Algorithm for Finding a Biquadratic Cyclotomic Extension Field of \mathbb{Q}

Algoritmo para Hallar una Extensión
Ciclotómica Bicuadrática de \mathbb{Q}

Amílcar J. Pérez A. (ajperez@usb.ve)
Departamento de Matemáticas puras y Aplicadas, Universidad Simón Bolívar, Valle de Sartenejas, Edo. Miranda, MYS-355B, Venezuela.

Abstract

Let $p \equiv 1(\bmod 4)$ be a prime number and let $\zeta=e^{2 \pi i / p}$ be a primitive root of unity. Then there exists a unique biquadratic extension field $\mathbb{Q}(y) / \mathbb{Q}$ that is a subfield of $\mathbb{Q}(\zeta)$. The aim of this work is to construct an algorithm for finding such y explicitly. Finally we state a general conjecture about the y we found. Key words and phrases: biquadratic fields, cyclotomic fields, Galois theory, algorithm.

Resumen

Sea $p \equiv 1(\bmod 4)$ un primo y sea $\zeta=e^{2 \pi i / p}$ una raíz primitiva de la unidad. Entonces existe una única extensión bicuadrática $\mathbb{Q}(y) / \mathbb{Q}$ que es un subcuerpo de $\mathbb{Q}(\zeta)$. El propósito de este trabajo es construir un algoritmo para hallar y explícitamente. Finalmente se enuncia una conjetura general acerca del y hallado.
Palabras y frases clave: cuerpo bicuadrático, cuerpo ciclotómico, teoría de Galois, algoritmo.

Introduction

It is known that if $p \equiv 1(\bmod 4)$ then $\mathbb{Q}(\sqrt{p})$ is the unique quadratic extension field of \mathbb{Q} contained in $\mathbb{Q}(\zeta)$, where $\zeta=e^{2 \pi i / p}$ (see $\S 1$ for references).

[^0]Also, there exists a unique quadratic extension field $\mathbb{Q}(y)$ of $\mathbb{Q}(\sqrt{p})$, and therefore a biquadratic extension field of \mathbb{Q}, contained in $\mathbb{Q}(\zeta)$. Moreover if $|\operatorname{Gal}(\mathbb{Q}(\zeta) / \mathbb{Q})|=2^{k} n$ with $(2, n)=1$ then there exists a unique tower of fields:

$$
\mathbb{Q}=E_{0} \subset E_{1} \subset \ldots \subset E_{k} \subset \mathbb{Q}(\zeta)
$$

where $\left[E_{j}: E_{j-1}\right]=2$ for all $j=1, \ldots, k$ and $\left[\mathbb{Q}(\zeta): E_{k}\right]=n$. It is known that E_{j} / \mathbb{Q} is a simple extension i.e., for all j there is an $y_{j} \in \mathbb{C}$ such that $E_{j}=\mathbb{Q}\left(y_{j}\right)$. We consider this preliminaries in $\S 1$. Actually, our algorithm is for calculating such y_{j}^{\prime} s explicitly (see $\S 2$). The other major result in this work is the conjecture in $\S 3$, it states an explicit algebraic expresion for y_{2} depending on p and a unique positive odd integer b such that $p=a^{2}+b^{2}$ for some integer a.

1 Preliminary results

The aim of this section is to show some results that will allow us to construct the algorithm in $\S 2$.

1.1 Existence of a unique tower of p-th cyclotomic fields

Definition 1.1.1. Let $m \geq 1$ and $\zeta=e^{2 \pi i / m}$. We say that a number field K is a m-th cyclotomic field if K is an intermediate field of $\mathbb{Q}(\zeta) / \mathbb{Q}$ i.e., $\mathbb{Q} \subset K \subset \mathbb{Q}(\zeta)$.

This is a somewhat variant of Lang's definition in [4], p. 71.
Lemma 1.1.2. Let G be a cyclic group of order m and generator g. If d divides m then $\left\langle g^{m / d}\right\rangle \subset G$ is its unique subgroup of order d.

Proof. See Lemma 41 in [7], p. 38.
For basic definitions in the following theorem see [7], pp. 35,43,47.
Theorem 1.1.3 (Fundamental Theorem of Galois Theory). Let E / F be a Galois extension with Galois group $G=G a l(E / F)$. Let $H \subset G$ be a subgroup, and E^{H} its fixed field, and let K be an intermediate field of E / F. Then
(1) The application $H \mapsto E^{H}$, is an order reversing biyection with inverse $K \mapsto \operatorname{Gal}(E / K)$.
(2) $E^{\operatorname{Gal}(E / K)}=K$ and $\operatorname{Gal}\left(E / E^{H}\right)=H$.
(3) $[K: F]=[G: G a l(E / K)]$ and $[G: H]=\left[E^{H}: F\right]$.
(4) K / F is a Galois extension if and only if $G a l(E / K)$ is a normal subgroup of G.

