A CHARACTERIZATION OF CAYLEY GRAPHS
OF BRANDT SEMIGROUPS

BEHNAM KHOSRAVI! AND BAHMAN KHOSRAVI?

ABSTRACT. In this paper, first we characterize Cayley graphs of finite Brandt
semigroups, and we give a criterion to check whether a finite digraph is a Cay-
ley graph of a finite Brandt semigroup. Also Kelarev and Praeger gave nec-
essary and sufficient conditions for Cayley graphs of semigroups to be vertex-
transitive. Then, some authors gave descriptions for all vertex-transitive Cay-
ley graphs of some special classes of semigroups. In this note similar descrip-
tions for all vertex-transitive Cayley graphs of Brandt semigroups are given.

1. INTRODUCTION

Let S be a semigroup and C be a subset of S. Recall that the Cayley graph
Cay(S,C) of S with the connection set C' is defined as the digraph with vertex set
S and arc set E(Cay(S,C)) = {(s,cs):s € S,ce C}.

Cayley graphs of groups have been extensively studied and some interesting
results have been obtained (see for example, [1]). Also, the Cayley graphs of semi-
groups have been considered by some authors (see for example, [2], [3], [6]-[17]).

It is known that the Cayley graphs of groups are wvertex transitive; i.e. for
every two vertices g1, go there exists a graph automorphism ¢ such that ¢(g1) =
g2. In [10], Kelarev and Praeger characterized vertex transitive Cayley graphs
Cay(S,C) of semigroups S for which all principal left ideals of the subsemigroup
generated by the connection set C' are finite. Using this result, in [3], [14], [15]
and [17], descriptions of vertex transitive Cayley graphs of some special classes
of semigroups are given. In this paper we give similar descriptions for all vertex-
transitive Cayley graphs of Brandt semigroups which form one of the most popular
classes of semigroups. Sabidussi in [18] presented a criterion to check whether a
digraph is a Cayley graph of a group. In [16] by presenting a characterization
of the Cayley graphs of Clifford semigroups, a similar criterion for these Cayley
graphs is obtained. Similarly in [15], a characterization of the Cayley graphs of
rectangular groups is obtained. Also in this note, we present a characterization of
Cayley graphs of finite Brandt semigroups and we give a criterion to check whether
a finite digraph is a Cayley graph of a finite Brandt semigroup.

2. PRELIMINARIES

A digraph (directed graph) T is a non-empty set V = V(T') of vertices, together
with a binary relation £ = E(I") on V. We denote the digraph I' by I' = (V, E). A
digraph is symmetric if the relation E is symmetric. Symmetric digraphs are more
conveniently viewed as (undirected) graphs. The elements a = (u,v) of E are called
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the arcs of I, w is said the tail of @ and v is its head. An empty digraph is one with
no arcs. Given a digraph I, the underlying graph of T which is denoted by T, is the
graph with the same vertices of I' and (u,v), (v,u) € E(T) if (u,v) or (v,u) belongs
to E(T"). A digraph T is said to be connected if its underlying graph is connected.
If for each pair of vertices u,v of I', there exists a directed path from u to v, then
I is said to be strongly connected. By a connected component of a digraph I' we
mean any component of the underlying graph of I. The in-degree di- (v) of a vertex
v in a digraph I is the number of arcs with head v; the out-degree di (v) of v is the
number of arcs with tail v.

Let T' = (V, E) be a digraph. Suppose that V' is a nonempty subset of V. The
subgraph of I" whose vertex set is ¥V’ and whose arc set is the set of those arcs of T’
that have both ends in V' is called the subgraph of I' induced by V' and is denoted
by T'[V’]. The union of digraphs I'; and I'y, written I'; U Ty, is the digraph with
vertex set V(I'y) U V(I'y) and arc set E(I'y) U E(I'2). If T’y and T’y are disjoint, we
denote their union by I'y + I's. In this paper, the i-th projection map is denoted
by ;.

Let S be a semigroup, and C be a non-empty subset of S. The Cayley digraph
Cay(S,C) of S relative to C (which is simply called Cayley graph) is defined as
the digraph with vertex set S and arc set F(C) consisting of those ordered pairs
(s,t) such that cs = t, for some ¢ € C. The set C is called the connection set of
Cay(S,C) (see [7]). Obviously, if C is an empty set, then Cay(S,C) is an empty
digraph.

Let Ty = (V1, E1) and Ty = (Va, E2) be digraphs. A graph (digraph) homo-
morphism ¢ : Ty — T'g is a mapping ¢ : Vi — V5 such that (u,v) € E; implies
(p(u), d(v)) € Eo, and is called a graph (digraph) isomorphism if it is bijective and
both ¢ and ¢! are graph homomorphisms. A graph homomorphism ¢ : I' — T
is called an endomorphism, and a graph isomorphism ¢ : I' — T is said to be an
automorphism. We denote the set of all endomorphisms on a digraph I' by End(T),
and the set of all automorphisms on I'" by Aut(T").

