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Abstract. In this paper the definition of an F-weak multiplication module is given and we
prove some results for such a module. Then, using the definition of a semiprime submodule
of a module, we characterize these submodules for F-weak multiplication modules. Finally,
we show that any F-weak multiplication module satisfies the semi-radical formula.
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1. Introduction

In this paper all rings are commutative with identity and all modules over rings are unitary.
If K and N are submodules of an R-module M, we recall that (N :R K) = (N : K) = {r ∈
R | rK ⊆ N}, which is an ideal of R. A proper submodule N of an R-module M is said to
be prime if for r ∈ R, x ∈M ; rx ∈ N implies that x ∈ N or r ∈ (N : M). In such a case p =
(N : M) is a prime ideal of R and N is said to be p-prime. The set of all prime submodules
of M is denoted by Spec(M) and for a submodule N of M, radN =

⋂
L∈Spec(M),N⊆L L. If

no prime submodule of M contains N, we write radN = M. Also the set of all maximal
submodules of M is denoted by Max(M) and RadM =

⋂
P∈Max(M) P. For an ideal I of R,

rad I =
⋂

p∈Spec(R),I⊆p p. The ideal I of R is called a radical ideal if rad I = I. Similarly, we
say that a submodule N of an R-module M is a radical submodule if radN = N.

In Section 2, we recall the definition of F-weak multiplication module and we state and
prove some properties of these modules. Then in Section 3, after recalling the definition
of semiprime submodules and semi-radical formula, we find the semiprime submodules of
F-weak multiplication modules.
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2. Some basic definitions and results

Definition 2.1. We recall that an R-module M is called weak multiplication if Spec(M) = /0
or for every prime submodule N of M we have N = IM where I is an ideal of R. Also, if M
is a weak multiplication, then N = (N : M)M for every prime submodule N of M.

Now we introduce our main definition, which was first stated in [12].

Definition 2.2. An R-module M is F-weak multiplication, if:

(1) M is weak multiplication;
(2) For every p ∈ Spec(R), pM is a prime submodule of M and (pM : M) = p.

We recall that an R-module M is called a multiplication R-module, if for any submodule
N of M there exists an ideal I of R such that N = IM. For example one can show that the
R-module M is F-weak multiplication in the following cases:

(i) M is a finitely generated multiplication R-module such that AnnR(M)⊆ p for every
p ∈ Spec(R);

(ii) In (i) we assume AnnR(M) = 0, that is, M is faithful.

In the following example, we show that an F-weak multiplication module is not neces-
sarily a multiplication module.

Example 2.1. Let K be a field and A = K[x1, x2, x3, ...] denote the polynomial ring in a
countably infinite set of indeterminates x1, x2, x3, .... Let a = (x1−x2

1, x2−x2
2, x3−x2

3, ...)
and B = A/a. Then the prime ideals of the ring B are as follows: p = (y1, y2, y3, ...)/(x1−
x2

1, x2− x2
2, x3− x2

3, ...) where y j = x j or y j = 1− x j for every j = 1, 2, 3, .... Obviously
the ring B has infinitely many prime ideals and dimB = 0.

Now, let M = ∏pi∈Spec(B) B/pi = B/p1×B/p2×B/p3× . . .. We show that M is a non-
finitely generated F-weak multiplication B-module which is not a multiplication B-module.
Let p ∈ Spec(B) be arbitrary, then M/(pM)∼= B/p and since B/p is simple, then M/(pM)
is simple and so pM 6= M. Now by [7, Proposition 2], pM ∈ Spec(M) and (pM : M) = p.
Since the only prime submodules of M are the set {pM | p ∈ Spec(B)} hence M is a weak
multiplication B-module and therefore M is an F-weak multiplication B-module.

Now, let p1 = (x1, x2, x3, ...)/(x1− x2
1, x2− x2

2, x3− x2
3, ...) and p2 = (1− x1, 1−

x2, 1− x3, ...)/(x1− x2
1, x2− x2

2, x3− x2
3, ...) be two prime ideals of B and let N = 0B/p1 ×

0B/p2 ×B/p3×B/p4× . . . be a submodule of M. Then p1 p2 = a/a = 0B is the only ideal
of B which kills both B/p1 and B/p2, but p1 p2M = 0BM = 0 6= N. So there exists no ideal
I of B such that N = IM, hence M is not a multiplication B-module.