Proof. See Theorem 63 in [7], pp. 49-50.

Theorem 1.1.4. Let $m \geq 1$ be an integer and let $\zeta=e^{2 \pi i / m}$. Then, $\mathbb{Q}(\zeta) / \mathbb{Q}$ is a Galois extension with Galois group isomorphic to \mathbb{Z}_{m}^{\times}, whose order is $\varphi(m)$, where φ is Euler's phi function.

Proof. See [3], pp. 193-195.

Corollary 1.1.5. Let p be a prime number, let $\zeta=e^{2 \pi i / p}$, and let $E=$ $\mathbb{Q}(\zeta)$. Then, for every divisor d of $p-1$ there exists a unique subgroup $H \subset$ $\operatorname{Gal}(\mathbb{Q}(\zeta) / \mathbb{Q})$ of order d. Moreover, its fixed field E^{H} is a Galois extension of \mathbb{Q}.

Proof. Follows from Lemma 1.1.2 and Theorem 1.1.3 because Theorem 1.1.4 implies that $\operatorname{Gal}(\mathbb{Q}(\zeta) / \mathbb{Q})$ is a cyclic group.

Corollary 1.1.6. With the same hypothesis of the above corollary, if $|\operatorname{Gal}(\mathbb{Q}(\zeta) / \mathbb{Q})|=$ $2^{k} n$ with $k \geq 1,(2, n)=1$ then there exists a unique tower of fields

$$
\mathbb{Q}=E_{0} \subset E_{1} \subset \ldots \subset E_{k} \subset E=\mathbb{Q}(\zeta)
$$

where $\left[E_{j}: E_{j-1}\right]=2$ for all $j=1, \ldots, k$ and $\left[\mathbb{Q}(\zeta): E_{k}\right]=n$. Hence, $\left[E_{j}: \mathbb{Q}\right]=2^{j}$ for all j.

Proof. Because of Lemma 1.1.2 and Theorem 1.1.4, there is a unique sequence of cyclic groups

$$
G a l(\mathbb{Q}(\zeta) / \mathbb{Q})=H_{0} \supset H_{1} \supset \ldots \supset H_{k} \supset\{0\}
$$

where H_{j} is the unique subgroup of G with order $2^{k-j} n$. Let $E_{j}=E^{H_{j}}$ be the fixed field of H_{j}, then the corollary follows from the Fundamental Theorem of Galois Theory and from the following basic fact: If $[E: F]$ is finite and K is an intermediate field, then $[E: F]=[E: K][K: F]$ (see, e.g., Lemma 31 and Exercise 75 in [7], pp. 30-31).

1.2 Cyclotomic fields are simple extensions

With the same notation of the previous subsection, we will prove that there exists $y_{j} \in \mathbb{C}$ such that $E_{j}=\mathbb{Q}\left(y_{j}\right)$ for all $j=1, \ldots, k$.
Lemma 1.2.1 (Theorem of the Primitive Element). Every Galois extension E / F is simple, i.e. there exists a y in E such that $E=F(y)$.

Proof. See [7], p. 51.
From this lemma, Theorem 1.1.4 and Theorem 1.1.3, the next follows.
Corollary 1.2.2. Every E_{j} is a simple extension of \mathbb{Q}.
Now the question is how to find an $y_{j} \in \mathbb{C}$ such that $E_{j}=\mathbb{Q}\left(y_{j}\right)$. Theorem 1.2.5 below addresses this question.

