$\phi\left(\mathrm{F}_{11}\right)=88$
 Florian Luca (fluca@matmor.unam.mx)
 Instituto de Matemáticas
 Universidad Nacional Autónoma de México
 C.P. 58089, Morelia, Michoacán, México.
 Maurice Mignotte (mignotte@math.u-strasbg.fr)
 Université Louis Pasteur
 U. F. R. de mathématiques
 7, rue René Descartes
 67084 Strasbourg Cedex, France.

Abstract

Here, we show that the numbers appearing in the title give the largest solution to the Diophantine equation $$
\phi\left(F_{n}\right)=a \frac{10^{m}-1}{10-1} \quad a \in\{1, \ldots, 9\}
$$ where ϕ is the Euler function and F_{n} is the nth Fibonacci number. Key words and phrases: Fibonacci numbers, Euler's ϕ function, Diophantine equation.

Resumen

Aquí se muestra que los números que aparecen en el título dan la mayor solución a la ecuación diofántica

$$
\phi\left(F_{n}\right)=a \frac{10^{m}-1}{10-1} \quad a \in\{1, \ldots, 9\}
$$

donde ϕ es la función de Euler y F_{n} es el n-ésimo número de Fibonacci. Palabras y frases clave: número de Fibonacci, función ϕ de Euler, ecuación diofántica.

For a positive integer n let $\phi(n)$ be its Euler function. Let $\left(F_{n}\right)_{n \geq 0}$ be the Fibonacci sequence given by $F_{0}=0, F_{1}=1$ and $F_{n+2}=F_{n+1}+F_{n}$ for all $n \geq 0$. Recall that a positive integer is a rep-digit (in the decimal system) if it is of the form $a\left(10^{m}-1\right) / 9$ for some digit $a \in\{1, \ldots, 9\}$. Here, we prove the following result.

Theorem 1. The largest positive integer solution (n, m, a) of the equation

$$
\begin{equation*}
\phi\left(F_{n}\right)=a \frac{10^{m}-1}{10-1} \quad a \in\{1, \ldots, 9\} \tag{1}
\end{equation*}
$$

is $(n, m, a)=(11,2,8)$.
Proof. For a positive integer k let $\mu_{2}(k)$ be the order at which 2 divides the positive integer k. Since $\left(10^{m}-1\right) / 9$ is always odd, we get that if (n, m, a) satisfy equation (1), then

$$
\mu_{2}\left(\phi\left(F_{n}\right)\right)=\mu_{2}\left(a \frac{10^{m}-1}{9}\right)=\mu_{2}(a) \leq 3 .
$$

One checks by hand that $n=11$ gives the largest solution of equation (1) when $n \leq 24$. Assume now that $n>24$. We show that there exists a prime factor p of F_{n} such that $p \equiv 1(\bmod 4)$. Indeed, let $\left(L_{k}\right)_{k \geq 0}$ be the Lucas sequence given by $L_{0}=2, L_{1}=1$ and satisfying the same recurrence relation $L_{k+2}=L_{k+1}+L_{k}$ for all $k \geq 0$ as $\left(F_{k}\right)_{k \geq 0}$ does. It is well-known that

$$
\begin{equation*}
L_{k}^{2}-5 F_{k}^{2}=4(-1)^{k} \tag{2}
\end{equation*}
$$

If there exists a prime $r \geq 5$ dividing n, then F_{r} is odd and $F_{r} \mid F_{n}$. Let p be any prime factor of F_{r}. Reducing relation (2) with $k=r$ modulo p, we get $L_{r}^{2} \equiv-4(\bmod p)$. Since p is odd, this leads to the conclusion that -1 is a quadratic residue modulo p; hence, $p \equiv 1(\bmod 4)$. Assume now that the largest prime factor of n is ≤ 3. Note that 3^{2} does not divide n since otherwise $F_{9} \mid F_{n}$, therefore $\mu_{2}\left(\phi\left(F_{n}\right)\right) \geq \mu_{2}\left(\phi\left(F_{9}\right)\right)=\mu_{2}(\phi(34))=\mu_{2}(16)=4$, which is impossible. Finally, if $n=2^{\alpha} \cdot 3$ or $n=2^{\alpha}$, then, since $n>24$, we get that either $12 \mid n$ or $32 \mid n$; hence,

