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Abstract

We introduce a model for the electrical behavior of brain cells, based
on a model introduced in [8]. This model basically makes analogies be-
tween electrical circuits and the way the body and synapse of brain
cells work. Numerical simulation is implemented seeking for synchro-
nization; what the numerical results show is synchronization in case of
little, strong interaction (excitation), strong inhibition, some excitation,
some inhibition, and mixture of these states.
Key words and phrases: cellular neural networks, Singular Pertur-
bation, synchronization, neurons.

Resumen

Se introduce un modelo para el comportamiento eléctrico de las
células cerebrales, basado en un modelo introducido en [8]. Este mo-
delo básicamente hace analoǵıas entre circuitos eléctricos y la manera
en que trabajan el cuerpo y las sinapsis de las células cerebrales. Se
implementa la simulación numérica buscando sincronización; los resul-
tados numéricos muestran sincronización en los casos de poca, fuerte
interacción (excitación), fuerte inhibición, alguna excitación, alguna in-
hibición, y mezclas de estos estados.
Palabras y frases clave: redes celulares neuronales, perturbación sin-
gular, sincronización, neuronas.
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1 Introduction

Biological membranes play fundamental roles in many processes of life. Much
of their activity is electrical, and the membrane potential, i.e., the voltage
across a membrane, is one of the physical states of nerve cells that can be mea-
sured in vitro.The flow of various ions (charged chemical molecules) through
membranes establishes electrical currents that cause changes in the membrane
potential. These are observed to be pulses of voltages and are called action po-
tentials. Neuron physiology describes the electrical properties of membranes.
Models of nerves are based on the Nerst equation that determines membrane
potential of a cell from the ion concentrations near it. See [8]. For quite some
time a great deal of effort has been dedicated to the study of electrical behav-
ior of brain cells; different models have come out since the Hodgkin-Huxley
model was proposed ([5]). In the next section we will take a look to some of
them, including the foregoing.

The model we study is based in one proposed in [8], and what it does is
to represent each cell as two electrical circuits; one for the body cell and one
for the synapse. The body cell is viewed as a voltage controlled oscillator and
the synapse as a low pass filter. We set some coupling based in our model
of CNN considered in [13]; and test it for arrays of 3 × 3, 5 × 5 and 10 × 5
cells. The results in each case are very alike. Indeed for strong interaction
or strong inhibition, synchronization is observed; moreover in some cases of
mixed excitation and inhibition synchronization is also observed. We include
some pictures of the 3× 3 and 5× 5 cells showing the mentioned situation.

2 Neurons

A neuron consists of dendrites that receive signals, a cell body that synthe-
sizes incoming signals and generates new ones, an axon that transmits new
signals away from the cell body, and a synapse that transmits the signals
to other cells. Neurotransmitters (chemical molecules) released at synapses
in response to changes in membrane voltage communicate these changes to
the environment of neuron. Attempts to describe a nerve cell’s electrical be-
havior have been based on electrical circuit analogies and their mathematical
models. The Hodgkin-Huxley (HH) model (1952) is a major success resulting
from this approach. This model was derived from experimental studies of
the squid giant axon. The theory provides the analog circuit studied most in
neurophysiology. This circuit is shown in Figure 1. The model is formulated
for a membrane and accounts for Na+ (sodium), K+ (potassium), and L+
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Figure 1: Hodgkin-Huxley Circuit

(leakage) ion channels. The equation is

Cv̇ = gNa(ENa − v) + gK(EK − v) + gL(EL − v) + I (1)

where v is the membrane potential, I is input current, ENa, EK , EL are the
sodium, potassium and leakage resting potentials respectively, with ENa =
55mV , EK = −75mV , C is the membrane capacitance, gNa, gK , gL are the,
respectively, sodium, potassium, and leakage ion conductances, and they are
defined as gNa = 1

RNa
, gK = 1

RK
, gL = 1

RL
, with RNa, RK , RL the resistance

of the membrane to the flow of ion Na,K, L respectively. There is a way in
which these conductances depend on v, but it involves three more differential
equations. See [8] for details.

