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1. Introduction

The spectrum of a graph is the spectrum of its adjacency matrix.
Graphs with least eigenvalue −2 can be represented by sets of vectors at

angles of 60 or 90 degrees via the corresponding Gram matrices. Maximal
sets of lines through the origin with such mutual angles are closely related
to the root systems known from the theory of Lie algebras. Using such a
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geometrical characterization one can show [4, 12] that graphs in question
are either generalized line graphs (representable in the root system Dn for
some n) or exceptional graphs (representable in the exceptional root system
E8).

We shall study the following problem.

Problem. For which graphs with least eigenvalue greater than or equal
to −2 the Hoffman upper bound (4) (and a convex quadratic programming
generalization (2)) for the stability number is attained ?

The rest of the paper is organized as follows.
Section 2 contains some definitions related to graphs with least eigen-

value greater than or equal to −2 while in Section 3 the bound is described.
In Section 4 some vertex subsets inducing subgraphs with regularity prop-
erties are analyzed. In Section 5 we describe the solution for line graphs.
This result is extended to generalized line graphs in Section 6. Exceptional
graphs are treated in Section 7. Based on an observation in Section 7 con-
cerning the Hoffman bound a new construction of regular exceptional graphs
is given in Section 8.

2. Some basic notions

Let G be a simple graph with n vertices. We write V (G) for the vertex
set of G, and E(G) for the edge set of G. If X is a subset of V (G), the
subgraph of G induced by X is denoted by G[X]. As usual, Kn, Cn and Pn

denote, respectively, the complete graph, the cycle and the path on n vertices.
Further, Km,n denotes the complete bipartite graph on m + n vertices. The
cocktail-party graph CP (n) is the unique regular graph with 2n vertices of
degree 2n− 2; it is obtained from K2n by deleting n mutually non-adjacent
edges. The union of (disjoint) graphs G and H is denoted by G ∪ H, while
mG denotes the union of m disjoint copies of G.

The characteristic polynomial det(xI − A) of the adjacency matrix A
of G is called the characteristic polynomial of G and denoted by PG(x).
The eigenvalues of A (i.e., the zeros of det(xI − A)) and the spectrum of A
(which consists of the n eigenvalues) are also called the eigenvalues and the
spectrum of G, respectively. The eigenvalues of G are reals λ1, λ2, . . . , λn

and we shall assume that λ1 ≥ λ2 ≥ · · · ≥ λn.
A pendant double edge is called a petal. A blossom Bn consists of n

(n ≥ 0) petals attached at a single vertex. An empty blossom B0 has no
petals and is reduced to the trivial graph K1. A graph in which a blossom
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(possibly empty) is attached to each vertex is called a graph with blossoms or
a B–graph. The set of B–graphs includes as a subset the set of (undirected)
graphs without loops or multiple edges. A graph G is a generalized line
graph (GLG) if G = L(H) is the line graph of a B–graph H called the root
graph of G.

The line graph L(H) of any graph H is defined as follows. The vertices
of L(H) are the edges of H and two vertices of L(H) are adjacent whenever
the corresponding edges of H have exactly one vertex of H in common.

We have L(Bn) = CP (n). A GLG is called a line graph if there exists a
B–graph H with no petals such that G = L(H) while in the opposite case
G is a proper generalized line graph.

Furthermore (see [9]), a GLG may be denoted by L(H; a1, . . . , an), where
H is a connected graph, V (H) = {1, . . . , n} with n > 1, a1, . . . , an are non-
negative integers, and its root graph is the B–graph Ĥ (and then L(Ĥ) =
L(H; a1, . . . , an)) obtained from H by attaching to each vertex i the blossom
Bai for i = 1, . . . , n.

An exceptional graph is a connected graph with least eigenvalue greater
than or equal to −2 which is not a generalized line graph.

Let L be the set of graphs whose least eigenvalue is greater than or equal
to −2. A graph is called an L–graph if its least eigenvalue is greater than
or equal to −2.