$$
\begin{gathered}
\mu_{2}\left(\phi\left(F_{n}\right)\right) \geq \min \left\{\mu_{2}\left(\phi\left(F_{12}\right)\right), \mu_{2}\left(\phi\left(F_{32}\right)\right\}=\min \left\{\mu_{2}\left(\phi\left(2^{4} \cdot 3^{2}\right)\right),\right.\right. \\
\phi(3 \cdot 7 \cdot 47 \cdot 2207)\}=4
\end{gathered}
$$

which is again impossible. Thus, we have shown that there exists a prime $p \equiv 1(\bmod 4)$ which divides F_{n}. Clearly, $p-1 \mid \phi\left(F_{n}\right)$ and so $\mu_{2}(p-1) \geq 2$.

This shows that either there exists one other odd prime factor of F_{n}, let's call it q, or p is the only odd prime factor of F_{n}.

Case 1. There exists an odd prime factor $q \neq p$ of F_{n}.
Assume that n is odd. Since n is odd, relation (2) with $k=n$ gives $L_{n}^{2}-5 F_{n}^{2}=-4$. Reducing the above equation modulo both p and q, we get that $L_{n}^{2} \equiv-4(\bmod p)$ and also $L_{n}^{2} \equiv-4(\bmod q)$. In particular, -1 is a quadratic residue modulo both p and q, which implies that both p and q are congruent to 1 modulo 4 . Since $(p-1)(q-1) \mid \phi\left(F_{n}\right)$, we get that $4 \leq \mu_{2}((p-1)(q-1)) \leq \mu_{2}\left(\phi\left(F_{n}\right)\right)$, which is a contradiction. Thus, $n=2 m$ is even. Write $F_{n}=2^{\alpha} p^{\beta} q^{\gamma}$. It is clear that $\alpha \leq 1$, for if not, then $2(p-1)(q-1) \mid$ $\phi\left(F_{n}\right)$, which leads again to the conclusion that $\mu_{2}\left(\phi\left(F_{n}\right)\right) \geq 4$. If $\alpha=1$, then $3 \mid n$. In particular, $6 \mid n$. Thus, $F_{6} \mid F_{n}$, which is impossible because $F_{6}=8=2^{3}$. Hence, $\alpha=0$. Note now that $F_{2 m}=F_{m} L_{m}$ and F_{m} and L_{m} are coprime because $L_{m}^{2}-5 F_{m}^{2}= \pm 4$ and both L_{m} and F_{m} are odd. Furthermore, it is easy to see that m is odd. Indeed, assume that $m=2 h$ is even. Then $F_{n}=F_{4 h}=F_{h} L_{h} L_{2 h}$. Relation (2) with $k=h$ together with the fact that F_{h} is odd implies that F_{h} and L_{h} are coprime. Further, $F_{h} L_{h}=F_{2 h}$, and now relation (2) with $k=2 h$ together with the fact that $F_{2 h}$ is odd gives that $F_{2 h}$ and $L_{2 h}$ are also coprime. Since $h=n / 4>6$, we get that $L_{2 h}>F_{2 h}>F_{h}>F_{6}=8$. This argument shows that F_{n} has at least three odd prime factors, and since at least one of them (namely p) is congruent to 1 modulo 4 , we get that $\mu_{2}\left(\phi\left(F_{n}\right)\right) \geq 4$, which is a contradiction. Hence, m is odd, therefore each prime factor of F_{m} is 1 modulo 4 . Since $p \equiv 1$ $(\bmod 4)$ and $q \equiv 3(\bmod 4)$, we get that $F_{m}=p^{\beta}$ and $L_{m}=q^{\gamma}$. Since $m=n / 2>12$, it follows, from the known perfect powers in the Fibonacci and Lucas sequences [1], that $\beta=\gamma=1$. Thus, $F_{n}=p q$. Since clearly $a=8$, equation (1) becomes
$8 \frac{10^{m}-1}{9}=\phi\left(F_{n}\right)=\phi(p q)=(p-1)(q-1)=p q+1-(p+q)=F_{n}+1-(p+q)$,
therefore

