Divulgaciones Matemáticas Vol. 14 No. 1(2006), pp. 59-72

Algorithm for Finding a Biquadratic Cyclotomic Extension Field of \mathbb{Q}

Algoritmo para Hallar una Extensión Ciclotómica Bicuadrática de Q

Amílcar J. Pérez A. (ajperez@usb.ve)

Departamento de Matemáticas puras y Aplicadas, Universidad Simón Bolívar, Valle de Sartenejas, Edo. Miranda, MYS-355B, Venezuela.

Abstract

Let $p \equiv 1 \pmod{4}$ be a prime number and let $\zeta = e^{2\pi i/p}$ be a primitive root of unity. Then there exists a unique biquadratic extension field $\mathbb{Q}(y)/\mathbb{Q}$ that is a subfield of $\mathbb{Q}(\zeta)$. The aim of this work is to construct an algorithm for finding such y explicitly. Finally we state a general conjecture about the y we found.

Key words and phrases: biquadratic fields, cyclotomic fields, Galois theory, algorithm.

Resumen

Sea $p \equiv 1 \pmod{4}$ un primo y sea $\zeta = e^{2\pi i/p}$ una raíz primitiva de la unidad. Entonces existe una única extensión bicuadrática $\mathbb{Q}(y)/\mathbb{Q}$ que es un subcuerpo de $\mathbb{Q}(\zeta)$. El propósito de este trabajo es construir un algoritmo para hallar y explícitamente. Finalmente se enuncia una conjetura general acerca del y hallado.

Palabras y frases clave: cuerpo bicuadrático, cuerpo ciclotómico, teoría de Galois, algoritmo.

Introduction

It is known that if $p \equiv 1 \pmod{4}$ then $\mathbb{Q}(\sqrt{p})$ is the unique quadratic extension field of \mathbb{Q} contained in $\mathbb{Q}(\zeta)$, where $\zeta = e^{2\pi i/p}$ (see §1 for references).

Received 2006/03/01. Accepted 2006/06/05.

MSC (2000): Primary 11Y40, 13B25; Secondary 11Y16, 13B05.

Also, there exists a unique quadratic extension field $\mathbb{Q}(y)$ of $\mathbb{Q}(\sqrt{p})$, and therefore a biquadratic extension field of \mathbb{Q} , contained in $\mathbb{Q}(\zeta)$. Moreover if $|Gal(\mathbb{Q}(\zeta)/\mathbb{Q})| = 2^k n$ with (2, n) = 1 then there exists a unique tower of fields:

$$\mathbb{Q} = E_0 \subset E_1 \subset \ldots \subset E_k \subset \mathbb{Q}(\zeta)$$

where $[E_j : E_{j-1}] = 2$ for all j = 1, ..., k and $[\mathbb{Q}(\zeta) : E_k] = n$. It is known that E_j/\mathbb{Q} is a simple extension i.e., for all j there is an $y_j \in \mathbb{C}$ such that $E_j = \mathbb{Q}(y_j)$. We consider this preliminaries in §1. Actually, our algorithm is for calculating such y'_j 's explicitly (see §2). The other major result in this work is the conjecture in §3, it states an explicit algebraic expression for y_2 depending on p and a unique positive odd integer b such that $p = a^2 + b^2$ for some integer a.

1 Preliminary results

The aim of this section is to show some results that will allow us to construct the algorithm in §2.

1.1 Existence of a unique tower of *p*-th cyclotomic fields

Definition 1.1.1. Let $m \geq 1$ and $\zeta = e^{2\pi i/m}$. We say that a number field K is a *m*-th cyclotomic field if K is an intermediate field of $\mathbb{Q}(\zeta)/\mathbb{Q}$ i.e., $\mathbb{Q} \subset K \subset \mathbb{Q}(\zeta)$.

This is a somewhat variant of Lang's definition in [4], p. 71.

Lemma 1.1.2. Let G be a cyclic group of order m and generator g. If d divides m then $\langle g^{m/d} \rangle \subset G$ is its unique subgroup of order d.

Proof. See Lemma 41 in [7], p. 38.

For basic definitions in the following theorem see [7], pp. 35,43,47.

