Divulgaciones Matemáticas Vol. 12 No. 1(2004), pp. 53-64

$(\alpha, \beta, \theta, \partial, \mathcal{I})$ -Continuous Mappings and their Decomposition

Aplicaciones $(\alpha, \beta, \theta, \partial, \mathcal{I})$ -Continuas y su Descomposición

Jorge Vielma *

Facultad de Ciencias - Departamento de Matemáticas Facultad de Economia - Instituto de Estadística Aplicada Universidad de Los Andes, Mérida, Venezuela

Ennis Rosas ** (erosas@sucre.udo.edu.ve)

Escuela de Ciencias - Departamento de Matemáticas Universidad de Oriente, Cumaná, Venezuela

Abstract

In this paper we introduce the concept of $(\alpha, \beta, \theta, \partial, \mathcal{I})$ -continuous mappings and prove that if α , β are operators on the topological space (X, τ) and θ, θ^* , ∂ are operators on the topological space (Y, φ) and \mathcal{I} a proper ideal on X, then a function $f : X \to Y$ is $(\alpha, \beta, \theta \land \theta^*, \partial, \mathcal{I})$ -continuous if and only if it is both $(\alpha, \beta, \theta, \partial, \mathcal{I})$ -continuous and $(\alpha, \beta, \theta^*, \partial, \mathcal{I})$ -continuous, generalizing a result of J. Tong. Additional results on $(\alpha, Int, \theta, \partial, \{\emptyset\})$ -continuous maps are given.

Key words and phrases: P-continuous, mutually dual expansions, expansion continuous

Resumen

En este artículo se introduce el concepto de aplicación $(\alpha, \beta, \theta, \partial, \mathcal{I})$ continua y se prueba que si α , β son operadores en el espacio topológico (X, τ) y θ , θ^* , ∂ son operadores en el espacio topológico (Y, φ) y \mathcal{I} es un ideal propio en X, entonces una función $f : X \to Y$ es $(\alpha, \beta, \theta \land \theta^*, \partial, \mathcal{I})$ continua si y s'olo si es $(\alpha, \beta, \theta, \partial, \mathcal{I})$ -continua y $(\alpha, \beta, \theta^*, \partial, \mathcal{I})$ -continua, generalizanso un resultado de J. Tong. Se dan resultados adicionales sobre aplicaciones $(\alpha, Int, \theta, \partial, \{\emptyset\})$ -continuas.

Palabras y frases clave: P-continuas, expansiones mutuamente duales, expansión continua.

Received 2003/06/02. Accepted 2003/07/16.

MSC (2000): Primary 54A10, 54C05, 54C08, 54C10.

^{*} Partially supported by CDCHT - Universidad de los Andes.

^{**} Partially supported by Consejo de Investigación - Universidad de Oriente.

Jorge Vielma, Ennis Rosas

1 Introduction

In [17] Kasahara introduced the concept of an operation associated with a topology τ on set X as a map $\alpha : \tau \to P(X)$ such that $U \subset \alpha(U)$ for every $U \in \tau$. In [30] J. Tong called this kind of maps, expansions on X. In [24] Vielma and Rosas modified the above definition by allowing the operator α to be defined on P(X); they are called operators on (X, τ) .

Preliminaries

First of all let us introduce a concept of continuity in a very general setting: In fact, let (X, τ) and (Y, φ) be two topological spaces, α and β be operators on (X, τ) , θ and ∂ be operators in (Y, φ) respectively. Also let \mathcal{I} be a proper ideal on X.

Definition 1. A mapping $f : X \to Y$ is said to be $(\alpha, \beta, \theta, \partial, \mathcal{I})$ -continuous if for every open set $V \in \varphi$, $\alpha (f^{-1}(\partial V)) \setminus \beta f^{-1}(\theta V) \in \mathcal{I}$.

We can see that the above definition generalizes the concept of continuity, when we choose: α = identity operator, β =interior operator, ∂ = identity operator, θ =identity operator and $\mathcal{I} = \{\emptyset\}$.