For other definitions and basic results the reader is referred to books:
[10] for graph spectra in general and [12] for L–graphs.

3. The convex quadratic upper bound for the stability number

If G has at least one edge, considering the convex quadratic program,
presented in [15],

υ(G) = max
x≥0

2êT x − xT (
A

−λn
+ I)x, (1)

where A is the adjacency matrix of G, λn the minimum eigenvalue of G, ê
denotes the all ones vector and I the identity matrix of order |V (G)|, then
we have the following result:

Theorem 3.1 [15] Let G be a graph with at least one edge. Then

α(G) ≤ υ(G). (2)
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Furthermore, υ(G) = α(G) if and only if for a maximum stable set S (and
then for all)

−λn ≤ min{|NG(v) ∩ S| : v /∈ S}, (3)

where NG(v) denotes the neighborhood of the vertex v (that is, the set of
vertices adjacent to v).

Now, we introduce the following slight more general necessary and suf-
ficient condition:

Theorem 3.2 Given a graph G with at least one edge, we have υ(G) =
α(G) if and only if there exists a stable set S for which (3) holds.

P r o o f. If υ(G) = α(G) then Theorem 3.1 implies the result. Con-
versely, let us assume that there exists a stable set S for which (3) holds.
Then the characteristic vector of S, x̄ = x(S) (that is, the vector x̄ such
that x̄i = 1 if i ∈ S, and x̄i = 0 otherwise) and the vector y such that

yi =

{
0, if i ∈ S;
|NG(i) ∩ S| − λn, otherwise,

fulfill the Karush-Khun-Tucker conditions for the convex quadratic program-
ming problem (1): yT x̄ = 0 and Ax̄ = −λn(ê − x̄) + y. Therefore, x̄ is an
optimal solution for (1) and then α(G) ≤ υ(G) = |S| ≤ α(G). �

A graph G such that υ(G) = α(G) was called in [5] graph with convex-
QP stability number (where QP stands for quadratic programming). When
G is a regular graph of order n, as firstly observed in [15], υ(G) = n −λn

λ1−λn

which is precisely the very popular upper bound on the stability number of
regular graphs obtained by Hoffman (unpublished) and presented by Lovász
in [14] by the inequality

α(G) ≤ n
−λn

λ1 − λn
. (4)

Considering S as a vertex subset of a p-regular connected graph G, the
Hoffman bound can be obtained from the inequalities

|S|p − λn

n
+ λn ≤ d̄G[S] ≤ |S|p − λ2

n
+ λ2, (5)
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where d̄G[S] is the average vertex degree of the subgraph of G induced by S.
In fact, if G is p-regular, from these inequalities, it follows that

n
d̄G[S] − λ2(AG)

p − λ2(AG)
≤ |S| ≤ n

d̄G[S] − λmin(AG)
p − λmin(AG)

. (6)

Therefore, if S induces a maximum stable set, then the Hoffman inequality
(4) is obtained.

There are many papers related to the Hoffman bound and, in particular,
to the case when the bound is attained. It would be difficult to survey all
of them, partly because there exists a confusion in some papers concerning
priorities. Here and in the next section we shall mention some relevant
references not pretending to give a complete list.

The inequality (5) was proved in [2] and presented at the V Hungar-
ian Colloquium on Combinatorics, Keszthelly 1976. This communication
resulted in the paper [3] published in the proceedings of this colloquium. In
fact, [3] represents a summary of results of [2]. Almost the whole content
of [2] was included into the book [12] and, in particular, the inequalities
(5) with the original proof as Theorem 1.2.25. Some related bibliographical
data can be found in [10], p. 115. Among other things it was noted there
that the Hoffman bound is a special case of the first inequality in (5).

Note that the thesis [16] mentions correctly that (5) appears in [3] with-
out a proof but, instead of saying that the proof is contained in [2], says
that the proof is probably given in a paper by W.Haemers.