For a Cayley graph Cay(S,C), we denote End(Cay(S,C)) by Endc(S), and
Aut(Cay(S,C)) by Autc(S). An element f € Endc(S) is called a color-preserving
endomorphism if cx = y implies cf(x) = f(y) for every z,y € S and ¢ € C. The
set of all color-preserving endomorphisms of Cay(S, C) is denoted by Col Endc(S),
and the set of all color-preserving automorphisms of Cay(S,C) by ColAutc(S).
Obviously ColEndc(S) C Endc(S) and ColAute(S) C Aute(S).

The following proposition, known as Sabidussi’s Theorem, gives a criterion to
check whether a digraph is a Cayley graph of a group (see also [16, Theorem 2.5]).

Proposition 2.1. ([18]) A finite digraph T = (V, E) is a Cayley graph of a group
G if and only if the automorphism group of I' contains a subgroup A isomorphic to
G such that for every two vertices u,v € V there exists a unique o € A such that
o(u) =wv.

The Cayley graph Cay(S,C) is said to be automorphism-vertex transitive or
simply Autc(S)-vertez-transitive if, for every two vertices x,y € S, there exists
f € Autc(S) such that f(x) = y. The notions of ColAutc(S)-vertex-transitive,
Col Endc(S)-vertex-transitive, and Endc(S)-vertex-transitive for Cayley graphs
are defined similarly.

A right zero semigroup (left zero semigroup) is a semigroup S satisfying the
identity zy = y (zy = z). Also, recall that a semigroup is said to be left simple
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(right simple) if it has no proper left (right) ideals. A semigroup is called a left group
(right group) if it is left (right) simple and right (left) cancellative. It is known that
a semigroup is a right (left) group if and only if it is isomorphic to the direct product
of a group and a right (left) zero semigroup (see [5]). The following proposition
describes all semigroups S and all subsets C' of S, satisfying a certain finiteness
condition, such that the Cayley graph Cay(S, C) is Col Autc(S)-vertex-transitive.

Proposition 2.2. ([10, Theorem 2.1]) Let S be a semigroup, and C' be a subset of
S which generates a subsemigroup (C) such that all principal left ideals of (C) are
finite. Then, the Cayley graph Cay(S,C) is ColAutc(S)-vertex-transitive if and
only if the following conditions hold:
(i) eS=S, forallce C;
(if) (C) is isomorphic to a right group;
(iii) [(C)s| is independent of the choice of s € S.

A semigroup is completely simple if it has no proper ideals and has an idempotent
element which is minimal with respect to the partial order on idempotents e < f <

e=ef = fe.

Proposition 2.3. ([10, Theorem 2.2]) Let S be a semigroup, and C be a subset of
S such that all principal left ideals of the subsemigroup (C) are finite. Then, the
Cayley graph Cay(S,C) is Autc(S)-vertez-transitive if and only if the following
conditions hold:

(i) CS = S;

(ii) (C) is a completely simple semigroup;

(iii) the Cayley graph Cay({C),C) is Autc((C))-vertez-transitive;

(iv) [{C)s| is independent of the choice of s € S.

Let G be a group and I, be a set of cardinality A > 0. Now we define a semigroup
operation on S = (I x G x I) U {0} as follows:

. _J Gghk), if j=1,
(2797])(l7hak)_{ 07 ’Lf .77&1’
and (4,9,7)0 = 0(4,9,7) = 00 = 0, for all i,5,l,k € I\ and g,h € G. Then the
semigroup S is called a Brandt semigroup and is denoted by B(G, \).
Lemma 2.4. ([10, Lemma 6.1]) Let S be a semigroup, and C be a subset of S.
(i) If Cay(S,C) is Endc(S)-vertex-transitive, then CS = S.
(ii) If Cay(S, C) is Col Endc(S)-vertex-transitive, then ¢S = S for each ¢ € C.

Lemma 2.5. ([10, Lemma 5.2, Corollary 5.3]) Let S be a semigroup with a subset C
such that (C) is completely simple, and CS = S. Then, every connected component
of the Cayley graph Cay(S,C) is strongly connected, and for every v € S, the
connected component containing v is equal to (C)v. Also, if (C) is isomorphic to a
right group, then the right (C)-cosets are the connected components of Cay(S,C).

For more information on graphs, we refer to [4], and for semigroups see [5].

3. CHARACTERIZATION OF CAYLEY GRAPHS OF BRANDT SEMIGROUPS

In this section, we suppose that every digraph is finite. To provide a criterion for
Cayley graphs of finite Brandt semigroups, we present a characterization of Cayley
graphs of finite Brandt semigroups. Let S be a finite Brandt semigroup and C C S.
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Then it is obvious that if 0 € C, then each vertex of Cay(S, C) is joined to 0. Also if
C = (), then Cay(S,C) is an empty digraph. Therefore in the sequel of this section
we suppose that C' is a non-empty set and 0 ¢ C.

