Hamiltonian Cycles and Hamiltonian-biconnectedness in Bipartite Digraphs

Ciclos Hamiltonianos y Biconectividad Hamiltoniana en Digrafos Bipartitos
Denise Amar (amar@labri.u-bordeaux.fr)
LaBRI, Université de Bordeaux I
351 Cours de la Libération 33405 Talence Cedex, France
Daniel Brito
Mathematics Department, School of Science
Universidad de Oriente, Cumaná, Venezuela
Oscar Ordaz
Mathematics Department, Faculty of Science
Universidad Central de Venezuela
AP. 47567, Caracas 1041-A, Venezuela

Abstract

Let D denote a balanced bipartite digraph with $2 n$ vertices and for each vertex $x, d^{+}(x) \geq k, d^{-}(x) \geq k, k \geq 1$, such that the maximum cardinality of a balanced independent set is 2β and $n=2 \beta+k$. We give two functions $F(n, \beta)$ and $G(n, \beta)$ such that if D has at least $F(n, \beta)$ (resp. $G(n, \beta))$ arcs, then it is hamiltonian (resp. hamiltonianbiconnected). Key words and phrases: hamiltonian cycles, bipartite digraphs, hamiltonian-biconnectedness.

Resumen

Sea D un digrafo bipartito balanceado de orden $2 n$. Supongamos que para todo vértice $x, d^{+}(x) \geq k, d^{-}(x) \geq k, k \geq 1$. Sea 2β la máxima cardinalidad de los conjuntos independientes balanceados y sea $n=2 \beta+k$. Damos dos funciones $F(n, \beta)$ y $G(n, \beta)$ tal que si D tiene al

[^0]menos $F(n, \beta)($ resp. $G(n, \beta))$ arcos, entonces D es hamiltoniano (resp. hamiltoniano biconectado).
Palabras y frases clave: ciclos hamiltonianos, digrafos bipartitos, digrafos hamiltonianos biconectados.

1 Introduction

Many conditions involving the number of arcs, the minimum half-degree, and the independence number for a digraph to be hamiltonian or hamiltonianconnected are known (see [1], [3], [4], [6], [9], [10], [11], [13], [15], [16], [17], [18], [19].

The parameter 2β, defined as the maximum cardinality of a balanced independent set, has been introduced by P. Ash [5] and B. Jackson and O. Ordaz [14] where a balanced independent set in D is an independent subset S such that $|S \cap X|=|S \cap Y|$.

In this paper we give conditions involving the number of arcs, the minimum half-degree, and the parameter 2β for a balanced bipartite digraph to be hamiltonian or hamiltonian-biconnected, i.e. such that for any two vertices x and y which are not in the same partite set, there is a hamiltonian path in D from x to y.

Let $D=(X, Y, E)$ denote a balanced bipartite digraph with vertex-set $X \cup Y, X$ and Y being the two partite sets.

In a digraph D, for $x \in V(D)$, let $N_{D}^{+}(x)$ (resp. $\left.N_{D}^{-}(x)\right)$ denote the set of the vertices of D which are dominated by (resp. dominate) x; if no confusion is possible we denote them by $N^{+}(x)$ (resp. $N^{-}(x)$).

Let H be a subgraph of $D, E(H)$ denotes the set of the arcs of H, and $|E(H)|$ the cardinality of this set; if $x \in V(D), d_{H}^{+}(x)$ (resp. $\left.d_{H}^{-}(x)\right)$ denotes the cardinality of the set of the vertices of H which are dominated by (resp. dominate) x; if $x \in V(D), x \notin V(H), E(x, H)$ denotes the set of the arcs between x and $V(H)$.

If C is a cycle (resp. if P is a path) in D, and $x \in V(C)$ (resp. $x \in V(P)$), x^{+}denotes the successor of x on C (resp. on P) according to the orientation of the cycle (resp. of the path).

If $x, y \in V(C)$ (resp. $x, y \in V(P)), x, C, y$ (resp. x, P, y) denotes the part of the cycle (resp. the path) starting at x and terminating at y.

The following results will be used :
Theorem 1.1. (N. Chakroun, M. Manoussakis, Y. Manoussakis [8])

Let $D=(X, Y, E)$ be a bipartite digraph with $|X|=a,|Y|=b, a \leq b$. If $|E| \geq 2 a b-b+1$, then D has a cycle of length $2 a$.

Theorem 1.2. (N. Chakroun, M. Manoussakis, Y. Manoussakis [8])
Let $D=(X, Y, E)$ be a balanced bipartite digraph with $|X|=|Y|=n$. If $|E| \geq 2 n^{2}-n+1$ then D is hamiltonian. If $|E| \geq 2 n^{2}-n+2, D$ is hamiltonian-biconnected.

Theorem 1.3. (N. Chakroun, M. Manoussakis, Y. Manoussakis [8])

Let $D=(X, Y, E)$ be a bipartite digraph with $|X|=a,|Y|=b, a \leq b$, such that for every vertex $x, d^{+}(x) \geq k, d^{-}(x) \geq k$. Then:
(i) If $|E| \geq 2 a b-(k+1)(a-k)+1, D$ has a cycle of length $2 a$,
(ii) If $|E| \geq 2 a b-k(a-k)+1$, for any two vertices x and y which are not in the same partite set, there is a path from x to y of length $2 a-1$.

If $b \geq 2 k$, for $k \leq p \leq b-k$, let $K_{k, p}^{*}$, (resp. $K_{k-1, b-p}^{*}$) be a complete bipartite digraph with partite sets $\left(X_{1}, Y_{1}\right)$ (resp. $\left(X_{2}, Y_{2}\right)$); for $a=2 k-1$ and $b>a, \Gamma_{1}(a, b)$ consists of the disjoint union of $K_{k, p}^{*}$ and $K_{k-1, b-p}^{*}$ by adding all the arcs between exactly one vertex of X_{1} and all the vertices of Y_{2}.
$\Gamma_{2}(3, b)$ is a bipartite digraph with vertex-set $X \cup Y$, where $X=$ $\left\{x_{1}, x_{2}, x_{3}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{b}\right\}$, and arc-set
$E(D)=\left\{\left(x_{1} y_{1}\right),\left(x_{2} y_{2}\right),\left(y_{1} x_{2}\right)\left(y_{2} x_{1}\right)\right\} \cup\left\{\left(x_{3} y_{i}\right),\left(y_{i} x_{3}\right), 1 \leq i \leq 2\right\} \cup$ $\left\{\left(x_{j} y_{i}\right),\left(x_{j} y_{i}\right), 3 \leq i \leq b, 1 \leq j \leq 2\right\}$.
Theorem 1.4. (D. Amar, Y. Manoussakis [2])
Let $D=(X, Y, E)$ be a bipartite digraph with $|X|=a,|Y|=b, a \leq b$, such that for every vertex $x, d^{+}(x) \geq k, d^{-}(x) \geq k$. Then if $a \leq 2 k-1 D$ has a cycle of length $2 a$, unless
(i) $b>a=2 k-1$ and D is isomorphic to $\Gamma_{1}(a, b)$ or
(ii) $k=2$ and D is isomorphic to $\Gamma_{2}(3, b)$.

Theorem 1.5. (N.Chakroun, M. Manoussakis, Y. Manoussakis [8])
Let $D=(X, Y, E)$ be a hamiltonian bipartite digraph of order $2 n$ such that $|E| \geq n^{2}+n-2$; then D is bipancyclic.

2 Main Results

Let $f(n, \beta)=2 n^{2}-2 \beta^{2}-(n-\beta)+1, F(n, \beta)=2 n^{2}-2 \beta^{2}-\beta(n-2 \beta+1)+1$, $G(n, \beta)=F(n, \beta)+\beta$.

We prove the following Theorems and their immediate Corollaries:

Theorem 2.1.

Let $D=(X, Y, E)$ be a balanced bipartite digraph with $|X|=|Y|=n$, and let 2β be the maximum cardinality of a balanced independent set in D. If $n \geq 2 \beta+1$ and
(i) If $|E| \geq f(n, \beta)$, D is hamiltonian.
(ii) If $|E| \geq f(n, \beta)+1, D$ is hamiltonian-biconnected.

