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Abstract. The close relationship between the theory of quadratic
forms and distance analysis has been known for centuries, and the the-
ory of metric spaces that formalizes distance analysis and was devel-
oped over the last century, has obvious strong relations to quadratic-
form theory. In contrast, the first paper that studied metric spaces as
such – without trying to study their embeddability into any one of the
standard metric spaces nor looking at them as mere ‘presentations’ of
the underlying topological space – was, to our knowledge, written in
the late sixties by John Isbell. In particular, Isbell showed that in the
category whose objects are metric spaces and whose morphisms are
non-expansive maps, a unique injective hull exists for every object, he
provided an explicit construction of this hull, and he noted that, at
least for finite spaces, it comes endowed with an intrinsic polytopal
cell structure.

In this paper, we discuss Isbell’s construction, we summarize the his-
tory of — and some basic questions studied in — phylogenetic analysis,
and we explain why and how these two topics are related to each other.
Finally, we just mention in passing some intriguing analogies between,
on the one hand, a certain stratification of the cone of all metrics de-
fined on a finite set X that is based on the combinatorial properties of
the polytopal cell structure of Isbell’s injective hulls and, on the other,
various stratifications of the cone of positive semi-definite quadratic
forms defined on Rn that were introduced by the Russian school in
the context of reduction theory.
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1 Introduction

The close relationship between distance analysis and quadratic-form theory
was known already in pre-Pythagorean times: A ceramic slab found in the
near east, for instance, presents the triples of integers 3,4,5; 5,12,13; 7,24,25; ...
and it is very likely that these integers were of interest to Babylonean builders
as they allowed to build walls at right angles without any particular tool except
a long string with 12 = 3+4+5 or 30 = 5+12+13 or ... equidistant nodes (see
Figure 1).
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Figure 1: The figure shows how a wall can be built at a right angle with a
string of length 12.

The Pythagorean Theorem puts this knowledge into more formal terms. And
since then, the analysis of distance relationships has always been closely
intertwined with that of quadratic forms. The development of differential
geometry since Gauss as well as the development of geometric algebra in the
19th century — culminating in the definition of Clifford and Cayley algebras
and Hamilton’s definition of quarternian fields — clearly testifies to this fact.

In the early 20th century, attempts to develop appropriate conceptual frame-
works for dealing with topological phenomena led Frechet to the definition
of metric spaces. While this caused most mathematicians to think of metric
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spaces as just a rather convenient tool to define and to deal with topological
spaces, a few began to study metric spaces for their own sake. Menger and
Blumenthal in particular began developing distance geometry providing and
investigating necessary and sufficient conditions for a given metric space to be
isometrically embeddable into standard metric spaces, e.g. the n-dimensional
Euclidean or some hyperbolic, elliptic, or Lp space — rediscovering, by the way,
an important result of Cayley’s regarding the significance of the now famous
Cayley-Menger determinants in this context3. While, at their time, this effort
did not stimulate much of a response among their fellow mathematicians, it
turned out to be crucial later on for developing algorithms that would identify
the spatial structure of proteins from two-dimensional NMR data (cf. [7]).

2 John Isbell’s Contribution

Perhaps the first paper that studied metric spaces as such – without trying to
study their embeddability into standard metric spaces nor looking at them as
mere ‘presentations’ of the underlying topological space – was, to our knowl-
edge, written in the late sixties by John Isbell (cf. [23]). Trying to capture the
decisive aspects of distance relationships, he proposed to define the category of
metric spaces as follows: Its objects — for sure — are the metric spaces. But,
noting that

• using continuous maps as morphisms would create too flexible a category,
overemphasizing the topological aspects and neglecting the true metric
structure (e.g. any bijection between two finite metric spaces would then
be an isomorphism)

while

• using isometries only would result in too rigid a category without enough
morphisms,

he proposed to use the non-expansive maps from a metric space A into a metric
space B as the set of morphisms from A to B, that is, those maps f : A→ B
for which the distance in B between the image f(a) and f(a′) of two points
a and a′ from A never exceeds their distance in A (or, in other words, the
continuous maps from A to B for which the Weierstrass δ can always be chosen
to be equal to the Weierstrass ε).