Proposition 2.1. Let R be a non-trivial ring and M an F-weak multiplication R-module.
Then M has a maximal submodule.

Proof. See [12, Proposition 2.4].

Here by a pure submodule of M we mean a proper submodule N such that rM∩N = rN
for every r ∈ R.

Lemma 2.1. Let R be an integral domain and M be an F-weak multiplication R-module.
Then M is a torsion-free module. Consequently the only proper pure submodule of M is
zero.
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Proof. For the first part of lemma, see [12, Proposition 2.6].
Assume that N be an arbitrary pure submodule of M. Since M is torsion-free. Hence

by [7, Result 2], N is a (0)-prime submodule of M. Now by the definition of F-weak
multiplication modules N = 〈0〉.

Theorem 2.1. Let R be a local ring with the maximal ideal m and M be an R-module. If
mM 6= M is a maximal submodule of M then M is a cyclic R-module.

Proof. We know that M/(mM) is a vector space over the field R/m. Since M/(mM) is a
simple R/m-module, then M/(mM) is cyclic and so:

∃y ∈M−mM ;
M

mM
= 〈y+mM〉.

On the other hand, since mM is a maximal submodule of M and y /∈mM then 〈y〉+mM = M.
Now we have:

(2.1)
M

mM
=
〈y〉+mM

mM
∼=

〈y〉
〈y〉∩mM

.

Obviously 〈y〉∩mM = m〈y〉 and then by (2.1), M/(mM) ∼= 〈y〉/(m〈y〉). But M/(mM) is a
cyclic R/m-module, hence 〈y〉/(m〈y〉) is a cyclic R/m-module and we have:

〈y〉
m〈y〉

= 〈ry+m〈y〉〉.

Since r ∈ R−m is a unit element, without loose of the generality we set r = 1 and hence
〈y〉/(m〈y〉) = 〈y+m〈y〉〉. Then we have

M
mM

= 〈y+mM〉 ∼= 〈y+m〈y〉〉.

On the other hand, y + m〈y〉 ⊆ y + mM therefore 〈y + m〈y〉〉 ⊆ 〈y + mM〉. Also since 〈y +
m〈y〉〉 is an R/m-module hence 〈y+m〈y〉〉 is an R/m-submodule of 〈y+mM〉. But 〈y+mM〉
is a simple R/m-module, hence

〈y+m〈y〉〉= 0 M
mM

or 〈y+m〈y〉〉= 〈y+mM〉.

But y /∈ mM, hence 〈y+m〈y〉〉= 〈y+mM〉.
Now we show that M = 〈y〉. Let ry+m〈y〉 ∈ 〈y+m〈y〉〉 where r ∈ R−m be an arbitrary

element, then there exists r′ ∈ R−m such that ry+m〈y〉= r′y+mM. Then,

(r− r′)y+m〈y〉= mM =⇒ mM ⊆ 〈y〉.

But 〈y〉 6= mM and mM is maximal. Therefore M = 〈y〉 and the proof is now completed.

Corollary 2.1. Let R be a local ring with the maximal ideal m and let M be an F-weak
multiplication R-module then M is a cyclic R-module.

Proof. Since mM is the only maximal submodule of M then by Theorem 2.1, there exists
m ∈M−mM such that M = 〈m〉.

Theorem 2.2. Let R be a non-trivial ring and let M be an F-weak multiplication R-module.
Then Mp is an F-weak multiplication Rp-module for every p ∈ Spec(R).
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Proof. Let M be an F-weak multiplication R-module then by [3, Lemma 2.3], Mp is weak
multiplication Rp-module for every p ∈ Spec(R). Let p ∈ Spec(R) be arbitrary. First we
show that (pRp)Mp = (pM)p 6= Mp. If not, (pM)p = Mp. Then

∀m ∈M− pM,
m
1
∈ (pM)p =⇒ ∃t ∈ R− p, tm ∈ pM

But pM ∈ Spec(M) hence m ∈ pM, a contradiction. Therefore (pM)p 6= Mp. We assume
Q ∈ Spec(Rp) then there exists I ∈ Spec(R) such that I ∩ (R− p) = /0 and Q = IRp. Now
we must show that QMp ∈ Spec(Mp) and (QMp : Mp) = Q. Since QMp = (IM)p ⊆ (pM)p
and by above (pM)p 6= Mp then (IM)p 6= Mp. Now let r/s.m/s′ ∈ (IM)p where r/s ∈
Rp , m/s′ ∈Mp. Then (rm)/(ss′) ∈ (IM)p and so there exists t ∈ R− p such that trm ∈ IM.
But IM ∈ Spec(M) hence tr ∈ I or m ∈ IM. Thus r ∈ I or m ∈ IM, so (IM)p ∈ Spec(Mp).