Corollary 2.2. Let $D=(X, Y, E)$ be a balanced bipartite digraph with $|X|=$ $|Y|=n$, and let 2β be the maximum cardinality of a balanced independent set in D. If $n \geq 2 \beta+1$ and $|E| \geq f(n, \beta)$ then D is bipancyclic

Theorem 2.3.

Let $D=(X, Y, E)$ be a balanced bipartite digraph with $|X|=|Y|=n$, such that for every vertex $x, d^{+}(x) \geq k, d^{-}(x) \geq k, k \geq 1$. Let 2β be the maximum cardinality of a balanced independent set in D. If $n=2 \beta+k$ and
(i) If $|E| \geq F(n, \beta), D$ is hamiltonian.
(ii) If $|E| \geq G(n, \beta), D$ is hamiltonian-biconnected.

Using Theorems 1.5, 2.1 and 2.3 we obtain the following:

Corollary 2.4. Let $D=(X, Y, E)$ be a balanced bipartite digraph with $|X|=|Y|=n$, such that for every vertex $x, d^{+}(x) \geq k, d^{-}(x) \geq k, k \geq 1$. Let 2β be the maximum cardinality of a balanced independent set in D. If $n=2 \beta+k$ and $|E| \geq F(n, \beta)$ then D is bipancyclic.

Proof of the corollaries:
Since $n \geq 2 \beta+1$, then $f(n, \beta)-\left(n^{2}+n-2\right)=n^{2}-2 \beta^{2}-2 n+\beta+3$

$$
\begin{aligned}
& 2 \beta^{2}+\beta+\beta+2>0 .=(n-1)^{2}-2 \beta^{2}+\beta+2 \geq 4 \beta^{2}-2 \beta^{2}+\beta+2= \\
& \text { resp. } F(n, \beta)-\left(n^{2}+n-2\right)=2 n^{2}-2 \beta^{2}-\beta(n-2 \beta+1)+1-\left(n^{2}+n-2\right) \\
&=n^{2}-n(\beta+1)-\beta+3 \\
& \geq n(2 \beta+1-\beta-1)-\beta+3=\beta(n-1)+3>0
\end{aligned}
$$

3 Definitions and a basic lemma

Before proving Theorem 2.1 and Theorem 2.3, we give some definitions and a basic lemma.

Definition 3.1. $\mathcal{D}(n, \beta, k)$ denotes the set of balanced bipartite digraphs of order $2 n$, with $k \geq 1$, $n=2 \beta+k$, such that $\forall x \in V(D), d^{+}(x) \geq k, d^{-}(x) \geq k$, and for which the maximum cardinality of a balanced independent set is 2β.

Definition 3.2. In the following, if $D=(X, Y, E) \in \mathcal{D}(n, \beta, k)$, denote by S a balanced independent set of cardinality 2β.
D_{1} is the induced subgraph of D with partite sets $\left(X_{1}, Y_{1}\right), X_{1}=X \cap S$, $Y_{1}=Y \backslash S$,
D_{2} is the induced subgraph of D with partite sets $\left(X_{2}, Y_{2}\right), X_{2}=X \backslash S$, $Y_{2}=Y \cap S$.

Lemma 3.3. Let $D=(X, Y, E)$ be a balanced bipartite digraph with $|X|=$ $|Y|=n$. Suppose that D contains a cycle C and a path P such that C and P are disjoint and $|V(C)|=2 p$,
$|V(P)|=2(n-p)$. If the beginning-vertex a and the end-vertex b of P satisfy the condition $d_{C}^{-}(a)+d_{C}^{+}(b) \geq p+1$, then D has a hamiltonian cycle containing P.

Proof:
W.l.o.g. we may assume that $a \in X$ and $b \in Y$. $\operatorname{Set} C=\left(y_{1}, x_{1} \ldots y_{p}, x_{p}, y_{1}\right)$ with $x_{i} \in X, y_{i} \in Y$. The condition $d_{C}^{-}(a)+d_{C}^{+}(b) \geq p+1$ implies that there exists $i, 1 \leq i \leq p$, such that $y_{i} \in N^{-}(a), x_{i} \in N^{+}(b)$; then the cycle $\left(a, P, b, x_{i}, C, y_{i}, a\right)$ is a hamiltonian cycle of D containing P.

4 Proof of Theorem 2.1

Let $D=(X, Y, E)$ be a bipartite digraph such that the maximum cardinality of a balanced independent set is 2β.

For $\beta=0$, if $|E| \geq f(n, 0)=2 n^{2}-n+1,\left(\right.$ resp. $|E| \geq g(n, 0)=2 n^{2}-n+2$),
by Theorem 1.2, D is hamiltonian (resp. hamiltonian-biconnected).
Thus we assume $\beta \geq 1$.

4.1 Proof of (i)

As $|E| \geq f(n, \beta)$,
$\left|E\left(D_{1}\right)\right|+\left|E\left(D_{2}\right)\right| \geq f(n, \beta)-2(n-\beta)^{2}=-4 \beta^{2}+4 n \beta-(n-\beta)+1$.
Therefore w.l.o.g.,
$\left|E\left(D_{1}\right)\right| \geq \frac{1}{2}\left(\left|E\left(D_{1}\right)\right|+\left|E\left(D_{2}\right)\right|\right) \geq 2 \beta(n-\beta)-(n-\beta) / 2+1 / 2 \geq$ $(2 \beta-1)(n-\beta)+1$.

Thus by Theorem 1.1, D_{1} contains a cycle C of length 2β. Clearly C saturates $X \cap S$.

Let Γ be the subgraph induced by the vertex-set $V(D) \backslash V(C)$.
If $|E(\Gamma)| \geq 2(n-\beta)^{2}-(n-\beta)+2$, by Theorem $1.2, \Gamma$ is hamiltonianbiconnected. As D has at most $2 \beta^{2}+(n-\beta)-1$ less arcs than the corresponding complete digraph, the number of arcs between C and Γ is
(1) $\sum_{x \in V(C)} d_{\Gamma}^{+}(x)+d_{\Gamma}^{-}\left(x^{+}\right) \geq 4 \beta(n-\beta)-2 \beta^{2}-(n-\beta)+1$.

If for every $x \in C$ either $N_{\Gamma}^{+}(x)=\emptyset$ or $N_{\Gamma}^{-}\left(x^{+}\right)=\emptyset$ then
(2) $\sum_{x \in V(C)} d_{\Gamma}^{+}(x)+d_{\Gamma}^{-}\left(x^{+}\right) \leq 2 \beta(n-\beta)$.

As $4 \beta(n-\beta)-2 \beta^{2}-(n-\beta)+1>2 \beta(n-\beta)$ by (1) and (2), there exist $x \in V(C), a \in V(\Gamma), b \in V(\Gamma)$ such that x dominates a and x^{+}is dominated by b.

Let P be a hamiltonian path in Γ from a to b. Then $\left(x, a, P, b, x^{+}, C, x\right)$ is a hamiltonian cycle in D.

If $E(\Gamma)=2(n-\beta)^{2}-(n-\beta)+1, \Gamma$ is hamiltonian. Moreover, if $x \in V(C)$, $z \in V(\Gamma)$, then both (x, z) and (z, x) are in $E(D)$ unless $x \in X \cap S$, then $d_{\Gamma}^{+}(x)=n-2 \beta, d_{\Gamma}^{-}\left(x^{+}\right)=n-\beta$. Thus $d_{\Gamma}^{+}(x)+d_{\Gamma}^{-}\left(x^{+}=n-3 \beta \geq(n-\beta)+1\right.$. Hence, by Lemma 3.3, D is hamiltonian.

4.2 Proof of (ii)

We assume $n \geq 2 \beta+1$ and $|E| \geq f(n, \beta)+1$.
Let $x \in V(D), y \in V(D), x$ and y not in the same partite set. We want to prove that there exists a hamiltonian path from x to y. W.l.o.g. we can suppose $x \in X$ and $y \in Y$.

Case 1: $x \in X \cap S, y \in Y \cap S$.
By similar arguments as in part (i), we may assume that D_{1} contains a cycle C of length 2β. As C saturates $X \cap S, x \in V(C)$.

If Γ denotes the subgraph of D induced by the vertex-set $V(D) \backslash V(C)$,
$|E(\Gamma)| \geq 2(n-\beta)^{2}-(n-\beta)+2$, then by Theorem 5.4 it is hamiltonianbiconnected.