Theorem 3.1. A finite digraph D is a Cayley graph of a finite Brandt semigroup
if and only if D consists of a vertex vy, with a loop on it, and X\ mutually disjoint
subgraphs {Dy}A_, such that vg ¢ V(D.), for each a. Also the arc set of D
satisfies the following conditions: there exists no arc between V(D) and V (D),
for1 < a,a’ < Xanda # o, and every Dy, is isomorphic to a digraph denoting by
I'=(V,E) such that

(1) V= U?:1 Vi, where V;’s are pairwise disjoint and have the same cardinality,

(2) there exists a group G such that for every 1 < i < A, if T'; = T'[V;], then
T, = Cay(G,C;), for some C; C G,

(3) there exists a family of graph isomorphisms {f;}2 1, fi: Cay(G,C;) — Ty,
for 1 <1 < X such that if, for x € G and e the identity of G, f;(e) is joined
to fi(z), then fi(g) is joined to f;j(xg) for every g € G. Also there is not
any other arc from I'; to I';. Let Cy; be the elements of G, say x, such that
fi(e) is joined to f;(x),

moreover let 1y : I' — Dg, where 1 < a < A, be the isomorphism between I' and
D,. For everyl < a <\, if C; # 0, for some 1 < i < X or C;; # 0, for some
1<4,j <Xandi#j, then all vertices in 1o (V \'V;) are joined to vy in D.

Proof. (=) Let D = Cay(S,C), where S = (I, x G x Iy) U{0} is a finite Brandt
semigroup and C' C S. By the definition of Brandt semigroup we know that I, is a
set of cardinality A\, G is a group, and 0 is the zero of S. Without loss of generality we
can assume that I = {1,2,...,A}. Let vo = 0. Also since for every ¢ € C, c0 = 0,
there exists a loop on 0. We know that S = (U, <, j<x{(4,9,7)|g € G}) U {0}. For
every 1 < 4,5 < A, let D;; = D[{(i,9,j)|g € G}] and A;; = {(i,9,j) € Clg € G}.
We claim that D;; & Cay(G, C;), where C; = {g € G|(i,9,i) € C}. To prove it,
we define ¢;; : D;; — Cay(G,C;), by (i,9,j) — g. Obviously #;; is one-to-one
and onto. So it is enough to check that 1);; preserves adjacency and non-adjacency.
To prove 1;; preserves adjacency, let vi = (4,91,7), v2 = (i,92,75) € V(D;;) and
(vi,v2) € E(D;j). So there exists ¢ € C such that vo = cvi. So (i,92,5) =
c(i,91,7). Thus g2 = ma(c)g1, m1(c) = 4, and also since (i,92,7) # 0, m3(c) = 1.
Hence 7T2(C) € (. Therefore (91,92) € E(Cay(G,C’z)) So (Z/)ij(vl),i/}ij(v2)) €
E(Cay(G,C;)). To prove v;; preserves non-adjacency, let (¢;;(v1),i(v2)) =
(g1,92) € E(Cay(G,C;)). Then, there exists h € C;, such that go = hgy. Since
h e C, (i,h,i) € Az Also since vy, ve € V(D;;) and (4, g2, j) = (¢, h,4) (2, 91,7), we
conclude that ((¢,91,7), (4,92,7)) = (v1,v2) € E(D;;). Therefore

(3.1) D;; = Cay(G, C;),

foreach 1 <14,j5 < A.

Now we show that there exists no arc between V(D;;) and V (D, ), for 1 <
i, < X\ 1< 4,5 <Xand j # j/. On the contrary if there exists some arcs
between V(D;;) and V(D) in D, there exist (i,9,7) € V(D;;) and (i',¢',j") €
V(D) such that ((7,9,7), (7, ¢',j")) € E(D). Since D = Cay(S, C), there exists
(I,h, k) € C such that (¢',¢',7") = (I, h,k)(i,g,7). Since (i',¢’,j") # 0, we get that
k =14. Thus (¢/,¢',7") = (I, hg,j). Hence j = j', which is a contradiction. Now we
prove that D has A subgraphs {D,}A_; such that D,’s are pairwise disjoint and
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isomorphic to each other. Let D, = D[U;\:1 V(Dia)], for 1 < a < A. Then the
D,’s are pairwise disjoint and there exists no arc between D, and D, if a # «o'.
Obviously, V(D) = Ui:l V(Dy)U{0}. Now we prove that D,’s are isomorphic to
each other. To prove it, for every arbitrary 1 < a, o’ < A, we define ¢ : D, — D,
by w(iagaa) = (i,g,a'), for every (z’,g,a) € V(Da) Since (ilaglaa) = (’ig,gg,()é)
if and only if (i1,g1,0') = (i2,g2,’), we get that ¢ is well-defined and one-to-
one. Also it is obvious that v is onto. So it is enough to prove that i preserves
adjacency and non-adjacency. To prove 1 preserves adjacency, let (u,v) € E(D,),
u = (i1,01,c) and v = (ig, g2, ). Hence there exists ¢ = (I,h, k) € C such that
(i2,92,a) = (L, h, k) (i1,91,a). Sol =19, go = hgy and k = i1. Thus ¢ = (ia, h,i1)
and (ig, g2,a’) = (i2, hyi1)(i1, 91, @’). Therefore ((u),1(v)) € E(Dys). Similarly
if (w(u>7w(7})) = ((ilvglaal)’ (i27927al)) € E(Da')’ then ((ilaglva)7 (i27g270‘)) €
E(D,), which proves that v preserves non-adjacency. Without loss of generality
we can assume that I' = (V, E) is equal to D;y. Let 1, : D1 — D, by

(3.2) Na(i, g,1) = (i, 9, ),

where (i,g,a) € V(D,) and 1 < a < A.