4. Some remarks on graphs with (k, τ)-regular sets

Let us consider the concept of (k, τ)-regular set, introduced in [7], which
is a vertex subset S of a graph G, inducing a k-regular subgraph such that
every vertex out of S has τ neighbors in S, that is, for any v ∈ V (G) we
have

|NG(v) ∩ S| =

{
k, if v ∈ S;
τ, otherwise.

For instance, considering the Petersen graph depicted in Figure 1, the fol-
lowing (k, τ)-regular sets are obtained.

• The set S1 = {1, 2, 3, 4} is (0, 2)−regular.

• The set S2 = {5, 6, 7, 8, 9, 10} is (1, 3)−regular.

• The set S3 = {1, 2, 5, 7, 8} is (2, 1)−regular.
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Figure 1. The Petersen graph

According to Godsil and Royle (see [13], Lemma 9.6.2), we may conclude
that if the Hoffman bound is attained for a regular graph G, then G contains
a (0, τ)-regular set such that τ = −λn. Conversely, if a p-regular graph G
contains a (0, τ)-regular set S, with τ = −λn, then

p|S| = (n − |S|)τ ⇔ |S| = n
τ

p + τ
= n

−λn

λ1 − λn
.

Therefore, since α(G) ≤ n −λn
λ1−λn

= |S| ≤ α(G), it follows that α(G) =
n −λn

λ1−λn
. As immediate consequence, we have the following necessary and

sufficient condition for the convex quadratic bound (1) be tight (when ap-
plied to regular graphs).

Theorem 4.1 Let G be a regular graph with at least one edge. Then
α(G) = υ(G) if and only if there exists a (0, τ)-regular set S ⊂ V (G), with
τ = −λn. Furthermore, S is a maximum stable set and then every maximum
stable set is (0, τ)-regular.

It should be noted that, according to Theorem 3.2, if a graph G (regu-
lar or non-regular) has a (0, τ)-regular set, with τ = −λn, then α(G) = υ(G).

Regarding the existence of (k, τ)-regular sets in regular graphs, we have
the following necessary and sufficient condition, proved in [17] (using a dif-
ferent terminology).

Theorem 4.2 [17] A p-regular graph has a (k, τ)-regular set S, with
k < p, if and only if k− τ is an eigenvalue and x− τ

p+τ−k ê, where x = x(S)
is the characteristic vector of S, is a (k − τ)-eigenvector.

A subgraph of a graph G induced by a (k, τ)-regular set is called in
[17] an eigengraph of G. Using a distinct approach, the following equivalent
result (here presented as a corollary of Theorem 4.2) was rediscovered in [8].
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Corollary 4.1 Let G be a p-regular graph and S ⊂ V (G). There are
k ∈ N ∪ {0} and τ ∈ N, with k − τ = λ, such that S is (k, τ)-regular if and
only if ∃u ∈ Ker(AG − λI) such that

ui =

{
1 − |V (G)|

|S| , if i ∈ S;
1, otherwise,

where Ker(C) denotes the null space of matrix C.

For the particular case of (0, τ)-regular sets, a similar result was obtained
in [6], using the concept of τ -regular-stable graph introduced in [1] (which is
a graph G with a maximum independent vertex set S, such that for every
vertex v /∈ S, |NG(v)∩S| = τ). According to [6], if the graph G is τ -regular-
stable, with τ > 0, then there exists a maximum stable set S such that its
characteristic vector is a solution of the linear system

AGx = τ(ê − x). (7)

On the other hand, if τ = −λn and the system (7) has a solution x̄ ∈
{0, 1}|V (G)|, then x̄ is the characteristic vector of a maximum stable set.
The first implication is obvious and the second follows from the fact that if
x̄ ∈ {0, 1}|V (G)| is a solution of (7), then x̄T AGx̄ = 0, which is equivalent to
say that x̄ is the characteristic vector of a stable set S of G. Hence, since
τ = −λn, x̄ is the optimal solution of the convex quadratic programming
problem (1) and then |S| = υ(G) = α(G).