Also, if we ask the operator α to satisfy the additional condition that $\alpha(\emptyset) = \emptyset$, $\partial \leq \theta$, then the constant maps are always $(\alpha, \beta, \theta, \partial, \mathcal{I})$ -continuous for any ideal \mathcal{I} on X.

- 1. In fact, let $f: X \to Y$ be a map such that $f(x) = y_0 \quad \forall x \in X$. Let V be on open set in (Y, φ)
 - If $y_0 \in V$, then $f^{-1}(\partial V) = X$, $\alpha (f^{-1}(\partial V)) = X$, $f^{-1}(\theta V) = X$, $\beta (f^{-1}(\theta V)) = X$ Then $\alpha (f^{-1}(\partial V)) \setminus \beta f^{-1}(\theta V) = \emptyset \in \mathcal{I}$
 - If $y_0 \notin V$ but $y_0 \in \partial V$ and $y_0 \in \theta V$ then

$$f^{-1}(\partial V) = X \qquad f^{-1}(\theta V) = X$$

$$\alpha \left(f^{-1}(\partial V) \right) = X \qquad \beta \ f^{-1}(\theta V) = X$$

and $\alpha \left(f^{-1}(\partial V)\right) \setminus \beta \ f^{-1}(\theta V) = \emptyset \in \mathcal{I}$ If $y_0 \notin \theta V$ then

$$f^{-1}(\partial V) = \emptyset \qquad f^{-1}(\theta V) = \emptyset$$

$$\alpha \left(f^{-1}(\partial V) \right) = \emptyset, \qquad \beta \ f^{-1}(\theta V) \subset X$$

and $\alpha \left(f^{-1}(\partial V) \right) \setminus \beta \ f^{-1}(\theta V) = \emptyset \in \mathcal{I}$

Divulgaciones Matemáticas Vol. 12 No. 1(2004), pp. 53-64

If $y_0 \notin \partial V$ and $y_0 \in \theta V$ then

$$f^{-1}(\partial V) = \emptyset \qquad f^{-1}(\theta V) = X$$

$$\alpha \left(f^{-1}(\partial V) \right) = \emptyset \qquad \beta \ f^{-1}(\theta V) = X$$

and $\alpha \left(f^{-1}(\partial V) \right) \setminus \beta \ f^{-1}(\theta V) = \emptyset \in \mathcal{I}$

Let us give a historical justification of the above definition:

- 1. In 1922, H. Blumberg [5] defined the concept of densely approached maps: For every open set V in $Y, f^{-1}(V) \subset Intcl f^{-1}(V)$. Here $\alpha =$ identity operator, $\beta =$ Interior closure operator, $\partial =$ identity operator, $\theta =$ identity operator and $\mathcal{I} = \{\emptyset\}$.
- 2. In 1932, S. Kempisty [14] defined quasi-continuous mappings: For every open set V in Y, $f^{-1}(V)$ is semi open. Here α = identity operator, β = Interior operator, ∂ = identity operator, θ = identity operator and \mathcal{I} = nowhere dense sets of X.
- 3. In 1961, Levine [18] defined weakly continuous mappings: For every open set V in Y, $f^{-1}(V) \subset Intf^{-1}(clV)$. Here α = identity operator, β = Interior operator, ∂ = identity operator, θ = closure operator and $\mathcal{I} = \{\emptyset\}$.
- 4. In 1966, Singal and Singal [27] defined almost continuous mappings: For every open set V in Y, $f^{-1}(V) \subset Intf^{-1}(IntclV)$. Here α = identity operator, β = Interior operator, ∂ = identity operator, θ = interior closure operator and $\mathcal{I} = \{\emptyset\}$.
- 5. In 1972, S. G. Crossley and S. K. Hildebrand [8] defined *irresolute* maps: For every semi open set V in Y, $f^{-1}(V)$ is semi open. Here $\alpha =$ identity operator, $\beta =$ Interior operator, $\partial =$ identity operator, $\theta =$ identity operator and $\mathcal{I} =$ nowhere dense sets of X.
- 6. In 1973, Carnahan [6] defined *R*-maps: For every regular open set V in $Y, f^{-1}(V)$ is regularly open. Here $\alpha =$ Interior closure operator, $\beta =$ Interior closure operator, $\partial =$ identity operator, $\theta =$ Interior closure operator and $\mathcal{I} = \{\emptyset\}$.
- 7. In 1982, J. Tong [29] defined weak almost continuous mappings: For every open set V in Y, $f^{-1}(V) \subset Intf^{-1}(IntKerclV)$. Here α = identity operator, β = Interior operator, ∂ = identity operator, θ = Interior Kernel closure operator and $\mathcal{I} = \{\emptyset\}$.