Isbell then went on to show that a unique injective hull exists in this category
for every one of its objects, providing an explicit construction of this hull for
all spaces and noting that it comes endowed, at least for finite spaces, with an

3Actually, Cayley’s original paper dealing with these determinants was the first to intro-
duce the present notation for determinants.
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intrinsic polytopal structure.

More precisely, Isbell presented the following intriguing observations:

(i) There exist injective metric spaces, that is, metric spaces X = (X, d) =
(X, d : X×X → R) such that, for every isometric embedding α : X ↪→ X ′

of (X, d) into another metric space (X ′, d′), there exists a non-expansive
retract α′ : X ′ → X, that is, a non-expansive map α′ from X ′ into X
with α′ ◦ α = IdX .

(ii) Every metric space (X, d) can be embedded isometrically into an injective

metric space (X̂, d̂).

(iii) Given any such isometric embedding α : X ↪→ X̂ of a metric space (X, d)

into an injective metric space (X̂, d̂), there exists a unique smallest injec-

tive subspace (X̄, d̄) of (X̂, d̂) containing α(X). This subspace depends
– up to isometry – only on (X, d):

• The map

X̄ → RX : x̄ 7→ (hx̄ : X → R : x 7→ d̄(α(x), x̄))

is easily seen to define an isometric embedding of X̄ into the set RX

of all maps from X into R endowed with the supremum norm (or
l∞metric)

||f, g||∞ := sup(|f(x)− g(x)| : x ∈ X) (f, g ∈ RX).

• And its image consists exactly of all those maps f ∈ RX that satisfy
the condition

f(x) = sup(d(x, y)− f(y) : y ∈ X)

for all x ∈ X}.

In [9], this subset of RX has also been called the tight span T (X, d) of
(X, d) — a tradition that we will follow is in this paper, too.

(iv) In addition, the above embedding identifies X with the set

{hx : X → R : y 7→ d(y, x) : x ∈ X}

and, hence, with the subset

T 0(X, d) := {f ∈ T (X, d) : 0 ∈ f(X)}

of T (X, d).
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(v) The above definition/construction of T (X, d) identifies it with a subset
of the convex set

P (X, d) := {f ∈ RX : f(x) + f(y) ≥ d(x, y) for all x, y ∈ X},

more precisely, it identifies it with the set of all minimal maps in P (X, d)
(relative to the partial order P (X, d) inherits from the partial order of
RX defined, as usual, by f ≤ g ⇐⇒ f(x) ≤ g(x) for all x ∈ X). Thus, it
consists of a locally finite collection of (low-dimensional) faces of P (X, d)
whenever this convex set is actually a convex polytope (i.e. determined
by a ‘locally finite’ collection of half spaces) which is surely the case if X
itself is finite.

(v) T (X, d) is always contractible. More precisely, there exists always a con-
tinuous family ft (t ∈ [0, 1]) of non-expansive maps

ft : T (X, d)→ T (X, d)

with f0 = IdT (X,d) and #f1(T (X, d)) = 1.

Although these notions may appear to be somewhat strange at first, the tight
span of small metric spaces (X, d) can be described in simple geometric terms
as follows: In case X consists of just two points of distance c, its tight span
is exactly the interval of length c, its end points being just the two points
from X (thus the name “tight span”). In case X consists of just three points
of distance c1, c2, c3, its tight span is the union of three intervals of length
(c1+c2−c3)/2, (c1+c3−c2)/2, and (c2+c3−c1)/2, respectively, all identified
at one end point while the other three end points are the three points from X.
In Figure 2, we picture the tight span of a generic 4-point metric space:
In general, the tight span of a finite metric space (X, d) coincides exactly with
the union of all compact faces of the polytope P (X, d). Using this fact, it is
possible to determine the polytopal structure of the tight span for a generic
metric space of cardinality up to 5, cf. [9]. For finite metric spaces of larger
cardinality, it is also possible in principle to determine their tight span, though
it can be a tricky combinatorial problem to do this explicitly for any particular
given metric space (see e.g.[11, 20]).
It is worthwhile to note that Isbell’s construction does not really need a metric
d to perform its task. It also works just as well for every map D from the set
Pfin(X) of all finite subsets of a set X into R := R ∪ {−∞} (rather than only
the map D = Dd : Pfin(X)→ R defined by D(Y ) := d(x, y) in case Y = {x, y}
for some x, y in X, and D(Y ) := −∞ else): Indeed, if such a map D is given,
we may define