Now, a maximum independent vertex set defining a τ -regular-stable
graph is designated (0, τ)-regular.

As immediate consequence, assuming that the p-regular graph G includes
a (0, τ)-regular set, then its characteristic vector is a solution of the linear
system (7) and thus, adding − τ

p+τ AGê = − pτ
p+τ ê to both sides of (7), it

follows that

AG(x − τ

p + τ
ê) = −τ(x − τ

p + τ
ê).

Conversely, if û = x − τ
p+τ ê, where x ∈ {0, 1}|V (G)|, is a −τ -eigenvector,

then

AG(x − τ

p + τ
ê) = −τ(x − τ

p + τ
ê) ⇔ AGx = −τ(x − ê),

and thus xT AGx = 0, that is, x is the characteristic vector of an independent
set of G (which then is maximum).
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Therefore, if G is a p-regular graph and τ = −λn, then G has a (0, τ)-
regular set (or, equivalently, the Hoffman bound is attained) if and only if
there exists x ∈ {0, 1}|V (G)|, such that x− τ

p+τ ê is a λn-eigenvector. Further-
more, x is the characteristic vector of a maximum independent set. Part of
this result was independently obtained in [16].

Now, more generally, we have the following slightly different version of
Theorem 4.2.

Theorem 4.3 A p-regular graph G has a (k, τ)-regular set, with k < p,
if and only if k − τ is an eigenvalue and there exists x ∈ {0, 1}|V (G)|, such
that x− τ

p+τ−k ê is a (k−τ)-eigenvector. Furthermore, x is the characteristic
vector of a (k, τ)-regular set.

P r o o f. Let G be a p-regular graph. If S ⊂ V (G) is a (k, τ)-regular
set, with k < p, then the characteristic vector of S, x = x(S), is a solution
of the linear system

AGx = (k − τ)(x − ê) + kê. (8)

Adding −τ
p+τ−kAGê = −τp

p+τ−k ê to both sides of (8) it follows that

AG(x − τ

p + τ − k
ê) = (k − τ)(x − τ

p + τ − k
ê).

Conversely, if x ∈ {0, 1}|V (G)| is such that x− τ
p+τ−k ê is a (k−τ)-eigenvector,

then x is a solution of the linear system (8). Denoting by S the vertex set
defined by the characteristic vector x, it follows that ∀v ∈ V (G)

|NG(v) ∩ S| = (AGx)v = (k − τ)(xv − 1) + k =

{
k, if v ∈ S;
τ, otherwise.

�

5. Line graphs

A matching is a set of mutually non-adjacent edges and a perfect match-
ing of a graph H is a matching M such that each vertex v ∈ V (H) is
incident to an edge of M . Since a graph has a perfect matching if and
only if each component has a perfect matching and the optimal value of the
convex quadratic programming problem (1) is also the sum of the optimal
values obtained for each component, we may rewrite the theorem deduced
in [5] in the following form:
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Theorem 5.1 [5] A graph H with at least one edge, such that each
component of H is neither a star nor a triangle, has a perfect matching if
and only if the line graph L(H) has convex-QP stability number.

Therefore, the stability number of the line graph L(H) of a graph H (of
order n > 2, where each component is neither a star nor a triangle) attains
the upper bound υ(L(H)) if and only if H has a perfect matching. Notice
that a matching of H corresponds to a stable set of L(H) and then the
stability number of L(H) is the cardinality of a maximum matching of H.

The content of Theorem 5.1 is trivial for regular graphs. In this case the
bound (1) is reduced to Hoffman’s bound (4). If G = L(H) is regular, then
H is either regular or semi-regular bipartite.

