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INEQUALITIES WHICH INCLUDE q-INTEGRALS1
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A b s t r a c t. The main problem in analyzing inequalities which include
q-integrals is the fact that q-integral of a function over an interval [a, b] (0 <
a < b) is defined by the difference of two infinite sums. Thus defined q-
integral properties must include the points outside of interval of integration.

In this paper, we will signify to some directions for solving this prob-
lem and derive some inequalities which are analogues to well-known ones in
standard integral calculus.
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1. Introduction

In the fundamental books about q-calculus [3],[4] the q-integral of the
function f over the interval [0, b] is defined by

Iq(f ; 0, b) =
∫ b

0
f(x)dqx = b(1− q)

∞∑

n=0

f(bqn)qn (0 < q < 1). (1)

1This paper was presented at the Conference GENERALIZED FUNCTIONS 2004,
Topics in PDE, Harmonic Analysis and Mathematical Physics, Novi Sad, September 22–
28, 2004
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If f is integrable over [0, b], then

lim
q↗1

Iq(f ; 0, b) =
∫ b

0
f(x) dx = I(f ; 0, b).

Our attention was pulled up by the definition of integral over the interval
[a, b]. Namely, generally accepted definition is

Iq(f ; a, b) =
∫ b

a
f(x)dqx =

∫ b

0
f(x)dqx−

∫ a

0
f(x)dqx (0 < q < 1). (2)

For example, in that case the values of q-integrals of the polynomials over
[a, b] are very similar to well-known ones in the standard integral calculus.
But, problem is what will happen if f is defined in [a, b] and if it is not
defined in [0, a].

In this paper we specify two ways to overcome the mentioned problem.
The first one is the restriction of the q-integral over [a, b] to a finite sum
whose number of the elements directly depends on a, b and q (see [2]). The
second one is indicated in [6] and it means introduction of the definition of
the q-integral of the Riemann type.

2. The q-integrals, correlations and properties

Let a, b and q be some real numbers such that 0 < a < b and q ∈ (0, 1).
Beside the q-integrals defined by (1) and (2), we will consider two other

types of the q-integrals.
In the paper [2], H. Gauchman has introduced the restricted q-integral

Gq(f ; a, b) =
∫ b

a
f(x) dG

q x = b(1− q)
n−1∑

k=0

f(bqk)qk (a = bqn). (3)

Let us notice that lower bound of integral is a = bqn, i.e., it is tied by chosen
q,b and positive integer n.

In the paper [6], we have introduced Riemann-type q-integral by

Rq(f ; a, b) =
∫ b

a
f(t)dR

q t = (b− a)(1− q)
∞∑

k=0

f(a + (b− a)qk)qk. (4)

This definition includes only points within the interval of the integration.
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The different types of the q-integral defined by (1)–(4) can be denoted in
the unique way by Jq( · ; a(J), b), where J can be G, I or R. Interval of the
integration E(J) = [a(J), b] of q-integral Jq( · ; a(J), b) depends on its type:

a(G) = bqn, n ∈ N, for Gq( · ; a, b);
a(I) = 0 for Iq( · ; 0, b);
a(I) and a(R) are arbitrary numbers a ∈ [0, b] for Iq( · ; a, b) and Rq( · ; a, b).
We can say that a real function f is q-integrable on [0, b] or [a, b] if the

series in (1) and (2) converge. In the similar way, we say that f is qR-
integrable on [a, b] if the series in (4) converges. From now on, it will be
assumed that the function f is q-integrable on [0, b] (qR-integrable on [a, b])
whenever Iq(f ; 0, b) or Iq(f ; a, b) (Rq(f ; a, b)) appears in the formula.

In this research it is convenient to define the operators

̂ : f 7→ f̂ , f̂(x) = f(a + (b− a)x),
˜ : f 7→ f̃ , f̃(x) = bf(bx)− af(ax),
˘ : f 7→ f̆ , f̆(x) = f(bx)− f(ax),

such that associate the functions defined on [0, 1] to the function defined on
[a, b]. Notice that, for x ∈ [0, 1], it is

(̂fg)(x) = f̂(x) ĝ(x), (̃fg)(x) =
1

b− a
(f̃(x)g̃(x)− ab f̆(x)ğ(x)). (5)

The correlations between the q-integrals defined by (1)–(4) are given in the
following lemma.