Theorem 1.1.3 (Fundamental Theorem of Galois Theory). Let E/F be a Galois extension with Galois group G = Gal(E/F). Let $H \subset G$ be a subgroup, and E^H its fixed field, and let K be an intermediate field of E/F. Then

- (1) The application $H \mapsto E^H$, is an order reversing biyection with inverse $K \mapsto Gal(E/K)$.
- (2) $E^{Gal(E/K)} = K$ and $Gal(E/E^{H}) = H$.

Divulgaciones Matemáticas Vol. 14 No. 1(2006), pp. 59–72

- (3) [K:F] = [G:Gal(E/K)] and $[G:H] = [E^H:F]$.
- (4) K/F is a Galois extension if and only if Gal(E/K) is a normal subgroup of G.

Proof. See Theorem 63 in [7], pp. 49-50.

Theorem 1.1.4. Let $m \geq 1$ be an integer and let $\zeta = e^{2\pi i/m}$. Then, $\mathbb{Q}(\zeta)/\mathbb{Q}$ is a Galois extension with Galois group isomorphic to \mathbb{Z}_m^{\times} , whose order is $\varphi(m)$, where φ is Euler's phi function.

Proof. See [3], pp. 193-195.

Corollary 1.1.5. Let p be a prime number, let $\zeta = e^{2\pi i/p}$, and let $E = \mathbb{Q}(\zeta)$. Then, for every divisor d of p-1 there exists a unique subgroup $H \subset Gal(\mathbb{Q}(\zeta)/\mathbb{Q})$ of order d. Moreover, its fixed field E^H is a Galois extension of \mathbb{Q} .

Proof. Follows from Lemma 1.1.2 and Theorem 1.1.3 because Theorem 1.1.4 implies that $Gal(\mathbb{Q}(\zeta)/\mathbb{Q})$ is a cyclic group.

Corollary 1.1.6. With the same hypothesis of the above corollary, if $|Gal(\mathbb{Q}(\zeta)/\mathbb{Q})| = 2^k n$ with $k \ge 1$, (2, n) = 1 then there exists a unique tower of fields

 $\mathbb{Q} = E_0 \subset E_1 \subset \ldots \subset E_k \subset E = \mathbb{Q}(\zeta)$

where $[E_j : E_{j-1}] = 2$ for all $j = 1, \ldots, k$ and $[\mathbb{Q}(\zeta) : E_k] = n$. Hence, $[E_j : \mathbb{Q}] = 2^j$ for all j.

Proof. Because of Lemma 1.1.2 and Theorem 1.1.4, there is a unique sequence of cyclic groups

$$Gal(\mathbb{Q}(\zeta)/\mathbb{Q}) = H_0 \supset H_1 \supset \ldots \supset H_k \supset \{0\}$$

where H_j is the unique subgroup of G with order $2^{k-j}n$. Let $E_j = E^{H_j}$ be the fixed field of H_j , then the corollary follows from the Fundamental Theorem of Galois Theory and from the following basic fact: If [E:F] is finite and K is an intermediate field, then [E:F] = [E:K][K:F] (see, e.g., Lemma 31 and Exercise 75 in [7], pp. 30–31).

Divulgaciones Matemáticas Vol. 14 No. 1(2006), pp. 59-72

1.2 Cyclotomic fields are simple extensions

With the same notation of the previous subsection, we will prove that there exists $y_j \in \mathbb{C}$ such that $E_j = \mathbb{Q}(y_j)$ for all $j = 1, \ldots, k$.

Lemma 1.2.1 (Theorem of the Primitive Element). Every Galois extension E/F is simple, i.e. there exists a y in E such that E = F(y).

Proof. See [7], p. 51.

From this lemma, Theorem 1.1.4 and Theorem 1.1.3, the next follows.

Corollary 1.2.2. Every E_j is a simple extension of \mathbb{Q}

Now the question is how to find an $y_j \in \mathbb{C}$ such that $E_j = \mathbb{Q}(y_j)$. Theorem 1.2.5 below addresses this question.