Remark 1.2.3. Let p be a prime and let g be a generator of \mathbb{Z}_{p}^{\times}, let $E=\mathbb{Q}(\zeta)$ where $\zeta=e^{2 \pi i / p}$. It is easy to see that the application

$$
\phi: \mathbb{Z}_{p}^{\times} \rightarrow \operatorname{Gal}(E / \mathbb{Q}) \quad g \mapsto \gamma_{0}
$$

with $\gamma_{0}(\zeta)=\zeta^{g}$, is a group isomorphism. Based on this fact and Lemma 1.1.2 the only subgroup of $\operatorname{Gal}(E / \mathbb{Q})$ of order d is $\phi\left(\left\langle g^{(p-1) / d}\right\rangle\right)=\left\langle\gamma_{0}^{(p-1) / d}\right\rangle$ where $\gamma_{0}^{(p-1) / d}(\zeta)=\zeta^{g^{(p-1) / d}}$. Moreover, this implies that σ is an automorphism of $\mathbb{Q}(\zeta)$ if and only if $\sigma(\zeta)=\zeta^{m}$ for some $1 \leq m \leq p-1$ (from Theorem 1.1.3(3) we have $[E: \mathbb{Q}]=[\operatorname{Gal}(E / \mathbb{Q}): \operatorname{Gal}(E / E)]=|\operatorname{Gal}(E / \mathbb{Q})|=p-1)$.
Lemma 1.2.4. Let p be a prime and $\zeta=e^{2 \pi i / p}$, and let $1 \leq m \leq p-1$ be an integer. If

$$
\sum_{j=1}^{m} \zeta^{k_{j}}=\sum_{j=1}^{m} \zeta^{\ell_{j}}, \text { where } 1 \leq k_{j} \leq p-1,1 \leq \ell_{j} \leq p-1
$$

then the two sets of indices $\left\{k_{j}: j=1 \ldots, m\right\}$ and $\left\{\ell_{j}: j=1 \ldots, m\right\}$ are equal.
Proof. Let $S=\{0,1, \ldots, p-1\} \backslash\left\{\ell_{j}: j=1, \ldots, m\right\}$ then

$$
\sum_{j=1}^{m} \zeta^{\ell_{j}}+\sum_{\ell \in S} \zeta^{\ell}=0
$$

Hence

$$
\sum_{j=1}^{m} \zeta^{k_{j}}+\sum_{\ell \in S} \zeta^{\ell}=0
$$

Let $h(x)=\sum_{j=1}^{m} x^{k_{j}}+\sum_{\ell \in S} x^{\ell} \in \mathbb{Z}[x]$, then h has degree $\operatorname{deg}(h) \leq p-1$ and ζ is one of its roots. Let $f(x)=1+x+x^{2}+\ldots+x^{p-1}$ be the irreducible polynomial of ζ. Since, by definition, the irreducible polynomial has minimal degree we have $\operatorname{deg}(h) \geq \operatorname{deg}(f)$, thus $\operatorname{deg}(h)=\operatorname{deg}(f)$.

It is well known that $\{g(x) \in \mathbb{Q}[x]: g(\alpha)=0\}$ is the principal ideal generated over $\mathbb{Q}[x]$ by the irreducible polynomial of α. From this fact and the last assertion of the above paragraph, we have $h(x)=c f(x)$ for some $c \in \mathbb{Q}$.

Now, if some $k_{j} \in S$ then $h(x) \neq c f(x)$ for all $c \in \mathbb{Q}$. Therefore both sets of indices are equal.

The following theorem summarizes what we have done so far and gives us an explicit expression for y_{j} in terms of the group H_{j}. This is an important tool in the construction of algorithm in $\S 2$. We assume the notation of Corollary 1.1.6 as well as that of its proof.

Theorem 1.2.5. Let $p=2^{k} n+1$ be a prime with $k \geq 2,(2, n)=1$, and let $\zeta=e^{2 \pi i / p}$. Then there exists a unique tower of $p-$ th cyclotomic fields

$$
\mathbb{Q}=\mathbb{Q}\left(y_{0}\right) \subset \mathbb{Q}\left(y_{1}\right) \subset \cdots \subset \mathbb{Q}\left(y_{k}\right) \subset \mathbb{Q}(\zeta)
$$

where
(1) $\left[\mathbb{Q}\left(y_{j}\right): \mathbb{Q}\left(y_{j-1}\right)\right]=2$ for all j and $\left[\mathbb{Q}(\zeta): \mathbb{Q}\left(y_{k}\right)\right]=n$
(2) $y_{j}=\sum_{\gamma \in H_{j}} \gamma(\zeta)$, where $H_{j} \subset \operatorname{Gal}(\mathbb{Q}(\zeta) / \mathbb{Q})$ is the subgroup of order $2^{k-j} n$.
(3) Moreover, if g is a generator of \mathbb{Z}_{p}^{\times}and $a=g^{(p-1) / d}$ is an element of order $d=\left|H_{j}\right|\left(\right.$ actually $a=a_{j}$ and $\left.d=d_{j}\right)$, then

$$
y_{j}=\sum_{\ell=1}^{d} \zeta^{a^{\ell}}
$$

Proof. From Remark 1.2.3 we have $H_{j}=\left\{\gamma_{\ell}: \gamma_{\ell}(\zeta)=\zeta^{a^{\ell}}, \ell=1, \ldots, d\right\}$, thus

$$
\begin{equation*}
\sum_{\gamma \in H_{j}} \gamma(\zeta)=\sum_{\ell=1}^{d} \zeta^{a^{\ell}} \tag{1.1}
\end{equation*}
$$