Various other models have been formulated that describe important fea-
tures of the HH model and at the same time they are more tractable for
mathematical analysis and numerical simulations; among others we can men-
tion the FitzHugh-Nagumo (FHN) model and a simplification of it due to
Keener ([10]). The FHN model was introduced in the late 50s it involves a
Tunnel Diode (TD) and it is typical of various “flush and fill” circuits; the
circuit is depicted in Figure 2. More can be said about this model but that
is not the main objective of this work. And the corresponding equations, by
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Figure 2: FitzHugh-Nagumo Circuit

using Kirchoff’s law, are

Lİ = E − v −RI, Cv̇ = I − g(v) (2)

where L is inductance, and g is N-shape function. However, tunnel diodes
are obsolete, hard to work with and expensive. They have been replaced by
sophisticated integrated circuits that are inexpensive, stable and reliable. J.
Keeneer in [10] has developed a circuit, similar to the FHN circuit, but based
on the operational amplifier (op-amp). See Figure 3.

©©©©©©H
HHHHH

V2

V1

+

−
Vout
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V−

Figure 3: Operational Amplifier
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Op-amps are useful for research in a variety of technical fields who need
to build simple amplifiers but do not want to design at the transistor level.
Op-amps are designed to perform a basic function, which is to give a reliable
output voltage that depends solely on the difference of the input voltages. In-
tegrated circuits technology allows the construction of many amplifier circuits
on a single composite chip of semiconductor material. See [12] for instance
for details.

The model described in [10] is given by

İ = βV − I − V0, εV̇ = I0 − I −G(V ), (3)

where

İ =
dI

dτ
, τ =

t

C2R4
, V =

(R1 + R4)v
V+R4

, V0 =
R1V0

R3V+
,

I =
R1

R4V+
((R4 −R3)I2 − v0), I0 =

R1i0
V+

,

ε =
R1C1

(R1 + R4)C2
, β =

R1

R3
(
R4 −R3

R4 + R1
).

and for s = R4−R1
R4+R3

, the function G(V ) is defined as

−G(V ) =





1− V, if V ≥ 1
s+1

sV, if − 1
s+1 ≤ V ≤ 1

s+1

−1− V, if − 1
s+1 ≥ V.

In Figure 4 there is a representation of such a circuit. More details can be
seen in [10]. Now we spend a bit of time talking about Voltage Controlled
Oscillators since they will be used later in modeling neurons.

Definition 2.1. Voltage Controlled Oscillators, (VCOs), are oscillators whose
frequency is modulated or controlled by an input voltage. Current is ignored
in VCOs and the model is given in terms of the input and output voltages
alone.

The situation is as follows Vin → [V CO] → V (x(t)); where Vinand V are
input and output voltages respectively, they are related in a somewhat com-
plicated way. The form of V for a VCO might be a step function, a triangular
or sinusoidal wave; in general V is taken to be continuously differentiable and
periodic, the phase of the signal, x(t), is unknown. When Vin is in operating
range of the VCO, the output phase is related to the controlling voltage by

ẋ = ω + σVin, (4)
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Figure 4: Keener Circuit

ω is called the VCO’s center frequency and σ is called the sensitivity, in general
σ = 1 for suitable scaling of the voltages.Now we visualize the cell body as
being a VCO and then an analog circuit for a synapse is given; combination
of this produces a basic neuron model.

Neurons operate in either a repetitive firing mode or an excitable mode
which is a similar behavior of a VCO. The VCO feedback loop is modeled in
terms of the phase xV ; which is determined by the equation ẋV = e0 + ω0

where e0 is the acquisition voltage and ω0 is the VCO’s center frequency. We
view V as being a cell’s membrane potential having the form described above.