Next we show that ((IM)p : Mp) = IRp. We know

(2.2) IRp = (IM : M)p ⊆ ((IM)p : Mp).

Let r/s ∈ ((IM)p : Mp) be arbitrary. Then for any m/s′ ∈Mp where m /∈ IM we have:
r
s
.
m
s′

=
rm
ss′
∈ (IM)p =⇒ ∃t ∈ R− p, trm ∈ IM

But IM ∈ Spec(M) then r ∈ I and so r/s ∈ IRp. Now by (2.2) , ((IM)p : Mp) = IRp. The
proof is now completed.

Corollary 2.2. Let R be a non-trivial ring such that every non-zero prime ideal of R is a
maximal ideal. Let M be an R-module. Then M is an F-weak multiplication R-module if
and only if Mm is an F-weak multiplication Rm-module for every m ∈Max(R).

Proof. (=⇒). By Theorem 2.2, is clear.
(⇐=). Let Mm be an F-weak multiplication Rm-module for every m ∈ Max(R). We

show that M is an F-weak multiplication R-module. First by [3, Lemma 2.3], M is a weak
multiplication R-module. We prove that (mM : M) = m for any m∈Max(R). We know that,

(2.3) mRm ⊆ (mM : M)m ⊆ ((mM)m : Mm).

By Corollary 2.1, Mm is cyclic. But by [8, Theorem 2 (4)] and [5, Theorem 2.5 (ii)], Mm has
the only maximal submodule (mM)m. Hence

(2.4) ((mM)m : Mm) = mRm.

So by (2.3) and (2.4), (mM : M)m = mRm and hence (mM : M) 6= R. Therefore (mM : M) = m
and also by [7, Proposition 2], mM ∈ Spec(M). The proof is now completed.

Let us recall that a module M over a ring R is ”locally cyclic” if Mm is a cyclic Rm-module
for all maximal ideals m of R.

Lemma 2.2. F-weak multiplication modules are locally cyclic.

Proof. Let M be an F-weak multiplication R-module and {mi}i∈I = Max(R). Then by
Theorem 2.2, Mm is an F-weak multiplication Rm-module for every m∈Max(R). Therefore
by Corollary 2.1, M is locally cyclic.

Theorem 2.3. Let R be a non-trivial ring and let M be an F-weak multiplication R-module.
Then every proper submodule of M is contained in a maximal submodule of M.
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Proof. If not, we assume that there exists a proper submodule N of M such that N is not
contained in any maximal submodule of M. But we know by Proposition 2.1, that for every
m ∈Max(R), mM is a maximal submodule of M, then:

N * mM, ∀m ∈Max(R) =⇒ N +mM = M, ∀m ∈Max(R)
=⇒ (N +mM)m = Nm +(mM)m = Mm, ∀m ∈Max(R).

By Lemma 2.2, M is locally cyclic and so each Mm is cyclic. Now by [2, Corollary 2.7],
Nm = Mm for every m ∈ Max(R). But (M/N)m ∼= Mm/Nm, then (M/N)m ∼= 0 for every
m ∈Max(R).

By [2, Proposition 3.8], M/N = 0 and so N = M, a contradiction. Therefore there exists
m ∈Max(R) such that N ⊆ mM.

Corollary 2.3. Let M be an F-weak multiplication R-module and let N be a submodule of
M such that M = N +RadM. Then M = N.

Proof. If not M 6= N. Since M is F-weak multiplication, then N is contained in a maximal
submodule of M, say mM, where m ∈Max(R). Then,

M = N +RadM ⊆ mM +RadM ⊆ mM.

So, M ⊆ mM, a contradiction. Therefore M = N.

Definition 2.3. An element u of an R-module M is said to be a unit provided that u does not
belong to any maximal submodule of M.

Theorem 2.4. Let M be an F-weak multiplication R-module. Then u ∈M is a unit if and
only if 〈u〉= M.

Proof. Let u ∈M be a unit element, then we have:

∀m ∈Max(R),u ∈M−mM.

