A graph (digraph) homo-
morphism φ : Γ1 → Γ2 is a mapping φ : V1 → V2 such that (u, v) ∈ E1 implies
(φ(u), φ(v)) ∈ E2, and is called a graph (digraph) isomorphism if it is bijective and
both φ and φ−1 are graph homomorphisms. A graph homomorphism φ : Γ → Γ
is called an endomorphism, and a graph isomorphism φ : Γ → Γ is said to be an
automorphism. We denote the set of all endomorphisms on a digraph Γ by End(Γ),
and the set of all automorphisms on Γ by Aut(Γ).

For a Cayley graph Cay(S,C), we denote End(Cay(S,C)) by EndC(S), and
Aut(Cay(S,C)) by AutC(S). An element f ∈ EndC(S) is called a color-preserving
endomorphism if cx = y implies cf(x) = f(y) for every x, y ∈ S and c ∈ C. The
set of all color-preserving endomorphisms of Cay(S,C) is denoted by ColEndC(S),
and the set of all color-preserving automorphisms of Cay(S,C) by ColAutC(S).
Obviously ColEndC(S) ⊆ EndC(S) and ColAutC(S) ⊆ AutC(S).

The following proposition, known as Sabidussi’s Theorem, gives a criterion to
check whether a digraph is a Cayley graph of a group (see also [16, Theorem 2.5]).

Proposition 2.1. ([18]) A finite digraph Γ = (V,E) is a Cayley graph of a group
G if and only if the automorphism group of Γ contains a subgroup ∆ isomorphic to
G such that for every two vertices u, v ∈ V there exists a unique σ ∈ ∆ such that
σ(u) = v.

The Cayley graph Cay(S,C) is said to be automorphism-vertex transitive or
simply AutC(S)-vertex-transitive if, for every two vertices x, y ∈ S, there exists
f ∈ AutC(S) such that f(x) = y. The notions of ColAutC(S)-vertex-transitive,
ColEndC(S)-vertex-transitive, and EndC(S)-vertex-transitive for Cayley graphs
are defined similarly.

A right zero semigroup (left zero semigroup) is a semigroup S satisfying the
identity xy = y (xy = x). Also, recall that a semigroup is said to be left simple
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(right simple) if it has no proper left (right) ideals. A semigroup is called a left group
(right group) if it is left (right) simple and right (left) cancellative. It is known that
a semigroup is a right (left) group if and only if it is isomorphic to the direct product
of a group and a right (left) zero semigroup (see [5]). The following proposition
describes all semigroups S and all subsets C of S, satisfying a certain finiteness
condition, such that the Cayley graph Cay(S,C) is ColAutC(S)-vertex-transitive.

Proposition 2.2. ([10, Theorem 2.1]) Let S be a semigroup, and C be a subset of
S which generates a subsemigroup 〈C〉 such that all principal left ideals of 〈C〉 are
finite. Then, the Cayley graph Cay(S,C) is ColAutC(S)-vertex-transitive if and
only if the following conditions hold:

(i) cS = S, for all c ∈ C;
(ii) 〈C〉 is isomorphic to a right group;
(iii) |〈C〉s| is independent of the choice of s ∈ S.

A semigroup is completely simple if it has no proper ideals and has an idempotent
element which is minimal with respect to the partial order on idempotents e ≤ f ⇔
e = ef = fe.

Proposition 2.3. ([10, Theorem 2.2]) Let S be a semigroup, and C be a subset of
S such that all principal left ideals of the subsemigroup 〈C〉 are finite. Then, the
Cayley graph Cay(S,C) is AutC(S)-vertex-transitive if and only if the following
conditions hold:

(i) CS = S;
(ii) 〈C〉 is a completely simple semigroup;
(iii) the Cayley graph Cay(〈C〉, C) is AutC(〈C〉)-vertex-transitive;
(iv) |〈C〉s| is independent of the choice of s ∈ S.

Let G be a group and Iλ be a set of cardinality λ > 0. Now we define a semigroup
operation on S = (Iλ ×G× Iλ) ∪ {0} as follows:

(i, g, j)(l, h, k) =
{

(i, gh, k), if j = l,
0, if j 6= l;

and (i, g, j)0 = 0(i, g, j) = 00 = 0, for all i, j, l, k ∈ Iλ and g, h ∈ G. Then the
semigroup S is called a Brandt semigroup and is denoted by B(G,λ).

Lemma 2.4. ([10, Lemma 6.1]) Let S be a semigroup, and C be a subset of S.
(i) If Cay(S,C) is EndC(S)-vertex-transitive, then CS = S.
(ii) If Cay(S,C) is ColEndC(S)-vertex-transitive, then cS = S for each c ∈ C.

Lemma 2.5. ([10, Lemma 5.2, Corollary 5.3]) Let S be a semigroup with a subset C
such that 〈C〉 is completely simple, and CS = S. Then, every connected component
of the Cayley graph Cay(S,C) is strongly connected, and for every v ∈ S, the
connected component containing v is equal to 〈C〉v. Also, if 〈C〉 is isomorphic to a
right group, then the right 〈C〉-cosets are the connected components of Cay(S,C).