Now we prove that conditions (1) and (2) are satisfied. Let V; = V(D;;) and
I; =T[Vi], 1 <4 < A Therefore I'; = D;; and, by (3.1), we have I'; = Dj;; =
Cay(G, C;). Also we note that V(Dy) = U?:l V(D) and so V = U?:l V;. Since
by (3.1), Di1x = Cay(G,C;), we get that |V(D;1)| = |G|. So V;’s have the same
cardinality. Hence conditions (1) and (2) are satisfied.

To prove condition (3), for every 1 < i < A, we define f; : Cay(G,C;) — T,
for 1 < i < A, by fi(g9) = (i,9,1). It is easy to check that the f;’s are well-
defined, one-to-one and onto. So it is enough to prove that f; preserves ad-
jacency and non-adjacency. To prove that f; preserves adjacency for every arc
(g1,92) € E(Cay(G,C;)), we know that there exists d € C; such that go = dg;.
So (i,d,i) € Ay and fi(g2) = (4,92,1) = (i,d,%)(¢,91,1) = (4,d,4) fi(g1). Hence
(filg1), fi(g2)) € E(T;). Therefore f; preserves adjacency. To prove f; preserves
non-adjacency, let (fi(g1), fi(g2)) € E(T;). There exists ¢ € C such that f;(go) =
cfi(g1), since D = Cay(S,C). Let ¢ = (I,d, k). Similarly to the above, we conclude
that m1(c) = i,m3(c) = . Thus, ¢ = (i,d,i), d € C; and go = dg;. Therefore
(91,92) € E(Cay(G,C;)). Hence f; preserves adjacency and non-adjacency. There-
fore f; is a graph isomorphism. Since (i,e,1) is joined to (j,z, 1), where z € Cj;, it
follows that (j,z,4) € C and so {j} x C;; x {i} C C. Thus, for every g € G, fi(g) is
joined to each vertex of {(j,d,)(i,g,1)|d € C;i;} = f;(Cijg9). Now we prove that all
arcs from I'; to I'; are arcs mentioned above. Let there exists an arc from a vertex
filg) € Vi = V(I;), for some g € G, to a vertex f;(¢g') € V; = V(I';), where ¢’ € G.
Since D = Cay(S, C), there exists (I, h, k) € C such that (j,¢',1) = (I, h, k)(i,g,1).
Sol=j, k=1iand ¢ = hg. Since (j,h,i)(i,e,1) = (j, h,1), it follows that f;(e) is
joined to f;(h). Thus h € C;;, and so ¢’ € C;;g. Therefore f;(¢') € f;(Ci;g) and
condition (3) is satisfied.

Now we prove that if C; # 0 or C;; # 0, then each vertex of 7 (V' \ V;) are
joined to vg in D, where 1 < oo < \. If C; # (0, then there exists d € C; such that
(i,d,i) € C. Thus, for every vertex (i,g,1) € V \ V;, we have i # ¢’ and since
(i,d,1)(i',g,1) = 0, we conclude that (i’,g,1) is joined to 0. Also since, for every
1<a<A (i,d,0) (i, g,a) = 0, we get that (', g,1) = (¢, g,a) is joined to 0 in
D.
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If C;; # 0, then as we mentioned above (j,h,7) € C, for h € C;;. For every
vertex (i, g,1) € V'\ V;, we have i # ¢/ and since (j,d,4)(i’, g,1) = 0, we conclude
that (i’,g,1) is joined to 0. Also since, for every 1 < a < A, (j,h,4)(i', g,a) = 0,
we get that 7,(i’, g,1) is joined to 0 in D.

(<) Take a digraph I = (V, E) with properties (1)-(3) and take a digraph D with
the given properties. Then D consists of a vertex vy with a loop on it and A\ mutually
disjoint subgraphs {D,}A_; such that each D, is isomorphic to I' = (V, E). We
define a Brandt semigroup S as S = (I x G x I, ) U{0}, where G is the group given
in part (2) and Iy ={1,2,...,\}. Let

A
(3.3) C= (Ui xax{i)u( | i} xCyx{i}),

i=1 1<, <A

i)

where C; and Cj; are given in parts (2) and (3), respectively. Let D’ = Cay(S, C)
and D!, = D'[{(i,g,a)|g € G,1 < i < A}], for 1 < a < A. Using the (=) part
of the theorem, we conclude that D’ = Cay(S, C) consists of the vertex 0 with a
loop on it and A pairwise disjoint subgraphs D!, which are isomorphic to a graph
satisfying conditions (1)-(3) and there exists no arc between these subgraphs. We
claim that D is isomorphic to D’ = Cay(S, C).