$$
p+q=F_{n}+1-8 \frac{10^{m}-1}{9}
$$

Since also $p q=F_{n}$, we get that p and q are the two roots of the quadratic equation

$$
x^{2}-\left(F_{n}+1-8 \frac{10^{m}-1}{9}\right) x+F_{n}=0 .
$$

In order for the last equation above to have integer solutions p and q, its discriminant Δ must be a perfect square. Computing Δ modulo 5 we imme-
diately get

$$
\begin{aligned}
\Delta & \equiv\left(F_{n}+1-8 \frac{10^{m}-1}{9}\right)^{2}-4 F_{n} \quad(\bmod 5) \\
& \equiv\left(F_{n}+1+8 \cdot 9^{-1}\right)^{2}+F_{n} \quad(\bmod 5) \\
& \equiv\left(F_{n}+3\right)^{2}+F_{n}=F_{n}^{2}+2 F_{n}+4 \quad(\bmod 5)
\end{aligned}
$$

Clearly, F_{n} is not a multiple of 5 because $n=2 m, m=n / 2>12$ and F_{m} and L_{m} are both primes (note that $F_{5}=5$). The only value of $\mathcal{i} b \in\{1,2,3,4\}$ such that $b^{2}+2 b+4$ is a perfect square modulo 5 is $b=3$. Thus, $F_{n} \equiv 3$ $(\bmod 5)$. The sequence $\left(F_{k}\right)_{k \geq 0}$ is periodic modulo 5 with period 20 and if $F_{n} \equiv 3(\bmod 5)$, then $n \equiv 4,6,7,13(\bmod 20)$. Since $n=2 m$ is even but not a multiple of 4 , we get that $n \equiv 6(\bmod 20)$. Hence, $m \equiv 3(\bmod 10)$. Both $\left(F_{k}\right)_{k \geq 0}$ and $\left(L_{k}\right)_{k \geq 0}$ are periodic modulo 11 with period 10 . Since $m \equiv 3$ $(\bmod 10)$, we get that $p=F_{m} \equiv F_{3} \equiv 2(\bmod 11)$ and $q=L_{m} \equiv L_{3} \equiv 4$ $(\bmod 11)$. Thus, $\phi\left(F_{n}\right)=(p-1)(q-1) \equiv 3(\bmod 11)$. Reducing now equation (1) modulo 11 we get

$$
3 \equiv 8\left((-1)^{m}-1\right) 9^{-1} \quad(\bmod 11),
$$

which leads to $27 \equiv 0,-16(\bmod 11)$, which is impossible. This takes care of Case 1.

Case 2. p is the only odd prime factor of F_{n}.
Write $F_{n}=2^{\alpha} p^{\beta}$. If $2 \mid F_{n}$, then $3 \mid n$. Put $n=3 m$. Then $F_{n}=F_{3 m}=$ $F_{m}\left(5 F_{m}^{2}+3\right)$. One checks easily that $\operatorname{gcd}\left(F_{m}, 5 F_{m}^{2}+3\right)=1$ or 3 . If $3 \mid F_{m}$, then $3 \neq p($ because $p \equiv 1(\bmod 4))$, so F_{n} is divisible by two distinct primes, which is a contradiction. Thus, $3 \nmid F_{m}$, therefore F_{m} and $5 F_{m}^{2}+3$ are coprime. Since $5 F_{m}^{2}+3$ is odd, we get that $p \mid 5 F_{m}^{2}+3$, which in turn leads to the conclusion that F_{m} is a power of 2 , which is impossible because $m=n / 2>12$ (the largest power of 2 in the Fibonacci sequence is $F_{6}=8$). Thus, $\alpha=0$. By the known perfect powers in the Fibonacci sequence again, we get that $\beta=1$. Hence, $F_{n}=p$, therefore $\phi\left(F_{n}\right)=p-1=F_{n}-1$. We thus get the equation