So, 〈u〉 ≤ M and 〈u〉 * mM for any m ∈ Max(R). Thus, 〈u〉 = M or 〈u〉 is a maximal
submodule of M. But 〈u〉 6= mM for every m ∈Max(R) and every maximal submodule of
M is of the form mM for some m ∈Max(R). Therefore 〈u〉= M.

Conversely, let 〈u〉 = M. We show that u ∈M is a unit element. If not, 〈u〉 is a proper
submodule of M and then:

∃m ∈Max(R) ; 〈u〉 ⊆ mM

Hence M = mM, a contradiction. Therefore u ∈M is a unit.

Corollary 2.4. If M is an F-weak multiplication R-module then for every proper submodule
N of M, radN 6= M.

Proof. The proof is clear by Theorem 2.3.

Lemma 2.3. Let M be a non-zero faithful multiplication R-module, then M is an F-weak
multiplication R-module.

Proof. Let M be a multiplication R-module then by [4, Lemma 2 (i)], Mp is a multiplication
Rp-module for every p ∈ Spec(R). We show that (pRp)Mp 6= Mp for every p ∈ Spec(R).

Since Mp is a multiplication Rp-module hence by [8, Theorem 2 (4)], Max(Mp) 6= /0.
Now let Q be a maximal submodule of Mp, then since Rp is a local ring with the maximal
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ideal pRp hence by [5, Theorem 2.5 (ii)], Q = (pRp)Mp = (pM)p is the only maximal
submodule of Mp and so (pRp)Mp = (pM)p 6= Mp and ((pM)p : Mp) = pRp.

Therefore (pRp)Mp = (pM)p 6= Mp for every p ∈ Spec(R) and so pM 6= M. Since
AnnR(M)⊆ p for every p ∈ Spec(R) then by [5, Corollary 2.11], pM ∈ Spec(M).

Now, we show that (pM : M) = p. Let r ∈ (pM : M) be arbitrary, then rM ⊆ pM and
hence (rM)p ⊆ (pM)p. Thus r/1Mp ⊆ (pM)p and then r/1 ∈ ((pM)p : Mp). By the above,
r/1 ∈ pRp and hence r ∈ p. Therefore (pM : M) ⊆ p and so p = (pM : M). The proof is
now completed.

We recall that if N = I1M and K = I2M ( I1 and I2 are ideals of R ) are submodules of
a multiplication R-module M then the product of N and K, denoted by NK, is defined by
NK = I1I2M. It is clear that NK is a submodule of M and NK ⊆ N∩K.

Proposition 2.2. Let M1, . . . ,Mn be arbitrary submodules of a multiplication R-module M.
Let P be a proper submodule of M. Then P is prime submodule of M if and only if ∏

n
i=1 Mi ⊆

P implies that Mi ⊆ P for some i = 1, ...,n.

Proof. Use [1, Theorem 3.16] and induction on n.

Proposition 2.3. Let M1, . . . ,Mn be submodules of a multiplication R-module M and let N
be a prime submodules of M such that

⋂n
i=1 Mi ⊆N. Then Mi ⊆N for some i = 1, ...,n. Also,

if N =
⋂n

i=1 Mi, then N = Mi for some i = 1, ...,n.

Proof. Let
⋂n

i=1 Mi ⊆ N. Since ∏
n
i=1 Mi ⊆

⋂n
i=1 Mi ⊆ N, the result follows by the above

proposition.

Lemma 2.4. Let M be an F-weak multiplication R-module and M1, . . . ,Mn be submodules
of M and let N be a prime submodule of M such that

⋂n
i=1 Mi ⊆ N. Then Mi ⊆ N for some

Mi (1≤ i≤ n). Also, if N =
⋂n

i=1 Mi, then N = Mi for some Mi (1≤ i≤ n).

Proof. Since N ∈ Spec(M) hence N = pM for some p ∈ Spec(R). Now, let
⋂n

i=1 Mi ⊆ N
then (

⋂n
i=1 Mi)p ⊆ Np and hence

⋂n
i=1(Mi)p ⊆ Np. By Corollary 2.1 and Theorem 2.2, Mp

is multiplication. So by Proposition 2.3, (Mi)p ⊆ Np for some (Mi)p(1 ≤ i ≤ n). We show
that Mi ⊆ N. Let x ∈Mi hence x/1 ∈ (Mi)p and so x/1 ∈ Np. Then there exists t ∈ R− p
such that tx ∈ N. But N ∈ Spec(M) hence x ∈ N. Therefore Mi ⊆ N, and the proof is now
completed.