If H is regular of degree r and has n vertices and if G has least eigenvalue
−2, then υ(G) = n/2. Of course, we have α(G) = n/2 if and only if H has a
perfect matching. The only regular connected graphs with least eigenvalue
greater than −2 are complete graphs and odd cycles (cf.,e.g.,[12], Corollary
2.3.22). In the case of odd cycles we have G = L(H) = H = C2k+1 for some
k. The eigenvalues of G are 2 cos 2π

2k+1 i, i = 0, 1, . . . , 2k, and we readily get
υ(G) = n cos β

1+cos β with β = π
2k+1 . Since G has no perfect matching, the bound

is not attained by Theorem 5.1 but α(G) = k is very close to υ(G). In the
case of complete graphs the bound is attained although complete graphs are
excluded from Theorem 5.1

If H is semi-regular bipartite with parameters n1, n2, d1, d2, assuming
that d1, d2 are both greater than 1 (otherwise, the least eigenvalue of G is
−1), the largest eigenvalue of G is d1 + d2 − 2 and we have υ(G) = 2n1d1

d1+d2
.

However, if H has a perfect matching, we have n1 = n2 and then necessarily
d1 = d2. This reduces our case to the previous one and we have again
υ(G) = n1 = n/2.

Taking into account that a graph H has a perfect matching if and only
if L(H) has a (0, 2)-regular set, we have the following corollary:

Corollary 5.1 Let H be a graph with at least one edge, such that each
component is neither a star nor a triangle. Then G = L(H) has convex-QP
stability number if and only if G has a (0, 2)-regular set.

P r o o f. According to the above, L(H) has as a (0, 2)-regular set if and
only if H has a perfect matching. (Note that if V (L(H)) is a set of isolated
vertices then it is (0, k)-regular for every k ∈ N). Furthermore, according to
Theorem 5.1, H has a perfect matching if and only if the line graph L(H)
has convex-QP stability number. �
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Combining this corollary with Theorem 4.2, we have a new necessary
and sufficient condition for the particular case of regular line graphs.

Corollary 5.2 Let G = L(H) be a p-regular graph with p > 2. Then G
has convex-QP stability number if and only if −2 is an eigenvalue of G with
an eigenvector (p + 2)x̄ − 2ê, where x̄ = x(S) is the characteristic vector of
a (0, 2)-regular set S ⊂ V (G) and ê is the all-one vector.

P r o o f. Since H is p-regular, with p > 2, it follows that H has at least
one edge and each component is neither a star nor a triangle. Therefore,
applying Corollary 5.1 first and then Theorem 4.2, the result follows. �

6. Generalized line graphs

Taking into account that a GLG is an L–graph, that is, a graph for which
λn ≥ −2, and noting that if the GLG is not complete then −2 ≤ λn < −1,
we have the following result:

Theorem 6.1 Let G = L(H, a1, . . . , an) be a generalized line graph dif-
ferent from Kn. Let V (H) = V1 ∪ V2, where V1 = {i ∈ V (H) : ai > 0}
and V2 = V (H) \ V1. If V2 = ∅ or H[V2] has no edges then υ(G) = α(G),
otherwise this equality holds if and only if the subgraph H[V2], after deleting
its isolated vertices (if they exist), has a perfect matching.

P r o o f. Suppose that υ(G) = α(G). Then the characteristic vector of a
maximum stable set S ⊆ V (G), x̄ = x(S), is an optimal solution for the con-
vex quadratic program (1). By the Karush-Kuhn-Tucker conditions, there
exists y ≥ 0 such that yT x̄ = 0 and Ax̄ = −λn(ê − x̄) + y or, equivalently,
for each ve ∈ V (G),

(Ax̄)ve = |NG(ve) ∩ S| =

{
0, if ve ∈ S;
−λn + yve , if ve /∈ S,

(9)

where A is the adjacency matrix of G. It should be noted that the vertices
of the maximum stable set S can be partitioned into the subsets S1 and
S2, such that the vertices in S1 correspond to edges of petals (the pairs of
edges of petals just one chosen from the blossom Bai attached to each vertex
i ∈ V1) and the vertices in S2 correspond to edges of a matching M in H[V2],
if E(H[V2]) 
= ∅.