Now we find a circuit analog to the synapse, that will be called a SYN
circuit ([10]).In order to do so, we introduce the notion of filter; in general a
filter may be considered to be a signal processing device which operates on
an input signal to produce an output signal bearing a prescribed relationship
to the input signal; there are different type of filters, we shall mention only
the low pass filter. The low pass filter is the one which passes the package
of wave energy from zero frequency up to a determined cut off frequency and
rejects all energy beyond that limit. The output W voltage of a low pass filter
is determined by solving the equation

RCẆ + W = S(V ); (5)
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with S(V ) = max(V, 0).
An action potential generated in the cell body passes down an axon that

terminates in a synaptic bouton; neurotransmitter is then released to interact
with the postsynaptic membrane. Neurotransmitter kinetics are analogous to
a low-pass filter. There is a threshold effect also where an action potential
must reach a certain strength before it can cause release of neurotransmitter.
Therefore, the first device in a SYN circuit is a diode. The diode takes the
positive part of the action potential as causing neurotransmitter release, so we
consider 0 as being the transmitter release threshold. In the above equation,
S(V ) = V+ ≡ max(V, 0) ≡ d(V ) and equation(5) now becomes

RCẆ + W = d(V ).

If we ignore chemical kinetics, RC = 0, then W = d(V ). The neurotransmit-
ter can be excitatory, adding to the postsynaptic potential, or inhibitory. We
assume this is modeled by adding the effect of neurotransmitter to the post-
synaptic potential and then trimming the sum to fit the physiological limit
of the postsynaptic membrane. This is accomplished by combining a voltage
adder (+) with a linear amplifier. The amplifier output is described by its
characteristic function that we will denote as P . In general, P can be any
bounded, continuously differentiable monotone increasing function. In some
cases it is convenient to take P as P (u) = tanh(u) and in neighborhood of
origin P (u) = u−u3/3, d(V (y)) is the super-threshold part of input voltages.
Combining the above two equations the following system appears:

Ẋ = ω0 + P [V (X) + W ],
RCẆ = −W + d(V (y)); (6)

where y represents phase of input voltages from sites outside the cell. The
above equation is called voltage-controlled oscillator neuron or VCON and
equation (5) synapse analog or SYN. If we assume RC = 0 then system (6)
reduces to only one equation

Ẋ = ω0 + P [V (X) + d(V (y))], (7)

and for RC 6= 0, and by assuming BC is small, say, 0 < BC ¿ 1, the system
becomes

Ẋ = ω0 + P [V (X) + W ],
εẆ = −W + d(V (y)); ε = RC.

This equation (RC = 0) is described by a circuit corresponding to a first
order Phase-Locked Loop ([15]) or PLL, but to do this we need to introduce
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some concepts of electrical circuits. The first of them is Phase Detector (PD);
which is a form comparator providing DC output signal proportional to the
difference in phase between two input signals. Although a linear response
would be ideal, in practice the response of phase detectors is nonlinear and
periodic over a limited phase range.

- - -

6

Phase
Detector

Vd
Vi, θi

ωi

V0, θ0

ω0

θ0 ≡ θi ω0 ≡ ωi

V CO
Vc

Figure 5: Phase-Locked Loop

A PLL is basically an oscillator whose frequency is locked onto some fre-
quency component on an input signal Vi. This is done with feedback control
loop (Figure 5). What it does is synchronize the frequency of an output signal
generated by an oscillator with frequency of a reference signal by means of the
phase difference of the two signals. Sometimes between the PD and the VCO
a low-pass filter is located. In case of no filter it is called a first order PLL.
The frequency of this component in Vi is ωi (in rad/sec) and its phase θi.
The oscillator signal V0 has frequency ω0 and phase θ0. The phase detector
(PD) compares θ0 with θi, and it develops a voltage Vd proportional to the
phase difference. This voltage is applied as a control voltage Vc to the VCO to
adjust the oscillator frequency ω0. Trough negative feedback, the PLL causes
ω0 = ωi; and the phase error is kept to some small value. Thus, the phase
error and the frequency of the oscillator are “locked” to the phase and the
input signal. PLLs are used primarily in communication applications.

Our task now is to give a coupled system for a 2D array of cells by using
the foregoing model.
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3 Coupling

In this section we shall give expression for coupling of M × N neurons dis-
tributed in a 2D array.

Definition 3.1. A neighborhood of cell C(ij) in a CNN is defined as

N ij = {C(i1j1) : Max{|i− i1|; |j − j1|} ≤ 1}; 1 ≤ i1 ≤ M, 1 ≤ j1 ≤ N.

