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Abstract

In (n,d)-ring and n-coherent ring theory, n-presented modules plays
an important role. In this paper, we firstly give some new characteriza-
tions of n-presented modules and n-coherent rings. Then, we introduce
the concept of (n, 0)-projective dimension, which measures how far away
a finitely generated module is from being n-presented and how far away
a ring is from being Noetherian, for modules and rings. This dimen-
sion has nice properties when the ring in question is n-coherent. Some
known results are extended or obtained as corollaries.
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1 Introduction

Throughout this paper all rings are associative with identity and modules are
unitary. rD(R) stands for the right global dimension of a ring R. pd(M),
id(M) and fd(M) denote the projective, injective and flat dimension of an
R-module M, respectively.
Let n > 0 be an integer. Following [2; 3; 11], we call a right R-module P
n-presented if there exists an exact sequence of right R-modules
FE,—-F_1— -—F—=>F—>P—0
where each F; is finitely generated free (equivalently projective), i = 0, 1,
-+, n. An R-module is O-presented (resp. 1-presented) if and only if it is
finitely generated (resp. finitely presented). Every m-presented R-module is
n-presented for m > n. A ring R is called right n-coherent [3] in case every
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n-presented right R-module is (n + 1)-presented. It is easy to see that R is
right O-coherent (resp. 1l-coherent) if and only if R is right Noetherian (resp.
coherent), and every n-coherent ring is m-coherent for m > n.

Let n and d be non-negative integers and M a right R-module. M is called
(n, d)-injective [12] if Extz® (N, M) = 0 for any n-presented right R-module
N. M is said to be (n,d)-projective [8] if ExtE™ (M, N) = 0 for any (n, d)-
injective R-module N. It is easy to see that both (n, d)-injective modules and
(n, d)-projective modules are closed under direct summands and finite direct
sums. (1,0)-injective (resp. (1,0)-projective) modules are also called FP-
injective (resp. F P-projective) modules. It is clear that every (n, d)-injective
(resp. (m,d)-projective) module is (m, d)-injective (resp. (n,d)-projective) for
m>n.

In (n,d)-ring and n-coherent ring theory (see [2; 3; 8; 12]), n-presented
modules plays an important role. For modules and rings, Mao and Ding [7]
defined a dimension, called an F'P-projective dimension; Ng [15] introduced
the concept of finitely presented dimension. In this paper, we introduce a kind
of n-presented dimension of modules and rings.

Let n > 1 be a fixed integer. In Section 2, we introduce the concept of
(n,0)-projective dimension npd(M) for a right R-module M, and the concept
of right (n,0)-projective dimension for a ring R, which measures how far away
a finitely generated right R-module M is from being n-presented, and how far
away a ring is from being right Noetherian, respectively. It is shown that a
finitely generated right R-module M is n-presented if and only if it is (n,0)-
projective if and only if npD(M) = 0 (Theorem 2.3); R is an n-coherent ring if
and only if every (n,0)-injective right R-module is (n, 1)-injective if and only
if every (n, 1)-projective right R-module is (n,0)-projective (Theorem 2.6); R
is a right Noetherian ring if and only if rnpD(R) = 0 if and only if every
right R-module is (n,0)-projective if and only if for a short exact sequence
0+ A — B — C — 0 of right R-modules, if both B and C' are finitely
generated, then A is also finitely generated (Corollary 2.7).

Let n > 1 be a fixed integer and R a right n-coherent ring. In Section
3, we prove that rnpD(R) = sup{npd(M): M is a cyclic right R-module}
= sup{id(M): M is an (n,0)-injective right R-module} (Theorem 3.4). As
corollaries we obtain that R is right Noetherian if and only if rnpD(R) < oo
and every injective right R-module is (n,0)-projective if and only if every
(n,0)-injective right R-module has an (n,0)-projective cover with the unique
mapping property if and only if every (n,0)-injective right R-module has
an injective envelope with the unique mapping property (Corollary 3.6). If
rnpD(R) < m, then we have that R is a right m-coherent ring (Proposition
3.9). Let S and T be rings. If S®T is an right n-coherent ring, then we get that
rnpD(S&T) = sup{rnpD(S), rnpD(T)} (Theorem 3.14). Let R be a commu-
tative n-coherent ring and P any prime ideal of R, then npD(Rp) < npD(R),
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where Rp is the localization of R at P (Theorem 3.18).

2 Definition and General Results

Let R be a ring and m > 0 an integer . Mao and Ding [7] defined the FP-
projective dimension fpd(M) of aright R-module M as inf{m: Ext};™' (M, N)
= 0 for any F'P-injective right R-module N}, if no such m exists, set fpd(M)
= o0; and the right F'P-projective dimension v fpD(R) of R as sup{ fpd(M):
M is a finitely generated right R-module}. We generalize it as follows.

Definition 2.1 Let m > 0, n > 1 be integers, and R a ring. For a right
R-module M, set npd(M) = inf{m: Exty™ (M, N) =0 for any (n,0)-injective
right R-module N}, called the (n,0)-projective dimension of M. If no such
m exists, set npd(M) = oo.

Put rnpD(R) = sup{npd(M): M is a finitely generated right R-module},
and call rnpD(R) the right (n,0)-projective dimension of R. The left (n,0)-
projective dimension InpD(R) of R may be defined similarly. If R is a com-
mutative ring, we drop the unneeded letters r and [.

We list the following lemma proved in [8; Lemma 3.3] for convenient using.