Then, because of Corollaries 1.1.6 and 1.2.2 we only need to prove that $E_{j}=\mathbb{Q}\left(y_{j}\right)$. By definition we have $E_{j}=E^{H_{j}}$. As well, it is clear that $y_{j} \in$ $E^{H_{j}}$, therefore $\mathbb{Q}\left(y_{j}\right) \subset E_{j}$. On the other hand, we know that $\operatorname{Gal}\left(\mathbb{Q}\left(y_{j}\right) / \mathbb{Q}\right)$ is a cyclic subgroup (by Theorem 1.1.4), hence and from Theorem 1.1.3, (4) $\mathbb{Q}\left(y_{j}\right) / \mathbb{Q}$ is a Galois extension. Then, from Theorem 1.1.3, (2) we have $\mathbb{Q}\left(y_{j}\right)=E^{\operatorname{Gal}\left(E / \mathbb{Q}\left(y_{j}\right)\right)}$. Thus $\mathbb{Q}\left(y_{j}\right)=E_{j}$ if and only if $\operatorname{Gal}\left(E / \mathbb{Q}\left(y_{j}\right)\right)=H_{j}$.

It is clear that $H_{j} \subset \operatorname{Gal}\left(E / \mathbb{Q}\left(y_{j}\right)\right)$. Let $\sigma \in \operatorname{Gal}\left(E / \mathbb{Q}\left(y_{j}\right)\right)$, then $\sigma\left(y_{j}\right)=$ y_{j}, and this implies

$$
\sum_{\gamma \in H_{j}} \sigma \gamma(\zeta)=\sum_{\gamma \in H_{j}} \gamma(\zeta)
$$

From this equality, equation (1.1) and Remark 1.2.3 we have two sums of $\left|H_{j}\right|$ powers of ζ, then from Lemma 1.2.4 follows that the two sets of exponents of these powers are equal i.e., $\sigma H_{j}=H_{j}$, thus $\sigma \in H_{j}$. This completes the proof of $\operatorname{Gal}\left(E / \mathbb{Q}\left(y_{j}\right)\right)=H_{j}$.

1.3 A known case: $\mathbb{Q}(\sqrt{p}) \subset \mathbb{Q}(\zeta)$

In this subsection $p \geq 3$ is prime and $\zeta=e^{2 \pi i / p}$ a primitive root of unity.
Lemma 1.3.1. The subgroup of \mathbb{Z}_{p}^{\times}of order $\frac{p-1}{2}$ is:

$$
R=\left\{a \in \mathbb{Z}_{p}^{\times}:\left(\frac{a}{p}\right)=1\right\}
$$

where $\left(\frac{a}{p}\right)$ is the Legendre symbol. (R is the subgroup of quadratic residues $\bmod p)$.

Proof. By Lemma 1.1.2 we know that there is an unique subgroup of each order d that divides $p-1$. For a proof of the rest of the lemma see, e.g., Corollaries 1 and 2 in [3], p. 51.

Proposition 1.3.2. Let $\mathcal{G}=\sum_{a=1}^{p-1}\left(\frac{a}{p}\right) \zeta^{a}$ (a Gauss sum), then
(1) $\mathcal{G}=1+2 \sum_{a \in R} \zeta^{a}$ with R as in the previous lemma.
(2) If $p \equiv 1(\bmod 4)$ then $\mathcal{G}=\sqrt{p}$.

Proof. (1): $\mathcal{G}=\sum_{a=1}^{p-1}\left(\frac{a}{p}\right) \zeta^{a}+\left(1+\sum_{a=1}^{p-1} \zeta^{a}\right)=1+2 \sum_{a \in R} \zeta^{a}$.
(2): From (1) and Lemma 1.3.1 we have $\mathcal{G}=\sum_{a=0}^{p-1} \zeta^{a^{2}}$. For a proof of $\sum_{a=0}^{p-1} \zeta^{a^{2}}=\sqrt{p}$ if $p \equiv 1(\bmod 4)$ see, e.g., [2], pp. 13-16.

