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A b s t r a c t. In a recent paper [ I. Gutman, Bull. Acad. Serbe Sci. Arts
(Cl. Math. Natur.) 131 (2005) 1–7], the Hosoya polynomial H = H(G, λ)
of a graph G , and two related distance–based polynomials H1 = H1(G, λ)
and H2 = H2(G, λ) were examined. We now show that

max{δ H1 − δ2 H , Δ H1 − Δ2 H} ≤ H2 ≤ Δ H1 − δ Δ H

holds for all graphs G and for all λ ≥ 0 , where δ and Δ are the smallest
and greatest vertex degree in G . The answer to the question which of the
terms δ H1 − δ2 H and Δ H1 −Δ2 H is greater, depends on the graph G and
on the value of the variable λ . We find a number of particular solutions of
this problem.
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1. Introduction

In a recent paper [1] some distance–based graph polynomials were stud-
ied and relations between them established. We now obtain inequalities
between these polynomials.
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We use the same notation and terminology as in [1]: By G is denoted a
connected graph, V (G) its vertex set, E(G) its edge set, n the number of
its vertices, and m the number of its edges. By δx is denoted the degree of
the vertex x ∈ V (G) . The smallest and greatest vertex degree in the graph
G are δ and Δ , respectively.

The distance between the vertices x and y of the graph G is denoted
by d(x, y) . Because the graph G is assumed to be connected, the distance
d(x, y) is a well-defined quantity for all pairs of vertices x and y . In partic-
ular, if x = y , then d(x, y) = 0 . The greatest distance in G is its diameter
and will be denoted by D . The number of pairs of vertices of G that are at
distance k is denoted by d(G, k) .

The Hosoya polynomial (originally called “Wiener polynomial” [2]) of a
graph G is defined as

H = H(G, λ) =
∑
k≥0

d(G, k) λk . (1)

This graph polynomial was much studied in the past [3–10].
Another way in which the right–hand side of Eq. (1) can be written is

H(G, λ) =
∑

{x,y}⊆V (G)

λd(x,y) . (2)

The expression (2) made it possible [1] to conceive two other, closely related
graph polynomials, viz.,

H1 = H1(G, λ) =
∑

{x,y}⊆V (G)

(δx + δy) λd(x,y) (3)

and
H2 = H2(G, λ) =

∑
{x,y}⊆V (G)

δx δy λd(x,y) . (4)

Let P = P (λ) be a polynomial of the form

P (λ) =
n∑

k=0

ak λk

Then we write ak = coeffk(P ) . With this notation, in view of Eqs. (2)
and (3), it is elementary to verify the following:

coeff0(H) = n ; coeff1(H) = m (5)
coeff0(H1) = 4m ; coeff1(H1) =

∑
x∈V (G)

(δx)2 . (6)
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The second relation in (6) is a consequence of∑
xy∈E(G)

(δx + δy) =
∑

x∈V (G)

(δx)2 .

A graph is said to be regular of degree r if all its vertices have degrees
equal to r . In this case the above defined graph polynomials are simply
related as

H1 = 2r H and H2 = r2 H .

In view of this, in what follows we shall assume that the graphs considered
are non-regular, which is tantamount to the requirement δ < Δ .

2. Elementary Inequalities between the Polynomials
H , H1 , and H2

For any vertex x ∈ V (G) , δ ≤ δx ≤ Δ . Therefore, for any pair of (not
necessarily distinct) vertices x, y ∈ V (G) ,

(δx − δ)(δy − δ) ≥ 0 (7)
(δx − Δ)(δy − Δ) ≥ 0 (8)
(δx − δ)(δy − Δ) ≤ 0 . (9)

From (7) and (8) there follows

δx δy − δ (δx + δy) + δ2 ≥ 0
δx δy − Δ (δx + δy) + Δ2 ≥ 0,

which in view of Eqs. (2)–(4) and assuming that λ ≥ 0 immediately yields

H2 − δ H1 + δ2 H ≥ 0 (10)
H2 − Δ H1 + Δ2 H ≥ 0 . (11)