Lemma 2.2 ([8; Lemma 3.3]) Let R be a ring, n > 0 an integer and 0 —
A — B — C — 0 a short exact sequence of right R-modules. If C is (n+1,0)-
projective and B is (n,0)-projective, then A is (n,0)-projective.

It is clear that an n-presented right R-module is (n,0)-projective. In gen-
eral, the converse is not true. Glaz (see [4; Theorem 2.1.10]) proved that
a finitely generated right R-module is finitely presented if and only if it is
F P-projective. We generalize it as the following

Theorem 2.3 Letn > 0 be a fized integer and R a ring. Then the following
are equivalent for a finitely generated right R-module P.

(1) P is n-presented.

(2) P is (n,0)-projective.

(3) npd(P) = 0.

Proof. (1) = (2) is obvious, and (2) < (3) holds by definition.

(2) = (1). We use induction on n. The case n = 0 is clear, and the
case n = 1 has been proven in [4; Theorem 2.1.10]. Assume n > 1, and P is
(n,0)-projective. Then P is (n — 1,0)-projective. So P is (n — 1,0)-presented
by the induction hypothesis. Therefore there exists an exact sequence of right
R-modules

Fay—F, 90— - > F—>F—=-P—=0
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where each F; is finitely generated projective (hence (m, 0)-projective, for any
non-negative integer m), i = 0, 1, ..., n — 1. Write K; = ker(Fy — P), K,
=ker(F,—1 — F2), m=2,3, ..., n—1. Then we have the following short
exact sequences

00— Ky —Fy— P —0,
00— Ky — F — K{ — 0,

00— K, 41— F, o—K,_5—0.

Note that P is (n,0)-projective and Fy is (n — 1, 0)-projective, we obtain K is
(n—1,0)-projective by Lemma 2.2. It follows that Kj is (n— 2, 0)-projective a-
gain by Lemma 2.2. Continuing this way, we see that K,_; is (1, 0)-projective.
Clearly, K, is finitely generated. Thus K,,_; is finitely presented by [4; Theo-
rem 2.1.10], and hence there exists an exact sequence F, — F, | — K, _1 — 0
with ) and F, | finitely generated projective. So we get an exact sequence

FT;—>FT/H—>Fn_2—>--~—>F1%F0—>P—>O.

It follows that P is n-presented, as required.
The following corollary is well-known.

Corollary 2.4 Letn > 0 be a fixed integer and R a ring. Then the following
statements hold:

(1)  FEwvery finitely generated projective right R-module is n-presented.

(2) For a short exact sequence 0 - A — B — C — 0 of right R-modules,
if both A and C are n-presented, then B is also n-presented.

(3) IfBX= A®C, then B is n-presented if and only if both A and C are

n-presented.

Proof. (1). Note that every projective right R-module is (n, 0)-projective.
Thus (1) follows from Theorem 2.3.

(2). Since A and C are n-presented, we have both A and C' are finitely
generated and (n,0)-projective. Hence B is also finitely generated and (n,0)-
projective. Therefore B is n-presented by Theorem 2.3.

(3). If B =2 A® C, then it is easy to see that B is finitely generated
and (n,0)-projective if and only if both A and C are finitely generated and
(n,0)-projective. Thus (3) holds by Theorem 2.3, and we complete the proof.

Corollary 2.5 Let R be a ring, n > 0 an integer and 0 — K — P —
M — 0 a short exact sequence of right R-modules, where P is finitely generated
projective. Then K is n-presented if and only if M is (n + 1,0)-presented.



Relative Projective Dimensions 5)

Proof. 1If K is n-presented, then clearly M is (n + 1)-presented. Con-
versely, if M is (n + 1)-presented (hence (n + 1,0)-projective), then it is easy
to see that K is finitely generated. On the other hand, K is (n,0)-projective
by Lemma 2.2. It follows that K is n-presented from Theorem 2.3.

Theorem 2.6 Let R be a ring, and n > 0 a fixed integer. Then the follow-
g are equivalent:

(1) R is a right n-coherent ring.

(2)  Every (n+ 1,0)-injective right R-module is (n,0)-injective.

(3)  Ewvery (n,0)-projective right R-module is (n + 1, 0)-projective.

(4)  For a short exact sequence 0 — A — B — C — 0 of right R-
modules with B finitely generated projective, if C' is n-presented, then A is
also n-presented.

(5) For a short exact sequence 0 - A — B — C' — 0 of right R-modules,
if both B and C' are n-presented, then A is also n-presented.

If n > 1, then the above conditions are also equivalent to:

(6) Ewvery (n,0)-injective right R-module is (n, 1)-injective

(7)  Ewvery (n,1)-projective right R-module is (n,0)-projective.

Proof. (1) = (2) = (3). are obvious.

(3) = (1). Let M be an n-presented right R-modules. Then M is finitely
generated and (n,0)-projective by Theorem 2.3. Note that M is (n + 1,0)-
projective by (3). Thus M is (n + 1)-presented again by Theorem 2.3.

(4) = (1). Let M be any n-presented right R-module. Then there exits a
short exact sequence 0 - K — P — M — 0 of right R-modules with P finitely
generated projective and K n-presented by (4). Hence M is (n + 1)-presented
by Corollary 2.5, and (1) follows.

(1) = (5). If C is n-presented, then C'is (n + 1)-presented by (1). The
rest proof is similar to that of Corollary 2.5.

(5) = (4). By (5), it suffices to show that B is n-presented. But this
follows from Corollary 2.4.