Let x^{-}be the predecessor of x on C; as in part (i) we can prove that x^{-}has at least one neighbor $a \in V(\Gamma)$.

Let P be a hamiltonian path of Γ from a to y. Then $\left(x, C, x^{-}, a, P, y\right)$ is a hamiltonian path in D from x to y.

Thus there exists in D a hamiltonian path from x to y.

Case 2: $x \in X \cap S, y \in Y \cap(D \backslash S)$.
Let D_{3} be the subgraph induced by the set of vertices $(X \cap S) \cup(Y \cap$ $(D \backslash S)-\{y\})$. As $E(D) \geq f(n, \beta)+1, D_{3}$ has at most $(n-\beta+2)$ arcs less than the corresponding complete digraph, then $\left|E\left(D_{3}\right)\right| \geq 2 \beta(n-\beta-1)-$ $(n-\beta-1)+1$; by Theorem 1.1, D_{3} contains a cycle C of length 2β, with $x \in V(C), y \notin V(C)$.

If, as in case $1, \Gamma$ denotes the subgraph of D induced by the vertex-set $V(D) \backslash V(C), \Gamma$ is hamiltonian-biconnected; similar arguments as in case 1 prove that there exists a hamiltonian path from x to y.

Case 3: $x \notin X \cap S, y \notin Y \cap S$.
As in case 2 , the subdigraph D_{3} induced by the set of vertices $(X \cap S) \cup$ $(Y \cap(D \backslash S)-\{y\})$ contains a cycle C of length 2β.

The subgraph Γ of D induced by the vertex-set $V(D) \backslash V(C)$ is, as in case 1, hamiltonian-biconnected. The vertices x and y are in $V(\Gamma)$; let P be a hamiltonian path in Γ from x to y.

If we assume that for any $a \in V(P) \backslash\{y\}, d_{C}^{+}(a)+d_{C}^{-}\left(a^{+}\right) \leq \beta, D$ has at least $\beta(n-\beta)+\beta(n-\beta-1)$ arcs less than the corresponding complete digraph; the condition $|E| \geq f(n, \beta)$ implies :
$2 \beta(n-\beta)-\beta \leq n-\beta-2+2 \beta^{2} \Leftrightarrow 2 \beta n \leq 4 \beta^{2}+n-2 \Leftrightarrow(2 \beta-1)(n-2 \beta) \leq$ $2 \beta-2$, a contradiction.

Hence there exists $a \in V(P), a \neq y$, such that $d_{C}^{+}(a)+d_{C}^{-}\left(a^{+}\right) \geq \beta+1$.
By Lemma 3.3, there exists in D a hamiltonian path from x to y.
Theorem 2.1 is proved.

5 Proof of Theorem 2.3

5.1 Strategy of the proof

The proof of Theorem 2.3 is by induction on k.
In sub-section 5.2, we shall prove the Theorem for $k=1$.
Then we shall do the following induction hypothesis:

Induction Hypothesis 5.1.

For $1 \leq p \leq k-1$, let $D=(X, Y, E) \in \mathcal{D}(n, \beta, p)$.
(i) The condition $|E| \geq F(n, \beta)$, implies that D is hamiltonian.
(ii) The condition $|E| \geq G(n, \beta)$, implies that D is hamiltonian-biconnected.

In sub-section 5.3, we shall prove Proposition 5.2:
Proposition 5.2. Under the induction hypothesis 5.1, if $D \in \mathcal{D}(n, \beta, k)$ satisfies $|E| \geq G(n, \beta)$, then D is hamiltonian-biconnected.

In sub-section 5.4, we shall prove Proposition 5.3:
Proposition 5.3. Under the induction hypothesis 5.1, if $D \in \mathcal{D}(n, \beta, k)$ satisfies $|E| \geq F(n, \beta)$, then D is hamiltonian.

Proposition 5.2 and Proposition 5.3 will imply Theorem 2.3.

5.2 Proof of Theorem 2.3 when $k=1$.

We need two general lemmas:
Lemma 5.4. We suppose that for any digraph $D^{\prime}=\left(X^{\prime}, Y^{\prime}, E^{\prime}\right) \in \mathcal{D}(n, \beta, k)$, the condition $\left|E^{\prime}\right| \geq G(n, \beta)$ implies that D^{\prime} is hamiltonian-biconnected, then

If $D=(X, Y, E) \in \mathcal{D}(n, \beta, k)$ satisfies the condition $|E| \geq G(n, \beta)-p$, and if there is no hamiltonian path from a vertex y to a vertex x not in the same partite set then:
(i) If $x \in S, y \notin S$, then $d^{+}(x)+d^{-}(y) \geq 2 n-\beta-p+1, d^{+}(x) \geq$ $n-\beta-p+1, d^{-}(y) \geq n-p+1$.
(ii) If $x \notin S, y \in S$, then $d^{+}(x)+d^{-}(y) \geq 2 n-\beta-p+1, d^{+}(x) \geq n-p+1$, $d^{-}(y) \geq n-\beta-p+1$.
(iii) If $x \notin S, y \notin S$, then $d^{+}(x)+d^{-}(y) \geq 2 n-p+1, d^{+}(x) \geq n-p+1$, $d^{-}(y) \geq n-p+1$.
(iv) If $x \in S, y \in S$, then $d^{+}(x)+d^{-}(y) \geq 2 n-2 \beta-p+1, d^{+}(x) \geq$ $n-\beta-p+1, d^{-}(y) \geq n-\beta-p+1$.

Lemma 5.5. Under the same hypothesis as in Lemma 5.4, if D is not hamiltonian then:
(i) $\forall x \in S, d^{+}(x) \geq n-\beta-p+1, d^{-}(x) \geq n-\beta-p+1$,
(ii) $\forall x \notin S, d^{+}(x) \geq n-p+1, d^{-}(x) \geq n-p+1$

Proof of Lemma 5.4:
Let $D=(X, Y, E) \in \mathcal{D}(n, \beta, k)$. We assume $|E| \geq G(n, \beta)-p$.
If one of the following cases happen:

1) $x \in S, y \notin S, d^{+}(x)+d^{-}(y) \leq 2 n-\beta-p$,
2) $x \notin S, y \in S, d^{+}(x)+d^{-}(y) \leq 2 n-\beta-p$,
3) $x \notin S, y \notin S, d^{+}(x)+d^{-}(y) \leq 2 n-p$,
4) $x \in S, y \in S, d^{+}(x)+d^{-}(y) \leq 2 n-2 \beta-p$,
we can add p arcs to $N^{+}(x) \cup N^{-}(y)$ to obtain a digraph $D^{\prime}=$ $\left(X^{\prime}, Y^{\prime}, E^{\prime}\right) \in \mathcal{D}(n, \beta, k)$ such that $\left|E\left(D^{\prime}\right)\right| \geq G(n, \beta)$; then $D^{\prime} \in \mathcal{D}(n, \beta, k)$ and satifies: $\left|E^{\prime}\right| \geq G(n, \beta)$; then under the assumption of Lemma $5.4 D^{\prime}$ is hamiltonian-biconnected, and a hamiltonian path from y to x in D^{\prime} is a hamiltonian path from y to x in D.

To prove Lemma 5.5 , we apply Lemma 5.4 to any vertices x and y such that the arc $(x y) \in E(D)$.

Lemma 5.6. For $D \in \mathcal{D}(n, \beta, 1)$, (i) If $|E| \geq F(n, \beta), D$ is hamiltonian,
(ii) If $|E| \geq G(n, \beta), D$ is hamiltonian-biconnected.

Proof:
(ii) For $k=1, f(n, \beta)+1=G(n, \beta)$, then if $|E| \geq G(n, \beta)$, by Theorem 2.1, D is hamiltonian-biconnected.
(i) If $|E| \geq F(n, \beta)$, as $F(n, \beta)=G(n, \beta)-\beta$, if we assume that D is not hamiltonian we can apply Lemma 5.5 with $p=\beta$ and, as $n=2 \beta+1$, obtain:
$\left.{ }^{*}\right) \forall x \in S, d^{+}(x) \geq 2, d^{-}(x) \geq 2, \forall x \notin S, d^{+}(x) \geq \beta+2, d^{-}(x) \geq \beta+2$.
D has at most $2 \beta^{2}+2 \beta-1$ arcs less than the corresponding complete digraph, then $D_{1} \cup D_{2}$ have at most $2 \beta-1$ arcs less than the union of corresponding complete digraphs; w.l.o.g. we may assume $\left|E\left(D_{1}\right)\right| \geq 2 \beta(\beta+1)-\beta+1$; then, by Theorem 1.1, D_{1} contains a cycle C of length $2 \beta ; C$ saturates $X \cap S$. If Γ denotes the subgraph of D induced by the vertex-set $V(D) \backslash V(C)$, $|E(\Gamma)| \geq 2(\beta+1)^{2}-2 \beta+1$.