From (9) one obtains

δx δy − (Δ δx + δ δy) + δ Δ ≤ 0

from which there follows a weaker inequality

δx δy − Δ (δx + δy) + δ Δ ≤ 0

which, in turn, implies

H2 − Δ H1 + δ Δ H ≤ 0 . (12)

Bearing in mind the inequalities (10)–(12) we have
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Theorem 1. Let δ and Δ be, respectively, the smallest and the greatest
vertex degree in the graph G . Then for any connected graph G and all λ ≥ 0 ,

max{δ H1(G, λ) − δ2 H(G, λ) , Δ H1(G, λ) − Δ2 H(G, λ)} ≤ H2(G, λ)
≤ Δ H1(G, λ) − δ Δ H(G, λ) .

Finding which of the two terms in the lower bound in Theorem 1 is
greater, appears to be a difficult task. Anyway, it is either

max{δ H1 − δ2 H , Δ H1 − Δ2 H} = δ H1 − δ2 H (13)

or
max{δ H1 − δ2 H , Δ H1 − Δ2 H} = Δ H1 − Δ2 H . (14)

Comparing the right–hand sides of (13) and (14), and taking into account
that Δ − δ > 0 , we arrive at the following auxiliary

Lemma 2. If (δ + Δ) H(G, λ) > H1(G, λ) , then Eq. (13) holds. If
(δ + Δ) H(G, λ) < H1(G, λ) , then Eq. (14) holds. If (δ + Δ) H(G, λ) =
H1(G, λ) , then both Eqs. (13) and (14) are applicable.

If Eqs. (13) and (14) simultaneously hold, then

(δ + Δ) H(G, λ) − H1(G, λ) = 0 . (15)

The real non-negative solutions of Eq. (15) (if any) will be referred to as
the critical values of the graph G .

In what follows we examine the conditions for the validity of (13) and
(14). The following example reveals that these conditions are far from being
trivial.

Example 1. Let Pn be the n-vertex path and let n ≥ 3 . Then δ = 1
and Δ = 2 . It can be shown that

H(Pn, λ) =
n−1∑
k=0

(n−k) λk and H1(Pn, λ) = 4n−4+
n−1∑
k=1

(4n−2−4k) λk .

Thus, in the case n = 3 ,

(δ + Δ) H(Pn, λ) = 9 + 6λ + 3 λ2

H1(Pn, λ) = 8 + 6λ + 2 λ2
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and thus Eq. (13) holds for all values of the variable λ , λ ≥ 0 . The path
P3 has no critical values.

In the case n = 4 we have

(δ + Δ) H(Pn, λ) = 12 + 9λ + 6 λ2 + 3 λ3

H1(Pn, λ) = 12 + 10λ + 6 λ2 + 2 λ3 .

Consequently, Eq. (14) holds for near-zero (positive) values of the variable
λ , whereas (13) holds if λ is sufficiently large. By a detailed examination
we find that Eq. (14) holds for 0 < λ < 1 , and Eq. (13) holds for λ > 1 .
The path P4 has two critical values, λ1(P4) = 0 and λ2(P4) = 1 .

In the case n = 5 the situation is slightly different: (14) holds for 0 ≤
λ < λ1 , (13) holds for λ > λ1 , and there is only a single critical value
λ1(P5) = (1 +

√
5)/2 .

The problem of establishing which of the Eqs. (13) and (14) is valid
becomes much less perplexed if one restricts the consideration to near zero
(positive) and to very large values of the variable λ .

Lemma 3. If λ is sufficiently close to zero (but positive–valued), then

(δ + Δ) coeff0(H) > coeff0(H1) (16)

implies the validity of Eq. (13), and

(δ + Δ) coeff0(H) < coeff0(H1) (17)

implies the validity of Eq. (14). If

(δ + Δ) coeff0(H) = coeff0(H1) (18)

then
(δ + Δ) coeff1(H) > coeff1(H1) (19)

implies the validity of Eq. (13), and

(δ + Δ) coeff1(H) < coeff1(H1) (20)

implies the validity of Eq. (14). If also

(δ + Δ) coeff1(H) = coeff1(H1) (21)

then one has to compare the second coefficients of H(G, λ) and H1(G, λ) ,
etc.
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With regard to conditions (18)–(21) see Lemma 5.