For more information on graphs, we refer to [4], and for semigroups see [5].

3. Characterization of Cayley graphs of Brandt semigroups

In this section, we suppose that every digraph is finite. To provide a criterion for
Cayley graphs of finite Brandt semigroups, we present a characterization of Cayley
graphs of finite Brandt semigroups. Let S be a finite Brandt semigroup and C ⊆ S.
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Then it is obvious that if 0 ∈ C, then each vertex of Cay(S,C) is joined to 0. Also if
C = ∅, then Cay(S,C) is an empty digraph. Therefore in the sequel of this section
we suppose that C is a non-empty set and 0 /∈ C.

Theorem 3.1. A finite digraph D is a Cayley graph of a finite Brandt semigroup
if and only if D consists of a vertex v0, with a loop on it, and λ mutually disjoint
subgraphs {Dα}λ

α=1 such that v0 /∈ V (Dα), for each α. Also the arc set of D
satisfies the following conditions: there exists no arc between V (Dα) and V (Dα′),
for 1 ≤ α, α′ ≤ λ and α 6= α′, and every Dα is isomorphic to a digraph denoting by
Γ = (V,E) such that

(1) V =
⋃λ

i=1 Vi, where Vi’s are pairwise disjoint and have the same cardinality,
(2) there exists a group G such that for every 1 ≤ i ≤ λ, if Γi = Γ[Vi], then

Γi
∼= Cay(G,Ci), for some Ci ⊆ G,

(3) there exists a family of graph isomorphisms {fi}λ
i=1, fi : Cay(G,Ci) → Γi,

for 1 ≤ i ≤ λ such that if, for x ∈ G and e the identity of G, fi(e) is joined
to fj(x), then fi(g) is joined to fj(xg) for every g ∈ G. Also there is not
any other arc from Γi to Γj. Let Cij be the elements of G, say x, such that
fi(e) is joined to fj(x),

moreover let ηα : Γ → Dα, where 1 ≤ α ≤ λ, be the isomorphism between Γ and
Dα. For every 1 ≤ α ≤ λ, if Ci 6= ∅, for some 1 ≤ i ≤ λ or Cij 6= ∅, for some
1 ≤ i, j ≤ λ and i 6= j, then all vertices in ηα(V \ Vi) are joined to v0 in D.

Proof. (⇒) Let D = Cay(S,C), where S = (Iλ × G × Iλ) ∪ {0} is a finite Brandt
semigroup and C ⊆ S. By the definition of Brandt semigroup we know that Iλ is a
set of cardinality λ, G is a group, and 0 is the zero of S. Without loss of generality we
can assume that Iλ = {1, 2, . . . , λ}. Let v0 = 0. Also since for every c ∈ C, c0 = 0,
there exists a loop on 0. We know that S = (

⋃
1≤i,j≤λ{(i, g, j)|g ∈ G}) ∪ {0}. For

every 1 ≤ i, j ≤ λ, let Dij = D[{(i, g, j)|g ∈ G}] and Aij = {(i, g, j) ∈ C|g ∈ G}.
We claim that Dij

∼= Cay(G,Ci), where Ci = {g ∈ G|(i, g, i) ∈ C}. To prove it,
we define ψij : Dij → Cay(G,Ci), by (i, g, j) 7→ g. Obviously ψij is one-to-one
and onto. So it is enough to check that ψij preserves adjacency and non-adjacency.
To prove ψij preserves adjacency, let v1 = (i, g1, j), v2 = (i, g2, j) ∈ V (Dij) and
(v1, v2) ∈ E(Dij). So there exists c ∈ C such that v2 = cv1. So (i, g2, j) =
c(i, g1, j). Thus g2 = π2(c)g1, π1(c) = i, and also since (i, g2, j) 6= 0, π3(c) = i.
Hence π2(c) ∈ Ci. Therefore (g1, g2) ∈ E(Cay(G,Ci)). So (ψij(v1), ψij(v2)) ∈
E(Cay(G,Ci)). To prove ψij preserves non-adjacency, let (ψij(v1), ψij(v2)) =
(g1, g2) ∈ E(Cay(G,Ci)). Then, there exists h ∈ Ci, such that g2 = hg1. Since
h ∈ Ci, (i, h, i) ∈ Aii. Also since v1, v2 ∈ V (Dij) and (i, g2, j) = (i, h, i)(i, g1, j), we
conclude that ((i, g1, j), (i, g2, j)) = (v1, v2) ∈ E(Dij). Therefore

(3.1) Dij
∼= Cay(G,Ci),

for each 1 ≤ i, j ≤ λ.
Now we show that there exists no arc between V (Dij) and V (Di′j′), for 1 ≤

i, i′ ≤ λ, 1 ≤ j, j′ ≤ λ and j 6= j′. On the contrary if there exists some arcs
between V (Dij) and V (Di′j′) in D, there exist (i, g, j) ∈ V (Dij) and (i′, g′, j′) ∈
V (Di′j′) such that ((i, g, j), (i′, g′, j′)) ∈ E(D). Since D = Cay(S,C), there exists
(l, h, k) ∈ C such that (i′, g′, j′) = (l, h, k)(i, g, j). Since (i′, g′, j′) 6= 0, we get that
k = i. Thus (i′, g′, j′) = (l, hg, j). Hence j = j′, which is a contradiction. Now we
prove that D has λ subgraphs {Dα}λ