Remark 1.2.3. Let p be a prime and let g be a generator of \mathbb{Z}_p^{\times} , let $E = \mathbb{Q}(\zeta)$ where $\zeta = e^{2\pi i/p}$. It is easy to see that the application

$$\phi: \mathbb{Z}_p^{\times} \to Gal(E/\mathbb{Q}) \qquad g \mapsto \gamma_0$$

with $\gamma_0(\zeta) = \zeta^g$, is a group isomorphism. Based on this fact and Lemma 1.1.2 the only subgroup of $Gal(E/\mathbb{Q})$ of order d is $\phi(\langle g^{(p-1)/d} \rangle) = \langle \gamma_0^{(p-1)/d} \rangle$ where $\gamma_0^{(p-1)/d}(\zeta) = \zeta^{g^{(p-1)/d}}$. Moreover, this implies that σ is an automorphism of $\mathbb{Q}(\zeta)$ if and only if $\sigma(\zeta) = \zeta^m$ for some $1 \le m \le p-1$ (from Theorem 1.1.3 (3) we have $[E:\mathbb{Q}] = [Gal(E/\mathbb{Q}):Gal(E/E)] = |Gal(E/\mathbb{Q})| = p-1$).

Lemma 1.2.4. Let p be a prime and $\zeta = e^{2\pi i/p}$, and let $1 \le m \le p-1$ be an integer. If

$$\sum_{j=1}^{m} \zeta^{k_j} = \sum_{j=1}^{m} \zeta^{\ell_j}, \text{ where } 1 \le k_j \le p-1, \ 1 \le \ell_j \le p-1,$$

then the two sets of indices $\{k_j : j = 1..., m\}$ and $\{\ell_j : j = 1..., m\}$ are equal.

Proof. Let $S = \{0, 1, \dots, p-1\} \setminus \{\ell_j : j = 1, \dots, m\}$ then

$$\sum_{j=1}^{m} \zeta^{\ell_j} + \sum_{\ell \in S} \zeta^{\ell} = 0.$$

Hence

$$\sum_{j=1}^m \zeta^{k_j} + \sum_{\ell \in S} \zeta^\ell = 0.$$

62

Divulgaciones Matemáticas Vol. 14 No. 1(2006), pp. 59–72

Let $h(x) = \sum_{j=1}^{m} x^{k_j} + \sum_{\ell \in S} x^{\ell} \in \mathbb{Z}[x]$, then *h* has degree deg $(h) \leq p-1$ and ζ is one of its roots. Let $f(x) = 1 + x + x^2 + \ldots + x^{p-1}$ be the irreducible polynomial of ζ . Since, by definition, the irreducible polynomial has minimal degree we have deg $(h) \geq \deg(f)$, thus deg $(h) = \deg(f)$.

It is well known that $\{g(x) \in \mathbb{Q}[x] : g(\alpha) = 0\}$ is the principal ideal generated over $\mathbb{Q}[x]$ by the irreducible polynomial of α . From this fact and the last assertion of the above paragraph, we have h(x) = cf(x) for some $c \in \mathbb{Q}$.

Now, if some $k_j \in S$ then $h(x) \neq cf(x)$ for all $c \in \mathbb{Q}$. Therefore both sets of indices are equal.

The following theorem summarizes what we have done so far and gives us an explicit expression for y_j in terms of the group H_j . This is an important tool in the construction of algorithm in §2. We assume the notation of Corollary 1.1.6 as well as that of its proof.

Theorem 1.2.5. Let $p = 2^k n + 1$ be a prime with $k \ge 2$, (2, n) = 1, and let $\zeta = e^{2\pi i/p}$. Then there exists a unique tower of p-th cyclotomic fields

$$\mathbb{Q} = \mathbb{Q}(y_0) \subset \mathbb{Q}(y_1) \subset \cdots \subset \mathbb{Q}(y_k) \subset \mathbb{Q}(\zeta)$$

where

(1) $[\mathbb{Q}(y_j):\mathbb{Q}(y_{j-1})] = 2$ for all j and $[\mathbb{Q}(\zeta):\mathbb{Q}(y_k)] = n$