Now suppose n > 1.

(4) = (6). Let M be an (n,0)-injective right R-module and C' any n-
presented right R-module. Then we get a short exact sequence 0 - A — B —
C' — 0 of right R-modules with B finitely generated projective. By (4), A is
n-presented. Thus,

Eat3(C, M) = Exth(A, M) = 0.

Therefore, M is (n, 1)-injective.

(6) = (7) is easy.

(7) = (1). Let P be an n-presented right R-module. We get a short exact
sequence 0 - K — F' — P — 0 of right R-modules with F finitely generated
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projective and K finitely generated. For any (n, 1)-injective right R-module
M. we have

Exth(K, M) = Ext%(P, M) = 0.

So K is (n,1)-projective and hence (n,0)-projective by (7). Thus, K is n-
presented by Theorem 2.3. Therefore, P is (n + 1)-presented and (1) holds.

It is well known that a ring R is right Noetherian if and only if every right
R-module is F' P-projective if and only if rfpD(R) = 0 (see [7; Proposition
2.6]). Now, we have the following

Corollary 2.7 Let n > 1 be a fixed integer. Then the following are equiv-
alent for a ring R:
1) R is right Noetherian.
rnpD(R) = 0.
Every finitely generated right R-module is n-presented.
Every (n,0)-injective right R-module is injective.
FEvery right R-module is (n,0)-projective.
FEvery finitely generated right R-module is (n,0)-projective.
Every cyclic right R-module is (n,0)-projective.
8) For a short exact sequence 0 - A — B — C — 0 of right R-modules,
if both B and C' are finitely generated, then A is also finitely generated.
If R is right n-coherent , then the above conditions are also equivalent to:
(9) Ewvery (n,0)-injective right R-module is (n,0)-projective.

2
3
4
5
6
7

AN AN N N N N N
— e N S S N

Proof. (1)< (3) = (4) and (5) = (6) = (7) are trivial.

(4) = (5) Let M be any right R-module and N any (n,0)-injective right
R-module. Then Exth(M,N) = 0 since N is injective by (4). Hence M is
(n,0)-projective.

(7) = (4). Let N be any (n,0)-injective right R-module, and I any right
ideal of R. By (7), R/I is (n,0)-projective. So Fxth(R/I,N) = 0. That is,
N is injective.

(2) < (6) holds by definition, (3) < (6) holds by Theorem 2.3, (1) < (8)
holds by Theorem 2.6, and (4) < (9) has been proven in [8; Proposition 4.10].

Corollary 2.8 Let n > 1 be an integer and R a ring. If rnpD(R) < 1,
then rnpD(R) = rfpD(R).

Proof.  This follows from the fact that rnpD(R) = 0 if and only if
rfpD(R) = 0 by Corollary 2.7 and [7; Proposition 2.6].

Remark 2.9 (1) From Theorem 2.3 and Corollary 2.7, we see that npd(M)
measures how far away a finitely generated right R-module M 1is from being
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n-presented, and rnpD(R) measures how far away a ring is from being right
Noetherian.

(2) It is clear that fpd(M) < npd(M) < pd(M), and rfpD(R) <
rnpD(R) < rD(R). Since rfpD(R) = rD(R) if and only if R is von Neumann
regular [7; Remarks 2.2/, we have r fpD(R) = rnpD(R) = rD(R) if and only
if R is von Neumann regular. It is also easy to see that rnpD(R) = rD(R) if
and only if R is a right (n,0)-ring (see [12; Definition 2.5]).

(3) It is known that a right Noetherian ring need not be left Noetherian,
so rnpD(R) # InpD(R) in general.

(4)  The equivalence of (1) through (3) in Theorem 2.6 has been proven in
[8; Theorem 4.1]. Here we prove the equivalence in a different way.

(5) Ifn =1, then Theorem 2.6 is just some characterizations of coherent
rings.

Recall that a ring R is called right self-(n, 0)-injective in case Rpg is (n,0)-
injective. Stenstrom proved that if R is right coherent and right self-F'P-
injective, then every flat right R-module is F'P-injective (see [9; Lemma 4.1]).
We generalize it as the following

Proposition 2.10 Let n > 1 be a fized integer. If R is a right n-coherent
and right self-(n,0)-injective ring, then every flat right R-module is (n,0)-
mjective.

Proof. Let M be a flat right R-module. Then, by [16; Theorem 4.85], we
get a pure short exact sequence 0 - K — F — M — 0 where F' = &; R
for a set I. Since R is right n-coherent and right self-(n, 0)-injective, we have
F' is (n,0)-injective by [12; Lemma 2.9]. Hence we obtain the following exact
sequence

0 — Homg(N,K) — Homg(N, F) — Homgr(N, M) — Exth(N,K) — Extp(N,F) =0

for any n-presented (hence finitely presented) right R-module N. It follows
that Exth(N,K) = 0, and so K is (n,0)-injective. Note that R is right n-
coherent, we have M is (n,0)-injective by [8; Theorem 4.1], as desired.

3 (n,0)-Projective Dimensions over n-Coherent
Rings

Proposition 3.1 Let n > 1, m > 0 be integers. If R is a right n-coherent
ring, then the following are equivalent for a right R-module M :

(1) npd(M) <m.

(2)  Ext™™(M,N) =0 for any (n,0)-injective right R-module N.
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(3)  Exth™(M,N) = 0 for any (n,0)-injective right R-module N and
j=>1

(4)  There ezists an exact sequence 0 — P,, — Py — -+ — P — Py —
M — 0, where each P; is (n,0)-projective.