Lemma 2.5. Let R be a non-trivial ring and let M be a multiplication R-module. Then
IM 6= M for any proper ideal I of R.

Proof. Let I be an arbitrary proper ideal of R, then there exists a maximal ideal m of R
such that I ⊆ m. We show that mM 6= M. By [4, Lemma 2 (i)], Mm is a multiplication Rm-
module and also by [8, Theorem 2 (4)], Max(Mm) 6= /0. Now, let W be a maximal submodule
of Mm, then since Rm is a local ring with the maximal ideal mRm, by [5, Theorem 2.5 (ii)],
W = (mRm)Mm = (mM)m and so ((mM)m : Mm) = mRm. But mRm⊆ (mM : M)m⊆ ((mM)m :
Mm) = mRm, so (mM : M)m = mRm, and therefore mM 6= M. Now since IM ⊆ mM 6= M,
we have IM 6= M for every proper ideal I of R.

Corollary 2.5. Let R be a non-trivial ring and let M be a non-zero multiplication R-module.
Let every prime ideal of R be a maximal ideal of R. Then pM ∈ Spec(M) for any p ∈
Spec(R).



A Note on F-Weak Multiplication Modules 763

Proof. It is clear by Lemma 2.5 and [7, Proposition 2].
Let M be a multiplication R-module. Then:

(i) If R is a ring with dimR = 0, then Corollary 2.5 is satisfied for M.
(ii) If R is an integral domain with dimR = 1, then for each non-zero prime ideal of R

Corollary 2.5 is satisfied for M.

3. Semiprime submodules of F-weak multiplication modules

We recall the following definitions from [10].

Definition 3.1. A proper submodule N of an R-module M is said to be semiprime in M, if
for every ideal I of R and every submodule K of M, I2K ⊆ N implies that IK ⊆ N. Since the
ring R is an R-module over itself, a proper ideal I of R is semiprime if for every ideals J and
K of R, J2K ⊆ I implies that JK ⊆ I.

Remark 3.1. There exists another definition of semiprime submodules in [6] as follows:
A proper submodule N of the R-module M is semiprime if whenever rkm ∈ N for some

r ∈ R, m ∈M and positive integer k, then rm ∈ N.
By [11, Remark 2.6], we see that this definition is equivalent to Definition 3.1.

Definition 3.2. Let M be an R-module and N ≤ M. The envelope of the submodule N is
denoted by EM(N) or simply by E(N) and is defined as E(N) = {x ∈ M | ∃r ∈ R, a ∈
M; x = ra and rna ∈ N f or some positive integer n}.

The envelope of a submodule is not a submodule in general.

Let M be an R-module and N ≤M. If there exists a semiprime submodule of M which
contains N, then the intersection of all semiprime submodules containing N is called the
semi-radical of N and is denoted by S− radM(N), or simply S− rad(N). If there is no
semiprime submodule containing N, then we define S− rad(N) = M, in particular S−
rad(M) = M.

We say that M satisfies the radical formula, or M (s.t.r.f) if for every N ≤ M, radN =
〈E(N)〉. Also we say that M satisfies the semi-radical formula, or M (s.t.s.r.f) if for every
N ≤ M, S− rad(N) = 〈E(N)〉. Now let x ∈ E(N) and P be a semiprime submodule of M
containing N. Then x = ra for some r ∈ R, a ∈M and for some positive integer n, rna ∈ N.
But rna ∈ P and since P is semiprime we have ra ∈ P. Hence E(N) ⊆ P. We see that
E(N) ⊆

⋂
P (P is a semiprime submodule containing N). So E(N) ⊆ S− rad(N). On the

other hand, since every prime submodule of M is clearly semiprime, we have S− rad(N)⊆
radN. We conclude that 〈E(N)〉 ⊆ S− rad(N)⊆ radN and as a result if M (s.t.r.f) then it is
also (s.t.s.r.f).

Remark 3.2. We define the S− rad of an ideal I of the ring R as the intersection of all
semiprime ideals of R containing I.

Definition 3.3. A submodule N of M is called an S− rad submodule if S− rad(N) = N.

Theorem 3.1. Let M be an F-weak multiplication R-module, then M (s.t.s.r.f).