- (2) $y_j = \sum_{\gamma \in H_j} \gamma(\zeta)$, where $H_j \subset Gal(\mathbb{Q}(\zeta)/\mathbb{Q})$ is the subgroup of order $2^{k-j}n$.
- (3) Moreover, if g is a generator of \mathbb{Z}_p^{\times} and $a = g^{(p-1)/d}$ is an element of order $d = |H_j|$ (actually $a = a_j$ and $d = d_j$), then

$$y_j = \sum_{\ell=1}^d \zeta^{a^\ell}.$$

Proof. From Remark 1.2.3 we have $H_j = \{\gamma_\ell : \gamma_\ell(\zeta) = \zeta^{a^\ell}, \ell = 1, \dots, d\}$, thus

$$\sum_{\gamma \in H_j} \gamma(\zeta) = \sum_{\ell=1}^d \zeta^{a^\ell}.$$
(1.1)

Divulgaciones Matemáticas Vol. 14 No. 1(2006), pp. 59-72

Then, because of Corollaries 1.1.6 and 1.2.2 we only need to prove that $E_j = \mathbb{Q}(y_j)$. By definition we have $E_j = E^{H_j}$. As well, it is clear that $y_j \in E^{H_j}$, therefore $\mathbb{Q}(y_j) \subset E_j$. On the other hand, we know that $Gal(\mathbb{Q}(y_j)/\mathbb{Q})$ is a cyclic subgroup (by Theorem 1.1.4), hence and from Theorem 1.1.3, (4) $\mathbb{Q}(y_j)/\mathbb{Q}$ is a Galois extension. Then, from Theorem 1.1.3, (2) we have $\mathbb{Q}(y_j) = E^{Gal(E/\mathbb{Q}(y_j))}$. Thus $\mathbb{Q}(y_j) = E_j$ if and only if $Gal(E/\mathbb{Q}(y_j)) = H_j$. It is clear that $H_j \subset Gal(E/\mathbb{Q}(y_j))$. Let $\sigma \in Gal(E/\mathbb{Q}(y_j))$, then $\sigma(y_j) = E_j$.

 y_j , and this implies

64

$$\sum_{\gamma \in H_j} \sigma \gamma(\zeta) = \sum_{\gamma \in H_j} \gamma(\zeta)$$

From this equality, equation (1.1) and Remark 1.2.3 we have two sums of $|H_j|$ powers of ζ , then from Lemma 1.2.4 follows that the two sets of exponents of these powers are equal i.e., $\sigma H_j = H_j$, thus $\sigma \in H_j$. This completes the proof of $Gal(E/\mathbb{Q}(y_j)) = H_j$.

1.3 A known case: $\mathbb{Q}(\sqrt{p}) \subset \mathbb{Q}(\zeta)$

In this subsection $p \ge 3$ is prime and $\zeta = e^{2\pi i/p}$ a primitive root of unity.

Lemma 1.3.1. The subgroup of \mathbb{Z}_p^{\times} of order $\frac{p-1}{2}$ is: $R = \left\{ a \in \mathbb{Z}_p^{\times} : \left(\frac{a}{p}\right) = 1 \right\}$

where $\left(\frac{a}{p}\right)$ is the Legendre symbol. (R is the subgroup of quadratic residues mod p).

Proof. By Lemma 1.1.2 we know that there is an unique subgroup of each order d that divides p - 1. For a proof of the rest of the lemma see, e.g., Corollaries 1 and 2 in [3], p. 51.

Proposition 1.3.2. Let $\mathcal{G} = \sum_{a=1}^{p-1} \left(\frac{a}{p}\right) \zeta^a$ (a Gauss sum), then

- (1) $\mathcal{G} = 1 + 2 \sum_{a \in R} \zeta^a$ with R as in the previous lemma.
- (2) If $p \equiv 1 \pmod{4}$ then $\mathcal{G} = \sqrt{p}$.