Lemma 4. Let D be the diameter of the graph G under consideration.
If λ is sufficiently large, then

(δ + Δ) coeffD(H) > coeffD(H1) (22)

implies the validity of Eq. (13), and

(δ + Δ) coeffD(H) < coeffD(H1)

implies the validity of Eq. (14). If

(δ + Δ) coeffD(H) = coeffD(H1)

then
(δ + Δ) coeffD−1(H) > coeffD−1(H1)

implies the validity of Eq. (13), and

(δ + Δ) coeffD−1(H) < coeffD−1(H1)

implies the validity of Eq. (14). If also

(δ + Δ) coeffD−1(H) = coeffD−1(H1)

then one has to compare the third-last coefficients of H(G, λ) and H1(G, λ) ,
etc.

Lemma 5. For any connected and non-regular graph, the validity of Eq.
(18) implies the validity of (20), i.e., if (18) holds, then conditions (19) and
(21) never occur.

P r o o f. Bearing in mind (5) and (6) we immediately see that (18) is
equivalent to

(δ + Δ) n = 4m. (23)

Now, knowing that
∑

x∈V (G)
δx = 2m , we have

∑
x∈V (G)

(δx)2 =
∑

x∈V (G)

(
δx − 2m

n

)2

+
4m2

n
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which (for non-regular graphs) implies

∑
x∈V (G)

(δx)2 >
4m2

n
.

Combining this inequality with (23), we get
∑

x∈V (G)

(δx)2 > (δ + Δ) m

which is equivalent with (20). �

* * * * *

Relation (23) determines the condition under which a graph has a critical
value equal to zero.

In the case of trees, δ = 1 , m = n − 1 , and (23) becomes

(3 − Δ)n = 4 .

This condition is obeyed only if Δ = 2 and n = 4 , i.e., among all trees only
the 4-vertex path has a zero critical value.

In the case of unicyclic graphs (different from Cn), δ = 1 and m = n .
Then from (23) follows Δ = 3 . Thus, connected unicyclic graphs with
maximum vertex degree 3 have a zero critical value. Those with maximum
vertex degree greater than 3 have no such critical value.

In the case of bicyclic graphs, m = n + 1 and (23) yields

(δ + Δ − 4)n = 4 .

This equality has solution only if n = 4 , δ = 2 , Δ = 3 , which characterizes
a unique graph (obtained by inserting an edge into C4). Thus C4 + e is the
unique bicyclic graph with a zero critical value.

In the case of tricyclic graphs we arrive at the condition (δ+Δ−4)n = 8
which is satisfied by numerous graphs, all having n = 8 , δ = 1 , Δ = 4 or
n = 8 , δ = 2 , Δ = 3 .

3.Trees

In the case of trees the minimum vertex degree is always δ = 1 . The
only n-vertex tree with Δ = 2 is the path Pn , and this graph has already
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been analyzed in Example 1. Therefore we consider here trees for which
Δ ≥ 3 . Thus δ + Δ ≥ 4 .

An n-vertex tree has n− 1 edges. Then, as special cases of Eqs. (5) and
(6) we get

coeff0(H) = n ; coeff0(H1) = 4(n − 1)

and therefore relation (16) in Lemma 3 is satisfied. This, together with
Example 1, implies

Theorem 6a. Let G be an n-vertex tree. If G ∼= Pn , n ≥ 4 , then Eq.
(14) holds for near-zero values of λ . For all other n-vertex trees, n ≥ 3 ,
including P3 , Eq. (13) holds for near-zero values of λ .