Corollary 1.3.3. Suppose $p \equiv 1(\bmod 4)$ and let $y=\sum_{a \in R} \zeta^{a}$. Then:
(1) $\mathbb{Q}(y)$ is the quadratic p-th cyclotomic field, i.e. it is the quadratic intermediate field of $\mathbb{Q}(\zeta) / \mathbb{Q}$.
(2) $\mathbb{Q}(y)=\mathbb{Q}(\sqrt{p})$.

Remark 1.3.4. Let K / \mathbb{Q} be an extension field such that $K=\mathbb{Q}(a+b \alpha)$ with $a, b \in \mathbb{Q}$ and $\alpha \in \mathbb{C}$. Then it is easy to see that $K=\mathbb{Q}(\alpha)$.

Proof. We know that there is only one quadratic subfield of $\mathbb{Q}(\zeta)$ (see Corollary 1.1.6 aforementioned). From Proposition 1.3.2 it follows that $\sqrt{p}=$ $1+2 y \in \mathbb{Q}(\zeta)$, thus $\mathbb{Q}(\sqrt{p}) \subset \mathbb{Q}(\zeta)$. By Remark 1.3.4 $\mathbb{Q}(1+2 y)=\mathbb{Q}(y)$, hence $\mathbb{Q}(y)=\mathbb{Q}(\sqrt{p})$.

2 Algorithm and Results

In this section we will use the same notation as in the previous section. Let us make two more remarks:

Remark 2.0.5. Recall that $\left[\mathbb{Q}\left(y_{j}\right): \mathbb{Q}\right]=2^{j}$, i.e. $\mathbb{Q}\left(y_{j}\right)$ is a vector space over \mathbb{Q} of dimension 2^{j}.

Definition 2.0.6 (Vectors of Variables). Let $p=2^{k} n+1$ be a prime, with $(2, n)=1$. Let $V_{0}=(1)$ be a vector in \mathbb{C} and, for $0<j \leq k, V_{j+1}=$ $\left(V_{j}, y_{j+1} V_{j}\right) \in \mathbb{C}^{2^{j}}$, where $y_{j+1} V_{j}$ is the standard scalar product of the scalar $y_{j+1} \in \mathbb{C}$ and the vector V_{j}.

Example 2.0.7. $V_{1}=\left(1, y_{1}\right)$,
$V_{2}=\left(1, y_{1}, y_{2}, y_{1} y_{2}\right)$,
$V_{3}=\left(1, y_{1}, y_{2}, y_{1} y_{2}, y_{3}, y_{1} y_{3}, y_{2} y_{3}, y_{1} y_{2} y_{3}\right)$.
Lemma 2.0.8. Let $m=2^{j}$ and $V_{j}=\left(v_{1 j}, \ldots, v_{m j}\right)$ as before. Then $\mathbb{Q}\left(y_{j}\right)=\mathbb{Q}^{m} \cdot V_{j}=\left\{\mathbf{c} \cdot V_{j}=\sum_{\ell=1}^{m} c_{\ell} v_{\ell j}\right.$, with $\left.\mathbf{c} \in \mathbb{Q}^{m}\right\}$.

Proof. If $j=1$ then $\mathbb{Q}\left(y_{1}\right)=\left\{a+b y_{1}=(a, b) \cdot V_{1}\right.$ with $\left.a, b \in \mathbb{Q}\right\}$. The lemma follows by induction on j because of $\left.\mathbb{Q}\left(y_{j+1}\right)=\mathbb{Q}\left(y_{j}\right)\left(y_{j+1}\right)\right)=\left\{A+B y_{j+1}\right.$: $\left.A, B \in \mathbb{Q}\left(y_{j}\right)\right\}$. Therefore, by the inductive hypothesis $A=\mathbf{c}_{\boldsymbol{1}} \cdot V_{j}$ and $B=\mathbf{c}_{\mathbf{2}} \cdot V_{j}$ with $\mathbf{c}_{\mathbf{i}} \in \mathbb{Q}^{2^{j}}$, thus $A+B y_{j}=\left(\mathbf{c}_{\mathbf{1}}, \mathbf{c}_{2}\right) \cdot\left(V_{j}, y_{j+1} V_{j}\right)=\mathbf{c} \cdot V_{j+1}$ with $\mathbf{c}=\left(\mathbf{c}_{1}, \mathbf{c}_{2}\right) \in \mathbb{Q}^{2 m}$. But $2 m=2^{j+1}$.