Divulgaciones Matemáticas Vol. 14 No. 1(2006), pp. 59–72

Proof. (1):
$$\mathcal{G} = \sum_{a=1}^{p-1} \left(\frac{a}{p}\right) \zeta^a + \left(1 + \sum_{a=1}^{p-1} \zeta^a\right) = 1 + 2 \sum_{a \in R} \zeta^a.$$

(2): From (1) and Lemma 1.3.1 we have $\mathcal{G} = \sum_{a=0}^{p-1} \zeta^{a^2}$. For a proof of $\sum_{a=0}^{p-1} \zeta^{a^2} = \sqrt{p}$ if $p \equiv 1 \pmod{4}$ see, e.g., [2], pp. 13-16.

Corollary 1.3.3. Suppose $p \equiv 1 \pmod{4}$ and let $y = \sum_{a \in R} \zeta^a$. Then:

- Q(y) is the quadratic p-th cyclotomic field, i.e. it is the quadratic intermediate field of Q(ζ)/Q.
- (2) $\mathbb{Q}(y) = \mathbb{Q}(\sqrt{p}).$

Remark 1.3.4. Let K/\mathbb{Q} be an extension field such that $K = \mathbb{Q}(a + b\alpha)$ with $a, b \in \mathbb{Q}$ and $\alpha \in \mathbb{C}$. Then it is easy to see that $K = \mathbb{Q}(\alpha)$.

Proof. We know that there is only one quadratic subfield of $\mathbb{Q}(\zeta)$ (see Corollary 1.1.6 aforementioned). From Proposition 1.3.2 it follows that $\sqrt{p} = 1 + 2y \in \mathbb{Q}(\zeta)$, thus $\mathbb{Q}(\sqrt{p}) \subset \mathbb{Q}(\zeta)$. By Remark 1.3.4 $\mathbb{Q}(1+2y) = \mathbb{Q}(y)$, hence $\mathbb{Q}(y) = \mathbb{Q}(\sqrt{p})$.

2 Algorithm and Results

In this section we will use the same notation as in the previous section. Let us make two more remarks:

Remark 2.0.5. Recall that $[\mathbb{Q}(y_j) : \mathbb{Q}] = 2^j$, i.e. $\mathbb{Q}(y_j)$ is a vector space over \mathbb{Q} of dimension 2^j .

Definition 2.0.6 (Vectors of Variables). Let $p = 2^k n + 1$ be a prime, with (2, n) = 1. Let $V_0 = (1)$ be a vector in \mathbb{C} and, for $0 < j \leq k$, $V_{j+1} = (V_j, y_{j+1}V_j) \in \mathbb{C}^{2^j}$, where $y_{j+1}V_j$ is the standard scalar product of the scalar $y_{j+1} \in \mathbb{C}$ and the vector V_j .

Example 2.0.7. $V_1 = (1, y_1),$ $V_2 = (1, y_1, y_2, y_1 y_2),$ $V_3 = (1, y_1, y_2, y_1 y_2, y_3, y_1 y_3, y_2 y_3, y_1 y_2 y_3)$

Lemma 2.0.8. Let $m = 2^j$ and $V_j = (v_{1j}, \ldots, v_{mj})$ as before. Then $\mathbb{Q}(y_j) = \mathbb{Q}^m \cdot V_j = \{\mathbf{c} \cdot V_j = \sum_{\ell=1}^m c_\ell v_{\ell j}, \text{ with } \mathbf{c} \in \mathbb{Q}^m\}.$

Divulgaciones Matemáticas Vol. 14 No. 1(2006), pp. 59-72

Proof. If j = 1 then $\mathbb{Q}(y_1) = \{a + by_1 = (a, b) \cdot V_1 \text{ with } a, b \in \mathbb{Q}\}$. The lemma follows by induction on j because of $\mathbb{Q}(y_{j+1}) = \mathbb{Q}(y_j)(y_{j+1})) = \{A + By_{j+1} : A, B \in \mathbb{Q}(y_j)\}$. Therefore, by the inductive hypothesis $A = \mathbf{c_1} \cdot V_j$ and $B = \mathbf{c_2} \cdot V_j$ with $\mathbf{c_i} \in \mathbb{Q}^{2^j}$, thus $A + By_j = (\mathbf{c_1}, \mathbf{c_2}) \cdot (V_j, y_{j+1}V_j) = \mathbf{c} \cdot V_{j+1}$ with $\mathbf{c} = (\mathbf{c_1}, \mathbf{c_2}) \in \mathbb{Q}^{2m}$. But $2m = 2^{j+1}$.