This is the same neighborhood considered in [8], [13], [2], and [3] as well;
also we impose periodic boundary conditions exactly in the same way as we
did in [13].

The connections between cells are described by the coefficients of an n×n-
matrix A and its components are given in terms of coefficients of a cloning
template Ã (by means of the periodic boundary conditions) that will be spec-
ified shortly; Ã will be taken to be symmetric since if aij is the ij coefficient
of Ã, it represents the strength of input from neuron j to neuron i, which also
can be assumed as same strength from neuron i to neuron j. The connections
from external stimuli are given by coefficients of an n× n-matrix B and they
are given by cloning template B̃; if B̃ = (bij) then bij < 0 means inhibitory
stimulus, bij > 0 means excitatory stimulus and bij = 0 is not stimulus. The
cloning templates Ã and B̃ are 3 × 3-matrices. In general they are given as
(see [13])

Ã =




a b c
b d e
c e f


 , B̃ =




b11 b12 b13

b21 b22 b23

b31 b32 b33


 , (8)

and the corresponding matrices A and B as

A =




A1 A2 0 · · · 0 AM

AM A1 A2 0 · · · 0
...

. . . . . . . . . 0 0
0 · · · AM A1 A2 0
0 0 · · · AM A1 A2

A2 0 0 · · · AM A1




,

B =




B1 B2 0 · · · 0 BM

BM B1 B2 0 · · · 0
...

. . . . . . . . . 0 0
0 · · · BM B1 B2 0
0 0 · · · BM B1 B2

B2 0 0 · · · BM B1




.
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A and B are n×n-matrices as we said previously, with n = MN ; Ai, Bi; i =
1, 2, 3 are N ×N -matrices given as

A1 =




d e 0 · · · 0 b
b d e 0 · · · 0
...

. . . . . . . . . 0 0
0 · · · b d e 0
0 0 · · · b d e
e 0 0 · · · b d




,

B1 =




b22 b23 0 · · · 0 b21

b21 b22 b23 0 · · · 0
...

. . . . . . . . . 0 0
0 · · · b21 b22 b23 0
0 0 · · · b21 b22 b23

b23 0 0 · · · b21 b22




,

A2 =




e f 0 · · · 0 c
c e f 0 · · · 0
...

. . . . . . . . . 0 0
0 · · · c e f 0
0 0 · · · c e f
f 0 0 · · · c e




,

B2 =




b32 b33 0 · · · 0 b31

b31 b32 b33 0 · · · 0
...

. . . . . . . . . 0 0
0 · · · b31 b32 b33 0
0 0 · · · b31 b32 b33

b33 0 0 · · · b31 b32




;

A3 =




b c 0 · · · 0 a
a b c 0 · · · 0
...

. . . . . . . . . 0 0
0 · · · a b c 0
0 0 · · · a b c
c 0 0 · · · a b




,

Divulgaciones Matemáticas Vol. 12 No. 1(2004), pp. 1–24



Neurons: A Numerical Approach 11

B3 =




b12 b13 0 · · · 0 b11

b11 b12 b13 0 · · · 0
...

. . . . . . . . . 0 0
0 · · · b11 b12 b13 0
0 0 · · · b11 b12 b13

b13 0 0 · · · b11 b12




.

The resulting equation, for the case of no chemical reaction (ε = 0), is

Ẋ = ω + P[V(X) + AV(X)+ + BV(Y )+], (9)

and for ε 6= 0, the equation will be

Ẋ = ω + P[V(X) + AV(X)+ + W]
εẆ = −W + BV(Y )+, (10)

where X = (X1, . . . , XM )T , Xi = (Xi1, . . . , XiN )T , X describes the phases of
the whole network; after this order is set we may write X as X = (X1, . . . , Xn);
with this in mind, the rest of parameters in the system are written as ω =
(ω01, . . . , ω0n)T ; ω is the center frequencies vector, W = (W1, . . . ,Wn)T is the
output voltage vector coming out from the network, in particular Wi is the
output voltage coming out of cell i; P,V : Rn → Rn are given as P(X) =
(P (X1), . . . , P (Xn)T , V(X) = (V (X1), . . . , V (Xn))T ; V (Xi), 1 ≤ i ≤ n is
voltage output of VCON at cell i; V(X)+ = (d(V (X1)), . . . , d(V (Xn)))T ;
Y = (y1, . . . , yn)T and yj , 1 ≤ j ≤ n, n = MN , is phase of input voltage
coming from cell j; it might be taken as yj = νjt, where νj is external voltage
frequency put into the network at site j. Because we are working in a M ×N
array and above there are elements in Rn. This same order is considered
in [2, 3] for the study of CNN. Without danger of confusion we shall write
P,V, and W as P, V , and W respectively. Then (9)-(10) can be rewritten,
respectively, as

