Divulgaciones Matemáticas 3(1) (1995), 23-26

An Algorithm for Extending Functions in Hypercubes

Un Algoritmo para Extender Funciones en Hipercubos

José Heber Nieto Departamento de Matemática y Computación Facultad Experimental de Ciencias Universidad del Zulia. Apartado Postal 526 Maracaibo 4001. Venezuela (jhnieto@luz.ve)

Abstract

Let $Q^n = [0,1]^n$ be the unit cube in \mathbb{R}^n and B^n its border. In this paper an algorithm is described for extending functions $f: B^n \to \mathbb{R}^k$ to the interior of the cube, preserving properties of f such as continuity and polynomial character. The results obtained comprise as special cases linear interpolation and bilinear, ruled and Coons surfaces used in computer graphics.

Key words and phrases: Function extension, polynomials, surfaces, computer graphics, CAD.

Resumen

Sea $Q^n = [0,1]^n$ el cubo unitario en \mathbb{R}^n y B^n su borde. En este artículo se describe un algoritmo para extender funciones $f : B^n \to \mathbb{R}^k$ al interior del cubo, preservando propiedades de f como la continuidad y el carácter polinomial. Los resultados obtenidos comprenden como casos especiales la interpolación lineal y las superficies bilineales, regladas y de Coons usadas en computación gráfica.

Palabras y frases clave: Extensión de funciones, polinomios, superficies, computación gráfica, CAD.

José Heber Nieto

1 Notation and terminology

Let $Q^n = [0,1]^n$ be the unit cube in \mathbb{R}^n and B^n its border, i.e. $B^n = \{(x_1,\ldots,x_n) \in \mathbb{R}^n : x_i = 1 \text{ or } x_i = 0 \text{ for some } i\}$. We say that a function $f: A \subset \mathbb{R}^n \to \mathbb{R}$ is polynomial in A if there is a polynomial $P \in \mathbb{R}[x_1,\ldots,x_n]$ whose associated function restricted to A is f. A function $f: A \to \mathbb{R}^k$ is polynomial in A if all its components are polynomial in A. For $i = 1, 2, \ldots, n$ and real a we define the projection $p_{i,a}$ from \mathbb{R}^n to the hyperplane $x_i = a$ by

$$(p_{i,a}(x))_i = a$$
 and $(p_{i,a}(x))_j = x_j$ for $j \neq i$.

2 An extension algorithm

In computer graphics it is often needed to generate surfaces with a given border. For example if $f : B^2 \to \mathbb{R}^3$ is continuous then an extension $f : Q^2 \to \mathbb{R}^3$ of f would be a parameterized surface with the curve $f(B^2)$ as border. Coons surfaces (see [1]) solve this problem. Inspired in this example we look at the general problem of extending functions $f : B^n \to \mathbb{R}^k$ to Q^n , in a simple and effectively computable way. The following algorithm constructs the extension using linear interpolation between opposite faces of the cube, combined with appropriate correction terms.

Algorithm E

Given $f: B^n \to \mathbb{R}^k$ take $f_0 = f$ and define inductively functions $f_i: B^n \to \mathbb{R}^k$ and $g_i: Q^n \to \mathbb{R}^k$ for i = 1, 2, ..., n as follows:

$$g_i(x) = (1 - x_i)f_{i-1}(p_{i,0}(x)) + x_i f_{i-1}(p_{i,1}(x)), \quad \forall x \in Q^n,$$

$$f_i(x) = f_{i-1}(x) - g_i(x), \quad \forall x \in B^n.$$

Finally put $F = \sum_{i=1}^{n} g_i$.

Proposition 1. With the above notation we have:

- (1) F is an extension of f.
- (2) If f is continuous so is F.
- (3) If f is polynomial on each face of B^n then F is polynomial on Q^n .

24

An Algorithm for Extending Functions in Hypercubes

Proof. f_1 is 0 on the faces $x_1 = 0$ and $x_1 = 1$ of Q^n . Inductively it is easily seen that f_i is 0 on the faces $x_j = 0$ and $x_j = 1$ of Q^n for $j = 1, \ldots, i$. Therefore f_n is identically 0 on B^n . Thus for all $x \in B^n$ we have

$$f(x) = f_0(x) = f_1(x) + g_1(x) = f_2(x) + g_2(x) + g_1(x) = \dots$$
$$= f_n(x) + \sum_{i=1}^n g_i(x) = F(x).$$

This proves (1). A look at Algorithm E makes (2) and (3) obvious.

Examples

For n = 1 Algorithm E simply gives:

$$F(x_1) = g_1(x_1) = (1 - x_1)f(0) + x_1f(1)$$
 (linear interpolation)

For n = 2 we have:

$$g_1(x_1, x_2) = (1 - x_1)f(0, x_2) + x_1f(1, x_2),$$

$$f_1(x_1, x_2) = f(x_1, x_2) - g_1(x_1, x_2),$$

$$g_2(x_1, x_2) = (1 - x_2)f_1(x_1, 0) + x_2f_1(x_1, 1)$$

and finally

$$F(x_1, x_2) = g_1(x_1, x_2) + g_2(x_1, x_2) = (1 - x_1)f(0, x_2) + x_1f(1, x_2) + (1 - x_2)[f(x_1, 0) - (1 - x_1)f(0, 0) - x_1f(1, 0)] + x_2[f(x_1, 1) - (1 - x_1)f(0, 1) - x_1f(1, 1)]$$

For k = 3 this is just the Coons surface with border $f(B^2)$.

Algorithm E is suitable for recursive implementation in computer languages like Pascal or C. However F may be also described combinatorially:

Proposition 2. For all $x \in Q^n$, F(x) is the sum of all the terms of the form

$$(-1)^{s+1}u_1u_2\ldots u_nf(v_1,v_2,\ldots,v_n).$$

where each u_i may be $1 - x_i$, x_i or 1 (but not all of them 1), the corresponding v_i is 0, 1 or x_i respectively and s is the number of u_i 's equal to 1. There are a total of $3^n - 1$ terms.

Proof. It is left as an exercise to the reader.

José Heber Nieto

3 Final comments

Problem E3400 of *The American Mathematical Monthly* (see [2]) asks for a polynomial extension of a real valued continuous function defined on B^2 and polynomial on each edge. Algorithm E gives a solution (with n = 2, k = 1). We sent our generalization to the editors and it is mentioned in [3], but only a solution for the special case proposed was published. Later we proposed the general problem in this journal (see [4] and [5], Problema 4) but no solutions were received.

References

- Rogers, D.F., Adams, J.A. Mathematical Elements for Computer Graphics, McGraw-Hill, New York, 1976.
- [2] Problem E3400, Amer. Math. Monthly **97** (7) (1990), p. 612.
- [3] Polynomials in computer-aided geometric design (Solution to E3400), Amer. Math. Monthly 99 (2) (1992), 170–171.
- [4] Problemas y Soluciones, Divulgaciones Matemáticas 1 (1) (1993), p. 106.
- [5] Problemas y Soluciones, Divulgaciones Matemáticas 2 (1) (1994), p. 99.

26