Lemma 2.1. If the real function f is q-integrable on [0, b] or qR-integrable
on [a, b], 0 < a < b, then it holds

Iq(f ; 0, b) = lim
n→∞Gq(f ; bqn, b), (6)

Iq(f ; a, b) = Iq(f̃ ; 0, 1), (7)

Rq(f ; a, b) = (b− a)Iq(f̂ ; 0, 1). (8)

P r o o f. The relation (6) is evident because Gq(f ; bqn, b), n ∈ N, are
the partial sums of the series Iq(f ; 0, b). The equality (7) is valid according
to

Iq(f ; a, b) = (1− q)
∞∑

k=0

(bf(bqk)− af(aqk))qk = Iq(f̃ ; 0, 1).
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Finally, for (8), according to the definition we have

Rq(f ; a, b) = (b− a)(1− q)
∞∑

k=0

f(a + (b− a)qk)qk = (b− a)Iq(f̂ ; 0, 1). 2

The mentioned connections can be used to derive the inequalities for all
types of the q-integrals. By (6), the inequalities for the infinite sum Iq(f ; 0, b)
can be derived in the limit process from this one for Gq(f ; a, b), defined by
the finite sum. Using (7) and (8), the integrals Iq(f ; a, b) and Rq(f ; a, b)
can be considered as the q-integrals over [0, 1]. Nevertheless, the results for
Iq(f ; a, b) are quite rough because the points outside of the interval of the
integration (i.e., points on [0, a]) are included.

According to (5) and Lemma 2.1, the following integral relations are
valid:

Rq(fg; a, b) = (b− a)Iq((̂fg); 0, 1) = (b− a)Iq(f̂ ĝ; 0, 1), (9)

Iq(fg; a, b) = Iq((̃fg); 0, 1) =
1

b− a

(
Iq(f̃ g̃; 0, 1)− ab Iq(f̆ ğ; 0, 1)

)
. (10)

At last, let us remind on some definitions and terms from q-calculus.
The q-natural number is defined by

[n]q =
1− qn

1− q
= 1 + q + · · ·+ qn−1, n ∈ N.

The function f : [a, b] → R is called q-increasing (q-decreasing) on [a, b]
if f(qx) ≤ f(x) (f(qx) ≥ f(x)) whenever x ∈ [a, b] and qx ∈ [a, b]. It is easy
to see that if the function f is increasing (decreasing), then it is q-increasing
(q-decreasing) for 0 < q < 1.

3. q-Chebyshev inequality

In this section we give the q-analogues of Chebyshev inequality for the
monotonic functions (see [5], pp. 239.). The discrete case of this inequality
is used in [2] for the restricted q-integrals. We derive its variants for the rest
of the q-integrals.

Theorem 3.1. Let f, g : E(J) → R be two real functions, both q-decreasing
or both q-increasing. If Jq( · ; a(J), b) is the q-integral defined by (1), (3) or
(4), it holds

Jq(fg; a(J), b) ≥
1

b− a(J)
Jq(f ; a(J), b) Jq(g; a(J), b).
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P r o o f. For Jq( · ; a(J), b) = Gq( · ; a, b), a = bqn, the inequality is proved
in [2]. So, the inequalities

Gq(fg; bqn, b) ≥ 1
b− bqn

Gq(f ; bqn, b) Gq(g; bqn, b)

are valid for all n = 1, 2, . . . . When n →∞, using (6) we get the desired in-
equality for Jq( · ; a(J), b) = Iq( · ; 0, b). In the case Jq( · ; a(J), b) = Rq( · ; a, b),
from the q-monotonicity of the functions f and g on [a, b] follows the q-
monotonicity of the functions f̂ and ĝ on [0, 1]. Hence, we have

Iq(f̂ ĝ; 0, 1) ≥ Iq(f̂ ; 0, 1) Iq(ĝ; 0, 1).

According to (8) and (9) we get the required inequality. 2

The Chebyshev inequality in the source form is not valid for Iq( · ; a, b),
where 0 < a < b.

Example 3.1 For f(x) = x3 and g(x) = x4 on the interval [1, 2] we have

Iq(x3 · x4; 1, 2)− Iq(x3; 1, 2)Iq(x4; 1, 2) = 255
1− q

1− q8
− 465

(1− q)2

(1− q4)(1− q5)
,

wherefrom we conclude that the inequality holds only for q > 1/2, but it
has opposite sign for q < 1/2.

Lemma 3.2. Let the function f : [0, b] → R be increasing and 0 < a < b.
If there exist two positive constants l and L such that a2/b2 ≤ l/L and for
every x, y ∈ [0, b] the inequality

l ≤ f(x)− f(y)
x− y

≤ L

is valid, then the function f̃ : [0, 1] → R is increasing too.

P r o o f. Under the conditions of the Lemma, for every 0 ≤ x < y ≤ b
we have

l(y − x) ≤ f(y)− f(x) ≤ L(y − x).