α=1 such that Dα’s are pairwise disjoint and
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isomorphic to each other. Let Dα = D[
⋃λ

i=1 V (Diα)], for 1 ≤ α ≤ λ. Then the
Dα’s are pairwise disjoint and there exists no arc between Dα and Dα′ if α 6= α′.
Obviously, V (D) =

⋃λ
α=1 V (Dα)∪ {0}. Now we prove that Dα’s are isomorphic to

each other. To prove it, for every arbitrary 1 ≤ α, α′ ≤ λ, we define ψ : Dα → Dα′ ,
by ψ(i, g, α) = (i, g, α′), for every (i, g, α) ∈ V (Dα). Since (i1, g1, α) = (i2, g2, α)
if and only if (i1, g1, α′) = (i2, g2, α′), we get that ψ is well-defined and one-to-
one. Also it is obvious that ψ is onto. So it is enough to prove that ψ preserves
adjacency and non-adjacency. To prove ψ preserves adjacency, let (u, v) ∈ E(Dα),
u = (i1, g1, α) and v = (i2, g2, α). Hence there exists c = (l, h, k) ∈ C such that
(i2, g2, α) = (l, h, k)(i1, g1, α). So l = i2, g2 = hg1 and k = i1. Thus c = (i2, h, i1)
and (i2, g2, α′) = (i2, h, i1)(i1, g1, α′). Therefore (ψ(u), ψ(v)) ∈ E(Dα′). Similarly
if (ψ(u), ψ(v)) = ((i1, g1, α′), (i2, g2, α′)) ∈ E(Dα′), then ((i1, g1, α), (i2, g2, α)) ∈
E(Dα), which proves that ψ preserves non-adjacency. Without loss of generality
we can assume that Γ = (V,E) is equal to D1. Let ηα : D1 → Dα by

(3.2) ηα(i, g, 1) = (i, g, α),

where (i, g, α) ∈ V (Dα) and 1 ≤ α ≤ λ.
Now we prove that conditions (1) and (2) are satisfied. Let Vi = V (Di1) and

Γi = Γ[Vi], 1 ≤ i ≤ λ. Therefore Γi = Di1 and, by (3.1), we have Γi = Di1
∼=

Cay(G,Ci). Also we note that V (D1) =
⋃λ

i=1 V (Di1) and so V =
⋃λ

i=1 Vi. Since
by (3.1), Di1

∼= Cay(G,Ci), we get that |V (Di1)| = |G|. So Vi’s have the same
cardinality. Hence conditions (1) and (2) are satisfied.

To prove condition (3), for every 1 ≤ i ≤ λ, we define fi : Cay(G,Ci) → Γi,
for 1 ≤ i ≤ λ, by fi(g) = (i, g, 1). It is easy to check that the fi’s are well-
defined, one-to-one and onto. So it is enough to prove that fi preserves ad-
jacency and non-adjacency. To prove that fi preserves adjacency for every arc
(g1, g2) ∈ E(Cay(G,Ci)), we know that there exists d ∈ Ci such that g2 = dg1.
So (i, d, i) ∈ Aii and fi(g2) = (i, g2, 1) = (i, d, i)(i, g1, 1) = (i, d, i)fi(g1). Hence
(fi(g1), fi(g2)) ∈ E(Γi). Therefore fi preserves adjacency. To prove fi preserves
non-adjacency, let (fi(g1), fi(g2)) ∈ E(Γi). There exists c ∈ C such that fi(g2) =
cfi(g1), since D = Cay(S,C). Let c = (l, d, k). Similarly to the above, we conclude
that π1(c) = i, π3(c) = i. Thus, c = (i, d, i), d ∈ Ci and g2 = dg1. Therefore
(g1, g2) ∈ E(Cay(G,Ci)). Hence fi preserves adjacency and non-adjacency. There-
fore fi is a graph isomorphism. Since (i, e, 1) is joined to (j, x, 1), where x ∈ Cij , it
follows that (j, x, i) ∈ C and so {j}×Cij ×{i} ⊆ C. Thus, for every g ∈ G, fi(g) is
joined to each vertex of {(j, d, i)(i, g, 1)|d ∈ Cij} = fj(Cijg). Now we prove that all
arcs from Γi to Γj are arcs mentioned above. Let there exists an arc from a vertex
fi(g) ∈ Vi = V (Γi), for some g ∈ G, to a vertex fj(g′) ∈ Vj = V (Γj), where g′ ∈ G.
Since D = Cay(S,C), there exists (l, h, k) ∈ C such that (j, g′, 1) = (l, h, k)(i, g, 1).
So l = j, k = i and g′ = hg. Since (j, h, i)(i, e, 1) = (j, h, 1), it follows that fi(e) is
joined to fj(h). Thus h ∈ Cij , and so g′ ∈ Cijg. Therefore fj(g′) ∈ fj(Cijg) and
condition (3) is satisfied.