P (X,D) := {f ∈ RX :
∑

x∈Y

f(x) ≥ D(Y ) for all Y ∈ Pfin(X)}

and
T (X,D) :=
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Figure 2: The tight span of a generic metric d on the set {u, v, w, y} for which
d(u,w) + d(v, y) is the largest of the three sums d(u,w) + d(v, y), d(u, v) +
d(w, y), and d(u, y) + d(v, w); it consists of eight 0-cells, eight 1-cells, and one
2-cell.

{f ∈ RX : f(x) = sup(D(Y ∪ {x})−
∑

y∈Y

f(y)) for all Y ∈ Pfin(X − {x})}

just as before (so that P (X,Dd) = P (X, d) and T (X,Dd) = T (X, d) holds for
every metric d and the map Dd associated with it according to the definition
above). It is then not too difficult to establish, in this much more general
setting, most of the results collected above in the special case considered
originally by John Isbell.

Perhaps a bit surprisingly, this generalization can be used to construct affine
buildings of GL-type. Assume that K is field with a valuation

val : K → R

that satisfies the usual conditions

(i) val(x) = −∞ ⇐⇒ x = 0,

(ii) val(xy) = val(x) + val(y),

(iii) val(x+ y) ≤ max(val(x), val(y))

for all x, y ∈ K and consider, for some natural number n, the set X := Kn and
the map D : Pfin(X)→ R defined by

D(Y ) := val(det(x1, ..., xn))

if Y = {x1, ..., xn} and n = #Y , and

D(Y ) = −∞
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else (Y ∈ Pfin(X)). Then, it is easily seen that T (X,D) coincides — together
with its induced polytopal structure – with the affine building associated with
GL(n,K) provided the valuation in question is discrete while, in general,
it provides at least a useful generalization that should also coincide with
generalizations proposed so far for non-discrete valuations [15].

We expect that, in addition, the following example is of relevance in the context
of symplectic and orthogonal groups: Let X be any vector space over K on
which a sesqui-linear form 〈 · | · 〉 from X×X into K is defined and assume that
〈 · | · 〉 is also “almost symmetric” (i.e. that 〈x | y 〉 = 0 ⇐⇒ 〈 y |x 〉 = 0 holds
for all x, y in X). It is then easy to see that the map D defined by

D(Y ) := val(det(〈xi|xj〉)i,j=1,... ,n)

if Y = {x1, . . . , xn} and n = #Y holds, defines indeed a well-defined map from
Pfin(X) into R to which Isbell’s construction can be applied. We have not yet
checked, but expect T (X,D) to coincide with the corresponding affine building
of the symplectic group Sp(2n,K) if X is of dimension 2n and the form 〈 · | · 〉 is
non degenerate and skew-symmetric. We are not so sure about what happens
in case 〈 · | · 〉 is non degenerate and symmetric. But we know, of course, that
Isbell’s construction at least provides in any case a nice contractible space on
which the symmetry group of (X, 〈 · | · 〉) acts in a canonical fashion (cf. [9]).

3 Phylogenetic Analysis

Isbell’s construction was rediscovered in 1982 (see [9]) when the process of
(re)constructing phylogenetic trees from distance data was scrutinized to
develop methods for checking the suitability of data for and to improve the
reliability of phylogenetic analysis (and, curiously enough, it was rediscovered
again in 1994 in a completely different context, cf. [6]).

The goal of phylogenetic analysis is to derive a complete, consistent and,
hopefully, true picture of the evolutionary branching process that produced
a class of present — and, sometimes also some extinct — species from their
last common ancestor, e.g. the evolution of all the various forms of tetrapodes
from the first amphibia-like beings crawling out of the sea around 400 million
years ago.