Then it holds

f̃(y)− f̃(x) = b(f(by)− f(bx))− a(f(ay)− f(ax))
≥ (b2l − a2L)(y − x) ≥ 0. ¤
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Theorem 3.3. Let f, g : [0, b] → R be two real increasing functions.
If there exist the constants lf , Lf , lg and Lg such that a2/b2 ≤ lf/Lf ,
a2/b2 ≤ lg/Lg and

lf ≤ f(x)− f(y)
x− y

≤ Lf , lg ≤ g(x)− g(y)
x− y

≤ Lg

holds, then the inequalities are valid:

(a) Iq(fg; a, b)≥ 1
b− a

Iq(f ; a, b)Iq(g; a, b)− ab(b− a)
[3]q

LfLg

(b) Iq(fg; a, b)≥ 1
b− a

Iq(f ; a, b)Iq(g; a, b)− ab

b− a
(f(b)− f(0))(g(b)− g(0)).

P r o o f. Suppose that f and g are both increasing on [0, b]. Then,
according to Lemma 3.2, f̃ and g̃ are both increasing and hence q-increasing
on [0, 1]. With respect to (10) we can write

Iq(fg; a, b) =
1

b− a

(
Iq(f̃ g̃; 0, 1)− ab Iq(f̆ ğ; 0, 1)

)
.

Using Theorem 3.1, we have

Iq(f̃ g̃; 0, 1) ≥ Iq(f̃ ; 0, 1) Iq(g̃; 0, 1),

wherefrom

Iq(fg; a, b) ≥ 1
b− a

(
Iq(f ; a, b) Iq(g; a, b)− abIq(f̆ ğ; 0, 1)

)
. (11)

(a) Under the conditions satisfied by the functions f and g on [0, b], it holds

Iq(f̆ ğ; 0, 1) = (1− q)
∞∑

k=0

(f(bqk)− f(aqk))(g(bqk)− g(aqk))qk

≤ (1− q)
∞∑

k=0

LfLg(bqk − aqk)2qk = LfLg(b− a)2
1− q

1− q3

Substituting this estimation in (11), we get the first inequality.
(b) Since the functions f and g are increasing on [0, b], it holds

Iq(f̆ ğ; 0, 1) ≤ (1−q)(f(b)−f(0))(g(b)−g(0))
∞∑

k=0

qk = (f(b)−f(0))(g(b)−g(0)),

what, with (11), gives the second inequality. 2
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4. q-Chebyshev functional and inequalities

Let us denote by

T (f, g; a, b) =
1

b− a

∫ b

a
f(x)g(x)dx− 1

(b− a)2

∫ b

a
f(x)dx

∫ b

a
g(x)dx

the Chebyshev functional, i.e., the functional whose positivity for the monotonic
functions proves Chebyshev inequality. Its q-analogues can be made for each
of mentioned types of q-integrals:

T (J)
q (f, g; a(J), b) =

Jq(fg; a(J), b)
b− a(J)

− Jq(f ; a(J), b)Jq(g; a(J), b)
(b− a(J))2

,

where Jq( · ; a(J), b) is one of q-integrals defined by (1)–(4).
With respect to Lemma 2.1, it can be evince that

T (I)
q (f, g; 0, b) = lim

n→∞ T
(G)

q (f, g; bqn, b), (12)

T (R)
q (f, g; a, b) = T (I)

q (f̂ , ĝ; 0, 1), (13)

T (I)
q (f, g; a, b) =

1
(b− a)2

(
T (I)

q (f̃ , g̃; 0, 1)− ab Iq(f̆ ğ; 0, 1)
)
. (14)

In that way, the basic inequalities including the Chebyshev functional
are derived for T (G)

q (f, g; a, b), and then for the other variants.

Theorem 4.1. Let f, g : E(J) → R be two real functions. If there exist
the real constants m and M such that

m(g(x)− g(y)) ≤ f(x)− f(y) ≤ M(g(x)− g(y)), a(J) ≤ x < y ≤ b,

is valid, then it holds the inequality

(m + M) T (J)
q (f, g; a(J), b) ≥ T (J)

q (f, f ; a(J), b) + mM T (J)
q (g, g; a(J), b),

where Jq( · ; a(J), b) is the q-integral defined by (1), (3) or (4).