If $x \in V(\Gamma) \cap S$ all the neighbors of x are in Γ; if $y \in V(\Gamma) \cap(D \backslash S)$, $d_{\Gamma}^{+}(y) \geq d^{+}(y)-\beta, d_{\Gamma}^{-}(y) \geq d^{-}(y)-\beta$; in every case:

The conditions (*) imply: $\forall x \in V(\Gamma), d_{\Gamma}^{+}(x) \geq 2, d_{\Gamma}^{-}(x) \geq 2$.
Hence, by Theorem 1.3, Γ is hamiltonian. Moreover
$|E(H, \Gamma)| \geq F(n, \beta)-|E(H)|-|E(\Gamma)| \geq F(n, \beta)-2 \beta^{2}-2(\beta+1)^{2} \geq$ $2 \beta(\beta+1)+1$.

The subdigraph Γ is hamiltonian-biconnected unless

$$
|E(\Gamma)| \leq 2(\beta+1)^{2}-2 \beta+2
$$

If Γ is hamiltonian-biconnected, as $|E(H, \Gamma)| \geq 2 \beta(\beta+1)+1$, there exist $x \in V(C), a \in V(\Gamma), b \in V(\Gamma)$ such that x dominates a and x^{+}is dominated by b; let P be a hamiltonian path in Γ from a to b. Then $\left(x, a, P, b, x^{+}, C, x\right)$ is a hamiltonian cycle in D.

If Γ is not hamiltonian-biconnected, as $|E(\Gamma)| \leq 2(\beta+1)^{2}-2 \beta+2$, the subgraph H induced by $V(C)$ satisfies $|E(H)| \geq 2 \beta^{2}-1$; then H is hamiltonian-biconnected. Let C_{Γ} be a hamiltonian cycle of Γ; as $|E(H, \Gamma)| \geq$ $2 \beta(\beta+1)+1$, there exist $a \in C_{\Gamma}$ and $a^{+} \in C_{\Gamma}$, such that a dominates a vertex
$c \in V(H)$ and a^{+}is dominated by a vertex $d \in V(H)$; let P be a hamiltonian path in H from c to d, then $\left(c, P, d, a^{+}, C_{\Gamma}, a, c\right)$ is a hamiltonian cycle of D. In both cases, D is hamiltonian.

5.3 Proof of Proposition 5.2

The induction hypothesis 5.1 is satisfied for $k=2$.
Proposition 5.2 Under the induction hypothesis 5.1, if $D \in \mathcal{D}(n, \beta, k)$ satisfies $|E| \geq G(n, \beta), D$ is hamiltonian-biconnected.

Proof:
We assume $k \geq 2$.
Let $D=(X, Y, E) \in \mathcal{D}(n, \beta, k)$ and suppose $|E| \geq G(n, \beta)$.
For any $x \in V(D), y \in V(D)$ not in the same partite set, we prove that there exists a hamiltonian path from x to y. W.l.o.g. we can suppose $x \in X$, $y \in Y$.

Claim 5.7. There exist at least $\beta+1$ vertices $u \in X \cap(D \backslash S)$, and $\beta+1$ vertices $v \in Y \cap(D \backslash S)$, such that $d^{+}(u) \geq \beta+k, d^{-}(u) \geq \beta+k, d^{+}(v) \geq \beta+k$, $d^{-}(v) \geq \beta+k$.

Proof:
If Claim 5.7 is not true, w.l.o.g. we may assume $d^{+}(u) \leq \beta+k-1$ for k vertices $u \in X \cap(D \backslash S)$. As $n=2 \beta+k$, the subgraph of D induced by the vertex-set $X \cap(D \backslash S) \cup Y$ has at leat $(\beta+1) k$ arcs less than the corresponding complete graph. Hence, S being an independent set, the inequality $|E(D)| \leq$ $2 n^{2}-2 \beta^{2}-(\beta+1) k$ would be satisfied.

As $(\beta+1) k<\beta k, 2 n^{2}-2 \beta^{2}-(\beta+1) k<G(n, \beta)$, a contradiction with the hypothesis

$$
|E(D)| \geq G(n, \beta)
$$

Then let $u_{0} \in X \cap(D \backslash S), u_{0} \neq x$, and $v_{0} \in Y \cap(D \backslash S), v_{0} \neq y$, be vertices satisfying $d^{+}\left(u_{0}\right) \geq \beta+k, d^{-}\left(u_{0}\right) \geq \beta+k, d^{+}\left(v_{0}\right) \geq \beta+k, d^{-}\left(v_{0}\right) \geq \beta+k$.

Let $\epsilon=1$ if $(x y) \in E, \epsilon=0$ if $(x y) \notin E$, and $\epsilon^{\prime}=1$ if $(y x) \in E, \epsilon^{\prime}=0$ if $(y x) \notin E$.

Let D_{i}^{\prime} be a bipartite digraph of order $2(n-1)$ with vertex-set $V\left(D_{i}^{\prime}\right)=$ $V(D) \backslash\{x, y\}$ and edge-set $E\left(D_{i}^{\prime}\right)$ defined as follows:

Case 1 If $x \notin S, y \notin S, D_{1}^{\prime}$ is the subgraph of D induced by $V(D) \backslash\{x, y\} ;$ then
$\left|E\left(D_{1}^{\prime}\right)\right|=|E(D)|-d(x)-d(y)+\epsilon+\epsilon^{\prime} \geq G(n, \beta)-d(x)-d(y)+\epsilon+\epsilon^{\prime}$, hence $\left|E\left(D_{1}^{\prime}\right)\right| \geq G(n, \beta)-(4 n-2)=F(n-1, \beta)$.
Case 2 If $x \in S, y \notin S, E\left(D_{2}^{\prime}\right)=E\left(D_{1}^{\prime}\right) \backslash\left(E\left(u_{0}, Y \cap S\right)\right)$; then
$\left|E\left(D_{2}^{\prime}\right)\right|=|E(D)|-d(x)-d(y)+\epsilon+\epsilon^{\prime}-\left|E\left(u_{0}, Y \cap S\right)\right| \geq$
$G(n, \beta)-d(x)-d(y)+\epsilon+\epsilon^{\prime}-\left|E\left(u_{0}, Y \cap S\right)\right|$,
hence $\left|E\left(D_{2}^{\prime}\right)\right| \geq G(n, \beta)-(4 n-2)=F(n-1, \beta)$.
Case 3 If $x \in S, y \in S, E\left(D_{3}^{\prime}\right)=E\left(D_{1}^{\prime}\right) \backslash\left(E\left(u_{0}, Y \cap S\right) \cup E\left(v_{0}, X \cap\right.\right.$ $\left.S) \cup E\left(u_{0}, v_{0}\right)\right)$; then
$\left|E\left(D_{3}^{\prime}\right)\right|=|E(D)|-d(x)-d(y)-\left|E\left(u_{0},(Y \cap S \backslash\{y\})\right)\right|-\mid E\left(v_{0},(X \cap\right.$ $S \backslash\{x\}))\left|-\left|E\left(u_{0}, v_{0}\right)\right| \geq\right.$
$G(n, \beta)-4(n-\beta)-4(\beta-1)-2$,
hence $\left|E\left(D_{3}^{\prime}\right)\right| \geq G(n, \beta)-(4 n-2)=F(n-1, \beta)$.
Moreover S (resp. $S \backslash\{x\} \cup\left\{u_{0}\right\}$, resp. $S \backslash\{x, y\} \cup\left\{u_{0}, v_{0}\right\}$) is a balanced independent set of D_{1}^{\prime} (resp. of D_{2}^{\prime}, resp. of D_{3}^{\prime}) of order 2β.