The first such phylogenetic tree encompassing all plant and animal kingdoms
then known was constructed in 1866 (see Figure 3) just seven years after the
publication, in 1859, of Charles Darwin’s (1809-1882) The Origin of Species4

by the German biologist Ernst Haeckel (1834-1919), the most ardent supporter
of Darwin in that time in Germany. While Darwin never made much effort

4 or, more correctly, On the Origin of Species by Means of Natural Selection, or the

Preservation of Favored Races in the Struggle for Life
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to construct phylogenetic trees explicitly (even though he was, of course, fully
aware that his theory implies the existence of such a tree and remarked “As
we have no record of the lines of descent, the pedigree can be discovered only
by observing the degrees of resemblance between the beings which are to be
classed”), it was not too difficult for Ernst Haeckel to design his tree. All he
had to do was to give a Darwinian dynamic interpretation of the static systems
previously put forward (in form of tableaux) by Carolus Linnaeus (1707-1778),
Georges Cuvier (1769-1832) and others.

Linnaeus had become famous very early in his life for his analysis of gender in
plants, thus recognizing an amazing universality of certain basic laws of life in
the then known living world. In his Systema Naturae, Sive Regna Tria Naturae
Systematice Proposita5, published in 1735 in Leiden, Linnaeus followed the
most rigorous scientific traditions of his time. These had been established by
John Ray (1628-1705) in his writings since 1660, culminating in his Methodus
Plantorum Nova from 1682 and his posthumously published Synopsis Avium
et Piscium from 1713. Ray was probably the first scientist to recognize and to
conceptualize the invariance of species as the fundamental basis of life science.
Linnaeus followed Ray’s insights and constructed a whole binary hierarchy of
phyla, kingdoms, genera, families, subfamilies etc. to classify biological species
according to their intrinsic similarities.

These ideas were then taken up by scientists like August Quirinus Rivinus
(1652-1723) in Germany and Joseph Pitton de Tournefort (1656-1708) in
France as well as, a little later, by Linnaeus in Sweden. Like Ray, Linnaeus
insisted that the living world (except for a few species doomed by the great
deluge and documented in the fossil record) had been created in that very
order in which it presents itself to us today and that the task of taxonomy
was to search for a “natural system” that would reflect the Divine Order of
creation. Darwin’s ideas allowed to reinterpret Linnaeus’ classes as clades,
i.e. as collections of all those species derived from one common ancestor. Thus,
the static Linnaean system could immediately be transformed into Haeckel’s
dynamic tree.

However, there are always many details in such trees that are hotly debated,
and the evidence that can be used for tree (re)construction is often scarce,
inconsistent and contradictory. For instance, it is not yet fully known whether
the monotremata— the Australian duck-billed platypus and the spiny anteaters
(echidna aculeata and echidna Bruynii) — are more closely related to the mar-
supalia (opossums, kangaroos, etc.) than to us (the placental mammals or
eutheria) or whether, the third alternative, the placental mammals and the
marsupalia are more closely related to each other than both are to the platypus
and the echidnas (even though the most recent molecular data appears to sup-

5The System of Nature, or the Three Kingdoms of Nature Presented Systematically
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Figure 3: Haeckel’s tree of life (1866).
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port the first alternative). And even less clear are at present the phylogenetic
relationships among the various groups of placental mammals (cf. [28] and
also http://phylogeny.arizona.edu/tree for fascinating up to date information
regarding the present view of Haeckel’s Tree of Life6).

Consequently, biologists have always been looking for further evidence – in
addition to morphological evidence, from all parts of the organism in all stages
of its development, and metabolic peculiarities – on which phylogenetic con-
clusions could be based. So, when the amino acid sequence of closely related
proteins from distinct species (and encoded by related though not identical
genes all supposedly derived from one common ancestral gene by accumulating
successive mutations) became known in sufficient abundance in the late 1960’s,
some biologists realized quickly that such documents of molecular evolution
might provide the most convincing evidence on which to build phylogenetic
trees.

