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Abstract

The investigations made in the papers [1] and [2] conducted us to
consider the problem of characterizing operators of rank less than one
in a Hilbert space. The purpose of this note is to show how this problem
may be solved by characterizing the seminorms given (in a normed linear
space) by continuous linear functionals. One of our results obtained in
this respect may be described as follows: let (E, ‖.‖) be a normed linear
space over the field K = R or C, and set U := {λ ∈ K : |λ| = 1}. Then
a seminorm q on E is of the type q = |f | , for some continuous linear
functional f on E, if and only if there exists a closed subset M of E
containing 0 such that

|q(x)| = |q(y)| ⇐⇒ x ∈ Uy +M (x, y ∈ E). (*)
In connection with this result, we give some characterizations for rank
one orthogonal projections in Hilbert spaces and provide some applica-
tions to Gel’fand measures.
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Resumen

Las investigaciones realizadas en [1] y [2] nos condujeron a considerar
el problema de caracterizar los operadores de rango menor que uno
en un espacio de Hilbert. El propósito de esta nota es mostrar como
este problema puede ser resuelto caracterizando las seminormas (en
un espacio normado) dadas por funcionales lineales continuas. Uno
de nuestros resultados obtenido al respecto puede ser descripto como
sigue: Sea (E, ‖.‖) un espacio normado sobre K = R o C, y pongamos
U := {λ ∈ K : |λ| = 1}. Entonces una seminorma q sobre E es del
tipo q = |f |, para alguna funcional lineal continua f sobre E, si y sólo
si existe un subconjunto cerrado M de E que contiene al 0 y tal que

|q(x)| = |q(y)| ⇐⇒ x ∈ Uy +M (x, y ∈ E). (*)
En conexión con este resultado damos algunas caracterizaciones para las
proyecciones ortogonales de rango uno en espacios de Hilbert, y apor-
tamos algunas aplicaciones a las medidas de Gel’fand.
Palabras y frases clave: seminormas. teorema de Hahn-Banach, pa-
res de Gel’fand, medidas de Gel’fand, proyecciones ortogonales y ope-
radores de rango uno en espacios de Hilbert.

1 Introduction and statement of
the main theorem

1.1. Throughout this paper E will be a normed linear space over the field
K = R or C, endowed with a norm ‖.‖. We set U := {λ ∈ K : |λ| = 1}. We
denote by SE the set of vectors in E with norm one. The distance of a vector
x to a subset N of E is denoted by d(x,N), and the linear subspace spanned
by N is denoted by Span (N). The main result of this note is the following
theorem:

1.2. Theorem: Let q 6= 0 be seminorm on the normed linear space E. Then
the following assertions are equivalent:

(1) There exists a closed subset M of E containing 0 such that

|q(x)| = |q(y)| ⇐⇒ x ∈ Uy +M (x, y ∈ E). (*)

(2) There exists a closed linear subspace M of E such that

|q(x)| = |q(y)| ⇐⇒ x ∈ Uy +M (x, y ∈ E). (*)

(3) There exists a continuous linear functional f on E such that q = |f |.
As a consequence, if q verifies (1) then it must be continuous.
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This note is organized as follows. In the next section we give a proof of
Theorem 1.2. In the third section we discuss some characterizations of rank
one orthogonal projections in Hilbert spaces in connection to Theorem 1.2. In
the last section we gather some characterizations of Gel’fand measures. We
recall that the notion of Gel’fand measure was introduced in the papers [1]
and [2] to generalize the concept of Gel’fand pair (see for example [4]).

2 Proof of Theorem 1.2

We only have to prove (2) =⇒ (3). If (2) is true then, by property (*),
M coincides with the set {x ∈ E : q(x) = 0}. Therefore q is a continuous
seminorm. Fix x0 ∈ E \M with ‖x0‖ = 1. For each y ∈ E we can find t ≥ 0
such that

|q(y)| = |q(tx0)|.

By (*) we deduce that y ∈ Span ({x0}∪M). Hence, M is a closed hyperplane
of E. By the Hahn-Banach theorem, we can find a continuous linear functional
u on E such that

u(x0) = 1, Ker(u) = M, and ‖u‖ = frac1d(x0,M).

