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Abstract

Let X be the Bennett-Lutzer’s space and Y be the space obtained
from X by shrinking the set of all rational numbers to a point. In his
book, G.Gao claimed that the space Y is compact. In this paper, we
prove that Y is neither countably compact nor Lindelöf, which shows
that G.Gao’s claim is not true. Moreover, we prove that Y is strongly
paracompact. As an application of this result, we obtain that all cover-
ing properties which are between strong paracompactness and countable
θ-refinability are not inversely preserved under closed Lindelöf map-
pings even if domain is Hausdorff. We also give an example to show
that a closed Lindelöf inverse image of a compact space even need not
be countably θ-refinable without requiring the regularity of domain in-
volved.
Key words and phrases: Closed Lindelöf mapping, compact, Lindelöf,
strongly paracompact, θ-refinable.

Resumen

Sea X el espacio de Bennett-Lutzer e Y el espacio obtenido a partir
de X identificando el conjunto de los números racionales a un punto. En
su libro, G. Gao afirma que el espacio Y es compacto. En este art́ıculo se
prueba que Y no es ni contablemente compacto ni Lindelöf, mostrando
que la afirmacin de G. Gao no es verdadera. Más aún, se prueba que
Y is fuertemente paracompacto. Como aplicación de este resultado, se
obtiene que todas las propiedades de cubrimiento que están entre la
paracompacidad fuerte y la θ-refinabilidad contable no son inversamente
preservadas por aplicaciones de Lindelöf cerradas, aún si el dominio es
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de Hausdorff. También se da un ejemplo para mostrar que la imagen
inversa Lindelöf cerrada de un espacio compacto puede incluso no ser
contablemente θ-refinable, sin requerir la regularidad del dominio.
Palabras y frases clave: Aplicacin cerrada de Lindelöf, compacto,
Lindelöf, fuertemente paracompacto, θ-refinable.

1 Introduction

A continuous function f : X −→ Y is called a Lindelöf mapping([2]) if f−1(y)
is a Lindelöf subspace of X for each y ∈ Y . In [2], D.K.Burke gave the
following result.

Theorem 1.1. Suppose f : X −→ Y is a continuous, onto, closed Lindelöf
mapping, where X is regular. If Y is strongly paracompact (resp. paracom-
pact, metacompact, θ-refinable), then X is strongly paracompact (resp. para-
compact, metacompact, θ-refinable).

By viewing the above result, we have the following question.

Question 1.2. Can the regularity of X in Theorem 1.1 be omitted or relaxed
to Hausdorff?

Taking this question into account, G.Gao([5]) constructed a closed Lindelöf
mapping f from a non-θ-refinable space X onto a space Y , where the space X
was given by H.R.Bennett and D.J.Lutzer in [1] and Y is the space obtained
from X by shrinking the set of all rational numbers to a point. Furthermore,
G.Gao gave the following claim without proof.

Claim 1.3. The space Y is compact([5, Page 216]).

By Claim 1.3, the following conclusion was obtained.

Conclusion 1.4. All covering properties which are between compactness and θ-
refinability are not inversely preserved under closed Lindelöf mappings with-
out requiring the regularity of domains involved([5, Page 216]).

In this paper, we investigate Claim 1.3 and Conclusion 1.4. We prove
that Y is neither countably compact nor Lindelöf, which shows that Claim
1.3 is not true. Moreover, we prove that Y is strongly paracompact. As
an application of this result, we obtain that all covering properties which are
between strong paracompactness and countable θ-refinability are not inversely
preserved under closed Lindelöf mappings even if domain is Hausdorff. We
also give an example to show that Conclusion 1.4 is true, although Claim 1.3
is not true.
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Throughout this paper, all spaces are assumed to be T1 at least, and all
mappings are continuous and onto. The letter N denotes the set of all natural
numbers. Let U be a family of subsets of a space X and let x ∈ X.