The first paper exploiting this idea that appeared in Science was written by
Walter Fitch and Emanuel Margoliash almost thirty five years ago. It was
entitled simply Construction of Phylogenetic Trees (cf. [19]) and it caused a
revolution in taxonomy. It used the amino acid sequences of cytochrom C, a
protein of decisive importance in oxygen metabolism in all eucariots, derived
from more than 20 species from all eucariot kingdoms. Fitch and Margoliash
estimated the genetic distance d(S1, S2) between any two of these sequences
S1 and S2 in terms of the easily computed number of mismatches between S1

and S2 relative to a multiple alignment of all of the sequences in question that
had been constructed simply by hand — in this specific case a comparatively
simple task in view of the large overall similarity of the sequences.
They then constructed their tree automatically by employing the following very
simple standard algorithm from cluster-analysis textbooks:
Given a finite set X together with a symmetric map d from X × X into R,
one defines the set V (X, d) of nodes of the tree TF&M (X, d) to be constructed
to consist of those subsets Y of X that constitute, for some real number c,
a connected component of the graph Γc := (X,Ec) whose vertex set is the
given set X and whose edges consist of all pairs of elements x, y from X with
d(x, y) ≤ c. And two such nodes Y1, Y2 are connected by an edge if and only
if Y1 ⊂ Y2 holds and there is no Y in V (X, d) with Y1 ⊂ Y ⊂ Y2 — or,
equivalently, if #{Y ∈ V (X, d) : Y1 ⊆ Y ⊆ Y2} = 2 holds.
At that time, most taxonomists were appalled by this approach. The definitive
result of a scholar’s whole life of research could apparently now be produced
in less than a minute by an insightless machine. Others, impressed by the
obvious potential of this new approach (which had almost simultaneously also
been conceived independently by at least one further research group) took

6Or just visit the American Museum of Natural History in New York where the fourth
floor has been devoted to actually spreading out all along the floor our present version (or
vision?) of that tree!
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immediately to the road to visit the authors of that paper.

Today, essentially every paper dealing with phylogenetics offers trees produced
automatically from sequence data by appropriate computer programs. It also
became obvious in the mean time that such trees are not the end of scientific
investigation in taxonomy. Rather to the contrary, it needs the full knowledge
and expertise of experienced scientists to discuss the computer-generated trees
and to point out their weak as well as their strong points.

Clearly, the obvious idea any tree-reconstruction algorithm must use is that,
given any three sequences that have been derived by the process of replication,
mutation, and selection from one common ancestral sequence, the last com-
mon ancestral sequence of the two more similar among those three sequences
should have existed later than the last common ancestral sequence of all three
sequences. This suggests the following tree-construction algorithm: First,
identify each sequence S from the set X of sequences in question with the
corresponding one-element clade {S} consisting of S, only. Then, using any
appropriately defined dissimilarity measure d : X ×X → R (e.g. the mismatch
or Hamming distance employed by Fitch and Margoliash), search for those two
sequences S1, S2 that have minimal dissimilarity and, supposing that no other
sequence in X can be an offspring of the last common ancestral sequence of
S1 and S2, fuse S1 and S2 into one larger d-clade {S1} ∪ {S2}. Then replace
the set X by a smaller set X ′ representing all maximal, presently identified
(d-)clades (that is, the one d-clade of cardinality 2 and the additional, not yet
processed single-element clades at that stage) and define a new dissimilarity
measure on those clades by defining the distance d(Y1, Y2) of any two such
clades Y1, Y2 to be some function of the dissimilarities d(y1, y2) with y1 ∈ Y1
and y2 ∈ Y2. And then, repeat the above process to identify the next two
clades that are to be fused into one new, larger d-clade, and so on. Obviously,
if d(Y1, Y2) is defined by d(Y1, Y2) := min{d(y1, y2)|y1 ∈ Y1, y2 ∈ Y2} for any
two d-clades Y1, Y2, this will lead exactly to the tree TF&M (X, d) described
above.