Corollary 2.0.9. If $j \ge 1$, then y_j is a root of some equation:

$$y_j^2 + \mathbf{c} \cdot V_j = 0$$

where $\mathbf{c} \in \mathbb{Q}^m$ with $m = 2^j$.

Proof. We have that $a + by_j + y_j^2 = 0$ for some $a, b \in \mathbb{Q}(y_{j-1})$. By the previous lemma $a + by_j \in \mathbb{Q}^m \cdot V_j$.

2.1 Main algorithm

We use Mathematica for running our algorithms. For details about the commands used see [9].

For running the main algorithm we need another algorithm for calculating a generator of \mathbb{Z}_p^{\times} . See Table 1 for its description. Table 3 has the generators for the first forty prime numbers $p \equiv 1 \pmod{4}$.

The algorithm for calculating the y_j is described in Table 2, and Table 4 has the results for y_2 and y_3 and for the first forty prime numbers $p \equiv 1 \pmod{4}$.

Table 1: Generator

Mathematica code
p = *input prime number value*;
$d = \text{Complement}[\text{Divisors}[p-1], \{1, p-1\}];$
l = DivisorSigma[0, p-1] - 2;
For[a = 2, a < p,
$b = \text{Table}[\text{PowerMod}[a, d[[j]], p], \{j, l\}];$
c = 0;
$Do[If[b[[j]] == 1, c == 0, c = c + 1], \{j, l\}];$
IF[c == 1, g = a; Print[g]; Break[]]; a + +]

Divulgaciones Matemáticas Vol. 14 No. 1
(2006), pp. 59–72

 Table 2: Main Algorithm

```
Mathematica Code
p = (*Input \ a \ Prime^*);
g = (*Input \ a \ Generator^*);
q = p - 1; F = \text{FactorInteger}[q]; k = \text{F}[[1]][[2]]; n = q/2^{k};
P = \operatorname{Sum}[\zeta^{(i-1)}, \{i, p\}]
(*Variables*)
V[0] = \{1\}; Do[V[i] = Union[V[i-1], V[i-1] * ye_i], \{i, k\}];
(*Intermediate Field 0 < ne \le k^*)
ne = (*Number "j" *); o[ne] = 2^{k-ne}n; nv = 2^{ne};
(*Galois Group*)
H[ne] = \texttt{Table}[\texttt{PowerMod}[g, j * q/o[ne], p], \{j, o[ne] - 1\}];
y_{ne} = \operatorname{Sum}[\zeta^{H[ne][[j]]}, \{j, o[ne]\}]; V[ne];
Do[v[i] = PolynomialRemainder[Expand[V[ne][[i]]], P, \zeta], \{i, nv\}];
v[nv+1] =PolynomialRemainder[Expand[ye[ne]^2], P, \zeta]; v[ne+2] = P;
vvf =Table[Coefficient[v[i], \zeta, j-1], {i, nv+2}, {j, p}];
vvc = \text{Transpose}[vvf]; coef = NullSpace[vvc];
(*Radicals expression for y_{ne}^*)
Ve[0] = \{1\}; Do[Ve[i] = Union[Ve[i-1], Ve[i-1] * y_i], \{i, k\}];
Ec[ne] = \operatorname{Sum}[coef[[1]][[i]] * Ve[ne][[i]], \{i, nv\}] + coef[[1]][[nv+1]] * y_{ne}^2
y_{ne-1} = (*Input Previous Result*); Solve[Ec[ne] = 0, y_{ne}]
```

2.2 Meaning of Results on Table 4

The results for y_2 are of the following form, with the β 's given by Table 4.

$$y_2 = \frac{1}{4} \left(-1 + \sqrt{p} + \sqrt{(-1)^r 2p + 2\beta \sqrt{p}} \right)$$
 where $r = \frac{p-1}{4}$.

All the results for y_3 , with $p \equiv 1 \pmod{8}$ have a much more complicated form: The c, c', c'' are given in Table 4 and $r' = \frac{p-1}{8}$.