Divulgaciones Matemáticas Vol. 12 No. 1(2004), pp. 53-64

	Jorge	Vielma,	Ennis	Rosas
--	-------	---------	-------	-------

- 8. In 1982, J. Tong [29] defined very weakly continuous maps. For every open set V in Y, $f^{-1}(V) \subset Intf^{-1}(KerclV)$. Here α = identity operator, β = Interior operator, ∂ = identity operator, θ = Kernel closure operator and $\mathcal{I} = \{\emptyset\}$.
- 9. In 1984, T. Noiri [22] defined *perfectly continuous* maps: For every open set V in Y, $f^{-1}(V)$ is clopen. Here α = Closure operator, β = Interior operator, ∂ = identity operator, θ = identity operator and $\mathcal{I} = \{\emptyset\}$
- 10. In 1985, D. S.Jankovic [13], defined almost weakly continuous maps: For every open set V in Y, $f^{-1}(V) \subset Intcl f^{-1}(clV)$. Here α = Identity operator, β = Interior closure operator, ∂ = identity operator, θ = closure operator and $\mathcal{I} = \{\emptyset\}$.

In order to continue the justification of the above definition, let us consider a certain property P that is satisfied by a collection of open sets in Y.

Definition 2. A map $f : X \to Y$ is said to be *P*-continuous if $f^{-1}(U)$ is open for each open set U in Y satisfying property P.

Let $\theta_P : P(Y) \to P(Y)$ be a operator in (Y, φ) defined as follows $\theta_P(A) = \begin{cases} A & \text{if } A \text{ is open and satisfies property } P \\ Y & \text{otherwise} \end{cases}$

Theorem 1. A map $f : X \to Y$ is *P*-continuous if and only if it is $(id, int, \theta_P, id, \{\emptyset\})$ -continuous.

Proof. In fact, suppose that f is P-continuous and let V an open set in (Y, φ) .

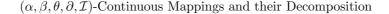
Case 1. If V satisfies property $P, \theta_P(V) = V$, then by hypothesis $f^{-1}(V)$ is open and then $f^{-1}(V) \subset Intf^{-1}(\theta_P(V)) = Intf^{-1}(V)$.

Case 2. If V does not satisfies property P, $\theta_P(V) = Y$, then clearly $f^{-1}(V) \subset Intf^{-1}(\theta_P(V)) = Y$.

Conversely, suppose that $f^{-1}(V) \subset Intf^{-1}(\theta_P(V))$ for each open set V in (Y, φ) . Take V an open set satisfying property P, then $\theta_P(V) = V$ and since $f^{-1}(V) \subset Intf^{-1}(\theta_P(V)) = Intf^{-1}(V)$. We conclude that $f^{-1}(V)$ is open and then f is P-continuous.

- 11. In 1970, K. R. Gentry and H. B. Hoyle [12] defined *C*-continuous functions: For every open set V in Y with compact complement, $f^{-1}(V)$ is open.
- 12. In 1971, Y. S. Park [23] defined \mathbb{C}^* -continuous function: For every open set V in Y with countably compact complement, $f^{-1}(V)$ is open.