However, this procedure is obviously bound to make mistakes: Assume, we
have four sequences S1, S2, S3, S4 and that, during the evolution of those four
sequences from their common ancestor sequence S, there were first two distinct
offsprings sequences S′, S′′ of S so that S1 and S2 were later derived from S′

and S3 and S4 from S′′. Assume furthermore that S1 remained very similar
to S′ and S3 remained very similar to S′′ and S2 as well as S4 diverged very
far from their respective ancestor sequences. Then, the above algorithm will
inevitably form a wrong clade {S1, S3} (see Figure 4).

Many algorithms have therefore been designed to deal with this particular
problem. And quite a few of them accept the dissimilarities computed from
the input sequences as a starting point, yet they search for a tree that provides
the best global approximation of the given dissimilarity pattern, i.e. a tree
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S

S S42

S’ S’’

1S 3S

Figure 4: As explained in the text, the incorrect clade {S1, S3} is formed by
the agglomeration algorithm and the ’true topology’ of the tree is not found.

whose leaves are labeled by the elements from X, and to whose branches
appropriate edge lengths are attached so that the resulting induced tree metric
(that associates to any pair of elements x, y from X the total length of the
unique path from the two leaves labeled with x and y) matches the given
dissimilarities in toto as closely as possible.

To imagine the task one has to perform using the approach it is worthwhile to
observe that the space of all possible dissimilarities that can be defined on an
n-set X has dimension

(

n
2

)

while the subspace of tree-like dissimilarities that
can be defined on X has dimension 2n − 3 (the maximal number of branches
in a tree with n leaves) and forms a rather complex low-dimensional network
of large codimension

(

n
2

)

− 2n+3 within this cone. Consequently, while trying
to identify the best global ‘tree-like’ approximation of the given dissimilarity
pattern, there may be many rather distinct, yet essentially equally good
tree-like approximations to a given arbitrary dissimilarity d and to find the
best one will naturally be very hard (e.g. the tree-like dissimilarities form a
space of dimension 17 and, hence, of codimension 28 in the 45-dimensional
space of all dissimilarities that can be defined on a set of 10 points — so its
much worse than looking for a needle in the hay stack, a codimension 2 (or, at
most, 3) problem — or than trying to find the closest river mouth to a given
point on earth).
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4 Tree Reconstruction and the Tight Span

Nevertheless, this approach suggests a number of interesting, purely mathe-
matical questions which to pursue might still be helpful in this context: E.g., it
leads to the question which dissimilarities are tree like dissimilarities, i.e. which
dissimilarities would fit exactly into a tree, and whether that tree would be
completely determined by those dissimilarities. Fortunately, these two ques-
tions have simple answers that have been discovered in the sixties and seventies
of the last century independently by various mathematicians (cf. [5, 29, 30]):

(i) A dissimilarity d is tree like if and only if

d(x, y) + d(u, v) ≤ max{d(x, u) + d(y, v), d(x, v) + d(y, u)}

holds for all x, y, u, v from X.

(ii) If this condition is fulfilled, there is only one tree that fits the given
dissimilarity (up to isomorphism, and except for additional branches not
involved with the given data).

Remarkably, once we define a metric on all points of that tree (whether a
branching point, an end point, or just a point somewhere on some branch) by
associating again to any two such points x, y the total length of the unique
path from x to y, the resulting metric space, necessarily an R−tree (by the
very definition of R−trees) actually coincides with the injective hull of the
metric defined on its leaves. This establishes not only the uniqueness of the
tree in question; it can also be used to study the structure of that tree in
terms of the metric defined on its leaves. More importantly, it suggests to use
the injective hull in any case, whether or not the input dissimilarities satisfy
the above four-point condition, as a good substitute for the tree in question
— at least, it is always simply connected (though not always of dimension one).

In particular, if there exists some subset K of small diameter within this
injective hull T not containing any leaf, yet such that its complement T −K
has several connected components, the (labels of the) leaves in at least all but
one of these components have a good chance to form one of those clades within
X that phylogenetic analysis is designed to find.