To prove D is isomorphic to D', first we prove that ' = D/. Using (2), we
know that T'; = T'[V;] 2 Cay(G, C;), for 1 < i < A, and by (3) there exists a graph
isomorphism f; : Cay(G,C;) — T';. For every v € V = V(I'), using (1) we get that
there exists a unique 1 <4 < X such that v € V; = V(I';). To prove I' & D/, we
define ¢ : T' — D}, by ¥ (v) = (i, f; *(v), 1), where v € V; = V(I';). Now we prove
that 1 is a graph isomorphism. Since f[l is a graph isomorphism, we get that 1 is
one-to-one and onto. So it is enough to show that ¢ preserves adjacency and non-
adjacency. Let (u,v) € E(T'). There exists 1 < i,5 < A such that v € V; = V(I;)
and v € V; = V(I';). Now we consider two cases. If { = j, then using (2) we get that
there exists d € C; such that f;*(v) = df; '(u). So by the definition of C'in (3.3),
we conclude that (i,d,i) € C. Now since (i, f; *(v),1) = (i,d,4)(i, £, *(u),1), we
conclude that (1(u),¥(v)) € E(D}). If i # j, then there exist g,¢’ € G such that
filg) =u, f;(¢’) =v. Using (3), we get that f;(g) is joined in I'; only to f;(Ci;g).
Hence ¢'g~! € Cj;. By the definition of C in (3.3), we get that (j,¢g'g™',i) €
C. Hence (j,fj_l(v),l) = (4,997 %) (i,9,1) = (4, d'g7",4)(i, £ (u),1). Thus,
(¥(u),v(v)) € E(D}). Therefore ¢ preserves adjacency. To prove 1 preserves non-
adjacency, let (¢(u),¥(v)) € E(D}). Also let ¢¥(u) = (i,9,1) and ¥ (v) = (¢,¢',1).
Therefore g = f;l(u) and ¢’ = fi71(v). By definition of Cayley graph, there exists
(ic,gey je) € C such that (i',¢',1) = (icy ge, je)(iy9,1). So i. = i, jo = i, and
g = geg. If i =14, then by the definition of C in (3.3), we get that g. € C;. Since
i =i, we have g = f; '(u) and ¢’ = f; ' (v). Since f; is a graph isomorphism and
(9.9) € E(Cay(G,Co)), (fi(g), fi(g)) = (u,0) € BE(Ty) C E(T). i # i, then
(7', 9c,7) € C and so g. € Cyr. Using (3), each vertex fi(¢”), ¢ € G, is joined
to fir(geg”). Thus f;(g) is joined to fi/(geg) = fir(¢'). Hence w is joined to v. So
(u,v) € E(I"). Therefore ¢ preserves non-adjacency. Hence I' = D] .

Now we prove that D = D’ = Cay(S,C). By assumption, D' = Cay(S,C) is a
Cayley graph of a Brandt semigroup. Therefore as we mentioned in the necessary
part of the proof, for each 1 < av < A, there exists a graph isomorphism 7/, : D] —
D!, where 1., (i,9,1) = (¢,9,a) (see 3.2). To prove D = D' = Cay(S,C), we
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define p : D — D’ by pu(vg) = 0 and u(v) = nLyn,t(v) if v € V(D,), for some
1 < a <\ It is easy to check that yu is bijection since 7/, 1 and 7! are bijection
and vy does not belong to any V(D,), for 1 < a < A. Hence to prove u is a graph
isomorphism, it is enough to prove that u preserves adjacency and non-adjacency.
For this purpose let vy, v2 € V(D) and (v1,v2) € E(D). Since in the graph D there
does not exist any arc from vy to any other vertex of D, we have three following
cases.

Case (1) Let v1 = v2 = vg. Since we know that there is a loop on vg in D, and there is
aloop on u(vg) = 0in D', we conclude that (u(v1), u(ve)) = (0,0) € E(D").

Case (2) Let v; # vo and va # vp. Since there does not exist any arc between D,,
and Dy, for 1 < a,a’ < XA and a # o/, we conclude that there exists
some 1 < a < ) such that vy, v5 € V(D,). Since 7., ¢ and 7' are graph
isomorphisms, we get that (u(vi),pu(v2)) = (na¥ng ' (vi), mhng ' (v2)) €
E(D.) C E(D").

