An Algorithm for Extending Functions in Hypercubes

Un Algoritmo para Extender Funciones en Hipercubos
José Heber Nieto
Departamento de Matemática y Computación
Facultad Experimental de Ciencias
Universidad del Zulia. Apartado Postal 526
Maracaibo 4001. Venezuela
(jhnieto@luz.ve)

Abstract

Let $Q^{n}=[0,1]^{n}$ be the unit cube in \mathbb{R}^{n} and B^{n} its border. In this paper an algorithm is described for extending functions $f: B^{n} \rightarrow \mathbb{R}^{k}$ to the interior of the cube, preserving properties of f such as continuity and polynomial character. The results obtained comprise as special cases linear interpolation and bilinear, ruled and Coons surfaces used in computer graphics. Key words and phrases: Function extension, polynomials, surfaces, computer graphics, CAD.

Resumen

Sea $Q^{n}=[0,1]^{n}$ el cubo unitario en \mathbb{R}^{n} y B^{n} su borde. En este artículo se describe un algoritmo para extender funciones f : $B^{n} \rightarrow \mathbb{R}^{k}$ al interior del cubo, preservando propiedades de f como la continuidad y el carácter polinomial. Los resultados obtenidos comprenden como casos especiales la interpolación lineal y las superficies bilineales, regladas y de Coons usadas en computación gráfica.
Palabras y frases clave: Extensión de funciones, polinomios, superficies, computación gráfica, CAD.

1 Notation and terminology

Let $Q^{n}=[0,1]^{n}$ be the unit cube in \mathbb{R}^{n} and B^{n} its border, i.e. $B^{n}=$ $\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: x_{i}=1\right.$ or $x_{i}=0$ for some $\left.i\right\}$. We say that a function $f: A \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is polynomial in A if there is a polynomial $P \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ whose associated function restricted to A is f. A function $f: A \rightarrow \mathbb{R}^{k}$ is polynomial in A if all its components are polynomial in A. For $i=1,2, \ldots, n$ and real a we define the projection $p_{i, a}$ from \mathbb{R}^{n} to the hyperplane $x_{i}=a$ by

$$
\left(p_{i, a}(x)\right)_{i}=a \quad \text { and } \quad\left(p_{i, a}(x)\right)_{j}=x_{j} \quad \text { for } j \neq i
$$

2 An extension algorithm

In computer graphics it is often needed to generate surfaces with a given border. For example if $f: B^{2} \rightarrow \mathbb{R}^{3}$ is continuous then an extension f : $Q^{2} \rightarrow \mathbb{R}^{3}$ of f would be a parameterized surface with the curve $f\left(B^{2}\right)$ as border. Coons surfaces (see [1]) solve this problem. Inspired in this example we look at the general problem of extending functions $f: B^{n} \rightarrow \mathbb{R}^{k}$ to Q^{n}, in a simple and effectively computable way. The following algorithm constructs the extension using linear interpolation between opposite faces of the cube, combined with appropriate correction terms.

Algorithm E

Given $f: B^{n} \rightarrow \mathbb{R}^{k}$ take $f_{0}=f$ and define inductively functions $f_{i}: B^{n} \rightarrow \mathbb{R}^{k}$ and $g_{i}: Q^{n} \rightarrow \mathbb{R}^{k}$ for $i=1,2, \ldots, n$ as follows:

$$
\begin{aligned}
g_{i}(x) & =\left(1-x_{i}\right) f_{i-1}\left(p_{i, 0}(x)\right)+x_{i} f_{i-1}\left(p_{i, 1}(x)\right), \quad \forall x \in Q^{n} \\
f_{i}(x) & =f_{i-1}(x)-g_{i}(x), \quad \forall x \in B^{n}
\end{aligned}
$$

Finally put $F=\sum_{i=1}^{n} g_{i}$.
Proposition 1. With the above notation we have:
(1) F is an extension of f.
(2) If f is continuous so is F.
(3) If f is polynomial on each face of B^{n} then F is polynomial on Q^{n}.