⋃U
denotes the union

⋃{U : U ∈ U}, and ord(x,U) denotes the cardinal of the
family {U ∈ U : x ∈ U}. Let U and V be two families of (open) subsets of a
space X. We say that V is a (open) partial refinement of U , if for each V ∈ V
there exists U ∈ U such that V ⊂ U ; moreover, we say that V is a (open)
refinement of U , if in addition

⋃V =
⋃U is also satisfied. For terms which

are not defined here, refer to [4].

2 Around Bennett-Lutzer’s Space

Definition 2.1. Let P be a family of subsets of a space X.
(1) P is called star-finite if the family {Q ∈ P : Q ∩ P 6= φ} is finite for

each P ∈ P.
(2) P is called locally finite if for each x ∈ X there exists a neighborhood

W of x such that W has nonempty intersection with at most finitely many
members of P.

(3) P is called point finite if each point x ∈ X is an element of at most
finitely many members of P.

Definition 2.2. Let X be a space.
(1) X is called strongly paracompact([7]) if each open cover of X has a

star-finite open refinement.
(2) X is called paracompact([3]) if each open cover of X has a locally finite

open refinement.
(3) X is called metacompact([4]) if each open cover of X has a point finite

open refinement.

Definition 2.3. Let X be a space.
(1) X is called (countably) θ-refinable([9]) if each (countable) open cover

U of X has a sequence {Un : n ∈ N} of open refinements of U such that the
following condition (a) holds.

(2) X is called weak θ-refinable([8]) if each open cover U of X has a
sequence {Un : n ∈ N} of open partial refinements of U such that the following
conditions (a) and (b) hold.

(a) For each x ∈ X, there exists n ∈ N such that 0 < ord(x,Un) < ∞.
(b) {⋃Un : n ∈ N} is point finite.

Remark 2.4. It is known that strongly paracompact =⇒ paracompact =⇒
metacompact =⇒ θ-refinable =⇒ weak θ-refinable.

Divulgaciones Matemáticas Vol. 14 No. 1(2006), pp. 39–46



42 Ying Ge

Example 2.5. The Bennett-Lutzer’s space([1, Example 1]).
Let X, Q and I be the set of all real numbers, the set of all rational

numbers and the set of all irrational numbers respectively. Define a base B of
X as follows.

B = {{x} : x ∈ I}⋃{G(x, n) : x ∈ Q,n ∈ N}, where G(x, n) = {x}⋃{y ∈
I : −1/n < y − x < 1/n}.

Then
(1) X is Hausdorff, and it is neither regular nor θ-refinable.
(2) X is not countably θ-refinable.
(3) X is weak θ-refinable.

Proof. (1) It is obtained from [1].
(2) Assume X is countably θ-refinable. Let U be an open cover of X. Then

there exists a countable subfamily V of U which covers Q. Put W =
⋃V.

Then W is clopen in X and V is a countable open cover of W . Notice that
countable θ-refinability is hereditary to closed subspaces. W is countably θ-
refinable, so there exists a sequence of open refinements {Vn : n ∈ N} of V such
that for each x ∈ W , there exists n ∈ N such that 0 < ord(x,Vn) < ∞. Put
Un = Vn

⋃{{x} : x ∈ X−W} for each n ∈ N. Then {Un : n ∈ N} is a sequence
of open refinements of U . For each x ∈ X, if x ∈ W , then there exists n ∈ N
such that 0 < ord(x,Vn) < ∞, hence 0 < ord(x,Un) = ord(x,Vn) < ∞; if
x ∈ X − W , then 0 < ord(x,Un) = 1 < ∞ for each n ∈ N. Thus X is
θ-refinable. This contradicts the above (1).

(3) Let U be an open cover of X. For each x ∈ Q, there exists Ux ∈ U
such that x ∈ Ux. Let G(x, nx) ∈ B such that G(x, nx) ⊂ Ux. Put U1 =
{G(x, nx) : x ∈ Q}, U2 = {{x} : x ∈ I}, Un = ∅ for n > 2. Then {Un : n ∈ N}
is a sequence of open partial refinements of U . For each x ∈ X, if x ∈ Q
then ord(x,U1) = 1 < ∞; if x ∈ I then ord(x,U2) = 1 < ∞. It is clear that
{⋃Un : n ∈ N} is point finite. So X is weak θ-refinable.