For every $z \in V\left(D_{1}^{\prime}\right)$, for $z \neq u_{0}$ in D_{2}^{\prime} and for $z \neq u_{0}$ and $z \neq v_{0}$ in D_{3}^{\prime}, the conditions $d^{+}(z) \geq k, d^{-}(z) \geq k$ imply $d_{D_{i}^{\prime}}^{+}(z) \geq k-1, d_{D_{i}^{\prime}}^{-}(z) \geq k-1$,

In Case 2 the conditions $d^{+}\left(u_{0}\right) \geq \beta+k, d^{-}\left(u_{0}\right) \geq \beta+k$, imply $d_{D_{2}^{\prime}}^{+}\left(u_{0}\right) \geq k-1, d_{D_{2}^{\prime}}^{-}\left(u_{0}\right) \geq k-1$.

In Case 3 the conditions $d^{+}\left(u_{0}\right) \geq \beta+k, d^{-}\left(u_{0}\right) \geq \beta+k, d^{+}\left(v_{0}\right) \geq \beta+k$, $d^{-}\left(v_{0}\right) \geq \beta+k$ imply $d_{D_{3}^{\prime}}^{+}\left(u_{0}\right) \geq k-1, d_{D_{3}^{\prime}}^{-}\left(u_{0}\right) \geq k-1, d_{D_{3}^{\prime}}^{+}\left(v_{0}\right) \geq k-1$, $d_{D_{3}^{\prime}}^{-}\left(v_{0}\right) \geq k-1$.

At least the equality $n-1=2 \beta+k-1$ is satisfied.
We can conclude that in every case $D_{i}^{\prime} \in \mathcal{D}(n-1, \beta, k-1)$, and satisfies $\left|E\left(D_{i}^{\prime}\right)\right| \geq F(n-1, \beta)$.

By the induction hypothesis 5.1, D_{i}^{\prime} is hamiltonian.
Let C be a hamiltonian cycle in D_{i}^{\prime}.
If $d^{+}(x)+d^{-}(y) \geq n+2 \epsilon$, let $a \in V(C)$ such that $a \in N^{-}(y), a^{+} \in$ $N^{+}(x)$, then the path $\left(x, a^{+}, C, a, y\right)$ is a hamiltonian path in D from x to y.

If D_{i}^{\prime} is hamiltonian-biconnected, let c and d be vertices in $V\left(D_{i}^{\prime}\right)$ such that $d \in N^{+}(x), c \in N^{-}(y)$, and let P be a hamiltonian path in D_{i}^{\prime} from d to c; then (x, d, P, c, y) is a hamiltonian path in D from x to y.

Then we may assume that $d^{+}(x)+d^{-}(y) \leq n-1+2 \epsilon$ and that D_{i}^{\prime} is hamiltonian but not hamiltonian-biconnected, and by the induction hypothesis 5.1 that $\left|E\left(D_{i}^{\prime}\right)\right|<G(n-1, \beta)$.

Then $|E(D)|-\left|E\left(D_{i}^{\prime}\right)\right| \geq G(n, \beta)-G(n-1, \beta)+1=4 n-1-\beta$.

This inequality implies:
Case 1: $|E(D)|-\left|E\left(D_{1}^{\prime}\right)\right|=d(x)+d(y)-\epsilon-\epsilon^{\prime} \geq 4 n-1-\beta$.
As $d^{-}(x)+d^{+}(y) \leq 2(n-1)+2 \epsilon^{\prime}, d^{+}(x)+d^{-}(y) \geq 2 n+1-2 \beta+$ $\epsilon-\epsilon^{\prime}=n+k+1+\epsilon-\epsilon^{\prime} \geq n+2 \epsilon$, a contradiction with the assumption $d^{+}(x)+d^{-}(y) \leq n-1+2 \epsilon$.

Case 2: $|E(D)|-\left|E\left(D_{2}^{\prime}\right)\right|=d(x)+d(y)-\epsilon-\epsilon^{\prime}+\left|E\left(u_{0}, Y \cap S\right)\right| \geq 4 n-1-\beta$, then
$d(x)+d(y) \geq 4 n-1-3 \beta+\epsilon+\epsilon^{\prime}$.
As $d^{-}(x)+d^{+}(y) \leq 2(n-1)-\beta+2 \epsilon^{\prime}, d^{+}(x)+d^{-}(y) \geq 2 n+1-2 \beta+$ $\epsilon-\epsilon^{\prime}=n+k+1+\epsilon-\epsilon^{\prime} \geq n+2 \epsilon$, a contradiction with the assumption $d^{+}(x)+d^{-}(y) \leq n-1+2 \epsilon$.

Case 3: $|E(D)|-\left|E\left(D_{3}^{\prime}\right)\right|=$

$$
d(x)+d(y)+\left|E\left(u_{0},(Y \cap S \backslash\{y\})\right)\right|+\left|E\left(v_{0},(X \cap S \backslash\{x\})\right)\right|+\left|E\left(u_{0}, v_{0}\right)\right| \geq
$$ $4 n-1-\beta$.

As $d^{-}(x)+d^{+}(y) \leq 2(n-\beta), d^{+}(x)+d^{-}(y) \geq 2 n+1-3 \beta$.
If $x \in V(S)$, and $y \in V(S), \epsilon=\epsilon^{\prime}=0$.
$d(x)+d(y) \geq 4 n-1-\beta-4(\beta-1)-2=4 n-5 \beta+1$.
The only remaining problem is Case 3 , when $2 n+5-3 \beta \leq d^{+}(x)+$ $d^{-}(y) \leq n-1$.

As $d^{+}(x)+d^{-}(y) \geq 2 n+1-3 \beta=\beta+2 k+1, d^{+}(x) \leq \beta+k \Rightarrow$ $d^{-}(y) \geq k+1$, and $d^{-}(y) \leq \beta+k \Rightarrow d^{+}(x) \geq k+1$. Moreover the condition $d^{+}(x)+d^{-}(y) \leq n-1$ implies
$d(x)+d(y) \leq 2(n-\beta)+n-1=3 n-2 \beta-1$; then:
$\left|E\left(D_{3}^{\prime}\right)\right| \geq G(n, \beta)-(3 n-2 \beta-1)-4 \beta+2=G(n, \beta)-4 n+2+k+1=$ $G(n-1, \beta)-(\beta-k-1)$.

We obtain the following
Claim 5.8. If there is no hamiltonian path in D from x to y, then $\forall a \in N^{-}(y)$, and $\forall b \in N^{+}(x), d^{+}(a)+d^{-}(b) \geq 2 n-\beta+k+2$.

Proof:
If $a \neq u_{0}$ and $b \neq v_{0}$, Claim 5.8 follows from Lemma 5.4 applied to D_{3}^{\prime}, the vertices $b \in N^{+}(x)$ and $a \in N^{-}(y)$ and $p=\beta-k-1$.

If $u_{0} \in N^{-}(y)$ or $v_{0} \in N^{+}(x)$, the condition $\beta \geq k+2$ implies that there exist u and $v, u \neq u_{0}$, or $v \neq v_{0}$, satisfying $d^{+}(u) \geq \beta+k, d^{+-}(u) \geq \beta+k$ or $d^{+}(v) \geq \beta+k, d^{-}(v) \geq \beta+k$.

We can consider for $D_{3}^{\prime}: D_{3}^{\prime}=D \backslash(\{x, y\} \cup E(u, Y \cap S) \cup E(v, X \cap S) \cup$ $E(u, v))$ and Claim 5.8 follows in all cases.

Conditions $d^{+}(x) \geq k+1, d^{-}(y) \geq k+1$ imply, by a counting argument and Claim 5.7, that there exists a vertex $a_{1} \in N^{-}(y), a_{1} \neq u_{0}$ and a vertex $b_{1} \in N^{+}(x), b_{1} \neq v_{0}$ which satisfy the conditions $d^{+}\left(b_{1}\right) \geq \beta+k, d^{-}\left(a_{1}\right) \geq$ $\beta+k$ and by Claim 5.8, $d^{+}\left(a_{1}\right)+d^{-}\left(b_{1}\right) \geq 2 n-\beta+k+2$.