Let us suppose that E(H[V2]) 
= ∅. Then, for each vertex ve ∈ V (G) \ S
corresponding to an edge e ∈ E(H[V2])\M , from (9), we may conclude that
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|NG(ve) ∩ S| = −λn + yve ⇒ |NG(ve) ∩ S| > 1,

and then e has two adjacent edges in M (since it is not possible to be
adjacent to more than two). Therefore, M is a perfect matching for H[V2].

Conversely, let us suppose that H[V2] without isolated vertices (if they
exist) has a perfect matching M . Consider the vertex subset S = S1 ∪ S2,
where the vertices of S1 correspond to the edges of petals just one chosen
from the blossom Bai attached to each vertex i ∈ V1, and the vertices
of S2 correspond to the edges of the perfect matching M ⊆ E(H[V2]), if
E(H[V2]) 
= ∅ or S2 = ∅, otherwise. Let x̄ = x(S) be the characteristic
vector of S. Then, denoting by ve the vertex of V (G) corresponding to the
edge e ∈ E(Ĥ), for y such that

yve =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0, if ve ∈ S;
2 + λn, if ve /∈ S, and e belongs to a petal;
4 + λn, if ve /∈ S, and e ∈ E(H[V1]);
2 + λn, if ve /∈ S, S2 = ∅, and e=xy is such that x ∈ V1 and y ∈ V2;
3 + λn, if ve /∈ S, S2 
= ∅, and e=xy is such that x ∈ V1 and y ∈ V2;
2 + λn, if ve /∈ S, S2 
= ∅, and e ∈ E(H[V2]) \ M,

it is immediate that y ≥ 0 and is such that jointly with x̄ fulfill the Karush-
Kuhn-Tucker conditions yT x̄ = 0 and (9). Therefore, x̄ is an optimal solu-
tion for the convex quadratic programming problem (1) and, since α(G) ≤
υ(G) = |S| ≤ α(G), it follows that α(G) = υ(G). �

The case of regular graphs is again easy. By Proposition 1.1.9 of [12] a
regular connected generalized line graph is either a line graph or a cocktail
party graph. Regular line graphs are covered by Theorem 4.1 and by the
comment after that theorem. The cocktail party graph G = CP (k) has
distinct eigenvalues 2k − 2, 0,−2 and we get υ(G) = α(G)(= 2). The same
conclusion also follows from Theorem 5.1.

Note that the bound is attained if each vertex of H has at least one petal
attached. In this case we have υ(G) = α(G) = 2n.

7. Exceptional graphs

The bound is attained for almost all regular exceptional graphs. There
are 187 such graphs. The set of these graphs is partitioned into three subsets
called layers. By definition (cf., [12], p.91), a regular exceptional graph of
degree r with n vertices belongs to first, second, third layer if it satisfies the
relations n = 2(r + 2), n = 3

2(r + 2), n = 4
3(r + 2), respectively.
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The graphs were originally found in [2] and they are described in Chapter
4 and Tables A3 and A4 of the book [12].

From the layer defining relations it follows that the Hoffman bound is
equal to

4 for graphs in the first layer (163 graphs including the Petersen graph),
3 for graphs in the second layer (21 graphs),
8/3 for graphs in the third layer (3 graphs).
The data from the mentioned tables show that α = 4, 3, 2 for these layers,

respectively.
Hence, the bound is attained for graphs in the first and in the second

layer. It is attained in a weaker sense even in the third layer (α is equal to
the largest integer satisfying the Hoffman inequality).

For non-regular exceptional graphs we do not have a general solution
but we provide some examples.

Below is a table with the values υ(G) and α(G) (obtained using MatLab)
for the 20 minimal exceptional graphs F1, F2, . . . , F20 as given at p. 198 of
the book [12].