5) If---—Pn1— Pyo—-+— P — Ph— M — 0 is a projective
resolution of M, then ker(P,—1 — Pn_2) is (n,0)-projective.

Proof. (1) = (2). We use induction on m. The case m = 0 is clear.
Let m > 1. If npd(M) = m, then (2) holds by definition. Suppose npd(M) <
m — 1. For any (n,0)-injective right R-module N, the short exact sequence
0 — N — FE — L — 0 with E injective induces an exact sequence

EatT (M, L) = Ext?t (M, N) — Ext? (M, E) = 0.

Since R is m-coherent, we get L is (n,0)-injective by [8; Theorem 4.1]. So
Ext% (M, L) = 0 by the induction hypothesis. It follows that Ext; ™ (M, N) =
0, as desired.
(2) = (3). Using induction on j, the proof is similar to that of (1) = (2).
(3) = (1), and (2) = (5) = (4) are obvious.
(4) = (2). Write Ky = ker(Fy — M), K; = ker(P,_y — P_5), i = 2, 3,
.., m — 1. Then we have the following short exact sequences

0 — Ky —F— M —0,
0— Ky — P — K; — 0,

0O—P, —PFP,1 —K,,_1 —0.

From the bottom exact sequence, we get the exactness of the sequence
0 = Extyp(P,, N) — Extj(Ky 1, N) = Exty(Py_1, N)

for any (n, 0)-injective right R-module N. Since P,,_1 is (n, 0)-projective, using
an argument similar to that of (1) = (2), we get Ext%(P,_1, N) = 0. Hence
Ext%(K,,_1,N) = 0. Continuing this way, we obtain Exty™ (M, N) = 0.
Thus (2) holds.

Proposition 3.2 Let R be a right n-coherent ring (n > 1) and 0 — A —
B — C — 0 a short exact sequence of right R-modules. Then the following
are true:

(1) If two of npd(A), npd(B) and npd(C) are finite, so is the third.

(2) npd(4) < suplnpd(B), npd(C) — 1}.

(3) npd(B) < sup{npd(A), npd(C)}.

(4) npd(C) < sup{npd(B), npd(A) + 1}.

(5) If B is (n,0)-projective and 0 < npd(A) < oo, then npd(C') = npd(A)+
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Proof. Easy to verify by Proposition 3.1.

Corollary 3.3 Let R be a right n-coherent ring (n > 1), A, B and C' right
R-modules. If B= A& C, then npd(B) = sup{npd(A), npd(C)}.

Proof. Since B = A ® C, we get two short exact sequences 0 — A —
B—-C—-0and0—C — B — A — 0. By Proposition 3.2 (3), it is
enough to show that npd(B) > sup{npd(A), npd(C)}. Suppose npd(B) <
sup{npd(A), npd(C)}, then npd(B) < npd(A) or npd(B) < npd(C). We may
assume npd(B) < npd(A). By Proposition 3.2 (2), npd(C) < sup{npd(B),
npd(A) —1}. So npd(C) < npd(A) — 1, that is, npd(C) < npd(A). In addition,
also by Proposition 3.2 (2), we have npd(A) < sup{npd(B), npd(C')—1}. Hence
npd(A) < npd(C) — 1, since npd(B) < npd(A), and so npd(A) < npd(C), a
contradiction.

Let M be a right R-module. Recall that a a homomorphism ¢ : M —
F where F is a right (n,0)-injective R-module, is called an (n,0)-injective
preenvelope [5] of M if for any homomorphism f : M — F' with F' is (n,0)-
injective, there is a homomorphism ¢ : F — F' such that g¢ = f. More-
over, if the only such g are automorphism of F when F' = F and f = ¢,
then the (n,0)-injective preenvelope ¢ is called an (n,0)-injective envelope. A
monomorphic (n,0)-injective preenvelope ¢ is said to be special [6; Definition
7.1.6] if coker¢ is (n,0)-projective. (n,0)-projective (pre)covers and special
(n,0)-projective precovers can be defined dually. It is proved that every right
R-module has a special (n,0)-projective precover and a special (n, 0)-injective
preenvelope (see [8; Theorem 3.9]).

Theorem 3.4 Let R be a right n-coherent ring (n > 1), then the following
are identical:

(1) rpD(R)

(2)  sup{npd(M): M is a cyclic right R-module}

(3)  sup{npd(M): M is any right R-module}

(4)  sup{npd(M): M is an (n,0)-injective right R-module}
(5)  sup{id(M): M is an (n,0)-injective right R-module}

Proof. (1) < (2). We may assume sup{npd(M): M is a cyclic right
R-module}= m < oo. Let A be any finitely generated right R-module. We
use induction on the number of generators of A. If A has [ generators, let A’
be a submodule generated by one of these generators. Then both A /A/ and A’
are finitely generated on less then [ generators. Let N be any (n,0)-injective
right R-module. Consider the short exact sequence 0 — A" — A — A/A" =0
which induces an exact sequence

ExtptY(AJA N) — Extit (A, N) — Extit (A, N)
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where

Exti ™ (AJA'N) = Exti ™ (A, N) =0

by induction hypothesis. Thus Exty (A, N) = 0. So npd(A) < m.

(2) < (3) is clear.