If λ is sufficiently large, then the leading term of the polynomial H(G, λ)
becomes d(G, D) λD , where d(G, D) is the number of pairs of vertices at
greatest distance. If G is a tree, then all pairs of its vertices at greatest
distance are of degree 1, and therefore for large λ the leading term of the
polynomial H1(G, λ) is 2 d(G, D) λD . Because for any n-vertex tree, n ≥ 3 ,
δ +Δ ≥ 3 , it immediately follows that all trees (including the paths) satisfy
the condition (22) in Lemma 4. We thus arrive at

Theorem 6b. For all n-vertex trees, n ≥ 3 , Eq. (13) holds for suffi-
ciently large values of λ .

4. Unicyclic Graphs

In this section we consider connected unicyclic graphs on n vertices. The
cycle Cn is a regular graph of degree 2 and (for reasons explained above) will
be disregarded. All other such graphs possess vertices of degree 1, and thus
δ = 1 and Δ ≥ 3 . For connected unicyclic graphs, n = m , and therefore
from Eqs. (5) and (6) we conclude that

coeff0(H) = n ; coeff0(H1) = 4n . (24)

We separately consider two cases: (1) Δ = 3 and (2) Δ > 3 .

Case 1: Δ = 3
Because of δ+Δ = 4 and relations (24), the equality (18) in Lemma 3 holds.
Then, by Lemma 5 there follows that relation (20) in Lemma 3 is satisfied.
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Case 2: Δ > 4
This time from Eqs. (24) we conclude

(δ + Δ) coeff0(H) > 4n = coeff0(H1),

which means that relation (16) in Lemma 3 is obeyed. Summarizing the
above consideration we have

Theorem 7a. Let G be an n-vertex connected unicyclic graph, different
from the cycle Cn . If the greatest vertex degree in G is Δ = 3 , then Eq.
(14) holds for near-zero values of λ . If Δ ≥ 4 , then Eq. (13) holds for
near-zero values of λ .

Let G be a connected unicyclic graph on n vertices, different from Cn ,
and let D be its diameter. Let x and y be two vertices of G whose distance
is D . The following properties of these vertices are easily verified:

Claim 1. Either δx = 1 or δy = 1 , or both.
Claim 2. If δx = 1 , then δy ≤ 2 .

P r o o f. Any unicyclic graph G (different from Cn) consists of a cycle
C to which some trees are attached.

Without loss of generality we assume that d(x, y) = D and δx ≤ δy . We
prove the Claims 1 and 2 by showing that the assumptions (a) δx > 1 and
(b) δx = 1 , δy > 2 lead to contradictions.

Case (a): δx > 1 .
If x belongs to a tree, attached to the cycle C , then (because its distance

to y is maximal), it must be δx = 1 . Therefore, x must belong to the cycle
C .

If x belongs to the cycle C and has degree greater than 2, then a tree is
attached to C at vertex x . The vertex y cannot belong to this tree, because
then the distance between y and any vertex of C , different than x , would
be greater than D , a contradiction. If so, then the distance between y and
any vertex of the tree attached to x is greater than D , a contradiction.
Therefore it cannot be δx > 2 .

Therefore, if x belongs to the cycle C , its degree would have to be equal
to 2. Because, δy ≥ δx , also the vertex y must belong to C .

If δy > 2 , then a tree is attached to y and the distance between x and any
vertex of this tree is greater than D , a contradiction. If, however, δy = 2 ,
then on the cycle C there exists another pair of vertices x′, y′ at the same
distance as x, y , such that a tree is attached to y′ . The distance between
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x′ and any vertex of the tree attached to y′ would be greater than D , a
contradiction.

Therefore, it cannot be δx > 1 .

Case (b): δx = 1 , δy > 2 .
If δx = 1 , then x belongs to a tree attached to C . If δy > 2 , then y must

belong to C , and a tree is attached to C at y . Then the distance between
x and at least one neighbor of y would be greater that D , a contradiction.

Therefore, if δx = 1 , then it cannot be δy > 2 . �

The above stated properties of maximum–distance vertex pairs imply
δx + δy ≤ 3 , from which follows that

coeffD(H1) ≤ 3 d(G, D) .

