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Abstract. We consider global attractors of in�nite dimensional dynamical

systems given by dissipative partial di�erential equations

u

t

= u

xx

+ f(x; u; u

x

)

on the unit interval 0 < x < 1 under separated, linear, dissipative boundary

conditions. Global attractors are called orbit equivalent, if there exists a

homeomorphism between them which maps orbits to orbits. The global

attractor class is the set of all equivalence classes of global attractors arising

for dissipative nonlinearities f . We show that the global attractor class does

not depend on the choice of boundary conditions. In particular, Dirichlet

and Neumann boundary conditions yield the same global attractor class.

The results are based on joint work with Carlos Rocha.

1 Attractor classes

Parabolic partial di�erential equations modelling reaction, di�usion, and drift are

an important class of nonlinear in�nite dimensional dynamical systems. Aside from

applied motivation, much of the mathematical interest has centered on the dynamics

of their �nite dimensional global attractors. See for example [Hal88], [Lad91], [BV89],

[Tem88], and the references there. The inuence of boundary conditions has mainly

been investigated in connection with stability of equilibria and shape of the underlying

spatial domain, see for example [MM83], [Mat84].

Equations in one-dimensional domains have been studied in much detail, see

for example [Cha74], [CI74], [Mat79], [Mat82], [Mat88], [Hen81], [Hen85], [Ang86],

[Ang88], [BF88], [BF89], [AF88], [FMP89], [Nad90], [FP90]; mostly under Dirichlet

or under Neumann boundary conditions, separately. In the present paper, we follow an

approach developed more recently by [FR91], [Fie94], [FiRo94]. There the emphasis
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216 Bernold Fiedler

is on Neumann boundary conditions. Here, we indicate the necessary adaptations

for general separated, linear, dissipative boundary conditions. Although the global

attractors for a given nonlinearity will in general depend on our choice of boundary

conditions, [HR87], we will show that the set of their orbit equivalence classes does

not.

To be speci�c, we consider scalar equations

u

t

= u

xx

+ f(x; u; u

x

) (1.1)

on the unit interval 0 � x � 1. Fixing 0 � �

0

; �

1

� 1, we impose boundary conditions

(1� �

�

)u+ �

�

@

�

u = 0 (1.2)

at x = 0; 1. Here � = 0; 1; @

�

u = �u

x

indicates the outward "normal\ derivative with

+ at x = 1; � at x = 0, and subscripts t; x indicate partial derivatives of solutions

u = u(t; x). For the nonlinearities f 2 C

2

we impose dissipation conditions

f(x; u; 0) � u < 0; (1.3)

for juj � C

1

and, with continuous functions a; b as well as an exponent  < 2

jf(x; u; p)j � a(u) + b(u)jpj



(1.4)

at all arguments (x; u; p) of f . The estimators C

1

; a; b;  are allowed to depend on f .

This setting is �xed throughout this paper.

The dissipation conditions (1.3), (1.4) guarantee the local semiow of x-pro�les

of solutions u(t; �) 2 X

�

; t � 0, to be globally de�ned and dissipative: any solution

eventually remains in a �xed large ball B � X

�

. See [Ama85], theorem 5.3 for a

reference. In fact, we can choose B such that juj < C

1

and jpj < C

2

on B. The

state space X

�

is the Sobolev space H

2

intersected with boundary conditions (1.2),

� = (�

0

; �

1

).

By dissipativeness, equations (1.1), (1.2) possess a global attractor A

�

f

� X

�

.

This is the maximal compact invariant subset of X

�

or, here equivalently, the set of

bounded solutions u(t; �); t 2 IR. Yes, including negative t. This global attractor is

our principal object of study here. We call a global attractor A

�

f

orbit equivalent to

A

�

g

,

A

�

f

�

=

A

�

g

; (1.5)

if there exists a homeomorphism H : A

�

f

! A

�

g

which maps orbits fu(t; �) j t 2 IRg

on A

�

f

onto orbits in A

�

g

. Obviously,

�

=

is an equivalence relation and de�nes orbit

equivalence classes of global attractors.

Let E

�

f

denote the set of equilibrium solutions u

t

= 0 of (1.1), (1.2). Clearly,

E

�

f

� A

�

f

. We assume all equilibria to be hyperbolic: all eigenvalues of corresponding

Sturm-Liouville eigenvalue problem are nonzero, for linearizations at equilibria. This

is a generic nondegeneracy condition on f , for any given � .

For given boundary conditions � , we de�ne the attractor class A(�) as the set

of orbit equivalence classes of global attractors A

�

f

. Here f 2 C

2

are assumed to be

dissipative, as in (1.3), (1.4), with only hyperbolic equilibria.
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Do Global Attractors Depend on Boundary Conditions? 217

Theorem 1.1 In the above setting, the global attractor class A(�) does not depend

on the boundary conditions (1.2) given by � = (�

0

; �

1

) 2 Q := [0; 1]

2

. In other words,

let �; � 2 Q. Then

A(�) = A(�): (1.6)

Speci�cally, for any dissipative f 2 C

2

with hyperbolic equilibria E

�

f

there exists a

dissipative g 2 C

2

, also with hyperbolic equilibria E

�

g

, such that the respective global

attractors A

�

f

;A

�

g

are orbit equivalent

A

�

f

�

=

A

�

g

; (1.7)

in the sense of de�nition (1.5).

In section 2 we prove theorem 1.1. We conclude with a discussion of our result,

in section 3.

For �; � 2 (0; 1]

2

, excluding the Dirichlet cases, the theorem is very easy to prove.