Now we prove that if Ci 6= ∅ or Cij 6= ∅, then each vertex of ηα(V \ Vi) are
joined to v0 in D, where 1 ≤ α ≤ λ. If Ci 6= ∅, then there exists d ∈ Ci such that
(i, d, i) ∈ C. Thus, for every vertex (i′, g, 1) ∈ V \ Vi, we have i 6= i′ and since
(i, d, i)(i′, g, 1) = 0, we conclude that (i′, g, 1) is joined to 0. Also since, for every
1 ≤ α ≤ λ, (i, d, i)(i′, g, α) = 0, we get that ηα(i′, g, 1) = (i′, g, α) is joined to 0 in
D.
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If Cij 6= ∅, then as we mentioned above (j, h, i) ∈ C, for h ∈ Cij . For every
vertex (i′, g, 1) ∈ V \ Vi, we have i 6= i′ and since (j, d, i)(i′, g, 1) = 0, we conclude
that (i′, g, 1) is joined to 0. Also since, for every 1 ≤ α ≤ λ, (j, h, i)(i′, g, α) = 0,
we get that ηα(i′, g, 1) is joined to 0 in D.

(⇐) Take a digraph Γ = (V,E) with properties (1)-(3) and take a digraphD with
the given properties. ThenD consists of a vertex v0 with a loop on it and λmutually
disjoint subgraphs {Dα}λ

α=1 such that each Dα is isomorphic to Γ = (V,E). We
define a Brandt semigroup S as S = (Iλ×G×Iλ)∪{0}, where G is the group given
in part (2) and Iλ = {1, 2, . . . , λ}. Let

(3.3) C =
( λ⋃

i=1

{i} × Ci × {i}
)
∪

( ⋃
1≤i,j≤λ

i 6=j

{j} × Cij × {i}
)
,

where Ci and Cij are given in parts (2) and (3), respectively. Let D′ = Cay(S,C)
and D′

α = D′[{(i, g, α)|g ∈ G, 1 ≤ i ≤ λ}], for 1 ≤ α ≤ λ. Using the (⇒) part
of the theorem, we conclude that D′ = Cay(S,C) consists of the vertex 0 with a
loop on it and λ pairwise disjoint subgraphs D′

α which are isomorphic to a graph
satisfying conditions (1)-(3) and there exists no arc between these subgraphs. We
claim that D is isomorphic to D′ = Cay(S,C).

To prove D is isomorphic to D′, first we prove that Γ ∼= D′
1. Using (2), we

know that Γi = Γ[Vi] ∼= Cay(G,Ci), for 1 ≤ i ≤ λ, and by (3) there exists a graph
isomorphism fi : Cay(G,Ci) → Γi. For every v ∈ V = V (Γ), using (1) we get that
there exists a unique 1 ≤ i ≤ λ such that v ∈ Vi = V (Γi). To prove Γ ∼= D′

1, we
define ψ : Γ → D′

1, by ψ(v) = (i, f−1
i (v), 1), where v ∈ Vi = V (Γi). Now we prove

that ψ is a graph isomorphism. Since f−1
i is a graph isomorphism, we get that ψ is

one-to-one and onto. So it is enough to show that ψ preserves adjacency and non-
adjacency. Let (u, v) ∈ E(Γ). There exists 1 ≤ i, j ≤ λ such that u ∈ Vi = V (Γi)
and v ∈ Vj = V (Γj). Now we consider two cases. If i = j, then using (2) we get that
there exists d ∈ Ci such that f−1

i (v) = df−1
i (u). So by the definition of C in (3.3),

we conclude that (i, d, i) ∈ C. Now since (i, f−1
i (v), 1) = (i, d, i)(i, f−1

i (u), 1), we
conclude that (ψ(u), ψ(v)) ∈ E(D′

1). If i 6= j, then there exist g, g′ ∈ G such that
fi(g) = u, fj(g′) = v. Using (3), we get that fi(g) is joined in Γj only to fj(Cijg).
Hence g′g−1 ∈ Cij . By the definition of C in (3.3), we get that (j, g′g−1, i) ∈
C. Hence (j, f−1

j (v), 1) = (j, g′g−1, i)(i, g, 1) = (j, g′g−1, i)(i, f−1
i (u), 1). Thus,

(ψ(u), ψ(v)) ∈ E(D′
1). Therefore ψ preserves adjacency. To prove ψ preserves non-

adjacency, let (ψ(u), ψ(v)) ∈ E(D′
1). Also let ψ(u) = (i, g, 1) and ψ(v) = (i′, g′, 1).