It was exactly this observation which lead to the rediscovery of Isbell’s
construction in 1982 mentioned above. And it also motivated and initi-
ated many further investigations regarding the structure of injective metric
spaces and their relevance in phylogenetic analysis (cf. [10, 11, 13, 14]).
In particular, the analysis of injective hulls of finite metric spaces made it
obvious that the injective hull of a sum d = d1 + d2 + . . . + dk of k metrics
d1, d2, . . . , dk defined on a finite set X is closely related to that of the sum-
mands d1, d2, . . . , dk provided these metrics form a coherent decomposition
of the metric d, i.e. provided there exist, for every map f : X → R with
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f(x) + f(y) ≥ d1(x, y) + d2(x, y) + . . . + dk(x, y) for all x, y ∈ X, some maps
f1, f2, . . . , fk : X → R such that fi(x) + fi(y) ≥ di(x, y) holds for all x, y ∈ X
and for all i = 1, 2, . . . , k (cf. [2, 24, 25, 26]).

Moreover, defining a metric d to be

- a split — or a cut — metric if there are exactly two subsets of X in the
set X/d of equivalence classes of elements of X relative to the equivalence
relation ' defined on X by x ' y ⇔ d(x, y) = 0, and

- a split-prime metric if it cannot be decomposed into a coherent sum of a
split metric and another metric,

it could be shown that

- every metric d defined on a finite set X has a unique coherent decompo-
sition — also called the canonical split decomposition of d — into a sum
d = d1 + d2 + . . .+ dk + d0 of pairwise linearly independent split metrics
d1, d2, . . . , dk and a split-prime metric d0 (possibly the 0-metric),

- the metrics d1, d2, . . . , dk occurring in this decomposition are always lin-
early independent (as elements in the vector space of all maps from X×X
into R) — and so are d1, d2, . . . , dk, d0 if d0 6= 0 holds,

- the metrics d1, d2, . . . , dk occurring in this decomposition are – up to
scaling – exactly those split metrics d′ defined on X for which d − d′ is
also a metric and the two metrics d′, d−d′ form a coherent decomposition
of d,

- if d is a tree-like metric, then the split-prime metric d0 in the correspond-
ing canonical coherent decomposition d = d1 + d2 + . . . + dk + d0 of d
into a sum of pairwise linearly independent split metrics d1, d2, . . . , dk

and a split-prime metric d0 vanishes while the split metrics d1, d2, . . . , dk

correspond in a one-to-one fashion to the branches of the associated tree
(cf. Figure 5).

This was of considerable interest within the context of phylogenetic analysis:
If a split metric d′ occurs as a summand in a coherent component of a metric
d derived from a family of phylogenetically related sequences, there is a good
chance that at least one of the two equivalence classes in X/d′ is one of those
clades within X that we want to find.

In particular, given any metric d defined on a set X of cardinality n, the linear
independence of the split metrics occurring in the canonical decomposition of
d implies that there exist, up to scaling, at most

(

n
2

)

split metrics d′ such that
(i) d − d′ is also a metric and (ii) the two metrics d′, d − d′ are coherent, –
clearly too many to fit into a tree (because a tree with n leaves has at most
2n − 3 edges), but surely much less than 2n−1 − 1, the number of all split
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1

2
3

4

5

d’

Figure 5: A tree with leaves labeled by the finite set {1, 2, 3, 4, 5}. The branch
separating the vertices 1, 2 from the vertices 3, 4, 5 corresponds to a split metric
d′ with X/d′ = {{1, 2}, {3, 4, 5}}.

metrics that, up to scaling, can be defined on an n-set.

In addition, it might even be helpful when analyzing a given data set to realize
that several competing evolutionary interpretations of the data are possible
(as indicated by the existence of two split metrics d′, d′′ in the canonical
decomposition of d for which #(X/(d′+ d′′)) = 4 holds) or that, at least, some
additional feature (e.g. some sort of convergence) might be present in the data.