(3) < (4). We may assume sup{npd(M): M is an (n,0)-injective right
R-module}= m < oco. Let A be any right R-module, then A has a special
(n,0)-injective preenvelope by [8; Theorem 3.9], that is, there exists a short
exact sequence 0 - A — E — L — 0 with E (n,0)-injective and L (n,0)-
projective. Therefore, npd(A) < npd(E) < m by Proposition 3.2.

(4) < (5). We may assume sup{id(M): M is an (n,0)-injective right R-
module}= m < oco. Let A and B be any (n,0)-injective right R-modules.
Then Extit (A, B) = 0 since id(B) < m. So npd(A) < m by Proposition 3.1.

(5) < (1). We may assume rnpD(R)= m < oo. Let M be an (n,0)-
injective right R-module. Then Ext% ™ (R/I, M) = 0 for any right ideal I of
R since npd(R/I) < m by hypothesis. Hence id(M) < m, this completes the
proof.

Corollary 3.5 Let n > 1 be a fixed integer. Then the following are equiv-
alent for a right n-coherent ring R:

(1) rnpD(R) < m.
) npd(M) <m for any (n,0)-injective right R-module M.
) npd(M) < m for any injective right R-module M, and rnpD(R) < occ.
) id(M) < m for any (n,0)-injective right R-module M.
5) id(M) < m for all right R-module M that are both (n,0)-injective
(n,0)-projective, and rnpD(R) < oo.

Proof. (1) < (2) < (4) holds by Theorem 3.4. (2) = (3) and (4) = (5)
are clear.

(5) = (4). Let M be any (n,0)-injective right R-module. By (5) and
Theorem 3.4 (4), npd(M) = m for a non-negative integer m. Note that every
right R-module has a special (n, 0)-projective precover by [8; Theorem 3.9], we
obtain an exact sequence

O—-PFP,—wPFPh1— =P —-F—>M=0

where each P, is both (n,0)-projective and (n,0)-injective, t = 0, 1, ..., m.
Hence id(FP;) <m by (5),t =0, 1, ..., m. Soid(M) < m.

(3) = (2). Let M be any (n,0)-injective right R-module. By (3) and
Theorem 3.4 (5), id(M) = t for a non-negative integer ¢. Hence we get an
injective resolution of M:

0M—=E"SE".. 5 E" 5 E' 0.
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By (3), npd(E') < m, i =0, 1, ..., t. Hence we have npd(M) < m by
Proposition 3.2, as desired.

Recall that an injective envelope ¢ : M — E(M) of M has the unique
mapping property [13] if for any homomorphism f : M — A with A injective,
there is a unique homomorphism ¢g : E(M) — A such that g¢p = f. The
concept of an (n, 0)-projective cover with the unique mapping property can be
defined similarly.

Corollary 3.6 Let n > 1 be a fixed integer. Then the following are equiv-
alent for a right n-coherent ring R:

(1) R is right Noetherian.

(2) rnpD(R) < oo and every injective right R-module is (n, 0)-projective.

(3)  Ewvery (n,0)-injective right R-module is (n,0)-projective.

(4)  Ewvery (n,0)-injective right R-module has an (n,0)-projective cover
with the unique mapping property.

(5)  Ewvery (n,0)-injective right R-module has an injective envelope with
the unique mapping property.

Proof. (1) < (2) < (3) holds by Corollary 3.5 and Corollary 2.7.

(1) = (4) and (1) = (5). Let M be any (n,0)-injective right R-module.
Then M is (n,0)-projective and injective, since R is right Noetherian by (1).
Thus (4) and (5) follows.

(4) = (3). For any (n,0)-injective right R-module M, let g : P — M
be the (n,0)-projective cover of M with the unique mapping property, where
P is (n,0)-projective. Write K = kerg. Then K is (n,0)-injective by [6;
Corollary 7.2.3] and [8; Theorem 3.9]. Hence there exists an (n,0)-projective
cover f: P' — K of K by (4). So, we obtain the following exact commutative
diagram:

/

P
JLif N0

0o— K — P 5% M — 0
Since g(if) = 0, we have if = 0 by (4). Whence K = Imf C ker(i) = 0, that
is, M is (n,0)-projective.

(5) = (1). Let M be any (n,0)-injective right R-module. By Corollary
2.7, we need only to show that M is injective. Let f : M — FE be the injective
envelope of M with the unique mapping property. Write L = cokerf. Since
R is n-coherent, L is (n,0)-injective by [8; Theorem 4.1]. So there exists an
injective envelope g : L — E' of L by (5). Therefore we get the following exact
commutative diagram:

f

0O— M —» E S L — 0
0
\igjf/g

E
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Since (gm)f = 0, we have gm = 0 by (5). Hence L = Imm C ker(g) = 0. So M
is injective. This completes the proof.

Recall that a short exact sequence 0 — A — B — (' — 0 is said to
be n-pure [8] it Hom(M, B) — Hom(M,C) — 0 is exact for any n-presented
module M. A submodule N of M is called an n-pure submodule if the sequence
0— N —M— M/N — 0 is n-pure.

Proposition 3.7 Let n > 1 be a fized integer and R a right n-coherent
ring. Observe the following statements:

(1) rmmpD(R) <1.

(2)  For any n-pure submodule N of an injective right R-module E, the
quotient E /N is injective (i.e., id(N) < 1).

(3)  Ewvery submodule of an (n,0)-projective right R-module is (n,0)-
projective.

(4)  Ewvery right ideal of R is (n,0)-projective.

(5)  For any pure submodule N of an injective right R-module E, the
quotient E/N is injective.