Let us consider the digraph Δ obtained from D by contracting the vertices x and a_{1}, and the vertices y and b_{1}, i.e.:

$$
\begin{aligned}
& V(\Delta)=V(D) \backslash\left\{x, y, a_{1}, b_{1}\right\} \cup\{A, B\} \text { with : } \\
& N_{\Delta}^{+}(A)=N^{+}(x) \backslash\left\{b_{1}\right\} ; N_{\Delta}^{-}(A)=N^{-}\left(a_{1}\right) \backslash\left((Y \cap S) \cup\left\{b_{1}\right\}\right) ; \\
& N_{\Delta}^{+}(B)=N^{+}\left(b_{1}\right) \backslash\left((X \cap S) \cup\left\{a_{1}\right\}\right) ; N_{\Delta}^{-}(B)=N^{-}(y) \backslash\left\{a_{1}\right\} ; \\
& \text { for } z \notin\{A, B\}, N_{\Delta}^{+}(z)=N^{+}(z) \backslash\left\{x, y, a_{1}, b_{1}\right\} \cup\{B\} \text { if }(z y) \in E(D), \\
& N_{\Delta}^{+}(z)=N^{+}(z) \backslash\left\{x, y, a_{1}, b_{1}\right\} \cup\{A\} \text { if }\left(z a_{1}\right) \in E(D), \\
& N_{\Delta}^{-}(z)=N^{-}(z) \backslash\left\{x, y, a_{1}, b_{1}\right\} \cup\{A\} \text { if }(x z) \in E(D), \\
& N_{\Delta}^{-}(z)=N^{-}(z) \backslash\left\{x, y, a_{1}, b_{1}\right\} \cup\{B\} \text { if }\left(b_{1} y\right) \in E(D) .
\end{aligned}
$$

Then $d_{\Delta}^{+}(A)=d^{+}(x)-1, d_{\Delta}^{-}(A) \geq d^{-}\left(a_{1}\right)-(\beta+1)$, that implies $d_{\Delta}^{+}(A) \geq k-1, d_{\Delta}^{-}(A) \geq k-1$,
$d_{\Delta}^{+}(B) \geq d^{+}\left(b_{1}\right)-(\beta+1), d_{\Delta}^{-}(B)=d^{-}(y)-1$, that implies $d_{\Delta}^{+}(B) \geq k-1$, $d_{\Delta}^{-}(B) \geq k-1$,
$\forall z \in V(\Delta) \backslash\{A, B\}, d_{\Delta}^{+}(z) \geq d^{+}(z)-1, d_{\Delta}^{-}(z) \geq d^{-}(z)-1$, then
$\forall x \in V(\Delta), d_{\Delta}^{+}(x) \geq k-1, d_{\Delta}^{-}(x) \geq k-1$.
The digraph Δ is a balanced bipartite digraph of order $2(n-1)$.
The set $S \backslash\{x, y\} \cup\{A, B\}$ is a balanced independent set of cardinality 2β in Δ.

Hence $\Delta \in \mathcal{D}(n-1, \beta, k-1)$ and $|E(\Delta)| \geq G(n, \beta)-d^{-}(x)-d^{+}(y)-$ $d^{+}\left(a_{1}\right)-d^{-}\left(b_{1}\right)+\eta-\eta^{\prime}-2 \beta+2$, with $\eta=1$ if $\left(a_{1} b_{1}\right) \in E, \eta=0$ if $\left(a_{1} b_{1}\right) \notin E$, and $\eta^{\prime}=1$ if $\left(b_{1} a_{1}\right) \in E, \eta^{\prime}=0$ if $\left(b_{1} a_{1}\right) \notin E$.

Then $|E(\Delta)| \geq G(n, \beta)-4 n+2=F(n-1, \beta)$.
By the induction hypothesis $5.1, \Delta$ is hamiltonian, and from a hamiltonian cycle in Δ, we can deduce two disjoint paths P_{1} from x to y, and P_{2} from b_{1} to a_{1} with $V\left(P_{1}\right) \cup V\left(P_{2}\right)=V(D)$.

Let $\left|V\left(P_{1}\right)\right|=2 n_{1}$ and $\left|V\left(P_{2}\right)\right|=2 n_{2}$.
As $d^{+}\left(a_{1}\right)+d^{-}\left(b_{1}\right) \geq 2 n-\beta+k+2$ the following inequality is satisfied: $d_{P_{1}}^{+}\left(a_{1}\right)+d_{P_{1}}^{-}\left(b_{1}\right) \geq 2 n-\beta+k+2-2 n_{2}=2 n_{1}-\beta+k+2$.

> If $d_{P_{1}}^{+}\left(a_{1}\right)+d_{P_{1}}^{-}\left(b_{1}\right) \geq n_{1}+1$, let $v \in V\left(P_{1}\right) \cap N^{-}\left(b_{1}\right)$ such that $v^{+} \in$ $N^{+}\left(a_{1}\right) ;$
> $\quad\left(x, P_{1}, v, b_{1}, P_{2}, a_{1}, v^{+}, P_{1}, y\right)$ is a hamiltonian path from x to y.
> If $d_{P_{1}}^{+}\left(a_{1}\right)+d_{P_{1}}^{-}\left(b_{1}\right) \leq n_{1}$, then $n_{1} \leq \beta-k-2$, and $n_{2} \geq \beta+2 k+2$

If y^{-}is the predecessor of y on P_{1} and x^{+}is the successor of x on P_{1}, by Claim 5.8:

$$
\begin{aligned}
& \qquad d^{+}\left(y^{-}\right)+d^{-}\left(x^{+}\right) \geq 2 n-\beta+k+2 ; \\
& d_{P_{1}}^{+}\left(y^{-}\right)+d_{P_{1}}^{-}\left(x^{+}\right) \leq 2 n_{1} \Rightarrow d_{P_{2}}^{+}\left(y^{-}\right)+d_{P_{2}}^{-}\left(x^{+}\right) \geq 2 n_{2}-\beta+k+2 \geq n_{2}+1 . \\
& \text { Let } \alpha \in N_{P_{2}}^{-}\left(x^{+}\right) \text {such that } \alpha^{+} \in N_{P_{2}}^{+}\left(y^{-}\right) ; \\
& \left(x, b_{1}, P_{2}, \alpha, x^{+}, P_{1}, y^{-}, \alpha^{+}, P_{2}, a_{1}, y\right) \text { is a hamiltonian path from } x \text { to } y . \\
& \text { Proposition 5.2 is proved. } \square
\end{aligned}
$$

5.4 Proof of Proposition 5.3

Proposition 5.3 Under the induction hypothesis 5.1, if $D \in \mathcal{D}(n, \beta, k)$ satisfies $|E| \geq F(n, \beta), D$ is hamiltonian.

Let $D \in \mathcal{D}(n, \beta, k)$ satisfy $|E| \geq F(n, \beta)$. If we assume that D is not hamiltonian, for any $\operatorname{arc}(x, y) \in E(D)$ there is no hamiltonian path in D from y to x; as $|E| \geq F(n, \beta)=G(n, \beta)-\beta$, we can apply Lemma 5.5 with $p=\beta$ and obtain the following Claim:

Claim 5.9. If $D \in \mathcal{D}(n, \beta, k)$ satisfying $|E| \geq F(n, \beta)$ is not hamiltonian, then for any arc $(x y) \in E$:
(i) If $x \in S, y \notin S$, or $x \notin S, y \in S, d^{+}(x)+d^{-}(y) \geq 2 n-2 \beta+1$,
(ii) If $x \notin S, y \notin S, d^{+}(x)+d^{-}(y) \geq 2 n-\beta+1$,
(iii) $\forall x \in S, d^{+}(x) \geq k+1, d^{-}(x) \geq k+1$,
(iv) $\forall x \notin S, d^{+}(x) \geq \beta+k+1, d^{-}(x) \geq \beta+k+1$.

5.4.1 Preliminary Lemma

Lemma 5.10. If $D \in \mathcal{D}(n, \beta, k)$ satisfying $|E| \geq F(n, \beta)$ is not hamiltonian, there exists in D a cycle C of length 2β which saturates $X \cap S$ or $Y \cap S$.

The proof is based on the following Claim:
Claim 5.11. If $D \in \mathcal{D}(n, \beta, k)$, and if $|E| \geq F(n, \beta)$, there exists a perfect matching of $X \cap S$ into $Y \cap(D \backslash S)$, and a perfect matching of $Y \cap S$ into $X \cap(D \backslash S)$

Proof:
We use the Hall-Konig Theorem (see [7] p 128) to prove Claim 5.11:

Theorem 5.12. (HALL-KONIG) Let $G=(U, V, E)$ be a bipartite digraph with partite sets U and V; if for any subset $A \subset U,\left|N^{+}(A)\right| \geq|A|$, then there exists a perfect matching of U into V.