It follows that |u(x)| = ‖u‖ d(x,M) for all x ∈ E. Next we shall prove that the
seminorms q and d(.,M) are proportional. To this end, let σ := Sup {q(x) :
‖x‖ = 1}. Then we have 0 < σ < ∞ and for all x ∈ E and all m ∈ M, we
have the inequality

|q(x)| = |q(x−m)| ≤ σ ‖x−m‖ ,

which yields q(x) ≤ σd(x,M) for all x ∈ E. It remains to prove the inverse
inequality. Let us fix a vector x in E \M and set Ex := {y ∈ E : q(y) =
q(x)}. By assumptions, we have Ex = Ux + M . It is not hard to see that
d(x,M) = d(0, Ex).

Now, let B be the open ball having zero as centre and d(x,M) as radius.
Then, one can see easily that B ∩ Ex = ∅. Let ε be any positive number
verifying 0 < ε < σ. Then one can find a unit vector z ∈ SE such that
σ − ε ≤ q(z). Let us put

δ :=
q(x)
q(z)

, and z0 := δz.
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We see that z0 ∈ Ex and therefore z0 does not belong to the ball B, and then,
the following inequalities hold

d(x,M) = d(0, Ex) ≤ ‖z0‖ =
q(x)
q(z)

≤ q(x)
σ − ε

.

These inequalities lead us to say that σd(x,M) ≤ q(x). We conclude that
q = σd(.,M). Therefore q = |f | , where f is the continuous linear functional
given by f = σu/ ‖u‖.

3 On rank one orthogonal projections
in Hilbert spaces

Let H be a Hilbert space. Let <,> be its inner product and let ‖.‖ be
the associated norm. L(H) is the algebra of all bounded linear operators on
H. The following theorem is connected to Theorem 1.2, and provides some
characterizations for rank one orthogonal projections in L(H).

3.1. Theorem: Let A ∈ L(H) \ {0} be a hermitian operator on H, and set
P := A2/

∥∥A2
∥∥. Then the following assertions are equivalent:

(1) P is an orthogonal projection of rank one in the Hilbert space H.
(2) For each integer n ≥ 1, there exists a linear subspace Mn of H such that
{|< An(x) | x >| = |< An(y) | y >| ⇐⇒ x ∈ Uy +Mn (x, y ∈ H). (*)

(3) There exists an integer m ≥ 1 and a linear subspace Mm of H such that
|< Am(x) | x >| = |< Am(y) | y >| ⇐⇒ x ∈ Uy +Mm (x, y ∈ H). (*)

(4) There exists an integer k ≥ 1 such that Ak is a rank one operator in H.
(5) ASATA = ATASA, for all operators S, T ∈ L(H) of rank one.

Proof. The assertions (1) =⇒ (2) =⇒ (3) are straightforward. Suppose that
(3) is true. Then Mm must be equal to the set {x ∈ H :< Am(x) | x >= 0},
so that Mm is closed. Fix y ∈M⊥m with ‖y‖ = 1. For each z ∈ H, we can find
t ≥ 0 such that |< Am(z) | z >| = |< Am(ty) | ty >|. It follows from (*) that
z ∈ Span ({y} ∪Mm). We deduce that Mm has codimension one. Now for all
v ∈Mm, we have

|< Am(y) | y >| = |< Am(y + v) | y + v >|
= |< Am(y) | y > +2Re (< Am(y) | v >)| .

Hence Am(y) ∈ M⊥m = Span ({y}). We conclude that Mm coincides with the
kernel of Am. It follows that Am is a rank one operator. Hence (3) =⇒ (4) is
proved. It is clear that (4) =⇒ (5), and (5) =⇒ (1) are true.
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In connection with this result, we have the following

3.2 Proposition: Let A ∈ L(H) be an idempotent operator on H such that

(i) ‖A‖ = 1, and

(ii) ASATA = ATASA, for all operators S, T ∈ L(H) of rank one.

Then A is an orthogonal projection of rank one in the Hilbert space H.