Divulgaciones Matemáticas Vol. 12 No. 1(2004), pp. 53-64



- 13. In 1978, J. K. Kohli [15] defined *S*-continuous functions: For every open set V in Y with connected complement, $f^{-1}(V)$ is open.
- 14. In 1981, J. K. Kohli [16] defined *L*-continuous functions: For every open set V in Y with Lindelof complement, $f^{-1}(V)$ is open.
- 15. In 1981, P. E. Long and L. L. Herringtong [20] defined *para-continuous* functions: For every open set V in Y with paracompact complement, $f^{-1}(V)$ is open.
- 16. In 1984, S. R. Malgan and V. V. Hanchinamani [21] defined *N*-continuous functions: For every open set V in Y with nearly compact complement, $f^{-1}(V)$ is open.
- 17. In 1987, F. Cammaroto and T. Noiri [9] defined *WC-continuous* functions: For every open set V in Y with weakly compact complement, $f^{-1}(V)$ is open.
- 18. In 1992, M. K. Singal and S. B. Niemse [26] defined Z-continuous functions: For every open set V in Y with Zero set complement, $f^{-1}(V)$ is open.

Definition 3. If β and β^* are operators on (X, τ) , the intersection operator $\beta \wedge \beta^*$ is defined as follows

$$(\beta \wedge \beta^*)(A) = \beta(A) \cap \beta^*(A)$$

The operators β and β^* are said to be mutually dual if $\beta \wedge \beta^*$ is the identity operator.

Theorem 2. Let (X, τ) and (Y, φ) be two topological spaces and \mathcal{I} a proper ideal on X. Let α, β be operators on (X, τ) and ∂, θ and θ^* be operators on (Y, φ) . Then a function $f : X \to Y$ is $(\alpha, \beta, \theta \land \theta^*, \partial, \mathcal{I})$ -continuous if and only if it is both $(\alpha, \beta, \theta, \partial, \mathcal{I})$ and $(\alpha, \beta, \theta^*, \partial, \mathcal{I})$ -continuous, provided that $\beta(A \cap B) = \beta(A) \cap \beta(B)$.

Proof. If f is both $(\alpha, \beta, \theta, \partial, \mathcal{I})$ and $(\alpha, \beta, \theta^*, \partial, \mathcal{I})$ -continuous, then for every open set V in (Y, φ)

$$\alpha\left(f^{-1}(\partial V)\right)\setminus\beta f^{-1}(\theta V)\in\mathcal{I}$$

and

$$\alpha\left(f^{-1}(\partial V)\right)\setminus\beta f^{-1}(\theta^*V)\in\mathcal{I},$$

Divulgaciones Matemáticas Vol. 12 No. 1(2004), pp. 53–64

then

58

$$\left[\alpha\left(f^{-1}(\partial V)\right)\setminus\beta f^{-1}(\theta V)\right]\cup\left[\alpha\left(f^{-1}(\partial V)\right)\setminus\beta f^{-1}(\theta^*V)\right]\in\mathcal{I}.$$

But

$$\begin{bmatrix} \alpha \left(f^{-1} \left(\partial V \right) \right) \setminus \beta f^{-1} \left(\theta V \right) \end{bmatrix} \cup \begin{bmatrix} \alpha \left(f^{-1} \left(\partial V \right) \right) \setminus \beta f^{-1} \left(\theta^* V \right) \end{bmatrix}$$

= $\alpha \left(f^{-1} \left(\partial V \right) \right) \setminus \beta f^{-1} \left(\left(\theta V \right) \cap \beta f^{-1} \left(\theta^* V \right) \right)$
= $\alpha \left(f^{-1} \left(\partial V \right) \right) \setminus \beta f^{-1} \left(\theta V \cap \theta^* V \right)$

then f is $(\alpha, \beta, \theta \land \theta^*, \partial, \mathcal{I})$ -continuous.