Therefore g = f−1
i (u) and g′ = f−1

i′ (v). By definition of Cayley graph, there exists
(ic, gc, jc) ∈ C such that (i′, g′, 1) = (ic, gc, jc)(i, g, 1). So ic = i′, jc = i, and
g′ = gcg. If i = i′, then by the definition of C in (3.3), we get that gc ∈ Ci. Since
i = i′, we have g = f−1

i (u) and g′ = f−1
i (v). Since fi is a graph isomorphism and

(g, g′) ∈ E(Cay(G,Ci)), (fi(g), fi(g′)) = (u, v) ∈ E(Γi) ⊆ E(Γ). If i 6= i′, then
(i′, gc, i) ∈ C and so gc ∈ Cii′ . Using (3), each vertex fi(g′′), g′′ ∈ G, is joined
to fi′(gcg

′′). Thus fi(g) is joined to fi′(gcg) = fi′(g′). Hence u is joined to v. So
(u, v) ∈ E(Γ). Therefore ψ preserves non-adjacency. Hence Γ ∼= D′

1.
Now we prove that D ∼= D′ = Cay(S,C). By assumption, D′ = Cay(S,C) is a

Cayley graph of a Brandt semigroup. Therefore as we mentioned in the necessary
part of the proof, for each 1 ≤ α ≤ λ, there exists a graph isomorphism η′α : D′

1 →
D′

α, where η′α(i, g, 1) = (i, g, α) (see 3.2). To prove D ∼= D′ = Cay(S,C), we
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define µ : D → D′ by µ(v0) = 0 and µ(v) = η′αψη
−1
α (v) if v ∈ V (Dα), for some

1 ≤ α ≤ λ. It is easy to check that µ is bijection since η′α, ψ and η−1
α are bijection

and v0 does not belong to any V (Dα), for 1 ≤ α ≤ λ. Hence to prove µ is a graph
isomorphism, it is enough to prove that µ preserves adjacency and non-adjacency.
For this purpose let v1, v2 ∈ V (D) and (v1, v2) ∈ E(D). Since in the graph D there
does not exist any arc from v0 to any other vertex of D, we have three following
cases.

Case (1) Let v1 = v2 = v0. Since we know that there is a loop on v0 inD, and there is
a loop on µ(v0) = 0 in D′, we conclude that (µ(v1), µ(v2)) = (0, 0) ∈ E(D′).

Case (2) Let v1 6= v0 and v2 6= v0. Since there does not exist any arc between Dα

and Dα′ , for 1 ≤ α, α′ ≤ λ and α 6= α′, we conclude that there exists
some 1 ≤ α ≤ λ such that v1, v2 ∈ V (Dα). Since η′α, ψ and η−1

α are graph
isomorphisms, we get that (µ(v1), µ(v2)) = (η′αψη

−1
α (v1), η′αψη

−1
α (v2)) ∈

E(D′
α) ⊆ E(D′).

Case (3) Let v1 6= v0 and v2 = v0. Then v1 ∈ V (Dα), for some 1 ≤ α ≤ λ. By
the hypothesis, v1 is joined to v0. Therefore Ci 6= ∅, for some 1 ≤ i ≤ λ,
or Cij 6= ∅, for some 1 ≤ i, j ≤ λ, i 6= j and η−1

α (v1) ∈ V \ Vi. Let
η−1

α (v1) ∈ Vi′ = V (Γi′), for some 1 ≤ i′ ≤ λ, where i′ 6= i. By the definition
of ψ, we know that ψ(η−1

α (v1)) = (i′, f−1
i′ (η−1

α (v1)), 1). Therefore µ(v1) =
η′α(ψ(η−1

α (v1))) = (i′, f−1
i′ (η−1

α (v1)), α) ∈ V (D′
α). If Ci 6= ∅, then there

exists d ∈ Ci and so (i, d, i) ∈ C. Then (i, d, i)(i′, f−1
i′ (η−1

α (v1)), α) = 0
shows that µ(v1) is joined to µ(v0) = 0. Similarly if Cij 6= ∅ and d ∈ Cij ,
then by the definition of C, (j, d, i) ∈ C. Similarly to the above, we conclude
that µ(v1) = η′αψη

−1
α (v1) = (i′, f−1

i′ (η−1
α (v1)), α) is joined to µ(v2) = 0 in

D′.

Thus µ(v1) is joined to µ(v2) in D′. Therefore µ preserves adjacency. Similarly
we can conclude that µ preserves non-adjacency. Hence µ is a graph isomorphism.
Thus D ∼= D′ = Cay(S,C). Therefore D is isomorphic to a Cayley graph of a finite
Brandt semigroup. �

In the next example we show that the following digraph is not a Cayley graph
of a Brandt semigroup, because condition (3) of the above theorem is not satisfied.