On the other hand, because of δ + Δ ≥ 4 ,

(δ + Δ) coeffD(H) ≥ 4 d(G, D)

which means that condition (22) in Lemma 4 is obeyed. This results in:

Theorem 7b. For all connected unicyclic n-vertex graphs, n ≥ 4 ,
different from the cycle Cn , Eq. (13) holds for sufficiently large values of
λ .

5. Hexagonal Systems

Hexagonal systems form a class of graphs that is of certain importance in
chemical applications; in chemical literature these graphs are often referred
to as “benzenoid systems”. The basic properties of hexagonal systems are
systematized in the book [11]; for their distance–based properties see the
review [12] and elsewhere [10].

The basic structural features of hexagonal systems are best described
by the following parameters: number of hexagons h and number of internal
vertices ni . Recall that ni is equal to the number of vertices that simulta-
neously belong to three hexagons. Then the number of vertices and edges
is equal to [11] n = 4h + 2 − ni and m = 5h + 1 − ni .

Hexagonal systems possess only vertices of degree 2 and 3. Their number
is [11] n2 = 2h+4−ni and n3 = 2h−2 , respectively. Taking these relations
into account, and noting that∑

x∈V (G)

(δx)2 = 4 n2 + 9 n3,
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we arrive at the following special cases of Eqs. (5) and (6):

coeff0(H) = 4h + 2 − ni ; coeff1(H) = 5h + 1 − ni

coeff0(H1) = 20 h + 4 − 4 ni ; coeff1(H1) = 26 h + 28 − 9 ni .

The hexagonal systems with h = 1 coincides with the 6-vertex cycle,
which is a regular graph. Therefore, in what follows we assume that h ≥ 2 .
If so, then δ = 2 and Δ = 3 . Then, by direct calculation, we conclude that
Eqs. (16) and (17) in Lemma 3 hold for ni < 6 and ni > 6 , respectively,
and that for ni = 6 the equality (18) is obeyed. In the case ni = 6 we may
apply Lemma 5. Based on these results and using Lemma 3 we can state

Theorem 8a. Let G be a hexagonal system with h hexagons, h ≥ 2 ,
and ni internal vertices. If ni ≤ 5 , then Eq. (13) holds for near-zero values
of λ . If ni ≥ 6 then Eq. (14) holds for near-zero values of λ .

In a hexagonal system any two vertices whose distance is maximal have
degrees equal to 2. Therefore for any hexagonal system G whose diameter
is D ,

(δ + Δ) coeffD(H) = 5 d(G, D) > 4 d(G, D) = coeffD(H1) .

Applying Lemma 4 we obtain

Theorem 8b. For all hexagonal systems, Eq. (13) holds for sufficiently
large values of λ .

6. A Class of Graphs with Large Number of Edges

Let Kn be the complete graph on n vertices, and let e1, e2, . . . , ek be
independent edges of Kn . Let Kn(k) ∼= Kn − e1 − e2 − · · · − ek .

Lemma 9. Let n ≥ 3 and 1 ≤ k < n/2 . For the graph Gn(k) the
following holds: (a) If k < n/4 , then Eq. (14) holds for near-zero values of
λ , there is a positive critical value, and Eq. (13) holds for sufficiently large
λ . (b) If k = n/4, then there are two critical values: zero and 1. Eq. (14)
holds for 0 < λ < 1 and Eq. (13) holds for λ > 1 . (c) If k > 4n , then Eq.
(13) holds for all non-negative values of λ .

P r o o f. Lemma 9 follows by direct calculation from

H(Gn(k), λ)=n +
[
n(n − 1)

2
− k

]
λ + k λ2
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H1(Gn(k), λ)=4
[
n(n − 1)

2
− k

]
+

[
n(n − 1)2 − 2k(2n − 3)

]
λ + 2k(n − 2) λ2

by taking into account that δ = n − 2 , Δ = n − 1 . �
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