Conversely, if f is $(\alpha, \beta, \theta \land \theta^*, \partial, \mathcal{I})$ -continuous, then

 $\alpha\left(f^{-1}(\partial V)\right)\setminus\beta f^{-1}\left((\theta\wedge\theta^*)V\right)\in\mathcal{I}.$

Now, by the above equalities we get that

$$\left[\alpha\left(f^{-1}(\partial V)\right)\setminus\beta f^{-1}(\theta V)\right]\cup\left[\alpha\left(f^{-1}(\partial V)\right)\setminus\beta f^{-1}(\theta^*V)\right]\in\mathcal{I}$$

which implies

-

$$\alpha\left(f^{-1}(\partial V)\right)\setminus\beta f^{-1}(\theta V)\in\mathcal{I} \text{ and } \alpha\left(f^{-1}(\partial V)\right)\setminus\beta f^{-1}(\theta^*V)\in\mathcal{I}$$

which means that f is both $(\alpha, \beta, \theta, \partial, \mathcal{I})$ and $(\alpha, \beta, \theta^*, \partial, \mathcal{I})$ -continuous. \Box

Corollary 1 (Theorem 1 in [30]). Let (X, τ) and (Y, φ) be two topological spaces and A and B be two mutually dual expansions on Y. Then a mapping $f: X \to Y$ is continuous if and only if f is A expansion continuous and B expansion continuous.

Proof. Take α = identity operator, β = Int, θ = A, θ^* = B, ∂ = identity operator and $\mathcal{I} = \{\emptyset\}$, then the result follows from Theorem 2.

Corollary 2 (Corollary 28 in [10]). Let (X, τ) and (Y, φ) be two topological spaces. A mapping $f : X \to Y$ is continuous if and only of f is almost continuous and $f^{-1}(V) \subset Intf^{-1}(\partial_s V)^c$ for each open set $V \in \varphi$

Proof. Almost continuous equals $(id, Int, Int \ closure, id, \{\emptyset\})$ -continuous. Since the operator $\Lambda : P(X) \to P(X)$ where

$$\Lambda(A) = (\partial_s A)^c = A \cup (Int \ closure \ A)^c$$

is mutually dual with the Int closure A operator, the result follows from Theorem 2. $\hfill \Box$

In the set Φ of all operators on a topological space (X, τ) a partial order can be defined by the relation $\alpha < \beta$ if and only if $\alpha(A) \subset \beta(A)$ for any $A \in P(X)$.

Divulgaciones Matemáticas Vol. 12 No. 1(2004), pp. 53-64

Theorem 3. Let (X, τ) and (Y, φ) be two topological spaces, \mathcal{I} an ideal on X, α and β operators on (X, τ) and ∂, θ and θ^* operators on (Y, φ) with $\theta < \theta^*$. If $f : X \to Y$ is $(\alpha, \beta, \theta, \partial, \mathcal{I})$ -continuous then it is $(\alpha, \beta, \theta^*, \partial, \mathcal{I})$ -continuous, provided that β is a monotone operator.

Proof. Since f is $(\alpha, \beta, \theta, \partial, \mathcal{I})$ -continuous, then for every open set V in (Y, φ) it happens that

$$\alpha\left(f^{-1}(\partial V)\right) \setminus \beta f^{-1}(\theta V) \in \mathcal{I}$$

Now we know that $\theta < \theta^*$, then for every $V \in \varphi$, $\theta(V) \subset \theta^*(V)$ and then $f^{-1}(\theta V) \subset f^{-1}(\theta^* V)$ and

$$\beta f^{-1}(\theta V) \subset \beta f^{-1}(\theta^* V).$$

Therefore

$$\alpha\left(f^{-1}(\partial V)\right)\setminus\beta f^{-1}(\theta^*V)\subset\alpha\left(f^{-1}(\partial V)\right)\setminus\beta f^{-1}(\theta V)\in\mathcal{I},$$

then

$$\alpha\left(f^{-1}(\partial V)\right)\setminus\beta f^{-1}(\theta^*V)\in\mathcal{I},$$

which means that f is $(\alpha, \beta, \theta^*, \partial, \mathcal{I})$ -continuous.