Ẋ = ω + P [V (X) + AV (X)+ + BV (Y )+]. (11)

Ẋ = ω + P [V (X) + AV (X)+ + W ]
εẆ = −W + BV (Y )+. (12)

This is the system that appears in [8]; our next step is to modify it and
implement some numerical computations seeking for synchronization. The
first thing to change in (12) is the center frequency ω; it is natural to ex-
pect that it will change with time and in an oscillatory way; so we consider

Divulgaciones Matemáticas Vol. 12 No. 1(2004), pp. 1–24
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ω = ω(t) = (ω1(t), . . . , ωn(t))T and ωi = 0.5 sin(4πt); i = 1, . . . , n. Actually,
the particular form of ωi is taken to fit numerical expectations, but it can
be chosen in a more general way, say, ωi(t) = A sin(Bt). We also consider
V (Xi) = 15 cos(πXi/6); i = 1, . . . , n. Now (12) looks like

Ẋ = ω(t) + P [V (X) + AV (X)+ + W ]
εẆ = −W + BV (Y )+. (13)

Notice that the second equation in the above system does not involve X.
However, the VCO model suggests that the synapse voltage should depend
on X, since the voltage V (X) coming out of cell body passes through the
axon to the synapse. The synapse receives this stimulus through the axon
in an oscillatory way, so we wish to make the second equation in (13) reflect
this oscillatory dependence. We therefore introduce the following vector and
diagonal (and constant) matrix, respectively,

G(X) = (3X1 −X3
1 , . . . , 3Xn −X3

n)T , D = diag(d1, . . . , dn);

we will consider di = 2, i = 1, . . . , n but other values can be assumed as
well. It is important to notice that for Xi, i = 1, . . . , n; small, G(X) remains
bounded. We rewrite (13) as

Ẋ = ω(t) + P [V (X) + AV (X)+ + W ]
εẆ = −W + BV (Y )+ + DG(X). (14)

4 Numerical Simulation

In this section we implement some numerical computations seeking for syn-
chronization; the definition of synchronization we use is the one given in [1].

The first numerical simulation with this model is done for nine cells; differ-
ent types of cloning templates and ε are considered. The first implementation
is considering (8) as

Ã =




0.008 −0.1 0.005
−0.1 0 0.02
0.005 0.02 −1


 , B̃ =




2.35 0.01 1.1
0.7 0.7 1
0.25 0.5 1


 .

Divulgaciones Matemáticas Vol. 12 No. 1(2004), pp. 1–24
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Figure 6: Nine Cells, ε = 0.1, Strong Excitation.

This is a case of strong interaction ( bij > 0); we take ε = 0.1 and initial
conditions X(0) = (0.75, 1, 1.5, 1.75, 0.5,-0.5, 1.8, 0.9, 1.3, 0.75, 0.9, 1.4, 1.75,
0.4, 1.9, 1.75, 0.9,1).

Some plotting is given in Figure 6. As we can see from this picture,
synchronization is present; of course the plotting of other components also
show synchronization.

It is important to mention here that numerical simulations suggest that
initial conditions, ε and Ã may be chosen more or less arbitrary and syn-
chronization (or non synchronization) is not affected; that is, little changes in
the above mentioned parameters do not change the synchronization (or non
synchronization) of the overall system.
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Figure 7: Nine Cells, ε = 0.01, Some Excitation.