Graph υ(G) α(G)
F1 3.6357 3
F2 3.2361 3
F3 3.6302 3
F4 3.3111 3
F5 3.6222 3
F6 3.3568 3
F7 2.5670 2
F8 3.2998 3
F9 3.3272 3

F10 2.5724 2
F11 3 3
F12 2.6099 2
F13 3.3012 3
F14 2.2361 2
F15 3 3
F16 2.5336 2
F17 2.5858 2
F18 2.4140 2
F19 2.2674 2
F20 2.2866 2
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8. A recursive construction of regular exceptional graphs

The fact that the Hoffman bound is attained by all regular exceptional
graphs in the first and in the second layer enables a recursive construction
of these graphs. We shall elaborate here the case of the first layer.

Let G be a regular exceptional graph of degree r with n vertices which
belongs to the first layer. We have n = 2(r+2). Let S be a maximum stable
set in G which means |S| = 4. By Theorem 4.1, S is a (0, 2)-regular set of
G. Moreover, the graph G′ = G − S is regular of degree r′ = r − 2 and has
n′ = n−4 vertices. G′ is an L-graph and if it is exceptional it belongs to the
first layer since n′ = 2(r′ + 2). In the other case G′ is a line graph or/and
a disconnected graph. Of course, G′ cannot be a cocktail party graph since
in this case it should be n′ = r′ + 2 which is not true. If G′ is disconnected
then again it is a line graph what follows by enumeration of possible cases
(see below).

Smallest regular exceptional graphs in the first layer are the five graphs
Z1, Z2, . . . , Z5 of Fig. 1 on p. 218 of [12]. For such a graph G we have n = 10
and r = 3. For the reduced graph G′ we have n′ = 6 and r′ = 1. Hence,
G′ = 3K2 and this is a line graph. It follows that all graphs Z1, Z2, . . . , Z5

can be obtained by adding edges between the six vertices of 3K2 and four
vertices of 4K1 in all possible ways so that the resulting graph is regular of
degree 3.

In the next case we have n = 12 and r = 4. Since n′ = 8 and r′ = 2, the
graph G′ is one of the following three graphs C8, 2C4, C5 ∪ C3.

If n = 14 and r = 5, the set of possible graphs G′ (n′ = 10, r′ = 3)
consists of all regular line graphs of degree 3 on 10 vertices and of graphs
Z1, Z2, . . . , Z5.

In general, for n′ = 6, 8, . . . , 24 the graph G′ belongs to the set of regular
L-graphs of degree r′ = n′/2 − 2. All regular exceptional graphs G in the
first layer can be constructed by extending graphs G′ with additional four
vertices in the way implied by the above considerations.

The extension of a reduced graph G′ by the set S which produces the
graph G will be called an S-extension. Let us describe S-extensions in some
detail.

Let 1,2,3,4 be the vertices of S. Each vertex of G′ should become adjacent
to exactly two vertices of S. Let us define an r-regular multigraph M(S)
having the set S as the vertex set. If a vertex v of G′ becomes adjacent
to vertices x, y of S, then there is an edge labelled v between x and y in
M(S). In this way, the vertices of G′ subdivide the edges of M(S). There
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are six 2-element subsets of S. Constructing G from G′ by an S-extension
means, in fact, to partition the vertex set of G′ into six subsets which, in
turn, should be assigned to 2-element subsets of S in such a way that M(S)
is regular of degree r. However, the resulting graph G need not to be an
L-graph which should be checked in actual constructions.

Let us consider the set L of regular L-graphs with even number n of
vertices of degree r = n/2 − 2 where 6 ≤ n ≤ 28. For any G, H ∈ L
consider the relation: H �S G if and only if ”H can be obtained from G by
a finite sequence of zero ore more S-extensions”. This relation is a partial
order relation in L and then (L,�S) is a partially ordered set (poset). Our
observations can be condensed in the following form.

Theorem 8.1 Regular exceptional graphs are not minimal elements of
the poset (L,�S).

It would be interesting to study the structure of L.
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