$$
F_{n}-1=a \frac{10^{m}-1}{9}
$$

Furthermore, since $F_{n}-1=p-1$ is a multiple of 4 , we get that a is a multiple of 4 . Thus, $a \in\{4,8\}$. When $a=4$, we get that

$$
F_{n}=4 \frac{10^{m}-1}{9}+1=\frac{4 \cdot 10^{m}+5}{9}
$$

is a multiple of 5 ; hence, not a prime. Thus, $a=8$. We now show that m is even. Indeed, assume that m is odd. Then $10^{m} \equiv-1(\bmod 11)$ which leads to the conclusion that the right hand side of equation (1) is congruent to 8 modulo 11. Hence, $F_{n} \equiv 9(\bmod 11)$. The period of the Fibonacci sequence $\left(F_{k}\right)_{k \geq 0}$ modulo 11 is 10 . Checking the first 10 values one concludes that there is no Fibonacci number F_{n} which is congruent to 9 modulo 11. Hence, m is even. Since $n>24$, we get that $F_{n}>10^{2}$, therefore $m \geq 3$. Rewriting equation (1) as

$$
\begin{equation*}
9 F_{n}-1=8 \cdot 10^{m} \tag{3}
\end{equation*}
$$

we get that $9 F_{n}-1 \equiv 0(\bmod 64)$. The Fibonacci sequence $\left(F_{k}\right)_{k \geq 0}$ is periodic modulo 64 with period 96 . Further, checking the first 96 values one gets that $n \equiv 14,37,59(\bmod 96)$. Since n is odd, we get that $n \equiv \pm 37(\bmod 96)$. But 96 is also the period of the Fibonacci sequence modulo 47, and if $n \equiv \pm 37$ $(\bmod 96)$, then $F_{n} \equiv 5(\bmod 47)$. Reducing now equation (3) modulo 47 we get $44 \equiv 8 \cdot 10^{m}(\bmod 47)$, which is equivalent to $29 \equiv\left(10^{m / 2}\right)^{2}(\bmod 47)$. However, this last congruence is false because 29 is not a quadratic residue modulo 47 as it can be seen since

$$
\left(\frac{29}{47}\right)=\left(\frac{47}{29}\right)=\left(\frac{18}{29}\right)=\left(\frac{2}{29}\right)=-1
$$

because $29 \equiv 5(\bmod 8)$. In the above calculations, we used $\left(\frac{p}{q}\right)$ for the Legendre symbol of p with respect to q (where $q>2$ is prime) and its elementary properties. This takes care of Case 2 and completes the proof of Theorem 1.

Remark. The argument from the beginning of the proof of Theorem 1 could be somewhat simplified using a result of McDaniel [3] who showed that if $n \notin$ $\{0,1,2,3,4,6,8,16,24,32,48\}$, then F_{n} has a prime factor which is congruent to 1 modulo 4 . Furthermore, some of the arguments from the proof could also be simplified if one appeals to the Primitive Divisor Theorem for the Fibonacci sequence [2], which says that if $n>12$, then there exists a prime factor $p \mid F_{n}$ such that $p \nmid F_{m}$ for any positive integer $m<n$. We have however preferred to give a self-contained proof of our Theorem 1 up to the knowledge of perfect powers in the Fibonacci and Lucas sequence [1]. It would be interesting to give a completely elementary proof of Theorem 1 (i.e., without appealing to the results from [1]). We could not succeed in finding such an argument and we leave this as a challenge to the reader.

References

[1] Y. Bugeaud, M. Mignotte, S. Siksek, Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers, Ann. of Math. 163 (2006), no. 3, 969-1018.
[2] R. D. Carmichael, On the numerical factors of arithmetic forms $\alpha^{n} \pm \beta^{n}$, Ann. of Math. 15 (1913), 30-70.
[3] W. McDaniel, On Fibonacci and Pell numbers of the form $k x^{2}$, The Fibonacci Quart. 40 (2002), 41-42.