Corollary 2.0.9. If $j \geq 1$, then y_{j} is a root of some equation:

$$
y_{j}^{2}+\mathbf{c} \cdot V_{j}=0
$$

where $\mathbf{c} \in \mathbb{Q}^{m}$ with $m=2^{j}$.
Proof. We have that $a+b y_{j}+y_{j}^{2}=0$ for some $a, b \in \mathbb{Q}\left(y_{j-1}\right)$. By the previous lemma $a+b y_{j} \in \mathbb{Q}^{m} \cdot V_{j}$.

2.1 Main algorithm

We use Mathematica for running our algorithms. For details about the commands used see [9].

For running the main algorithm we need another algorithm for calculating a generator of \mathbb{Z}_{p}^{\times}. See Table 1 for its description. Table 3 has the generators for the first forty prime numbers $p \equiv 1(\bmod 4)$.

The algorithm for calculating the y_{j} is described in Table 2, and Table 4 has the results for y_{2} and y_{3} and for the first forty prime numbers $p \equiv 1(\bmod 4)$.

Table 1: Generator

```
Mathematica code
    \(p={ }^{*}\) input prime number value \({ }^{*}\);
    \(d=\) Complement[Divisors \([p-1],\{1, p-1\}]\);
    \(l=\) DivisorSigma \([0, p-1]-2\);
    For \([a=2, a<p\),
    \(b=\) Table \([\operatorname{PowerMod}[a, d[[j]], p],\{j, l\}]\);
    \(c=0\);
    \(\operatorname{Do}[\operatorname{If}[b[[j]]==1, c==0, c=c+1],\{j, l\}]\);
    \(\operatorname{IF}[c==1, g=a ; \operatorname{Print}[g] ; \operatorname{Break}[]] ; a++]\)
```

Table 2: Main Algorithm

```
\begin{tabular}{l} 
Mathematica Code \\
\hline\(p=\left({ }^{*}\right.\) Input a Prime*);
\end{tabular}
    \(g=(*\) Input a Generator*);
    \(q=p-1 ; F=\) FactorInteger \([q] ; k=\mathrm{F}[[1]][[2]] ; n=q / 2^{k} ;\)
    \(P=\operatorname{Sum}\left[\zeta^{(i-1)},\{i, p\}\right]\)
    (*Variables*)
    \(V[0]=\{1\} ; \operatorname{Do}\left[V[i]=\mathrm{Union}\left[V[i-1], V[i-1] * y e_{i}\right],\{i, k\}\right] ;\)
    (*Intermediate Field \(0<n e \leq k^{*}\) )
    \(n e=\left({ }^{*}\right.\) Number " \(\left.j " *\right) ; o[n e]=2^{k-n e} n ; n v=2^{n e}\);
    (*Galois Group*)
    \(H[n e]=\) Table[PowerMod \([g, j * q / o[n e], p],\{j, o[n e]-1\}] ;\)
    \(y_{n e}=\operatorname{Sum}\left[\zeta^{H[n e][[j]]},\{j, o[n e]\}\right] ; V[n e]\);
    Do \([v[i]=\) PolynomialRemainder \([\operatorname{Expand}[V[n e][[i]]], P, \zeta],\{i, n v\}]\);
    \(v[n v+1]=\) PolynomialRemainder \(\left[\operatorname{Expand}\left[y e[n e]^{2}\right], P, \zeta\right] ; v[n e+2]=P ;\)
    \(v v f=\) Table[Coefficient \([v[i], \zeta, j-1],\{i, n v+2\},\{j, p\}]\);
    \(v v c=\) Transpose \([v v f] ;\) coef \(=\) NullSpace \([v v c]\);
    (*Radicals expression for \(y_{n e}{ }^{*}\) )
    \(V e[0]=\{1\} ; \operatorname{Do}\left[V e[i]=\right.\) Union \(\left.\left[V e[i-1], V e[i-1] * y_{i}\right],\{i, k\}\right]\);
    \(E c[n e]=\operatorname{Sum}[\operatorname{coe} f[[1]][[i]] * V e[n e][[i]],\{i, n v\}]+\operatorname{coef}[[1]][[n v+1]] * y_{n e}^{2}\)
    \(y_{n e-1}=\left({ }^{*}\right.\) Input Previous Result*); Solve \(\left[E c[n e]==0, y_{n e}\right]\)
```


2.2 Meaning of Results on Table 4

The results for y_{2} are of the following form, with the β^{\prime} s given by Table 4.

$$
y_{2}=\frac{1}{4}\left(-1+\sqrt{p}+\sqrt{(-1)^{r} 2 p+2 \beta \sqrt{p}}\right) \text { where } r=\frac{p-1}{4} .
$$

All the results for y_{3}, with $p \equiv 1(\bmod 8)$ have a much more complicated form: The $c, c^{\prime}, c^{\prime \prime}$ are given in Table 4 and $r^{\prime}=\frac{p-1}{8}$.