Let $\rho_1 = \sqrt{p}$ and $\rho_2 = \sqrt{(-1)^r 2p + 2\beta\sqrt{p}}$, then

$$y_3 = \frac{1}{8} \left(4y_2 \pm \sqrt{(-1)^{r'} 4p + 4c\rho_1 + 2c'\rho_2 + 2c''\rho_1\rho_2} \right)$$

Divulgaciones Matemáticas Vol. 14 No. 1(2006), pp. 59-72

p	k	n	g	p	k	n	g
5	2	1	2	257	8	1	3
13	2	3	2	281	3	35	3
17	4	1	3	313	3	39	10
29	2	7	2	337	4	21	10
37	2	9	2	401	4	25	3
41	3	5	6	409	3	51	21
53	2	13	2	433	4	27	5
61	2	15	2	449	6	7	3
73	3	9	5	457	3	57	13
89	3	11	3	521	3	65	3
97	5	3	5	577	6	9	5
101	2	25	2	593	4	37	3
109	2	27	6	601	3	75	7
113	4	7	3	641	7	5	3
137	3	17	3	673	5	21	5
149	2	37	2	769	8	3	11
157	2	39	5	881	4	55	3
193	6	3	5	929	5	29	3
233	3	29	3	977	4	61	3
241	4	15	7	1153	7	9	5

Table 3: Primes $p = 2^k n + 1$ with (n, 2) = 1 & Generator g of \mathbb{Z}_q

Divulgaciones Matemáticas Vol. 14 No. 1
(2006), pp. 59–72

68

p	β	с	c'	c''	p	β	c	c'	c''
5	-1				257	-1	15	15	1
13	3				281	-5	-9	9	-1
17	-1	3	-3	-1	313	-13	5	5	-1
29	-5				337	-9	7	7	1
37	-1				401	-1	3	-3	-1
41	-5	-3	-3	-1	409	3	11	11	1
53	7				433	-17	19	-19	-1
61	-5				449	7	-21	21	-1
73	3	1	-1	1	457	-21	13	13	-1
89	-5	9	-9	1	521	11	-3	-3	-1
97	-9	-5	5	-1	577	-1	-17	-17	1
101	-1				593	23	-9	-9	1
109	3				601	-5	-23	23	1
113	7	-9	-9	1	641	-25	-21	21	-1
137	11	3	3	1	673	23	-10	10	-1
149	7				769	-25	11	-11	-1
157	11				881	-25	-9	-9	1
193	7	11	-11	-1	929	23	27	-27	-1
233	-13	-15	15	1	977	31	3	-3	-1
241	15	-13	13	-1	1153	-33	-1	-1	1

Table 4: Results for y_2 and y_3

Divulgaciones Matemáticas Vol. 14 No. 1
(2006), pp. 59–72

Lemma 2.2.1. Let $p \equiv 1 \pmod{4}$ be a prime. Then there is a unique pair of positive integers a, b with b odd (and hence a even) such that $p = a^2 + b^2$.

Proof. For existence of integers a, b such that $p = a^2 + b^2$ see, e.g., [8], p. 156, or [1], pp. 17-22. It is clear that only one of them is odd.

Uniqueness: Let $R = \mathbb{Z}[i]$ the ring of gaussian integers. We will use the following three known facts: (a) R is a unique factorization domain, (b) if the for norm of $\alpha \in R$ is a rational prime, then α is irreducible in R, and (c) the units of $\mathbb{Z}[i]$ are $\pm 1, \pm i$. Hence if $\alpha = a + ib$, $\beta = c + id$ and $p = a^2 + b^2 = c^2 + d^2$, then $p = \alpha \bar{\alpha} = \beta \bar{\beta}$ with the bar indicating complex conjugation. Therefore α and β are associates, i.e., there exists a unit $u \in R$ such that $\beta = u\alpha$.

With the notations as in Table 4 and previous Lemma, we can rewrite the constants in this table as follows.