Next we introduce some null stimuli (bij ≥ 0); that will be called ’some
excitation’. Actually, we consider ε = 0.01 and (8) as

Ã =




0.8 −1 −0.5
−1 0 0.02
0.5 0.02 −1


 , B̃ =




2 0.1 1
0.25 0 1
2 0.1 1




and use the same initial conditions as before. After numerical implementation,
we observe that synchronization is lost; some of the plotting are given in Figure
7. However it is possible to give cloning templates such that some excitation
also produce synchronization; that will be done in the case of 25 cells.
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Figure 8: Nine Cells, ε = 0.1, Strong Inhibition

The next case into consideration is strong inhibition; that is; bij < 0, again
we take ε = 0.1 but as we mentioned before it can take another value; (8) is
chosen as

Ã =




0.008 0.01 0.005
0.01 0 0.02
0.005 0.02 0.001


 , B̃ =




−2 −0.1 −1
−0.7 −0.7 −1
−0.25 −1 −1


 ;

we observed from Figure 8 that synchronization is present again.
Notice that we represent only a few plots; but all of them were tested and

we found the same results as indicated. Again, by moving the coefficients of
Ã the results remain unchanged.

Now we test it for same ε and Ã as before, some inhibition is assumed
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(bij ≤ 0); actually we consider

B̃ =




2 0.1 1
0.25 0 1
2 0.1 1


 ;

numerical results show that synchronization is gone; we mention also that this
case was tested for time greater than 40, nevertheless the system still does not
show synchronization. If synchronization takes place that should be reached
in a short interval of time.

The same array of nine cells is considered but now we introduce excitation
and inhibition in the same cloning template: some bij are positive, some are
negative, and some others are zero; ε is assumed to be 0.1 and

Ã =




0.8 −0.1 0.5
−0.1 0 0.02
0.5 0.02 −1


 , B̃ =




0 −0.1 1
0.5 −0.7 0
0.25 0 −1


 .

In this particular case synchronization is lost (some plotting are given in
Figure 9). However, as we shall see later (case of 25 cells), it is possible to
give templates, in a situation as above where synchronization is found.

The case ε = 0 is not so important since it means no chemical kinetics, but
in practice chemical kinetics is almost always present in any neuronal process;
in any case we implemented this case for different choices of the templates.
The first we looked at was

Ã =




0.8 −0.1 0.05
−0.1 0 0.02
0.05 0.02 −1


 , B̃ =




2 0.1 1
0.7 0.7 1
2 0.1 1


 ;

and initial conditions

X(0) = (0.75, 1, 0.1,−0.5, 0.5,−1, 1.8,−1, 0.1);

synchronization is found.
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Figure 9: Nine Cells, ε = 0.1, Some Excitation, Some Inhibition.

Next we try with Ã as the foregoing and B̃ assumed to be

B̃ =




2 0.1 1
0.7 0.7 1
2 0.1 1


 ;

synchronization is present again, but as we said before the case of ε = 0 is not
so relevant for this model.

Next we consider an array of twenty five cells; a 5× 5 array. For this case
we will try different values of ε (small ones) but as said before this does not
seem to affect the behavior of the whole system. The initial data considered is
generated for the formula below; again changing the initial data does not affect
the behavior of the set of cells, therefore we keep this same initial conditions
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along the simulations. If the initial data is denoted by

X(0) = (X(0)1, X(0)2, . . . , X(0)50)

we take
X(0)i = cos(

2π

50
) if 1 ≤ i ≤ 25

and
X(0)i = cos(

3π

50
) if 26 ≤ i ≤ 50.

This formula may look strange but it is just a way to produce fifty numbers
without write them one by one (for n cells there are 2n equations).
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Figure 10: Twenty Five Cells, ε = 0.1, Strong Excitation.

The first case under consideration is strong excitation (bij > 0); for this
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we pick ε = 0.1 and (8) given by

Ã =




0.3 0.1 0.25
0.1 0 0.02
0.25 0.02 1


 , B̃ =




1.35 1.55 2.1
1.8 1.7 1
1.25 1.85 2.35


 .

In this case, as we expect, synchronization is present; this situation is depicted
in Figure 10. Again we only show a few plots but all the components of the
solution were tested with similar results.

By considering the same cloning templates as above and ε = 0.01 the same
results are obtained, i. e; synchronization is reached.
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Figure 11: Twenty Five Cells, ε = 0.1, Some Excitation.