P r o o f. At the start, let Jq( · ; a(J), b) = Gq( · ; a, b), a = bqn, n ∈ N.
Under the conditions satisfied by the functions f and g, the product
(
M(g(bqi)−g(bqj))−(f(bqi)−f(bqj))

)(
(f(bqi)−f(bqj))−m(g(bqi)−g(bqj))

)
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is nonnegative for i, j = 0, 1, . . . , n− 1 (i < j), i.e.,

(f(bqi)− f(bqj))2 +mM(g(bqi)− g(bqj))2

≤ (m + M)(f(bqi)− f(bqj))(g(bqi)− g(bqj)).

Multiplying by qi+j (i < j) and summing over i and j, we obtain

n−1∑
i,j=0
i<j

(f(bqi)− f(bqj))2qi+j + mM
n−1∑
i,j=0
i<j

(g(bqi)− g(bqj))2qi+j

≤ (m + M)
n−1∑
i,j=0
i<j

(f(bqi)− f(bqj))(g(bqi)− g(bqj))qi+j .

Since (see [1],[5]) T (G)
q (f, g; a, b) can be presented in the form

T (G)
q (f, g; a, b) =

(
b(1− q)
b− a

)2 n−1∑
i,j=0
i<j

(f(bqi)− f(bqj))(g(bqi)− g(bqj))qi+j ,

we have the required inequality.
For Jq( · ; a(J), b) = Iq( · ; 0, b) it is enough to put n → ∞ in the proved

inequality for the previous case.
Finally, let Jq( · ; a(J), b) = Rq( · ; a, b). Under the condition satisfied by

the functions f and g on [a, b], the functions f̂ and ĝ satisfy the same con-
ditions on [0, 1]. Applying (13) and the proved inequality for T (I)

q (f̂ , ĝ; 0, 1),
we get the statement. 2

The upper inequality can be presented in the form

Jq((f−mg)(Mg−f); a(J), b) ≥
1

b− a(J)
Jq(f−mg; a(J), b)Jq(Mg−f ; a(J), b),

what is Chebyshev inequality for the monotonic functions f−mg and Mg−f .

Theorem 4.2. Let f, g : E(J) → R be two real functions. If there exist
the real constants l and L such that

l((b− a(J))g(x)− Jq(g; a(J), b)) ≤ (b− a(J))f(x)− Jq(f ; a(J), b)

≤ L((b− a(J))g(x)− Jq(g; a(J), b)),
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on [a, b], then it holds the inequality

(l + L) T (J)
q (f, g; a(J), b) ≥ T (J)

q (f, f ; a(J), b) + lL T (J)
q (g, g; a(J), b),

where Jq( · ; a(J), b) is the q-integral defined by (1), (3) or (4).

P r o o f. Let Jq( · ; a(J), b) be Gq( · ; a, b), a = bqn, or Iq( · ; 0, b). Then

Chebyshev functional T (J)
q can be represented (see [1]) in the form

T (J)
q (f, g; a(J), b)

=
b(1− q)
b− a(J)

N(J)∑

i=0

(
f(bqi)− Jq(f ; a(J), b)

b− a(J)

)(
g(bqi)− Jq(g; a(J), b)

b− a(J)

)
qi,

where N(G) = n − 1 and N(I) = ∞. Under the conditions satisfied by the
functions f and g, the product

(
L

(
g(bqi)− Jq(g; a(J), b)

b− a(J)

)
−

(
f(bqi)− Jq(f ; a(J), b)

b− a(J)

))

×
((

f(bqi)− Jq(f ; a(J), b)
b− a(J)

)
− l

(
g(bqi)− Jq(g; a(J), b)

b− a(J)

))

is nonnegative for i = 0, 1, . . . , N(J), i.e.,

(
f(bqi)− Jq(f ; a(J), b)

b− a(J)

)2
+ lL

(
g(bqi)− Jq(g; a(J), b)

b− a(J)

)2

≤ (l + L)
(
f(bqi)− Jq(f ; a(J), b)

b− a(J)

)(
g(bqi)− Jq(g; a(J), b)

b− a(J)

)
.

For Jq( · ; a(J), b) = Gq( · ; a, b), the desired inequality is obtained only by
multiplying the upper inequalities by qi and summing over i, i = 0, 1, . . . , n−
1. In the case Jq( · ; a(J), b) = Iq( · ; 0, b) it is needed to put n →∞.

For Jq( · ; a(J), b) = Rq( · ; a, b) it should be noticed that under the con-
ditions satisfied by f and g on [a, b] the inequality

l(ĝ(x)− Iq(ĝ; 0, 1)) ≤ f̂(x)− Iq(f̂ ; 0, 1) ≤ L(ĝ(x)− Iq(ĝ; 0, 1))

is valid for all x ∈ [0, 1]. Hence, according to (13) and the proved inequality
for the previous case, we get desired inequality. 2
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