Proof. One has only to prove that A = A∗. Condition (ii) implies that A
is a rank one operator. Thus we get A = Eξ,η, for some vectors ξ, η ∈
H \ {0}, where Eξ,η(v) :=< v | η > ξ, (∀v ∈ H). Condition (i) implies
that 1 = ‖ξ‖ ‖η‖. One can write in a unique manner η = aξ + η0, where
a = 1/ ‖ξ‖2 and η0 is the vector verifying < ξ | η0 >= 0. Therefore we obtain
1 = ‖ξ‖2 ‖η‖2 = ‖ξ‖2 [a2 ‖ξ‖2 + ‖η0‖2] = 1 + ‖ξ‖2 ‖η0‖2 , which gives η0 = 0,
and A = 1

‖ξ‖2Eξ,ξ = A∗.

4 Applications to Harmonic Analysis

4.1 In all this section G is a topological locally compact group (not necessarily
unimodular) endowed with a fixed left Haar measure dx, and modulus function
∆. The algebra of all regular and bounded measures on G will be denoted by
M1(G). We denote by L1(G) the *-Banach algebra of (all class of complex)
integrable functions on G. For any function f on G, we set Lxf(y) := f(x−1y)
and Rxf(y) := f(yx), (x, y ∈ G).

4.2 Let µ ∈ M1(G) \ {0} be a fixed measure such that µ = µ ∗ µ = µ∗. We
put fµ := µ ∗ f ∗ µ, ∀f ∈ L1(G), and set Lµ1 (G) := µ ∗ L1(G) ∗ µ = {fµ :
f ∈ L1(G)}. It is a closed subalgebra of the *-Banach algebra L1(G). We
recall, (see [1] and [2]), that µ is a Gel’fand measure, if Lµ1 (G) is commutative
(under the convolution). When µ = dk is the normalized Haar measure of a
compact soubgroup k of G, then (G,K) is a Gel’fand pair, (see [4]), if and
only if dk is a Gel’fand measure. We denote by Ĝ the set of all (classes of)
continuous, unitary and irreducible representations of G (see for example [5]
and [6]). We recall that for each representation π ∈ Ĝ in the Hilbert space
Hπ, the operator π(µ) is defined by

< π(µ)v | w >:=
∫
G

< π(t)v | w > dµ(t), (v, w ∈ Hπ).

The previous sections could be used to provide new characterizations for
Gel’fand measures. More precisely, we have the following
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4.3 Theorem: Let G be topological locally compact group, and let µ ∈M1(G)\
{0} be a fixed measure such that µ = µ∗µ = µ∗. Then the following assertions
are equivalent:

(1) µ is a Gel’fand measure.

(2) π(µ) has rank ≤ 1, for all π ∈ Ĝ.

(3) The linear space π(Lµ1 (G)) has dimension ≤ 1, for all π ∈ Ĝ.

(4) The linear space π(Mµ
1 (G)) has dimension ≤ 1, for all π ∈ Ĝ.

(5) The algebra Mµ
1 (G) is commutative.

(6) [L(x)f ]µ = ∆(x−1)[R(x−1)f ]µ, for every f ∈ Lµ1 (G) and all x ∈ G.

(7) For every representation π ∈ Ĝ, in the Hilbert space Hπ, there exists a
linear subspace Mπ of Hπ such that
|< π(µ)(x) | x >| = |< π(µ)(y) | y >| ⇐⇒ x ∈ Uy+Mπ, (x, y ∈ Hπ) (*)

(8) For every representation π ∈ Ĝ, in the Hilbert space Hπ, there exists a
subset Mπ containing zero such that
|< π(µ)(x) | x >| = |< π(µ)(y) | y >| ⇐⇒ x ∈ Uy+Mπ, (x, y ∈ Hπ) (*)

(9) π(µ)Sπ(µ)Tπ(µ) = π(µ)Tπ(µ)Sπ(µ), for every representation π ∈ Ĝ, in
the Hilbert space Hπ, and all operators S, T ∈ L(Hπ) of rank one.

Proof. The equivalence between the assertions (1), (2), (3), (4) and (5) is
proved in [1] and [2]. The equivalence between the assertions (7), (8) and (9)
is a consequence from sections one, two and three. The equivalence between
the assertions (1) and (6) is a consequence of a density argument and the
following identities:

f ∗ µ ∗ δx ∗ µ = ∆(x−1)[R(x−1)(f ∗ µ)] ∗ µ,
µ ∗ δx ∗ µ ∗ f = µ ∗ [L(x)(µ ∗ f)],

valid for all f ∈ L1(G) and all x ∈ G, where δx designates the Dirac measure
concentrated at the point x.
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