Proof. By Lemma 2.2, M is locally cyclic. Hence Mm is a cyclic Rm-module for every
m ∈Max(R) and so by [10, Proposition 4.9, Theorem 4.10], M (s.t.s.r.f).

Corollary 3.1. If M is an F-weak multiplication R-module, then every proper submodule
of M is semiprime.
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Proof. By Theorem 3.1, M (s.t.s.r.f) hence by [10, Proposition 4.1], every proper submodule
of M is semiprime.

Lemma 3.1. Let M be an F-weak multiplication R-module. Then for any proper submodule
N of M we have:

rad(Nm) = (radN)m ; ∀m ∈Max(R).

Proof. By [10, Theorem 3.15],

(3.1) (radN)m ⊆ rad(Nm),

for any N≤M. Also by Lemma 2.2, M is locally cyclic ,that is, Mm is a cyclic Rm-module for
any m∈Max(R). So by [9, Theorem 4], Mm (s.t.r.f) and hence (s.t.s.r.f). Thus 〈E(H)〉= S−
rad(H) = radH for every submodule H of Mm. But by [10, Proposition 4.1], S−rad(H) = H
for any submodule H of Mm.

(3.2) radNm = Nm ; ∀N ≤M.

Since Nm ⊆ (radN)m then by (3.2),

(3.3) radNm ⊆ (radN)m.

Now by (3.1) and (3.3),

rad(Nm) = (radN)m ; ∀m ∈Max(R).

Lemma 3.2. If M is an F-weak multiplication R-module and N is a proper submodule of
M. Then M/N (s.t.s.r.f).

Proof. By Theorem 3.1, M (s.t.s.r.f). Let H/N be an arbitrary proper submodule of M/N.
Then by [10, Proposition 3.16], S− radM/N(H/N) = (S− radM(H))/N = H/N. Therefore
every proper submodule H/N of M/N is semiprime and so by [10, Proposition 4.1], M/N
(s.t.s.r.f).

Lemma 3.3. Let R be a ring and M an F-weak multiplication R-module. Then the only
primary submodules of M are those submodules which are prime.

Proof. Let M be an F-weak multiplication module. Let N be an arbitrary primary submod-
ule of M. By Corollary 3.1, N is a semiprime submodule of M and by [11, Proposition 2.4],
(N : M) is a semiprime ideal of R. Now by [11, Lemma 3.1], N is a prime submodule of M.
The proof is now completed.

It should be noted that, Lemma 3.3 is not necessarily true if M = R, the ring itself.
Because according to [10, Theorem 4.4], R (s.t.s.r.f) if we have one of the following.

(i) For every free R-module F , F (s.t.s.r.f).
(ii) For every faithful R-module C, C (s.t.s.r.f).
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on the manuscript.



A Note on F-Weak Multiplication Modules 765

References
[1] R. Ameri, On the prime submodules of multiplication modules, Int. J. Math. Math. Sci. 2003, no. 27, 1715–

1724.
[2] M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley Publishing Co.,

Reading, MA, 1969.
[3] A. Azizi, Weak multiplication modules, Czechoslovak Math. J. 53(128) (2003), no. 3, 529–534.
[4] A. Barnard, Multiplication modules, J. Algebra 71 (1981), no. 1, 174–178.
[5] Z. A. El-Bast and P. F. Smith, Multiplication modules, Comm. Algebra 16 (1988), no. 4, 755–779.
[6] J. Jenkins and P. F. Smith, On the prime radical of a module over a commutative ring, Comm. Algebra 20

(1992), no. 12, 3593–3602.
[7] C.-P. Lu, Prime submodules of modules, Comment. Math. Univ. St. Paul. 33 (1984), no. 1, 61–69.
[8] C.-P. Lu, Spectra of modules, Comm. Algebra 23 (1995), no. 10, 3741–3752.
[9] R. L. McCasland and M. E. Moore, On radicals of submodules of finitely generated modules, Canad. Math.

Bull. 29 (1986), no. 1, 37–39.
[10] H. A. Tavallaee, Modules satisfying the semi-radical formula, Hadronic J. 32 (2009), no. 4, 407–423.
[11] H. A. Tavallaee and S. Ghalandarzadeh, Semiprime submodules and envelope of modules, IUST-International

Journal of Engineering Sciences, 14 (4), (2003), 131–142.
[12] H. A. Tavallaee and R. M. Oghani, Some remarks on F-weak multiplication modules, Thai J. Math. 9 (2011),

no. 2, 439–448.