(6) Ewvery submodule of an F P-projective right R-module is F P-projective.

(7)  Every right ideal of R is F P-projective.

Then: (1) < (2) < (3) & (4) and (2) = (5) = (6) = (7).

Proof. (1) = (2). Let N be an n-pure submodule of an injective right
R-module E. Then it is easy to see that N is (n, 0)-injective. Hence id(N) <1
by Theorem 3.4 (5). So the short exact sequence 0 - N — E — E/N — 0
implies that E//N is injective.

(2) = (3). Let L be any (n,0)-injective right R-module. Then it is
clear that L is an n-pure submodule of its injective envelope F(L), and hence
id(L) <1 by (2). If N is a submodule of an (n, 0)-projective right R-module
M, then the exactness of the sequence

0 = Extyp(M, L) — Extp(N, L) — Exti(M/N,L) =0

implies that ExtL(N, L) =0, and so N is (n,0)-projective.

(4) = (1). Let I be an ideal of R. The exact sequence 0 — [ — R —
R/I — 0 implies that npd(R/I) < 1 by Proposition 3.1. So (1) holds by
Theorem 3.4 (2).

(2) = (5). It is easy to verify that every pure right R-module is n-pure.
So (5) follows.

(5) = (6) is similar to that of (2) = (3), (3) = (4) and (6) = (7) are
trivial.

It is known that if R is a right coherent ring, then fd(M) = pd(M) for any
finitely present right R-module M (see [10; Lemma 5]). Mao and Ding (see
[7; Proposition4.1]) proved that if R is also self-F P-injective, then fd(M) =
pd(M) for any F P-projective right R-module M. Here we have the following
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Proposition 3.8 Letn be a fixed positive integer. If R is a right n-coherent
and right self-(n, 0)-injective ring, then fd(M) = pd(M) for any (n,0)-projective
right R-module M.

Proof. 1t is enough to show that fd(M) > pd(M). We may assume that
fd(M) = m < oco. Then there exists an exact sequence

O—=r5,—PFPw1—-—=P—=F—=M=0

with Py, P, -+, P,_1 projective and F;, flat. Consider the short exact se-
quence 0 - K — P — F,, — 0 where P is projective. By [16; Theorem 4.85],
the short exact sequence above is pure, and hence n-pure. By Proposition 2.10,
P is (n,0)-injective. So K is (n,0)-injective by [8; Proposition 3.6]. Since M
is (n,0)-projective, so is F,,,. Thus the exactness of the sequence

0 — Homp(F,,, K) = Homgp(P,K) — Homgr(K, K) — Exth(F,,, K) =0

implies that the sequence 0 - K — P — F,,, — 0 is split exact, and so F}, is
projective, that is, pd(M) < m. This completes the proof.

Proposition 3.9 Let n > 1 be a fixed integer and R a right n-coherent
ring. If rnpD(R) < m, then R is a right m-coherent ring.

Proof. The case m = 0 holds by Corollary 2.7. Suppose m > 1. Let M
be an m-presented right R-module, then M has a free resolution

Fn—Fpq1—-—=F —=>F—=M=0
with each F; finitely generated free. Write K,, = ker(F,,_1 — F,,_2), then
Exth(K,,, N) = Exti ™ (M, N) =0

for any F P-injective right R-module N, since rnpD(R) < m and every FP-
injective right R-module is (n, 0)-injective. Note that K, is finitely generated.
We obtain K, is finitely presented by Theorem 2.3. This implies that M is
(m + 1)-presented, and so R is a right m-coherent ring.

To prove the next main result, we need four lemmas.

Lemma 3.10 Let f: R — S be a surjective ring homomorphism. If Mg is
a right S-module (hence a right R-module) and Ag is a right R-module, then
the following statements hold:

(1) M Qr Ss = Ms.

(2) If AR is a finitely generated right R-module, then A®QgrSs is a finitely
generated right S-module.

(3) Mg is a finitely generated right S-module if and only if Mg is a finitely
generated right R-module.
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Proof. (1). Easy.

(2). Clearly, S is a cyclic R-module. Suppose x1, xo, - - -, T, are generators
of A. Then it is easy to verify that r1 ® 1g, 2o ®1g, - - -, , ® 15 are generators
of A ®g Ss, where 1g denotes the identity of S. Thus A ®p Sg is a finitely
generated right S-module.

(3). If Mg is a finitely generated right S-module, and suppose x1, 3,

-+, x, are generators of M, then M = xS + x5 + --- + x,5. So M =
1R+ 23R+ -+ x,R since f: R — S is surjective. Hence Mp is a finitely
generated right R-module. The converse holds by (1) and (2).

Lemma 3.11 Let f: R — S be a surjective ring homomorphism, n a non-
negative integer, and M a right S-module. If both Sk and rS are projective,
then Mg is an n-presented right S-module if and only if Mg is an n-presented
right R-module. (Note that the case n = 1 has been proven in [7; Lemma
3.13].)

Proof. The case n = 0 follows by Lemma 3.10. So next we assume n > 0.
“=". Suppose M is an n-presented right S-module. Then there exists an
exact sequence

O=-K—-PFP_1—-—=P=F—M=0

of right S-modules with K finitely generated, and P; finitely generated projec-
tive, 7 =0, 1, ---, n—1. By Lemma 3.10, each P, and K are finitely generated
right R-modules. Since Sp is projective, we have each P; is a projective right
R-module. So, M is an n-presented right R-module.