Definition 4. An operator β on the space (X, τ) induces another operator $Int\beta$ defined as follows

$$(Int\beta)(A) = Int(\beta(A))$$

Observe that $Int\beta < \beta$.

Definition 5. A function $f : X \to Y$ satisfies the openness condition with respect to the operator β on X if for every B in Y, $\beta f^{-1}(B) \subset \beta f^{-1}(IntB)$.

Remark. If β is the interior operator it is routine verification to prove that the openness condition with respect to β is equivalent to the condition of being open.

Theorem 4. Let (X, τ) and (Y, φ) be two topological spaces. If $f : X \to Y$ is $(\alpha, \beta, \theta, \partial, \mathcal{I})$ continuous and satisfies the openness condition with respect to the operator β , then f is $(\alpha, \beta, Int\theta, \partial, \mathcal{I})$ continuous.

Proof. Let V be an open set in (Y, φ) we have that

$$\alpha\left(f^{-1}(\partial V)\right)\setminus\beta f^{-1}(\theta V)\in\mathcal{I}$$

Divulgaciones Matemáticas Vol. 12 No. 1
(2004), pp. 53–64

Jorge Vielma, Ennis Rosas

since f satisfies the openness condition with respect to the operator β , then

$$\beta f^{-1}(\theta V) \subset \beta f^{-1}(Int\theta V).$$

since

$$\alpha\left(f^{-1}(\partial V)\right) \setminus \beta f^{-1}(Int\theta V) \subset \alpha\left(f^{-1}(\partial V)\right) \setminus \beta f^{-1}(\theta V) \in \mathcal{I}$$

it follows that f is $(\alpha, \beta, Int\theta, \partial, \mathcal{I})$ continuous.

Corollary 3 (Theorem 2.3 [27]). Let (X, τ) and (Y, φ) be two topological spaces. If $f : X \to Y$ is weakly continuous and open then it is almost continuous.

Proof. Let $\mathcal{I} = \{\emptyset\}$. α = identity operator, $\beta = Int$, ∂ = identity operator and θ = closure operator then the result follows from Theorem 4.

Corollary 4. Let (X, τ) and (Y, φ) be two topological spaces. If $f : X \to Y$ is very weakly continuous and open, then it is weak almost continuous.

Proof. Let $\mathcal{I} = \{\emptyset\}$, α = identity operator, $\beta = Int$, ∂ = identity operator and θ = ker closure operator, then the result follows from Theorem 3.

2 Some results on $(\alpha, Int, \theta, \partial, \{\emptyset\})$ -continuous maps

Definition 6. Let β be an operator in a topological space (X, τ) . We say that (X, τ) is $\beta - T_1$ if for every pair of points $x, y \in X, x \neq y$ there exists open sets V and W such that $x \in V$ and $y \notin \beta V$ and $y \in W$ and $x \notin \beta W$.

Observe that if β is the closure operator Cl then a space (X, τ) is T_2 if and only if it is $Cl - T_1$.

Theorem 5. Let (X, τ) and (Y, φ) be two topological spaces, α an operator on (X, τ) , θ and ∂ operators on (Y, φ) and (Y, φ) a $\theta - T_1$ space. If $f : X \to Y$ is $(\alpha, Int, \theta, \partial, \{\emptyset\})$ continuous and $A \subset \alpha(A)$ for all $A \subset X$, then f has closed point inverses.