Example 3.2. Let D be the following digraph. By Theorem 3.1, we show that D
is not a Cayley graph of a Brandt semigroup. Throughout of the proof, we use the
notations of Theorem 3.1. On the contrary suppose that D is a Cayley graph of a
Brandt semigroup. Let S = (Iλ ×G× Iλ)∪ {0} be a Brandt semigroup and C ⊆ S
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such that D ∼= Cay(S,C).
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::::
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Since |S| = λ2|G| + 1 = 17, we get that λ ∈ {1, 2, 4}. In any case v0 = 0.
If λ = 1, then S ∼= G0. So, by conditions (1) and (2) of Theorem 3.1 we con-
clude that D[V \ {0}] must be isomorphic to a Cayley graph of a group. By
Proposition 2.1, we know that every Cayley graph of a group is vertex-transitive.
Also we know that in a finite vertex-transitive graph the in-degree is the same for
each vertex, and is equal to its out-degree. Now we note that D is not vertex-
transitive because d−D[V \{0}](v3) = 1 and d−D[V \{0}](v6) = 2. Since D[V \ {0}] is
not vertex-transitive, we get that D[V \ {0}] can not be isomorphic to a Cayley
graph of a group, which is a contradiction. Hence λ > 1. Then there exist λ
mutually disjoint subgraphs, {Di}λ

i=1 such that there exists no arc between them.
Let v1 ∈ V (D1). Since there does not exist any arc between Di’s, we get that
v2, v4, v8 ∈ V (D1). Since v2, v4, v8 ∈ V (D1), similarly to the above we conclude
that v3, v5, v6, v7 ∈ V (D1), too. Similarly we conclude that there exists Di, where
2 ≤ i ≤ λ, such that v′1, v

′
2, v

′
3, v

′
4, v

′
5, v

′
6, v

′
7, v

′
8 belong to V (Di). This implies that

λ = 2. Without loss of generality, we can assume that Iλ = {1, 2}. We choose
D1 = D[{v1, v2, v3, v4, v5, v6, v7, v8}] and D2 = D[{v′1, v′2, v′3, v′4, v′5, v′6, v′7, v′8}]. It
is obvious that D1 and D2 are isomorphic to each other and up to isomorphism
the choices of D1 and D2 are unique. Without loss of generality, we can assume
that Γ = D1. By condition (1), we get that {v1, v2, v3, v4, v5, v6, v7, v8} =

⋃2
i=1 Vi

such that |V1| = |V2| = 4 and Γ[Vi] is isomorphic to a Cayley graph of a group, for
i = 1, 2. Without loss of generality let v1 ∈ V1. Now we consider the following four
cases.

Case (1) Let v2 ∈ V1 and v8 ∈ V1. We claim that this case can not occur. Since
v2, v8 ∈ V1, d+

Γ1
(v1) = 2. But d−Γ1

(v1) ≤ d−Γ (v1) = 1, which is a contradic-
tion because Γ1 is vertex-transitive.

Case (2) Let v2 /∈ V1 and v8 ∈ V1. Since Γ1 is vertex-transitive, we get that d−Γ1
(v1) =

d+
Γ1

(v1) = 1. So v4 ∈ V1 and d−Γ1
(v4) = d+

Γ1
(v4) = 1. Therefore v3 ∈ V1

and d−Γ1
(v3) = d+

Γ1
(v3) = 1 which implies that v2 ∈ V1, and this is a

contradiction.
Case (3) Let v2 ∈ V1 and v8 /∈ V1. Then d−Γ1

(v1) = d+
Γ1

(v1) = 1 and so v4 ∈ V1. Now
similar to the above cases, we conclude that v3 ∈ V1. Therefore

V1 = {v1, v2, v3, v4}, V2 = {v5, v6, v7, v8}.
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So Γ[V1] ∼= Cay(Z4, {c}), where c = 1̄ or c = 3̄, and Γ[V2] ∼= Cay(Z4, {2̄})
(we note that since Γ[V1] is a square, then c must be an element of order
4 and so G can be only Z4). Hence S = (I2 × Z4 × I2) ∪ {0}. Let f1 :
Cay(Z4, {c}) → Γ[V1], where c ∈ {1̄, 3̄} and f2 : Cay(Z4, {2̄}) → Γ[V2].
Now we claim that condition (3) of Theorem 3.1 can not be satisfied. To
prove it we note that v1 = f1(g1) is joined to v2 = f1(g2) ∈ V1 and v8 =
f2(g′) ∈ V2, for some g1, g2, g

′ ∈ Z4. Since f1 is a graph isomorphism,
(g1, g2) ∈ E(Cay(Z4, {c})) and so g2 = g1 + c. We note that v1 = f1(g1) is
joined to v8 = f2(g′). Hence f1(e) is joined to f2(g′− g1). By condition (3)
of Theorem 3.1, since v2 = f1(g2) = f1(g1 + c) is joined to v5, we get
that v5 = f2(g′ − g1 + g1 + c). Therefore v5 = f2(g′ + c). Since f2 is a
graph isomorphism and (v5, v8) ∈ E(Γ2), we get that (f−1

2 (v5), f−1
2 (v8)) ∈

E(Cay(Z4, {2̄})) and so f−1
2 (v8) = f−1

2 (v5)+2̄. Thus g′ = g′+c+2̄. Hence
c = 2̄, which is a contradiction because c ∈ {1̄, 3̄}. Therefore in this case
the graph D can not be a Cayley graph of a Brandt semigroup.

Case (4) Let v2 /∈ V1 and v8 /∈ V1. Then d−Γ1
(v1) = d+

Γ1
(v1) = 0. So v4 ∈ V2. Also

d−Γ2
(v2) = d+

Γ2
(v2) = 0 implies that v3, v5 ∈ V1. Finally d−Γ2

(v4) = 0 and so
v7 ∈ V1. Therefore

V1 = {v1, v3, v5, v7}, V2 = {v2, v4, v6, v8}.