Case (3) Let v1 # vy and vy = vg. Then vy € V(D,), for some 1 < a < A. By
the hypothesis, v; is joined to vg. Therefore C; # ), for some 1 < i < A,
or Ci; # 0, for some 1 < i,j < X\, i # j and n,'(v1) € V \ V;. Let
05 (v1) € Vir = V(T'y), for some 1 <4’ < X\, where i’ # i. By the definition
of 1, we know that (n;*(v1)) = (7, f;, ' (n7(v1)),1). Therefore pu(vi) =
Mo (05 (1)) = (@, fi (g (v), @) € V(D). If C; # 0, then there
exists d € C; and so (i,d,i) € C. Then (i,d,)(7, f; ' (n7*(v1)),a) = 0
shows that p(v1) is joined to p(vo) = 0. Similarly if Cy; # 0 and d € Cy;,
then by the definition of C, (j,d, ) € C. Similarly to the above, we conclude
that p(vi) = nhyns (o) = (7, £, (071 (v1)), @) is joined to p(ve) = 0 in
D'

Thus u(vy) is joined to p(ve) in D’. Therefore p preserves adjacency. Similarly
we can conclude that p preserves non-adjacency. Hence p is a graph isomorphism.
Thus D 2 D" = Cay(S, C). Therefore D is isomorphic to a Cayley graph of a finite
Brandt semigroup. O

In the next example we show that the following digraph is not a Cayley graph
of a Brandt semigroup, because condition (3) of the above theorem is not satisfied.

Example 3.2. Let D be the following digraph. By Theorem 3.1, we show that D
is not a Cayley graph of a Brandt semigroup. Throughout of the proof, we use the
notations of Theorem 3.1. On the contrary suppose that D is a Cayley graph of a
Brandt semigroup. Let S = (I x G x I) U {0} be a Brandt semigroup and C' C S



8 BEHNAM KHOSRAVI, BAHMAN KHOSRAVI

such that D = Cay(S,C).

w onry

Since |S| = A?|G| + 1 = 17, we get that A € {1,2,4}. In any case vy = 0.
If A\ =1, then S = G°. So, by conditions (1) and (2) of Theorem 3.1 we con-
clude that D[V \ {0}] must be isomorphic to a Cayley graph of a group. By
Proposition 2.1, we know that every Cayley graph of a group is vertex-transitive.
Also we know that in a finite vertex-transitive graph the in-degree is the same for
each vertex, and is equal to its out-degree. Now we note that D is not vertex-
transitive because dp .\ 1oy (v3) = 1 and dB[V\{O}](UG) = 2. Since D[V \ {0}] is
not vertex-transitive, we get that D[V \ {0}] can not be isomorphic to a Cayley
graph of a group, which is a contradiction. Hence A > 1. Then there exist A
mutually disjoint subgraphs, {Di}f‘zl such that there exists no arc between them.
Let v; € V(D;). Since there does not exist any arc between D;’s, we get that
vg, V4,08 € V(D1). Since vy, v4,vs € V(D1), similarly to the above we conclude
that vs, vs, vg,v7 € V(Dy), too. Similarly we conclude that there exists D;, where
2 <4 < A, such that vf, v}, vh, v}, vE, vg, v, v belong to V(D;). This implies that
A = 2. Without loss of generality, we can assume that Iy = {1,2}. We choose
Dy = D[{v1,v2,v3,v4,v5,v6,07,v8}] and Dy = D[{v}],vh, vh, v}, vf, vg, vh,v5}. Tt
is obvious that Dy and D> are isomorphic to each other and up to isomorphism
the choices of D; and D> are unique. Without loss of generality, we can assume
that I' = D;. By condition (1), we get that {vy,ve,vs, vy, V5, V6, V7, 08} = Ule Vi
such that |Vi| = |V2| = 4 and T'[V}] is isomorphic to a Cayley graph of a group, for
1 =1,2. Without loss of generality let v; € V3. Now we consider the following four
cases.

Case (1) Let v € V5 and vg € Vi. We claim that this case can not occur. Since
v9,v8 € V7, dlfl (v1) = 2. But dr, (v1) < dp(v1) = 1, which is a contradic-
tion because I'; is vertex-transitive.

Case (2) Let vg ¢ V7 and vg € V;. Since I'; is vertex-transitive, we get that dr, (1) =
d{fl (v1) = 1. So vy € V4 and dr, (vg) = dli'l (vg) = 1. Therefore v3 € V3
and dp (v3) = dffl (v3) = 1 which implies that v, € Vi, and this is a
contradiction.

Case (3) Let v2 € Vi and vg ¢ V1. Then dr (v1) = difl (v1) =1 and so vy € V7. Now
similar to the above cases, we conclude that vz € V;. Therefore

Vi = {v1,va,v3,v4}, Vo = {vs,v4,v7, 08}
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So I'[V1] = Cay(Z4,{c}), where ¢ = 1 or ¢ = 3, and T'[Va] = Cay(Z4, {2})
(we note that since I'[V]] is a square, then ¢ must be an element of order
4 and so G can be only Z4). Hence S = (I3 X Zy x I5) U {0}. Let fi :
Cay(Z4,{c}) — T[V1], where ¢ € {1,3} and fo : Cay(Z4,{2}) — T[Va].
Now we claim that condition (3) of Theorem 3.1 can not be satisfied. To
prove it we note that v1 = f1(g1) is joined to vo = f1(g2) € V1 and vg =
f2(g') € Vi, for some g1,92,9' € Zy4. Since f; is a graph isomorphism,
(91,92) € E(Cay(Za4,{c})) and so g2 = g1 + ¢. We note that v, = f1(g1) is
joined to vg = f2(g’). Hence fi(e) is joined to fo(g’ — g1). By condition (3)
of Theorem 3.1, since va = f1(g2) = fi(g1 + ¢) is joined to vs, we get
that vs = fo(g’ — g1 + g1 + ¢). Therefore vs = fo(¢’ + ¢). Since f5 is a
graph isomorphism and (vs,vs) € E(T'), we get that (f5 *(vs), f5 *(vs)) €
E(Cay(Z4,{2})) and so f; *(vs) = f5 '(vs)+2. Thus ¢’ = ¢’ +c+2. Hence
¢ = 2, which is a contradiction because ¢ € {1,3}. Therefore in this case
the graph D can not be a Cayley graph of a Brandt semigroup.