We assume there exists $A \subset X \cap S$, such that if $B=N^{+}(A),|B|<|A|$; the condition $d^{+}(x) \geq k$ for any $x \in A$ implies the inequality:

$$
k \leq|B| \leq|A|-1 \leq \beta-1
$$

and at least $|A|(\beta+k-|B|)$ arcs are missing between $X \cap S$ and $Y \cap(D \backslash S)$; let $t=|B|$.

$$
\begin{aligned}
& |A|(\beta+k-|B|) \geq(t+1)(\beta+k-t), \text { with } k \leq t \leq \beta-1 . \\
& |A|(\beta+k-|B|) \geq \min _{k \leq t \leq \beta-1}((t+1)(\beta+k-t))=\beta(k+1) .
\end{aligned}
$$

Then at least $\beta(k+1)$ arcs are missing between $X \cap S$ and $Y \cap(D \backslash S)$, then
$|E(D)| \leq 2 n^{2}-2 \beta^{2}-\beta(k+1)<F(n, \beta)$, a contradiction with the condition $|E(D)| \geq F(n, \beta)$.

Claim 5.11 is proved.

Proof of Lemma 5.10:
Set $l=\min \left(k,\left\lfloor\frac{\beta}{2}\right\rfloor\right)$; we consider the two following cases:
Case 1. There exists a vertex $x_{0} \notin S$ with $\left|E\left(x_{0}, S\right)\right| \leq \beta+l$,
Case 2. For any vertex $x \notin S,|E(x, S)|>\beta+l$.
Case 1: W.l.o.g. we can assume $\left|E\left(x_{0}, S\right)\right| \leq \beta+l$ for a vertex $x_{0} \in X \backslash S$. Let $\left(x_{i} y_{i}\right), 1 \leq i \leq \beta$, be a matching from $X \cap S$ into $Y \cap(D \backslash S)$.
For $1 \leq i \leq \beta$ let $D_{i}^{\prime}=D \backslash\left(\left\{x_{i}, y_{i}\right\} \cup E\left(x_{0}, S\right)\right) ; D_{i}^{\prime} \in \mathcal{D}(n-1, \beta, k-1)$ and :
$\left|E\left(D_{i}^{\prime}\right)\right| \geq F(n, \beta)-d\left(x_{i}\right)-d\left(y_{i}\right)+1+\epsilon_{i}-\left|E\left(x_{0}, S\right)\right|$, with $\epsilon_{i}=1$ if $\left(y_{i} x_{i}\right) \in E, \epsilon_{i}=0$ if $\left(y_{i} x_{i}\right) \notin E$.

Case 1-1: $\exists i, 1 \leq i \leq \beta$ such that:
$d\left(x_{i}\right)+d\left(y_{i}\right)-1-\epsilon_{i}+\left|E\left(x_{0}, S\right)\right| \leq F(n, \beta)-F(n-1, \beta)=4 n-2-\beta$.
Then $\left|E\left(D_{i}^{\prime}\right)\right| \geq F(n-1, \beta)$ and by the induction hypothesis $5.1 D_{i}^{\prime}$ is hamiltonian.

If $d^{-}\left(x_{i}\right)+d^{+}\left(y_{i}\right) \geq n+2 \epsilon_{i}$, by Lemma 3.3, D is hamiltonian.
If $d^{-}\left(x_{i}\right)+d^{+}\left(y_{i}\right) \leq n-1+2 \epsilon_{i}$, by Claim 5.9, the $\operatorname{arc}\left(y_{i} x_{i}\right) \notin E(D)$, then $\epsilon_{i}=0$.

As $d^{+}\left(x_{i}\right)+d^{-}\left(y_{i}\right) \leq 2 n-\beta$, then $\left.d\left(x_{i}\right)+d y_{i}\right) \leq 3 n-1-\beta$.
$\left|E\left(D_{i}^{\prime}\right)\right| \geq F(n, \beta)-(3 n-1-\beta)-\beta-l \geq F(n, \beta)-(3 n+k-2)=G(n-1, \beta) ;$ then D_{i}^{\prime} is hamiltonian-biconnected.

Let $b \in N^{-}\left(x_{i}\right), a \in N^{+}\left(y_{i}\right)$ and let P be a hamiltonian path in D_{i} from a to b; the cycle $\left(a, P, b, x_{i}, y_{i}, a\right)$ is a hamiltonian cycle in D.

Case 1-2: $\forall i, 1 \leq i \leq \beta$:

$$
d\left(x_{i}\right)+d\left(y_{i}\right)-1-\epsilon_{i}+\left|E\left(x_{0}, S\right)\right|>F(n, \beta)-F(n-1, \beta)=4 n-2-\beta .
$$

Then $d\left(x_{i}\right)+d\left(y_{i}\right)>4 n-2 \beta-l-1+\epsilon_{i}$; the conditions $d\left(y_{i}\right) \leq 2 n-1+\epsilon_{i}$ and $d\left(x_{i}\right) \leq 2 n-2 \beta-1+\epsilon_{i}$ imply $d\left(x_{i}\right)>2 n-2 \beta-l$ and $d\left(y_{i}\right)>2 n-l$.

As $d^{+}\left(x_{i}\right) \leq n-\beta, d^{-}\left(x_{i}\right) \leq n-\beta, d^{+}\left(y_{i}\right) \leq n, d^{-}\left(y_{i}\right) \leq n$, then we have :

$$
\begin{aligned}
& d^{+}\left(x_{i}\right)>n-\beta-l \geq \beta+k-\left\lfloor\frac{\beta}{2}\right\rfloor ; d^{-}\left(x_{i}\right)>n-\beta-l \geq \beta+k-\left\lfloor\frac{\beta}{2}\right\rfloor \\
& d^{+}\left(y_{i}\right)>n-l \geq n-\left\lfloor\frac{\beta}{2}\right\rfloor ; d^{-}\left(y_{i}\right)>n-l \geq n-\left\lfloor\frac{\beta}{2}\right\rfloor .
\end{aligned}
$$

Let H be the subgraph induced by $\left\{x_{i}, y_{i}, 1 \leq i \leq \beta\right\}$;
$\forall i, 1 \leq i \leq \beta$, the following inequalities are satisfied:

$$
\begin{aligned}
& d_{H}^{+}\left(x_{i}\right)>\beta+k-\left\lfloor\frac{\beta}{2}\right\rfloor-k=\left\lfloor\frac{\beta+1}{2}\right\rfloor ; d_{H}^{-}\left(x_{i}\right)>\left\lfloor\frac{\beta+1}{2}\right\rfloor \\
& d_{H}^{+}\left(y_{i}\right)>n-\left\lfloor\frac{\beta}{2}\right\rfloor-\beta-k=\left\lfloor\frac{\beta+1}{2}\right\rfloor ; d_{H}^{-}\left(y_{i}\right)>\left\lfloor\frac{\beta+1}{2}\right\rfloor .
\end{aligned}
$$

By Theorem 1.4, H is hamiltonian, and a hamiltonian cycle of H is a cycle of length 2β that saturates $X \cap S$.

Case 2 : $\forall x \in S,|E(x, S)|>\beta+l$ with $l=\min \left(k,\left\lfloor\frac{\beta}{2}\right\rfloor\right)$.
As in Definition 3.2, let D_{1} (resp. D_{2}) denote the subgraph induced by the set of vertices $(X \cap S) \cup(Y \cap(D \backslash S))$, (resp. $(X \cap(D \backslash S) \cup(Y \cap S))$.

As $\left|E\left(D_{1}\right)\right|+\left|E\left(D_{2}\right)\right| \geq F(n, \beta)-2(n-\beta)^{2}=2 \beta(n-\beta)+\beta(n-2 \beta+1)+1$, w.o.l.g. we may assume $\left|E\left(D_{1}\right)\right| \geq 2 \beta(n-\beta)-\frac{1}{2} \beta(n-2 \beta+1)+\frac{1}{2}$.