Also we note that by condition (3) of Theorem 3.1, each vertex of Γ1 is
joined to exactly |C12| vertices of Γ2. Now v1 is joined to v2 and v8 in V2 =
V (Γ2) but v7 is joined only to v6 in V2 = V (Γ2), which is a contradiction.
Therefore in this case the graph D can not be a Cayley graph of a Brandt
semigroup.

So D is not a Cayley graph of a finite Brandt semigroup.

4. Vertex-transitive Cayley graphs of Brandt semigroups

In this section, we describe Cayley graphs of Brandt semigroups which are vertex
transitive. Throughout this section, we assume that S is a Brandt semigroup and
C is a nonempty subset of S.

Theorem 4.1. Let S = (Iλ × G × Iλ) ∪ {0} be a Brandt semigroup. Let C be a
subset of S which generates a subsemigroup 〈C〉 such that all principal left ideals of
〈C〉 are finite. Then the following statements are equivalent:

(i) Cay(S,C) is ColAutC(S)-vertex-transitive;
(ii) Cay(S,C) is AutC(S)-vertex-transitive;
(iii) Cay(S,C) is ColEndC(S)-vertex-transitive;
(iv) |Iλ| = 1, S ∼= G0 and C = {(i, eG, i)}, where Iλ = {i};
(v) Cay(S,C) ∼= |S| ~K1.

Proof. (i)⇒(iv) By Proposition 2.2, we get that cS = S, for every c ∈ C. Let
c = (i0, g0, j0) ∈ C. For every s = (i, g, j) ∈ S, since cS = S, there exists
s′ = (j0, g′, j) ∈ S such that (i, g, j) = (i0, g0, j0)(j0, g′, j). Since s is arbitrary,
for every i ∈ Iλ, i = i0. Therefore |Iλ| = 1. Let Iλ = {i}. Now we define
ψ : ({i} × G × {i}) ∪ {0} → G0, by (i, g, i) 7→ g and 0 7→ 0. Obviously, ψ is a
semigroup isomorphism. Hence S ∼= G0. Since for every c ∈ C, cS = S, we get
that 0 /∈ C. So C ⊆ {i} ×G× {i}.
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By Proposition 2.2, we conclude that 〈C〉 is isomorphic to a right group. By
Lemma 2.5, we conclude that for every v ∈ S the connected component containing
v is equal to 〈C〉v. Since |〈C〉0| = |{0}| = 1, by Proposition 2.2, we conclude that
for every v ∈ S, |〈C〉v| = 1. So the cardinality of all connected components of
Cay(S,C) are 1. Since C is not empty, all connected components of Cay(S,C)
are isomorphic to ~K1. Since C ⊆ {i} × G × {i} and all connected components of
Cay(S,C) are isomorphic to ~K1, C = {(i, eG, i)}.

(iv)⇒ (v) Since C = {(i, eG, i)} and for every (i, g, i) in S, (i, eG, i)(i, g, i) =
(i, g, i), it follows that each vertex is joined only to itself. Therefore every connected
component of Cay(S,C) is isomorphic to ~K1. Hence Cay(S,C) ∼= |S| ~K1.

(v)⇒ (i) It is routine to verify that the digraph |S| ~K1 is ColAutC(S)-vertex-
transitive.

(ii)⇔ (v) It is routine to verify that the digraph |S| ~K1 is AutC(S)-vertex-
transitive. Conversely let Cay(S,C) be an AutC(S)-vertex-transitive Cayley graph.
First we claim that 0 /∈ C. On the contrary let 0 ∈ C. So all vertices of
Cay(S,C) are joined to 0. Also we know that 0 is not adjacent to any other
vertex of Cay(S,C). Since Cay(S,C) is AutC(S)-vertex-transitive, for a non-zero
vertex v, we conclude that there exists f ∈ AutC(S) such that f(v) = 0. Since
(v, 0) ∈ E(Cay(S,C)), we get that (f(v), f(0)) = (0, f(0)) ∈ E(Cay(S,C)). Since
0 is not adjacent to any other vertex of Cay(S,C), we conclude that f(0) = 0 which
is a contradiction since f(0) = 0 = f(v), f ∈ AutC(S) and v 6= 0. Therefore 0 /∈ C.
On the other hand, by Proposition 2.3 we know that |〈C〉s| is independent of s ∈ S.
Since |〈C〉0| = |{0}| = 1, and C 6= ∅, by Lemma 2.5 we conclude that all connected
components of Cay(S,C) are isomorphic to ~K1. Therefore Cay(S,C) ∼= |S| ~K1.