Proof. Let $q \in Y$ and let $a \in A = \{x \in X : f(x) \neq q\}$. Then there exists open sets V and V' in (Y, φ) such that $f(a) \in V$ and $q \notin \theta V$. By hypothesis

$$\alpha\left(f^{-1}(\partial V)\right) \subset Intf^{-1}(\theta V)$$

Divulgaciones Matemáticas Vol. 12 No. 1(2004), pp. 53-64

so there exists an open set U in (X, τ) such that

$$\alpha\left(f^{-1}(\partial V)\right) \subset U \subset f^{-1}(\theta V)$$

so $f(U) \subset \theta V$. If $b \in U \cap A^c$ then $f(b) \in \theta V$ and $f(b) = q \notin \theta V$ therefore $a \in U$ and $U \subset A$, therefore $\{x \in X : f(x) \neq q\}$ is open.

Corollary 5 (Theorem 6 in [31]). Let (X, τ) and (Y, φ) be two topological spaces. Let $f : X \to Y$ be a weakly continuous function. If Y is Hausdorff then f has closed point inverses.

Proof. Let α = identity operator, $\beta = Int$, ∂ = identity operator, θ = Closure operator and $\mathcal{I} = \{\emptyset\}$, then the result follows from Theorem 5.

Theorem 6. Let (X, τ) and (Y, φ) be two topological spaces. α an operator on (X, τ) , θ and ∂ operators on (Y, φ) , $A \subset \alpha(A) \forall A$, $A \subset X$. If $f : X \to Y$ is $(\alpha, Int, \theta, \partial, \{\emptyset\})$ continuous and K is a compact subset of X, then f(K) is θ compact on Y.

Proof. Let \mathcal{V} be an open cover of f(K) and suppose without lost of generality that each $V \in \mathcal{V}$ satisfies $V \cap f(K) \neq \emptyset$. Then for each $k \in K$, $f(k) \in V_k$ for some $V_k \in \mathcal{V}$. Since f is $(\alpha, Int, \theta, \partial, \{\emptyset\})$ -continuous, for each $k \in K$ there exists an open set W_k in X such that

$$\alpha\left(f^{-1}(\partial V_k)\right) \subset W_k \subset f^{-1}(\theta V_k).$$

Also since $f^{-1}(\partial V_k) \subset \alpha \left(f^{-1}(\partial V_k) \right)$ for every $k \in K$ we have that the collection $\{ W_k : k \in K \}$ is an open cover of K, so there exists $k_1, ..., k_n$ such that

$$K\subset \bigcup_{i=1}(W_{k_i}).$$
 Then $f(K)\subset \bigcup_{i=1}f(W_{k_i}).$ Therefore
$$f(K)\subset \bigcup_{i=1}^n\theta V_{k_i}$$

which means that f(K) is θ -compact.

Corollary 6 (Theorem 7 in [31]). Let (X, τ) and (Y, φ) be two topological spaces. Let $f: X \to Y$ be a weakly continuous map and K a compact subset of X then f(K) is an almost compact subset of Y.

Proof. Let α = identity operator on X, $\beta = Int$, θ = closure operator on Y, ∂ = identity operator and $\mathcal{I} = \{\emptyset\}$.

Divulgaciones Matemáticas Vol. 12 No. 1(2004), pp. 53-64

Jorge Vielma, Ennis Rosas

Corollary 7 (Theorem 3.2 in [25]). Let (X, τ) and (Y, φ) be two topological spaces. Let $f : X \to Y$ be an almost continuous map and K a compact subset of X, then f(K) is nearly compact.

Proof. Let α = identity operator on $X, \beta = Int, \theta$ = closure operator on Y, ∂ = identity operator and $\mathcal{I} = \{\emptyset\}$.