Case (4) Let vy ¢ V; and vg ¢ V1. Then dp (v1) = dff (v1) = 0. So vy € Va. Also
dr, (v2) = dffz (v2) = 0 implies that v3,vs € V1. Finally dp, (v4) = 0 and so
vy € V7. Therefore

Vi = {v1,v3,05,v7}, Vo = {va,v4, 06,08}

Also we note that by condition (3) of Theorem 3.1, each vertex of I'y is
joined to exactly |Ci2| vertices of I's. Now vy is joined to vy and vg in Vo =
V(T3) but vy is joined only to vg in Vo = V(I'y), which is a contradiction.
Therefore in this case the graph D can not be a Cayley graph of a Brandt
semigroup.

So D is not a Cayley graph of a finite Brandt semigroup.

4. VERTEX-TRANSITIVE CAYLEY GRAPHS OF BRANDT SEMIGROUPS

In this section, we describe Cayley graphs of Brandt semigroups which are vertex
transitive. Throughout this section, we assume that S is a Brandt semigroup and
C is a nonempty subset of S.

Theorem 4.1. Let S = (I x G x I,) U {0} be a Brandt semigroup. Let C be a
subset of S which generates a subsemigroup (C) such that all principal left ideals of
(C) are finite. Then the following statements are equivalent:

(i) Cay(S,C) is Col Autc(S)-vertex-transitive;
(ii) Cay(S,C) is Autc(S)-vertex-transitive;
(i) Cay(S,C) is ColEndc(S)-vertex-transitive;
(iv) I\ =1, S =2 GY and C = {(i,eq,i)}, where I = {i};
(v) Cay(S,C) = |S|K;.

Proof. (1)=(iv) By Proposition 2.2, we get that ¢S = S, for every ¢ € C. Let
¢ = (i0,90,J0) € C. For every s = (i,g9,j) € S, since ¢S = S, there exists
s" = (jo,g',j) € S such that (i,9,5) = (i0,90,70)(jo,¢’,j). Since s is arbitrary,
for every i@ € I, i = ig. Therefore |I,| = 1. Let I, = {i}. Now we define
¥ ({i} x G x {i}) U{0} — G° by (i,g,i) — g and 0 — 0. Obviously, ¢ is a
semigroup isomorphism. Hence S = G°. Since for every ¢ € C, ¢S = S, we get

that 0 ¢ C. So C C {i} x G x {i}.
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By Proposition 2.2, we conclude that (C) is isomorphic to a right group. By
Lemma 2.5, we conclude that for every v € S the connected component containing
v is equal to (C)v. Since [(C)0] = [{0}| = 1, by Proposition 2.2, we conclude that
for every v € S, [(C)v] = 1. So the cardinality of all connected components of
Cay(S,C) are 1. Since C is not empty, all connected components of Cay(S,C)
are isomorphic to K. Since C' C {i} x G x {i} and all connected components of
Cay(S, C) are isomorphic to K1, C = {(i,eq,4)}.

(iv)= (v) Since C = {(i,eq,i)} and for every (i,9,4) in S, (i,eq,i)(i,g,i) =
(i,9,1), it follows that each vertex is joined only to itself. Therefore every connected
component of Cay(S, C) is isomorphic to K. Hence Cay(S,C) = |S|K;.

(v)= (i) It is routine to verify that the digraph |S|K; is ColAutc(S)-vertex-
transitive.

(i) (v) It is routine to verify that the digraph |S|K; is Autc(S)-vertex-
transitive. Conversely let Cay(S, C') be an Autc(S)-vertex-transitive Cayley graph.
First we claim that 0 ¢ C. On the contrary let 0 € C. So all vertices of
Cay(S,C) are joined to 0. Also we know that 0 is not adjacent to any other
vertex of Cay(S,C). Since Cay(S,C) is Autc(S)-vertex-transitive, for a non-zero
vertex v, we conclude that there exists f € Autc(S) such that f(v) = 0. Since
(v,0) € E(Cay(S,C)), we get that (f(v), f(0)) = (0, f(0)) € E(Cay(S,C)). Since
0 is not adjacent to any other vertex of Cay(S, C), we conclude that f(0) = 0 which
is a contradiction since f(0) =0 = f(v), f € Autc(S) and v # 0. Therefore 0 ¢ C.
On the other hand, by Proposition 2.3 we know that |[(C)s| is independent of s € S.
Since [(C)0] = |{0}| = 1, and C # ), by Lemma 2.5 we conclude that all connected
components of Cay(S, C) are isomorphic to K;. Therefore Cay(S,C) = |S|K;.