Let $\rho_{1}=\sqrt{p}$ and $\rho_{2}=\sqrt{(-1)^{r} 2 p+2 \beta \sqrt{p}}$, then

$$
y_{3}=\frac{1}{8}\left(4 y_{2} \pm \sqrt{(-1)^{r^{\prime}} 4 p+4 c \rho_{1}+2 c^{\prime} \rho_{2}+2 c^{\prime \prime} \rho_{1} \rho_{2}}\right) .
$$

Table 3: Primes $p=2^{k} n+1$ with $(n, 2)=1 \&$ Generator g of \mathbb{Z}_{q}

p	k	n	g	p	k	n	g
5	2	1	2	257	8	1	3
13	2	3	2	281	3	35	3
17	4	1	3	313	3	39	10
29	2	7	2	337	4	21	10
37	2	9	2	401	4	25	3
41	3	5	6	409	3	51	21
53	2	13	2	433	4	27	5
61	2	15	2	449	6	7	3
73	3	9	5	457	3	57	13
89	3	11	3	521	3	65	3
97	5	3	5	577	6	9	5
101	2	25	2	593	4	37	3
109	2	27	6	601	3	75	7
113	4	7	3	641	7	5	3
137	3	17	3	673	5	21	5
149	2	37	2	769	8	3	11
157	2	39	5	881	4	55	3
193	6	3	5	929	5	29	3
233	3	29	3	977	4	61	3
241	4	15	7	1153	7	9	5

Table 4: Results for y_{2} and y_{3}

p	β	c	c^{\prime}	$c^{\prime \prime}$	p	β	c	c^{\prime}	$c^{\prime \prime}$
5	-1				257	-1	15	15	1
13	3				281	-5	-9	9	-1
17	-1	3	-3	-1	313	-13	5	5	-1
29	-5				337	-9	7	7	1
37	-1				401	-1	3	-3	-1
41	-5	-3	-3	-1	409	3	11	11	1
53	7				433	-17	19	-19	-1
61	-5				449	7	-21	21	-1
73	3	1	-1	1	457	-21	13	13	-1
89	-5	9	-9	1	521	11	-3	-3	-1
97	-9	-5	5	-1	577	-1	-17	-17	1
101	-1				593	23	-9	-9	1
109	3				601	-5	-23	23	1
113	7	-9	-9	1	641	-25	-21	21	-1
137	11	3	3	1	673	23	-10	10	-1
149	7				769	-25	11	-11	-1
157	11				881	-25	-9	-9	1
193	7	11	-11	-1	929	23	27	-27	-1
233	-13	-15	15	1	977	31	3	-3	-1
241	15	-13	13	-1	1153	-33	-1	-1	1

Lemma 2.2.1. Let $p \equiv 1(\bmod 4)$ be a prime. Then there is a unique pair of positive integers a, b with b odd (and hence a even) such that $p=a^{2}+b^{2}$.

Proof. For existence of integers a, b sucht that $p=a^{2}+b^{2}$ see, e.g., [8], p. 156 , or [1], pp. 17-22. It is clear that only one of them is odd.

Uniqueness: Let $R=\mathbb{Z}[i]$ the ring of gaussian integers. We will use the following three known facts: (a) R is a unique factorization domain, (b) if the for norm of $\alpha \in R$ is a rational prime, then α is irreducible in R, and (c) the units of $\mathbb{Z}[i]$ are $\pm 1, \pm i$. Hence if $\alpha=a+i b, \beta=c+i d$ and $p=a^{2}+b^{2}=c^{2}+d^{2}$, then $p=\alpha \bar{\alpha}=\beta \bar{\beta}$ with the bar indicating complex conjugation. Therefore α and β are associates, i.e., there exists a unit $u \in R$ such that $\beta=u \alpha$.