Proposition 2.6. There exists an uncountable closed subset of the reals R
consisting of irrational numbers.

Proof. Let R and Q be the set of all real numbers and the set of all rational
numbers respectively. Since Q is countable, put Q = {xn : n ∈ N}. For each
n ∈ N, put An is the open interval (xn − 1

2n , xn + 1
2n ), and put A =

⋃{An :
n ∈ N}, then A ⊃ Q. Let m(C) denote the measure of a subset C of X. It is
clear that m(A) ≤ 2. Put B = X−A, then m(B) = +∞. So B is uncountable
closed subset of reals R and B consists of irrational numbers.

Example 2.7. G.Gao’s space([5, Page 216]).
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Let X be the Bennett-Lutzer’s space in Example 2.5. Define an equivalence
relation ∼ on X as follows.

x ∼ y if and only if either x, y ∈ Q or x = y.
Let Y be the quotient space X/ ∼. That is, Y is the space obtained from

X by shrinking the set of all rational numbers to a point. Put f : X −→ Y is
the quotient mapping.

Then
(1) Y is Hausdorff, strongly paracompact. So Y is normal.
(2) Y is not countably compact.
(3) Y is not Lindelöf .
(4) f is a closed mapping.

Proof. (1) It is clear that Y is Hausdorff. We only need to prove Y is strongly
paracompact. Let U be an open cover. Pick x0 ∈ Q. Put y0 = f(x0). Pick
U ∈ U such that y0 ∈ U . Then {U}⋃{{y} : y ∈ Y − U} is a discrete (hence
star-finite) open refinement of U , so Y is strongly paracompact.

(2) Put U = {Y − {f(
√

2 + n) : n ∈ N}}⋃{{f(
√

2 + n)} : n ∈ N}. Then
U is a countably infinite open cover of Y . It is easy to see that U has not any
proper subcover. So Y is not countably compact.

(3) Let B be the set in the proof of Proposition 2.6. Then B is an un-
countable set consisting of irrational numbers. Put U = {Y − f(B)}⋃{{y} :
y ∈ f(B)}. Then U is a uncountable open cover of Y . It is easy to see that U
has not any proper subcover. So Y is not Lindelöf.

(4) Since Q is a closed subset of X, f is a closed mapping.

Remark 2.8. By Example 2.7(2) or (3), Claim 1.3 is not true. In addition,
G.Gao claimed that Y is T1. In fact, Y is also normal from Example 2.7(1).

Example 2.9. There exists a closed Lindelöf mapping f : X −→ Y , where
X is Hausdorff, weak θ-refinable, not countably θ-refinable, and Y is strongly
paracompact.

Proof. Let X and Y be the spaces in Example 2.5 and Example 2.7 re-
spectively. Then X is Hausdorff, weak θ-refinable, not countably θ-refinable
from Example 2.5, and Y is strongly paracompact from Example 2.7(1). Let
f : X −→ Y be the quotient mapping. Since Q is a closed countable subset
of X, f is a closed Lindelöf mapping.

Remark 2.10. It follows from Example 2.9 that all covering properties which
are between strong paracompactness and countable θ-refinability are not in-
versely preserved under closed Lindelöf mappings even if domain is Hausdorff.
So the answer of Question 1.2 is negative.
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3 Another Example of Closed Lindelöf Map-
pings

In this section, we investigate conclusion 1.4.

Example 3.1. Let R, Q and I be the set of all real numbers, the set of all
rational numbers and the set of all irrational numbers, respectively. Define a
base B for a new topology τ on R as follows.

B = {{x} : x ∈ I}⋃{{x}⋃
A : x ∈ Q, A ⊂ I, I −A is finite}.

Then
(1) (R, τ) is not countably θ-refinable.
(2) (R, τ) is weak θ-refinable.