(ili)& (v) It is routine to verify that the digraph |S|K, is ColEndc(S)-vertex-
transitive. Conversely let Cay(S,C) be a ColEndc(S)-vertex-transitive Cayley
graph. By Lemma 2.4, we get that ¢S = S, for every ¢ € C. Now similar to
the proof of (i)= (iv) we get that [I\| = 1, 0 ¢ C, and S = G°. Let I, = {i}.
Since Cay(S,C) is ColEndc(S)-vertex-transitive and there exists a loop on the
vertex 0, there exists a loop on each vertex of Cay(S,C). Hence (i,eq,i) € C,
since C' C {i} x G x {i}. Since Cay(S,C) is ColEndc(S)-vertex-transitive, for
every vertex v # 0, there exists a ¢» € ColEndc(S) such that ¢(0) = v. Since
for every ¢ € C, ¢c0 = 0, we get that v = ¥(0) = ¥(c0) = cp(0) = cv. So
(i,m3(v), 1) = (i,m2(c),4)(i, m2(v),1). Since ma(v) = ma(c)m2(v) and ¢ is an arbitrary
element of C, we conclude that C = {(i,eqg,4)}. So we get (iv) and we proved that
(iv) and (v) are equivalent. O

Remark 4.2. Let S = (I x G x I,) U{0} be a Brandt semigroup, and let C be a
subset of S. By the proof of Theorem 4.1 we conclude that the following statements
are equivalent:

(i) Cay(S,C) is ColEndc(S)-vertex-transitive;

(i) [Ix| =1, S =2 G° and C = {(i,eq,i)} where I, = {i};
(i) Cay(S,C) = |S|K;.

Now we present a necessary and sufficient condition for Cayley graphs of Brandt
semigroups to be endomorphism-vertex-transitive.
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Theorem 4.3. Let S = (I x G x I,) U {0} be a Brandt semigroup, and let C be
a subset of S such that all principal left ideals of the subsemigroup (C) are finite.
Then the following statements are equivalent:
(i) Cay(S,C) is Endc(S)-vertex-transitive;
(ii) there exists a loop on each vertex;
(ili) (,eq,1) € C, for every i € I.

Proof. (1)=(ii) Since C' # ), there exists a loop on vertex 0. Also since Cay(S, C)
is Endc(S)-vertex-transitive, there exists a loop on each vertex of Cay(S, C).

(ii)= (i) For every s € S, we consider the map v¢,(v) = s, which maps every
vertex of Cay(S,C) to s. Since there exists a loop on each vertex of Cay(S,C),
every 1, is a digraph endomorphism, for s € S. Hence for every vertices s,t € S,
¥s(t) = s and so Cay(S, C) is Endc(S)-vertex-transitive.

(ii)=(iii) For every (i,g,j) € S\ {0}, there exists (i, gc,jc) € C such that
(i,9,7) = (ics 9es Je)(i,9,4). S0 je = i, ic = i and gog = g. Hence g. = eg.
Therefore for every i € Iy, (i,eq,i) € C.

(iii)= (ii) It is obvious. O

Theorem 4.4. Let S = (Iy x G x I\) U{0} be a Brandt semigroup and C C S.
Then T = Cay(S,C) is symmetric if and only if

() 1] = 1;

(i) 5(C) = (ma(C))

(ifi) 0 ¢ C.

Proof. (=) We claim that |Ix| = 1. On the contrary suppose that || > 1. Since
C' is not empty, there exists (i, gc, je) € C. Since |I5| > 1, there exists ¢ € I such
that ¢ # j.. So every vertex (i,g,7) € S is joined to 0, which is a contradiction
since there does not exist any arc from 0 to (4, g, j) and we know that Cay(S,C) is
symmetric. So |In| = 1. Let I = {i}. If 0 € C, then every vertex of T is joined to
0 and similarly we get a contradiction. Let ¢ € C. Since I, = {i}, we get that ¢ =
(i,t,4), where t € G. Therefore (i,t,4)(i,g,1) = (i,tg,?) implies that Cay(S,C) =
Cay(G, m(C)) + K. To prove my(C) = (m2(C))~1, let ¢ € C. Then ¢ = (i,t,1), for
some t € G. For every (i,9,i) € S, since ((¢,9,1), (i,t,1)(%,9,7)) € E(Cay(S,C)),
then ((i,t,4)(4,9,1),(i,g,1)) € E(Cay(S,C)). So there exists (i,g’,i) € C such
that (i,9,4) = (i,9',1)(i,t,i)(i,9,4). Hence t=1 = g’ € m3(C). Therefore m(C) =
7T2(C)71.

(<) Since [I)| =1, S = G°. Also since 0 ¢ C, then as we mentioned above it
follows that Cay(S,C) = Cay(G, 72(C)) + K1. On the other hand we know that
if mo(C) = (m2(C))~1, then Cay(G,m2(C)) is symmetric. Therefore Cay(S, C) is
symmetric. ]
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