Case 2-1 : $\beta \geq 2 k+1$, then $l=k$, and $\forall y \in V\left(D_{1}\right) \cap Y, d_{D_{1}}^{+}(y) \geq$ $l+1=k+1, d_{D_{1}}^{-}(y) \geq k+1$; by Claim 5.9, $\forall x \in V\left(D_{1}\right) \cap S, d_{D_{1}}^{+}(x) \geq k+1$, $d_{D_{1}}^{-}(x) \geq k+1$ and

$$
\left|E\left(D_{1}\right)\right| \geq 2 \beta(n-\beta)-\frac{1}{2} \beta(n-2 \beta+1)+\frac{1}{2} \geq 2 \beta(n-\beta)-(k+1)(\beta-k)+1 ; \text { by }
$$

Theorem 1.3, D_{1} has a cycle of length 2β, hence a cycle that saturates $X \cap S$.
Case 2-2 : $\beta \leq 2 k$, then $l=\left\lfloor\frac{\beta}{2}\right\rfloor$, and $\forall y \in V\left(D_{1}\right) \cap Y$, by the assumption of case 2 ,
$d_{D_{1}}^{+}(y)>\beta+l-\beta \geq\left\lfloor\frac{\beta}{2}\right\rfloor, d_{D_{1}}^{-}(y)>\left\lfloor\frac{\beta}{2}\right\rfloor$, and by Claim 5.9,
$\forall x \in V\left(D_{1}\right) \cap S, d_{D_{1}}^{+}(x) \geq k+1 \geq\left\lfloor\frac{\beta}{2}\right\rfloor+1, d_{D_{1}}^{-}(x) \geq\left\lfloor\frac{\beta}{2}\right\rfloor+1$.
By Theorem 1.4, D_{1} has a cycle of length 2β that saturates $X \cap S$.
Lemma 5.10 is proved.

5.4.2 Proof of Proposition 5.3

Claim 5.13. Under the assumption of Lemma 5.10, let C be a cycle of length 2β in D that saturates $X \cap S$ or $Y \cap S$ and let Γ be the subgraph of D induced by $V(D) \backslash V(C)$, then Γ is hamiltonian.

Proof:
The subgraph Γ satisfies: $|V(\Gamma)|=2(n-\beta),|E(\Gamma)| \geq|E(D)|-2 \beta n$.
By Claim 5.9, $\forall x \in S, d^{+}(x) \geq k+1, d^{-}(x) \geq k+1$ then $\forall x \in V(\Gamma) \cap S, d_{\Gamma}^{+}(x) \geq k+1, d_{\Gamma}^{-}(x) \geq k+1$,
and $\forall x \notin S, d^{+}(x) \geq \beta+k+1, d^{-}(x) \geq \beta+k+1 \Rightarrow$
$\forall x \in V(\Gamma) \cap(D \backslash S), d_{\Gamma}^{+}(x) \geq k+1, d_{\Gamma}^{-}(x) \geq k+1$.
Moreover $|E(\Gamma)| \geq 2(n-\beta)^{2}-\beta(n-2 \beta+1)+1=2(n-\beta)^{2}-(k+$ 1) $(n-\beta-k)+1$.

By Theorem 1.3Γ is hamiltonian. \square

Proof of Proposition 5.3 :

If $D \in \mathcal{D}(n, \beta, k)$ satisfying $|E| \geq F(n, \beta)$ is not hamiltonian, by Lemma 5.10 there exists in D a cycle C of length 2β which saturates $X \cap S$ or $Y \cap S$; by Claim 5.13 the subgraph Γ of D induced by $V(D) \backslash V(C)$ is hamiltonian. As $|V(\Gamma)|=2(n-\beta)>2 \beta=|S|$, then on a hamiltonian cycle of Γ, there exist arcs with both ends in $D \backslash S$; by Claim 5.9 , if $(x y)$ is such an arc, $d^{+}(x)+d^{-}(y) \geq 2 n-\beta+1$, then $d_{\Gamma}^{+}(x)+d_{\Gamma}^{-}(y) \geq \beta+1$; by Lemma 3.3, D is hamiltonian.

Proposition 5.3 is proved. \square
Remark 5.14. For $\beta \geq k+1$, Theorem 2.3 is best possible in some sense because of the following examples :

Example 1 :
Let $D=(X, Y, E)$ where $X=X_{1} \cup X_{2}, Y=Y_{1} \cup Y_{2} \cup Y_{3}$ with $\left|X_{1}\right|=\left|Y_{1}\right|=\beta,\left|X_{2}\right|=\beta+k,\left|Y_{2}\right|=k+1,\left|Y_{3}\right|=\beta-1$.

In D, there exist all the arcs between X_{2} and Y, between X_{1} and Y_{3} and all the arcs from Y_{2} to X_{1} (no arc from X_{1} to Y_{2}); $D \in \mathcal{D}(n, \beta, k)$, $|E|=F(n, \beta)-1$ and D is not hamiltonian (there is no perfect matching from X_{1} into Y).

Example 2:

Same definition than example 1, with $\left|Y_{2}\right|=k,\left|Y_{3}\right|=\beta$; then $|E|=$ $G(n, \beta)-1$ and if $x \in X_{1}, y \in Y_{3}$, there is no hamiltonian path from x to y.

References

[1] D. Amar, I. Fournier, A. Germa, Some conditions for digraphs to be Hamiltonian, Annals of Discrete Math. 20 (1984), 37-41.
[2] D. Amar, Y. Manoussakis, Cycles and paths of many lengths in bipartite digraphs, Journal of Combinatorial Theory 50, Serie B (1990), 254-264.
[3] D. Amar, Y. Manoussakis, Hamiltonian paths and cycles, number of arcs and independence number in digraphs, Discrete Math. 105 (1992), 1-16.
[4] D. Amar, E Flandrin, G. Gancarzewicz, A.P. Wojda Bipartite graphs with every matching in an cycle, Preprint.
[5] P. Ash, Two sufficient conditions for the existence of hamiltonian cyclesin bipartite graphs, Ars Comb. 16A (1983), 33-37.
[6] J. C. Bermond, C. Thomassen, Cycles in Digraphs-A Survey, Journal of Graph Theory 5 (1981), 1-43.
[7] J. A. Bondy, U. S. R. Murty., Graph Theory with Applications, Macmillan, London, 1976.
[8] N. Chakroun, M. Manoussakis, Y. Manoussakis, Directed and antidirected Hamiltonian cycles and paths in bipartite graphs, Combinatorics and graph theory 25 (1989), 39-46.
[9] O. Favaron, P. Fraisse, Hamiltonicity and minimum degree in 3-connected claw-free graphs, Journal of Combinatorial Theory Series B 82 (2001), 297-305.
[10] A. Ghouila-Houri, Flots et tensions dans un graphe, C. R. Acad. Sci. Paris 251 (1960), 495-497.
[11] C. Greenhill, Jeong Han Kim, Nicholas C. Wormald, Hamiltonian decompositions of random bipartite regular graphs, Journal of Combinatorial Theory Series B 90 (2004), 195-222.
[12] F. Havet, Oriented Hamiltonian Cycles in Tournaments, Journal of Combinatorial Theory Series B 80 (2000),1-31.
[13] B. Jackson, Long cycles in oriented graphs, Journal of Graph Theory 5 (1981), 145-157.
[14] B. Jackson, O. Ordaz, Chvatal-Erdos conditions for paths and cycles in graphs and digraphs, A survey, Discrete Math 84 (1990) 241-254.
[15] M. Kriesell, All 4-connected Line Graphs of Claw Free Graphs Are Hamiltonian Connected, Journal of Combinatorial Theory Series B 82 (2001), 306-315.
[16] M. Lewin, On maximal circuits in directed graphs, Journal of Combinatorial Theory Series B 18 (1975), 175-179.
[17] H. Meyniel, Une condition suffisante d'existence d'un circuit hamiltonien dans un graphe orienté, Journal of Combinatorial Theory Series B 14 (1973), 137-147.
[18] R. Thomas, X. YU, W. Zang, Hamiltonian paths in toroidal graphs, Journal of Combinatorial Theory Series B 94 (2005), 214-236.
[19] Ya-Chen Chen, Triangle-free Hamiltonian Kneser graphs, Journal of Combinatorial Theory Series B 89 (2003), 1-16.

[^0]: Received 2004/10/21. Revised 2006/06/15. Accepted 2006/06/17.
 MSC (2000): Primary 05C45, 05C40.