Remark 2.2.2. Let $p \leq 1153$, $p \equiv 1 \pmod{4}$ be a prime. Then we have:

- (1) $\beta = (-1)^{\ell} b$ where $\ell = \frac{b+1}{2}$ and b as in Lemma 2.2.1.
- (2) For such primes with $p \equiv 1 \pmod{8}$ we have: $c = (-1)^{r'+s}c_p$, $c' = (-1)^{r'+t}c_p$ and $c'' = (-1)^{r'-(s+t)}$, with c_p, s, t obtained from Table 4.

3 Conjecture statement

Now we can state the following:

Conjecture 3.0.3. Let $p = a^2 + b^2 \equiv 1 \pmod{4}$ be a prime where b is odd, and let K be the biquadratic p-th cyclotomic field. Then $K = \mathbb{Q}(y_+) = \mathbb{Q}(y_-)$ where

$$y_{\pm} = \frac{1}{4} \left(-1 + \sqrt{p} \pm \sqrt{(-1)^r 2p + (-1)^\ell 2b\sqrt{p}} \right)$$

with r = (p-1)/4 and $\ell = (b+1)/2$.

We can verify this conjecture in the following case: Example 3.0.4. For p = 5 we have

$$y_{\pm} = \frac{1}{4} \left(-1 + \sqrt{5} \pm i\sqrt{10 + 2\sqrt{5}} \right)$$

and it is easy to see by direct calculation that y_{\pm} are roots of $x^4 + x^3 + x^2 + x + 1 = 0$ i.e., y_{\pm} are conjugates of $\zeta = e^{2\pi i/5}$. Then $\mathbb{Q}(\zeta) = \mathbb{Q}(y_{\pm})$ because of the next

70

Divulgaciones Matemáticas Vol. 14 No. 1(2006), pp. 59-72

Proposition 3.0.5. Let p be a prime and $\zeta = e^{2\pi i/p}$, then $\mathbb{Q}(\zeta) = \mathbb{Q}(\zeta^d)$ for all $d = 1, \ldots, p-1$.

Proof. It is clear that $\mathbb{Q}(\zeta^d) \subset \mathbb{Q}(\zeta)$. Since d < p we have (d, p) = 1; this implies that there are integers k, ℓ such that $1 = kd + \ell p$. Hence $\zeta = (\zeta^d)^k$, then $\mathbb{Q}(\zeta) \subset \mathbb{Q}(\zeta^d)$ follows.

Remark 3.0.6. Conjecture 3.0.3 implies that our algorithm can be used for finding integers a, b such that $p = a^2 + b^2$. In a forthcoming paper [6] we consider another approach to study all the quadratic field extensions E/F such that $\mathbb{Q} \subset F \subset E \subset \mathbb{Q}(\zeta)$. This is a natural extension of the present paper, in a more general setting.

Acknowledgment

The results of this paper were obtained during my graduate studies at Universidad Simón Bolívar and are also contained in [5]. I would like to express deep gratitude to my supervisor Dmitry Logachëv whose guidance was crucial for the successful completion of this project.

References

- Aigner, M., Ziegler, G. M., Proofs from The Book (second edition), Springer-Verlag, 2000.
- [2] Davenport, H., Multiplicative Number theory (second edition), Springer-Verlag, 1967.
- [3] Ireland, K. and Rosen, M., A Classical Introduction to Modern Number Theory, Springer-Verlag, 1972.
- [4] Lang, S., Algebraic Number Theory, Addison-Wesley, 1970.
- [5] Pérez, A. A. J., Cálculo Explícito de Extensiones Policuadráticas Ciclotómicas de Q, Tesis de Maestría, Universidad Simón Bolívar, 2001.
- [6] Pérez, A. A. J., Equations of Polyquadratic Cyclotomics Extensions of Q, in preparation.
- [7] Rotman, J., Galois Theory, Springer-Verlag, 1990.
- [8] Silverman, J. H., A Friendly Introduction to Number Theory, Prentice Hall, 1997.

Divulgaciones Matemáticas Vol. 14 No. 1(2006), pp. 59-72

[9] Wolfram, S., Mathematica (2nd edition), Addison-Wesley, 1993.

Divulgaciones Matemáticas Vol. 14 No. 1
(2006), pp. 59–72