(iii)⇔ (v) It is routine to verify that the digraph |S| ~K1 is ColEndC(S)-vertex-
transitive. Conversely let Cay(S,C) be a ColEndC(S)-vertex-transitive Cayley
graph. By Lemma 2.4, we get that cS = S, for every c ∈ C. Now similar to
the proof of (i)⇒ (iv) we get that |Iλ| = 1, 0 /∈ C, and S ∼= G0. Let Iλ = {i}.
Since Cay(S,C) is ColEndC(S)-vertex-transitive and there exists a loop on the
vertex 0, there exists a loop on each vertex of Cay(S,C). Hence (i, eG, i) ∈ C,
since C ⊆ {i} × G × {i}. Since Cay(S,C) is ColEndC(S)-vertex-transitive, for
every vertex v 6= 0, there exists a ψ ∈ ColEndC(S) such that ψ(0) = v. Since
for every c ∈ C, c0 = 0, we get that v = ψ(0) = ψ(c0) = cψ(0) = cv. So
(i, π2(v), i) = (i, π2(c), i)(i, π2(v), i). Since π2(v) = π2(c)π2(v) and c is an arbitrary
element of C, we conclude that C = {(i, eG, i)}. So we get (iv) and we proved that
(iv) and (v) are equivalent. �

Remark 4.2. Let S = (Iλ ×G× Iλ)∪ {0} be a Brandt semigroup, and let C be a
subset of S. By the proof of Theorem 4.1 we conclude that the following statements
are equivalent:

(i) Cay(S,C) is ColEndC(S)-vertex-transitive;
(ii) |Iλ| = 1, S ∼= G0 and C = {(i, eG, i)} where Iλ = {i};
(iii) Cay(S,C) ∼= |S| ~K1.

Now we present a necessary and sufficient condition for Cayley graphs of Brandt
semigroups to be endomorphism-vertex-transitive.
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Theorem 4.3. Let S = (Iλ ×G × Iλ) ∪ {0} be a Brandt semigroup, and let C be
a subset of S such that all principal left ideals of the subsemigroup 〈C〉 are finite.
Then the following statements are equivalent:

(i) Cay(S,C) is EndC(S)-vertex-transitive;
(ii) there exists a loop on each vertex;
(iii) (i, eG, i) ∈ C, for every i ∈ Iλ.

Proof. (i)⇒(ii) Since C 6= ∅, there exists a loop on vertex 0. Also since Cay(S,C)
is EndC(S)-vertex-transitive, there exists a loop on each vertex of Cay(S,C).

(ii)⇒ (i) For every s ∈ S, we consider the map ψs(v) = s, which maps every
vertex of Cay(S,C) to s. Since there exists a loop on each vertex of Cay(S,C),
every ψs is a digraph endomorphism, for s ∈ S. Hence for every vertices s, t ∈ S,
ψs(t) = s and so Cay(S,C) is EndC(S)-vertex-transitive.

(ii)⇒(iii) For every (i, g, j) ∈ S \ {0}, there exists (ic, gc, jc) ∈ C such that
(i, g, j) = (ic, gc, jc)(i, g, j). So jc = i, ic = i and gcg = g. Hence gc = eG.
Therefore for every i ∈ Iλ, (i, eG, i) ∈ C.

(iii)⇒ (ii) It is obvious. �

Theorem 4.4. Let S = (Iλ × G × Iλ) ∪ {0} be a Brandt semigroup and C ⊆ S.
Then Γ = Cay(S,C) is symmetric if and only if

(i) |Iλ| = 1;
(ii) π2(C) = (π2(C))−1;
(iii) 0 /∈ C.

Proof. (⇒) We claim that |Iλ| = 1. On the contrary suppose that |Iλ| > 1. Since
C is not empty, there exists (ic, gc, jc) ∈ C. Since |Iλ| > 1, there exists i ∈ Iλ such
that i 6= jc. So every vertex (i, g, j) ∈ S is joined to 0, which is a contradiction
since there does not exist any arc from 0 to (i, g, j) and we know that Cay(S,C) is
symmetric. So |Iλ| = 1. Let Iλ = {i}. If 0 ∈ C, then every vertex of Γ is joined to
0 and similarly we get a contradiction. Let c ∈ C. Since Iλ = {i}, we get that c =
(i, t, i), where t ∈ G. Therefore (i, t, i)(i, g, i) = (i, tg, i) implies that Cay(S,C) ∼=
Cay(G, π2(C))+ ~K1. To prove π2(C) = (π2(C))−1, let c ∈ C. Then c = (i, t, i), for
some t ∈ G. For every (i, g, i) ∈ S, since ((i, g, i), (i, t, i)(i, g, i)) ∈ E(Cay(S,C)),
then ((i, t, i)(i, g, i), (i, g, i)) ∈ E(Cay(S,C)). So there exists (i, g′, i) ∈ C such
that (i, g, i) = (i, g′, i)(i, t, i)(i, g, i). Hence t−1 = g′ ∈ π2(C). Therefore π2(C) =
π2(C)−1.

(⇐) Since |Iλ| = 1, S ∼= G0. Also since 0 /∈ C, then as we mentioned above it
follows that Cay(S,C) ∼= Cay(G, π2(C)) + ~K1. On the other hand we know that
if π2(C) = (π2(C))−1, then Cay(G, π2(C)) is symmetric. Therefore Cay(S,C) is
symmetric. �
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