“«<”. Assume M is an n-presented right R-module. Then there exists an
exact sequence

0O—+-K—>FP, 41— =P —>F—-M-=0

of right R-modules with K finitely generated, and P; finitely generated pro-
jective, 7 =0, 1, ---, n — 1. Since rS is projective, the sequence

0> K®rSg > P,_1®rSg— -+ =P ®rSs > P ®rSg — M Rr Sg — 0

is exact. By Lemma 3.10, M ®rSs = Mg, and both K ®rSs and each P,®zSs
are finitely generated S-modules. Since each P, is a projective right R-module,
we have each P, ®pg Sy is a projective right S-module. So M is an n-presented
right S-module.

Let n and d be non-negative integers. Recall that a left R-module A is
called (n,d)-flat [12], in case Torf (B,A) = 0 for any n-presented right
R-module B.
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Lemma 3.12 Let f: R — S be a surjective ring homomorphism, Mg a
right S-module and sA a left S-module. If both Sgr and rS are projective, then
the following statements hold for any non-negative integers n and d:

(1) Mg is an (n,d)-injective right S-module if and only if Mg is an
(n, d)-injective right R-module.

(2)  sA is an (n,d)-flat left S-module if and only if RA is an (n,d)-flat
left R-module.

(3) If R is a right n-coherent ring, then S is a right n-coherent ring.

Proof. (1). “=". Suppose Mg is an (n,d)-injective right S-module. Let
Npg be any n-presented right R-module. Then, using an argument similar to
that in Lemma 3.11, we get that N ®g Sg is an n-presented right S-module.
By [14; Theorem 11.65], we have

E:L’thJrl(NR, MR) = Ext%+1(N QR SS, Ms) = 0.

Therefore Mg is an (n, d)-injective right R-module.

“<”. Assume Mpg is an (n,d)-injective right R-module. Let Ng be any
n-presented right S-module. Then N ®g S5 = Ng by Lemma 3.10 and Np is
an n-presented right R-module by Lemma 3.11. Again by [14; Theorem 11.65],
we have

E"L‘tg—’—l(NSa MS) = ElEtiigH(N QR Ss, M5> = El't(}?_l(NR,MR) =0.

Therefore Mg is an (n, d)-injective right S-module.

(2). “=". If gA is an (n, d)-flat left S-module. Let By be any n-presented
right R-module. Then B ®pr Sg is an n-presented right S-module. By [14;
Corollary 11.63] , we have

T0T§+1(BR7R A) = TOTZ?H(B ®pr Sg,5 A) = 0.

Therefore g A is an (n, d)-flat left R-module.

“<”. If gAis an (n, d)-flat left R-module. Let Bg be any n-presented right
R-module. Then B ®p Ss = Bg by Lemma 3.10 and Bg is an n-presented
right R-module by Lemma 3.11. By [14; Corollary 11.63] , we have

TOT3+1<B5,S A) = TOT’g_H(B ®R Ss,s A) = TOT’CI;_I(BR,R A) = 0

Therefore A is an (n, d)-flat left S-module.

(3). Let Mg be an n-presented right R-module, then My is an n-presented
right R-module by Lemma 3.11. Thus Mg is an (n + 1)-presented right R-
module since R is a right n-coherent ring. Therefore Mg is an (n+1)-presented
right S-module again by Lemma 3.11, and so S is a right n-coherent ring.

We list the following lemma proved in [7; Lemma 3.14] for convenient using.
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Lemma 3.13 ([7; Lemma 3.14]). Let R and S be rings. Every right (R &
S)-module has a unique decomposition that M = A& B, where A = M(R,0)
is a right R-module and B = M(0,S) is a right S-module via xr = x(r,0) for
r€A reR, andys=1y(0,s) forye B, s€ S.

We are now in a position to prove the following main result.

Theorem 3.14 Let S and T be rings, and n > 1 a fized integer. If S & T
1s a right n-coherent ring, then

rnpD(S @ T) = sup{rnpD(S), rnpD(T)

Proof. For convenience, we write R = S@&T. Since R is a right n-coherent
ring, we have both S and T are right n-coherent rings by Lemma 3.12.

We first show that rnpD(R) < sup{rnpD(S), rnpD(T)}. We may assume
sup{rnpD(S), rmpD(T)} = m < oo. Let M be a right (R)-module and N
any (n,0)-injective right (R)-module. Then N = A @ B, where A is a right
S-module and B is a right T-module by Lemma 3.13. Note that both A and
B are (n,0)-injective right (R)-modules. Hence A is an (n,0)-injective right
S-module and B is an (n, 0)-injective right T-module by Lemma 3.12. By [14;
Theorem 11.65], we have

Ext?™ (M, N)

I

Extp™ (M, A) @ Exty™ (M, B)
Ext?t (M ®@p Ss, A) ® Extf™ (M @ Tr, B)
= 0,

and hence rnpD(R) < sup{rnpD(S), rnpD(T)}.

Next we prove that rnpD(R) > sup{rnpD(S), rnpD(T)}. We may assume
rnpD(R) = m < oo. Let M be a right S-module and N any (n,0)-injective
right S-module. Then N is an (n,0)-injective right (R)-module by Lemma
3.12. By Lemma 3.10, M ®g Ss = Mg. Again by [14; Theorem 11.65], we
have

I

Exti (M, N) 2 Ext?™ (M ®5 Ss, N) = Ext2t (M, N) = 0.