We add now some null stimuli, that is, some bij = 0; specifically we
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consider (8) to be

Ã =




0.08 −1 −0.5
−1 0 0.02
−0.5 0.02 −1


 , B̃ =




1.35 0.1 0
1.8 0.7 1
0.25 0 1


 ; ε = 0.1.

We found no synchronization even changing values of ε and Ã; in Figure 11
this situation is depicted.

As we did in 3 × 3 array, let us consider strong inhibition, here ε = 0.02
and (8) given by

Ã =




0.3 0.1 0.25
0.1 0 0.02
0.25 0.02 1


 , B̃ =



−0.3 −0.1 −1
−0.7 −0.7 −1
−0.25 −1 −0.5


 ;
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Figure 12: Twenty Five Cells, ε = 0.02, Strong Inhibition.
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and as we expect, synchronization is found; plotting corresponding to this
case is given in Figure 12 .

By introducing some inhibition ( bij ≤ 0), say,

B̃ =



−0.3 −0.1 −1
−0.7 0 −1
−0.25 −1 −0.5


 ,

Ã as before and ε = 0.05 synchronization is found. Again the value of ε is
not so important; in the particular case under consideration we chose other
values of ε with the same results.

The following is the case of some excitation and some inhibition in the
same templates,with ε set equal to 0.1; (8) is

Ã =




1.3 0.1 0.25
0.1 0 0.02
0.25 0.02 1


 , B̃ =




1.35 −1.55 2.1
1.8 1.7.7 −1
1.25 1.85 −0.35


 ;

we get synchronization again; in Figure 13 the above case is depicted.

Choosing another expression for G, say,

G(X) = (α sin(X1), . . . , α sin(Xn))T

(wave-like function) we also implemented numerical simulation with results
essentially similar to those already mentioned. It is possible to have synchro-
nization for X but no synchronization for W . What this indicates is that even
in the case of very similar electrical behavior of the body of different cells,
the behavior of the corresponding synapses may not be similar. The reason
for this may lay in the way the brain reacts to different stimuli, for instance,
a smelling sensation makes some cells of the brain respond while some others
do not.
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Figure 13: Twenty Five Cells, ε = 0.1, Some Excitation, Some Inhibition.

Moreover, there are no rigid separate functions for each particular brain
region, but at the same time the brain does not function as a homogeneous
mass. Rather, different brain regions have different and flexible roles in a
coordinated, integrated brain; more details can be seen in [4]. In 1962, David
Hubel and Torsten Wiesel ([9]) showed that neurons in a particular region
do not all behave in the same way; instead, groups of neurons become active
under very specific conditions. Another factor to be taken into consideration
is the shape of the neurons: there are at least fifty basic neuronal shapes in
the brain which can affect the efficiency of signaling ([4]). Small cells are
excited more easily than larger ones (because the smaller cells have a higher
resistance, and so any current produced as an incoming signal is transformed
into a larger voltage). Size, then, and the number and length of processes that
extend from a cell are critical factors in its behavior. Therefore the seemingly
easy metaphor of hardware and software does not really work as an analogy

Divulgaciones Matemáticas Vol. 12 No. 1(2004), pp. 1–24



Neurons: A Numerical Approach 23

for the brain.
Finally we would like to mention that even when numerical implementation

of finite array of cells and fixed and unchanged connections among them may
seem unrealistic, that is not always the case; for instance in [14] it is shown
that the muscles in the lobster stomach, whose movements cause the lobster
stomach to digest food, are controlled by a total of twenty neurons grouped
together in a hard-wired assembly; that is, the connections among them are
fixed and unchanging. It is an intriguing fact that the output of this group of
neurons is not fixed and invariant: the rhythms of contraction of the stomach
muscles that they produce are enormously versatile.

We have presented a modified version of the model of electrical behavior
of neurons given in [8] by using the model of CNN previously studied. As
we just have seen, numerical implementations of this model show that it is
possible to have synchronization in short a period of time even in cases where
some stimuli are zero; still there is much work to be done in this direction; we
believe this is a starting point.
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