With the notations as in Table 4 and previous Lemma, we can rewrite the constants in this table as follows.
Remark 2.2.2. Let $p \leq 1153, p \equiv 1(\bmod 4)$ be a prime. Then we have:
(1) $\beta=(-1)^{\ell} b$ where $\ell=\frac{b+1}{2}$ and b as in Lemma 2.2.1.
(2) For such primes with $p \equiv 1(\bmod 8)$ we have: $c=(-1)^{r^{\prime}+s} c_{p}, c^{\prime}=$ $(-1)^{r^{\prime}+t} c_{p}$ and $c^{\prime \prime}=(-1)^{r^{\prime}-(s+t)}$, with c_{p}, s, t obtained from Table 4.

3 Conjecture statement

Now we can state the following:
Conjecture 3.0.3. Let $p=a^{2}+b^{2} \equiv 1(\bmod 4)$ be a prime where b is odd, and let K be the biquadratic p-th cyclotomic field. Then $K=\mathbb{Q}\left(y_{+}\right)=\mathbb{Q}\left(y_{-}\right)$ where

$$
y_{ \pm}=\frac{1}{4}\left(-1+\sqrt{p} \pm \sqrt{(-1)^{r} 2 p+(-1)^{\ell} 2 b \sqrt{p}}\right)
$$

with $r=(p-1) / 4$ and $\ell=(b+1) / 2$.
We can verify this conjecture in the following case:
Example 3.0.4. For $p=5$ we have

$$
y_{ \pm}=\frac{1}{4}(-1+\sqrt{5} \pm i \sqrt{10+2 \sqrt{5}})
$$

and it is easy to see by direct calculation that $y_{ \pm}$are roots of $x^{4}+x^{3}+x^{2}+$ $x+1=0$ i.e., $y_{ \pm}$are conjugates of $\zeta=e^{2 \pi i / 5}$. Then $\mathbb{Q}(\zeta)=\mathbb{Q}\left(y_{ \pm}\right)$because of the next

Proposition 3.0.5. Let p be a prime and $\zeta=e^{2 \pi i / p}$, then $\mathbb{Q}(\zeta)=\mathbb{Q}\left(\zeta^{d}\right)$ for all $d=1, \ldots, p-1$.

Proof. It is clear that $\mathbb{Q}\left(\zeta^{d}\right) \subset \mathbb{Q}(\zeta)$. Since $d<p$ we have $(d, p)=1$; this implies that there are integers k, ℓ such that $1=k d+\ell p$. Hence $\zeta=\left(\zeta^{d}\right)^{k}$, then $\mathbb{Q}(\zeta) \subset \mathbb{Q}\left(\zeta^{d}\right)$ follows.

Remark 3.0.6. Conjecture 3.0.3 implies that our algorithm can be used for finding integers a, b such that $p=a^{2}+b^{2}$. In a forthcoming paper [6] we consider another approach to study all the quadratic field extensions E / F such that $\mathbb{Q} \subset F \subset E \subset \mathbb{Q}(\zeta)$. This is a natural extension of the present paper, in a more general setting.

Acknowledgment

The results of this paper were obtained during my graduate studies at Universidad Simón Bolívar and are also contained in [5]. I would like to express deep gratitude to my supervisor Dmitry Logachëv whose guidance was crucial for the successful completion of this project.

References

[1] Aigner, M., Ziegler, G. M., Proofs from The Book (second edition), Springer-Verlag, 2000.
[2] Davenport, H., Multiplicative Number theory (second edition), SpringerVerlag, 1967.
[3] Ireland, K. and Rosen, M., A Classical Introduction to Modern Number Theory, Springer-Verlag, 1972.
[4] Lang, S., Algebraic Number Theory, Addison-Wesley, 1970.
[5] Pérez, A. A. J., Cálculo Explícito de Extensiones Policuadráticas Ciclotómicas de \mathbb{Q}, Tesis de Maestría, Universidad Simón Bolívar, 2001.
[6] Pérez, A. A. J., Equations of Polyquadratic Cyclotomics Extensions of \mathbb{Q}, in preparation.
[7] Rotman, J., Galois Theory, Springer-Verlag, 1990.
[8] Silverman, J. H., A Friendly Introduction to Number Theory, Prentice Hall, 1997.
[9] Wolfram, S., Mathematica (2nd edition), Addison-Wesley,1993.

[^0]: Received 2006/03/01. Accepted 2006/06/05.
 MSC (2000): Primary 11Y40, 13B25; Secondary 11Y16, 13B05.