Therefore rnpD(R) > rnpD(S). Similarly for rnpD(R) > rnpD(T), and hence
rnpD(R) > sup{rnpD(S), rnpD(T)}. This completes the proof.

Remark 3.15 Let Ry, Ry, -+, R,, be rings and n a positive integer. The
theorem above shows that rnpD(P~, R;) = sup{rnpD(Ry), rnpD(Rs), ---,
rnpD(R,,)} if @, R; is an n-coherent ring. In particular, we obtain the
known result that @;", R; is right Noetherian if and only if each R; is right
Noetherian. But in general rnpD(D52, R;) # supi>1{rnpD(R;)}. For exam-
ple, Zy is a field of two elements, but @;°,Zy is not Noetherian .



Relative Projective Dimensions 17

Lemma 3.16 Assume n and d are non-negative integers, R is a commu-
tative ring, and P is any prime ideal of R. Let Rp denote the localization of
R at P, M is an Rp-module (M may be viewed as an R-module), and A is an
R-module. Then the following statements hold:

(1) If Ais an n-presented R-module, then Ap is an n-presented Rp-module.

(2)  If M is an (n,d)-injective Rp-module, then M is an (n,d)-injective
R-module.

(3) If M is an (n,d)-flat Rp-module, then M is an (n,d)-flat R-module.

(4) If A is an (n,d)-projective R-module, then Ap is an (n,d)-projective
Rp-module.

Proof. (1). Suppose A is an n-presented R-module. Then there exists an
exact sequence of R-modules

F,—-F_ 41— —F—=>F—>A—=0

where each Fj is finitely generated projective, + = 0, 1, ---, n. It gives rise to
the exactness of the sequence

(Fn)p = (Fu1)p = - = (F1)p — (Fo)p = Ap — 0

of Rp-modules. By [6; Remark 2.2.5], each (F;)p is a finitely generated projec-
tive Rp-module, i = 0, 1, ---, n. Hence Ap is an n-presented Rp-module.

(2). Assume M is an (n, d)-injective Rp-module. Let N be any n-presented
R-module, then Np is an n-presented Rp-module by (1). Note that Rp is a flat
R-module and Rp ®g N = Np. By [14; Theorem 11.65], we have

Exti (N, M) 2 Extf ' (Re @r N, M) = ExtGH (N, M) = 0.

Therefore M is an (n, d)-injective R-module.

(3). Similar to that of (2).

(4). Suppose A is an (n,d)-projective R-module. Let B be any (n,d)-
injective Rp-module, then B is an (n, d)-injective R-module by (2). Note that
Ap = Rp ®r A. By [14; Theorem 11.65], we have

Euxty (Ap, B) = Extp, (Re ®p A, B) = Exth(A, B) = 0.
Therefore Ap is an (n, d)-projective Rp-module.

Corollary 3.17 Let R be a commutative ring and P any prime ideal of R.
If M is an Rp-module, then the following statements hold:

(1) M is an injective Rp-module if and only if M is an injective R-module.

(2) M s a flat Rp-module if and only if M is a flat R-module.
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Proof. (1). If M is an injective Rp-module, then M is an injective R-
module by Lemma 3.16. If M is an injective R-module, then Mp is an injective
Rp-module by [14; Theorem 3.76]. Note that M = Mp as Rp-modules. Thus
(1) follows.

(2). Similar to that of (1).

Theorem 3.18 Let n > 1 be a fixed integer and R a commutative n-
coherent ring. If P is any prime ideal of R, then npD(Rp) < npD(R).

Proof. We may assume npD(R) =t < co. Let M be any Rp-module.
Note that M may be viewed as an R-module. Thus npd(Mg) < t. If t =0,
then M is an (n,0)-projective R-module. Since M = Mp as Rp-modules, we
have M is an (n,0)-projective Rp-module by Lemma 3.16, and so the theorem
follows. Next we assume ¢t > 1. By Proposition 3.1 (5), There exists an exact
sequence

O—+-K—>FK 41— —F—=>FE—>M=0

of R-modules, where each Fj is a projective R-module, ¢ = 1, 2, ---, t — 1,
and K is an (n,0)-projective R-module. The above sequence induces an Rp-
module exact sequence

0= Kp— (Fi1)p— - — (F1)p = (Fy)p — Mp — 0.

By [6; Remark 2.2.5], each (F;)p is a projective Rp-module, i = 1, 2, - -,
t — 1. Note that Kp is an (n,0)-projective Rp-module by Lemma 3.16. Thus,
for any (n,0)-injective Rp-module N, we have

Extii!(Mp, N) = Exth (Kp, N) =0

and so npd(Mp) g, <t by definition. Since M = Mp as Rp-modules, npd(M) <
t. Therefore npD(Rp) < npD(R), and we complete the proof.

Remark 3.19 (1)  The theorem above shows the well-known result that
any localization of a Noetherian ring is again Noetherian. But in general
npD(R) # sup{npD(Rp): P is a prime ideal of R}. For example, take R to be
the direct product of countably many copies of Zo, then R is not Noetherian.
Thus npD(R) > 0. However, npD(Rp) = 0 for any prime ideal of R.

(2) Let R be a commutative ring and P any prime ideal of R. Corollary
3.17 shows that if M is an Rp-module, then M is a flat (resp. injective) Rp-
module if and only if M is a flat (resp. injective) R-module. But, in general,
a projective Rp-module need not be a projective R-module. For example, Rp is
a projective Rp-module, but Rp need not be a projective R-module.
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