Proof. (1) Put U = {{x}⋃
I : x ∈ Q}, then U is a countable open cover of

(R, τ). If (R, τ) is countably θ-refinable, then there exists a sequence {Un :
n ∈ N} of open refinements of U such that condition (a) in Definition 2.3
holds. We construct a countable subset En of R for each n ∈ N as follows.

For each n ∈ N and each x ∈ Q, there exists U(n, x) ∈ Un with x ∈ U(n, x).
Because {x}⋃

I is the only member of U that contains x, we know that U(n, x)
has the form U(n, x) = {x}⋃

A(n, x), where A(n, x) ⊂ I and I − A(n, x)
is finite. Put An =

⋂{U(n, x) : x ∈ Q} =
⋂{A(n, x) : x ∈ Q}. Then

R − An = Q
⋃

(
⋃{I − A(n, x) : x ∈ Q} is countable. Put En = {y ∈ R :

0 < ord(y,Un) < +∞}. For each y ∈ An, y ∈ U(n, x) for each x ∈ Q, so
ord(y,Un) = +∞, i.e., y 6∈ En. Thus En ⊂ R−An, so En is countable. Thus
En is constructed.

For each y ∈ R, there exists n ∈ N such that 0 < ord(y,Un) < ∞, so
R =

⋃{En : n ∈ N}. Thus R is countable. This is a contradiction. So (R, τ)
is not countably θ-refinable.

(2) Let U be an open cover of (R, τ). For each x ∈ Q, pick Ux ∈ U such that
x ∈ Ux, put Vx = {x}⋃

(Ux−Q). Put U1 = {Vx : x ∈ Q}, U2 = {{x} : x ∈ I},
Un = ∅ for n > 2. Then {Un : n ∈ N} is a sequence of open partial refinements
of U . For each x ∈ X, if x ∈ Q then ord(x,U1) = 1 < ∞; if x ∈ I then
ord(x,U2) = 1 < ∞. It is clear that {⋃Un : n ∈ N} is point finite. So (R, τ)
is weak θ-refinable.

Example 3.2. Let (R, τ) be the space in Example 3.1. Define an equivalence
relation ∼ on R as follows.

x ∼ y if and only if either x, y ∈ Q or x = y.
Let Z be the quotient space (R, τ)/ ∼. That is, Z is the space obtained

from (R, τ) by shrinking the set of all rational numbers to a point. Then Z is
Hausdorff and compact.
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Proof. It is clear that Z is Hausdorff. We only need to prove Z is compact.
Let U be an open cover. Pick x0 ∈ Q. Put y0 = f(x0), where f : R −→ Z is
the quotient mapping. Pick U ∈ U such that y0 ∈ U . Then Z − U is finite,
thus U has a finite subcover. so Z is compact.

Example 3.3. There exists a closed Lindelöf mapping f : (R, τ) −→ Z, where
(R, τ) is weak θ-refinable but not countably θ-refinable, and Z is compact.

Proof. Let (R, τ) and Z be the spaces in Example 3.1 and Example 3.2 re-
spectively. Then (R, τ) is weak θ-refinable, not countably θ-refinable from
Example 3.1, and Z is compact from Example 3.2. Let f : (R, τ) −→ Z be
the quotient mapping. Since Q is a closed countable subset of (R, τ), f is a
closed Lindelöf mapping.

Remark 3.4. Although Claim 1.3 is not true, Conclusion 1.4 is still true from
Example 3.3. Unfortunately, the domain in Example 3.3 is not Hausdorff.

We proved that closed Lindelöf mappings inversely preserve weak θ-refinability
if domain is regular([6, Theorem 2]). Notice that both the space X in Exam-
ple 2.9 and the space (R, τ) in Example 3.1 are weak θ-refinable. We do not
know whether the regularity of domain in [6, Theorem 2 ] can be omitted. So
the following question is still open.

Question 3.5. Do closed Lindelöf mappings inversely preserve weak θ-refinability
if the domain is not assumed to be regular?
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