Consequently, algorithms were developed to compute, given any metric D,
all split metrics d for which the above conditions are fulfilled as well as to
visualize the resulting split network (cf. [3, 12, 22]). The resulting SplitsTree
program has proven useful in diverse phylogenetic applications. Moreover, as
Figure 6 shows, it can as well be applied to all sorts of distance data: The split
networks in Figure 6(left) was computed for the distances between the towns
of Wellington on the North Island, and Christchurch, Greymouth etc. on the
South Island of New Zealand that were taken from a mileage chart. If one
compares this graph with a map of New Zealand a good correlation between
the distribution of vertices and the geographical locations of the towns is
observed. It has also been applied to analyze the perceived similarity of colors
and — in stemmatology — the “kinship” relations between the various hand-
written versions of Chaucer’s Canterbury tales written by Geoffrey Chaucer
about 100 years before book printing was invented (in central Europe) (cf. [4]).

These examples illustrate that split networks can give meaningful represen-
tations of data even if they are not necessarily tree-like in character. Within
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Title: C2_32_rem.nex
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24/15
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24/34

24/6,24/13
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24/14
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24/1

204/2

204/10

204/13,204/3

0.01

Figure 6: Split networks for a mileage chart of New Zealand (left) and a
hepatitis C virus data set (right).

biology, non tree-like distances often arise when analyzing viral data sets, a
phenomenon that is probably caused by more complex evolutionary processes
such as recombination. In Figure 6 (right), we present a split network that
was computed for a hepatitis C data set which was presented in [1]. In this
graph, a complex relationship between various viral sequences (represented by
the labeled vertices) is observed. However, there is a clear separation between
the three sets of vertices labeled with prefixes 204, 77, and 24, and indeed
this reflects the fact that the viruses corresponding to vertices prefixed by 204
and 77 were taken from recipients of blood transfusions from a donor who was
infected with the viruses corresponding to the vertices prefixed by 24.

For more applications of the SplitsTree program to biological data see e.g.
[8, 12, 16, 21, 27]. The latest version of SplitsTree, written by Daniel Huson,
can be obtained from:

http://www.mathematik.uni-bielefeld.de/∼huson

There is also a www version of the program running at:

http://bibiserv.techfak.uni-bielefeld.de/splits

Some further references and discussions of related topics can be found on the
following www pages:

http://www.fmi.mh.se/∼vince/publications/publications.html
http://www.mathematik.uni-bielefeld.de/∼terhalle
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and further phylogenies by Haeckel can be found on the following web pages:

http://www.boga.ruhr-uni-bochum.de/spezbot/Folien/
Abb1 Stammbaum Haeckel.html

http://genome.imb-jena.de/stammbaum.html

5 Back to Mathematics and Quadratic forms

In addition to these applications, there are also striking analogies between
split-decomposition theory and the theory of positive semi-definite quadratic
forms as developed by the Russian school: In both fields, one considers a large
convex cone (either consisting of all metrics defined on a finite set or consisting
of all positive semi-definite quadratic forms defined on some finite-dimensional
vector space), one has good reasons to decompose this cone — in one way
or the other — into a family of finitely generated convex subcones, and one
wants to understand the combinatorics of the resulting stratification of the
large cone. In split-decomposition theory, it is the concept of coherence that
gives rise to the stratification in question: given any two metrics d and d′,
defined on a fixed finite set X, one may define the metric d′ to be a coherent
specialization of the metric d if there exists some positive real number ρ
such that d′′ := ρd − d′ is also a metric and the two metrics d′, d′′ form a
coherent decomposition of d. One can show that, given any metric d defined
on X, the collection of metrics d′ that are coherent specializations of d forms
a finitely generated convex subcone C(d) of the cone of all metrics defined
on X. Moreover, some (not at all obvious) conditions on d are known from
split-decomposition theory which imply that C(d) is a simplicial cone while
this does not seem to hold in general for every metric d.

Very similar problems have been (and still are being) studied in the theory of
positive semi-definite quadratic forms while trying to understand the process
of reduction of quadratic forms (cf. [17, 18]). And in both areas, the extremals
of the convex cones in question — the positive semi-definite quadratic forms
of rank one on the one hand and the split metrics as well as some further, not
yet well understood metrics on the other — appear to be of special significance.

Thus, it might prove rather useful trying not only to develop both theories
in parallel, but also to understand the deeper reason for the striking analogy
between them.
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