Proof. f_{1} is 0 on the faces $x_{1}=0$ and $x_{1}=1$ of Q^{n}. Inductively it is easily seen that f_{i} is 0 on the faces $x_{j}=0$ and $x_{j}=1$ of Q^{n} for $j=1, \ldots, i$. Therefore f_{n} is identically 0 on B^{n}. Thus for all $x \in B^{n}$ we have

$$
\begin{aligned}
f(x) & =f_{0}(x)=f_{1}(x)+g_{1}(x)=f_{2}(x)+g_{2}(x)+g_{1}(x)=\ldots \\
& =f_{n}(x)+\sum_{i=1}^{n} g_{i}(x)=F(x)
\end{aligned}
$$

This proves (1). A look at Algorithm E makes (2) and (3) obvious.

Examples

For $n=1$ Algorithm E simply gives:

$$
F\left(x_{1}\right)=g_{1}\left(x_{1}\right)=\left(1-x_{1}\right) f(0)+x_{1} f(1) \quad \text { (linear interpolation) }
$$

For $n=2$ we have:

$$
\begin{aligned}
g_{1}\left(x_{1}, x_{2}\right) & =\left(1-x_{1}\right) f\left(0, x_{2}\right)+x_{1} f\left(1, x_{2}\right) \\
f_{1}\left(x_{1}, x_{2}\right) & =f\left(x_{1}, x_{2}\right)-g_{1}\left(x_{1}, x_{2}\right) \\
g_{2}\left(x_{1}, x_{2}\right) & =\left(1-x_{2}\right) f_{1}\left(x_{1}, 0\right)+x_{2} f_{1}\left(x_{1}, 1\right)
\end{aligned}
$$

and finally

$$
\begin{aligned}
F\left(x_{1}, x_{2}\right)= & g_{1}\left(x_{1}, x_{2}\right)+g_{2}\left(x_{1}, x_{2}\right)=\left(1-x_{1}\right) f\left(0, x_{2}\right)+x_{1} f\left(1, x_{2}\right) \\
& +\left(1-x_{2}\right)\left[f\left(x_{1}, 0\right)-\left(1-x_{1}\right) f(0,0)-x_{1} f(1,0)\right] \\
& +x_{2}\left[f\left(x_{1}, 1\right)-\left(1-x_{1}\right) f(0,1)-x_{1} f(1,1)\right]
\end{aligned}
$$

For $k=3$ this is just the Coons surface with border $f\left(B^{2}\right)$.
Algorithm E is suitable for recursive implementation in computer languages like Pascal or C. However F may be also described combinatorially:

Proposition 2. For all $x \in Q^{n}, F(x)$ is the sum of all the terms of the form

$$
(-1)^{s+1} u_{1} u_{2} \ldots u_{n} f\left(v_{1}, v_{2}, \ldots, v_{n}\right)
$$

where each u_{i} may be $1-x_{i}, x_{i}$ or 1 (but not all of them 1), the corresponding v_{i} is 0,1 or x_{i} respectively and s is the number of u_{i} 's equal to 1 . There are a total of $3^{n}-1$ terms.

Proof. It is left as an exercise to the reader.

3 Final comments

Problem E3400 of The American Mathematical Monthly (see [2]) asks for a polynomial extension of a real valued continuous function defined on B^{2} and polynomial on each edge. Algorithm E gives a solution (with $n=2, k=1$). We sent our generalization to the editors and it is mentioned in [3], but only a solution for the special case proposed was published. Later we proposed the general problem in this journal (see [4] and [5], Problema 4) but no solutions were received.

References

[1] Rogers, D.F., Adams, J.A. Mathematical Elements for Computer Graphics, McGraw-Hill, New York, 1976.
[2] Problem E3400, Amer. Math. Monthly 97 (7) (1990), p. 612.
[3] Polynomials in computer-aided geometric design (Solution to E3400), Amer. Math. Monthly 99 (2) (1992), 170-171.
[4] Problemas y Soluciones, Divulgaciones Matemáticas 1 (1) (1993), p. 106.
[5] Problemas y Soluciones, Divulgaciones Matemáticas 2 (1) (1994), p. 99.