References

- M. E. Abd El Monsef, R. A. Mahmoud, A. A. Nasef, *Functions based on compactness*, Kyunpook Math J. **31**(2) (1991), 275–287.
- [2] M. E. Abd El-Monsef, A. M. Kozae, A. A. Abd Khada, C₀-RS-compact Topologies, Tamkang J. of Mathematics, 24(3) (1993), 323–331.
- [3] S. P. Arya, R. Gupta, On strongly continuous mappings, Kyungpook Math. J., 14(1974), 131–143.
- [4] N. Biswas, On some mappings in topological spaces, Bull. Calcutta. Math. Soc., 61(1969), 127–135.
- [5] H. Blumberg, New properties of all real functions, Trans. Amer. Math. Soc. 24(1922),113–128.
- [6] D. Carnahan, Some properties related to compactness in topoligical spaces, Ph.D. thesis, University of Arkansas, 1973.
- [7] F. Cammaroto, T. Noiri, On WC-continuous functions, J. Korean Math. Soc., 24(1987), 11–19.
- [8] S. G. Crossley, S. K. Hildebrand, Semi-topological properties, Fund. Math., 74(1972), 233-254.
- [9] F. Cammaroto, G. Lo Faro, Sulle funzioni γ continue, Le Matematiche 35(1980), 1–17.
- [10] M. L. Colasante, On almost continuous functions and expansion of open sets, Preprint 2001.
- [11] D. B. Gauld, Topologies related to notions of near continuity, Kyungpook Math J. 21(1981), 195–204.
- [12] K. R. Gentry, H. B. Hoyle, C -continuous Functions, Yokohama Math. J., 18(1970), 71–76.

Divulgaciones Matemáticas Vol. 12 No. 1(2004), pp. 53-64

- [13] D. S. Jankovic, θ-regular spaces, Internat. J. Math. & Math. Sci., 8(1985), 615–619.
- [14] S. Kempisty, Sur les functions quasicontinues, Fund. Math. 19(1932), 184–197.
- [15] J. K. Kohli, A class of mappings containing all continuous and all semiconnected mappings, Proc. Amer. Math. Soc., 72(1978), 175–181.
- [16] J. K. Kohli, A class of mappings containing all continuous mappings, Glasnik Mat.; 16(1981), 361–367.
- [17] S. Kasahara, Operation compact spaces, Math. Japonica, 24(1979), 97– 105
- [18] N. Levine, A decomposition of continuity in topological spaces, Amer. Math. Monthly., 68(1961), 44–46.
- [19] P. E. Long, T. R. Hamlett, *H-continuous function*, Boll. Un. Mat. Ital., 11(1975), 552–558.
- [20] P. E. Long, L. L. Herrington, *Para-continuous functions*, Proc. Math. Phys. Soc., Egypt **52**(1981),1–5.
- [21] S. R. Malghan, V. V. Hanchinamani, N -continuous functions, Ann. Soc. Sci. Bruxelles, 98(1984), 69–79.
- [22] T. Noiri, Super -continuity and some strong forms of continuity, Indian J. Pure & Appl. Math., 15(1984), 17–22.
- [23] Y. S. Park, c^{*} -continuous Functions, J. Korean Math. Soc., 8(1971), 69–72.
- [24] E. Rosas, J. Vielma, Operator compact and operator connected spaces, Scientiae Mathematicae, 1(2) (1998), 203–208.
- [25] M. K. Singal, A. Mathur, On nearly compact spaces, Boll. Un. Math. Ital., 4(1969), 702–710.
- [26] M. K. Singal, S. B. Niemse, z-continuous functions, Yokohama Math. J., to appear.
- [27] M. K. Singal, A. R. Singal, Almost continuous mappings, Yokohama Math. J., 16(1968), 63–73.

Divulgaciones Matemáticas Vol. 12 No. 1(2004), pp. 53-64

Jorge Vielma, Ennis Rosa

- [28] G. H. Suk, Almost c-continuous functions, J. Korean Math. Soc., 14(1978), 229–234.
- [29] J. Tong, Weak almost continuous mappings and weak nearly compact spaces, Boll. Un. Mat. Ital., (6)1-A. (1982). 385–391.
- [30] J. Tong, Expansion of open sets and decomposition of continuous mappings, Rediconti del Circolo Matematico di Palermo, Serie II Tomo XLIII (1994), 303–308.
- [31] J. Tong, J. Chew, Some remarks on weak continuity, Amer. Math. Monthly; 98 (1991), 931–934.