We use a rescaling argument by Rafael Ortega. Let

u(x) = A(x) v(x) (1.8)

with some smooth amplitude function A > 0 satisfying

�

�

A(�) = �

�

(1� �

�

)A(�) + �

�

�

�

A(�) = 1� �

�

(1.9)

at � = 0; 1. Then the transformation (1.8) de�nes a linear isomorphism between the

state spaces u 2 X

�

and v 2 X

�

associated to boundary conditions � and �. Also,

v satis�es an equation (1.1) with an appropriately rescaled dissipative nonlinearity

g instead of f . Therefore A

�

f

�

=

A

�

g

, by (1.8), (1.9), and A(�) = A(�) in the non-

Dirichlet cases. (Strictly speaking, though, the transformation does not preserve the

precise form (1.3) of our dissipation condition.) Our slightly more involved proof,

given in section 2, will include even the Dirichlet case. In particular, the Neumann

and the Dirichlet attractor classes will be shown to coincide. Note that all spaces

X

�

, including the Dirichlet cases, are closed linear subspaces of X = H

2

depending

continuously on the parameters � ; in particular all these spaces are isomorphic from

an abstract view point.

We briey outline the Morse-Smale structure behind our proof of theorem 1.1,

in the remainder of the present section. Following [FiRo96], we �rst normalize f , for

simplicity, such that

f(x; u; p) = �u (1.10)

for jxj � C

1

or jpj � C

2

. Such a normalization can be achieved without changing

A

�

f

or the ow on it, by dissipation conditions (1.3), (1.4). For u 2 X

�

consider

functionals

V (u) :=

Z

1

0

F (x; u; u

x

)dx: (1.11)

Following [Mat88] we observe that

d

dt

V (u(t; �)) = �

Z

1

0

F

pp

� u

2

t

dx (1.12)
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218 Bernold Fiedler

along solutions u(t; x) of (1.1), (1.2), if F satis�es

pF

ppu

� fF

ppp

+ F

ppx

= f

p

F

pp

; (1.13)

for all (x; u; p) and obeys the boundary condition

F

p

� u

t

= 0 (1.14)

at x = 0; 1: By the standard method of characteristics, [Joh82], it is easy to �nd a

solution w = w(x; u; p) of the �rst order equation

pw

u

� fw

p

+ w

x

= f

p

; (1.15)

see also (2.1). In fact, normalization condition (1.10), guarantees global solvability

of the characteristic equation of (1.15) which is studied in more detail in section 2

below. Solving then

F

pp

= exp(w) (1.16)

we have solved (1.13). The boundary conditions (1.14) hold trivially in the Dirichlet

case. We require F

p

= 0; as an initial condition for (1.16) with respect to p, along

the lines in (x; u; p)-space given by the boundary conditions (1.2), in all other cases.

By this construction, F

pp

= exp(w) is positive. In particular the functional V

becomes a Lyapunov functional on X

�

which decreases strictly along non-equilibrium

orbits. With respect to the Riemannian metric on X

�

de�ned by F

pp

; the semiow

(1.1), (1.2) is in fact gradient, or Morse with respect to V:

The functional V reveals that the global attractor A

�

f

consists entirely of equi-

libria E

�

f

and heteroclinic or connecting orbits. These orbits, by de�nition, limit onto

(di�erent) equilibria ~u; u for t ! +1; t ! �1; respectively. They can be viewed

as intersections of unstable and stable manifolds W

u

(u) \W

s

(~u): Note that

A

�

f

= E

�

f

[

[

u2E

�

f

W

u

(u): (1.17)

Although this will not be very visible below, we emphasize the importance of

nodal properties in our proof of theorem 1.1. Based on observations for linear equa-

tions, they imply that

t 7! z(u

1

(t; �)� u

2

(t; �)) (1.18)

is nonincreasing along solutions u

1

(t; �); u

2

(t; �) of (1.1), (1.2). Here z, the zero num-

ber, denotes the number of strict sign changes of x-pro�les. The zero number in (1.18)

drops strictly whenever a multiple zero of the x-pro�le is encountered. Historically,

the use of nodal properties dates back as far as [Stu36]. In [Mat82], their impor-

tance for in�nite dimensional nonlinear dynamics was �rst realized. A comprehensive

modern account of zero numbers is given in [Ang88].

The most striking consequence of nodal properties for our global attractors A

�

f

is

the Morse-Smale property. The Morse structure is generated by the Lyapunov func-

tional V; as discussed above. By [Hen85], [Ang86], the intersections between stable

and unstable manifolds which make up the global attractors A

�

f

are automatically

transverse, without further genericity assumption on f or � :

W

u

(u)\ W

s

(~u); (1.19)
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Do Global Attractors Depend on Boundary Conditions? 219

without any nondegeneracy assumptions except hyperbolicity of the equilibria E

�

f

:

Structural stability is the most important consequence of this Morse-Smale prop-

erty. In fact, let g be C

2

-near f and satisfy dissipation conditions (1.3), (1.4). Let

also � 2 Q = [0; 1]

2

be near �: Then

A

�

g

�

=

A

�

f

; (1.20)

as claimed in (1.7). For reference see [P69], [PS70], [PdM82], and for the in�nite

dimensional case [Oli92]. Since the argument is local in f; �; this does not prove our

theorem, of course.

2 Proof of theorem 1.1

If all equilibria E

�

f

are hyperbolic, then the global attractor is Morse-Smale and there-

fore structurally stable, as we have seen at the end of the previous section. We give a

geometric criterion for hyperbolicity of E

�

f

, in lemma 2.1. The criterion is based on a

shooting approach to equilibria. In lemma 2.2, we relate global attractors for di�erent

boundary conditions, by an augmentation argument. Piecing these elements together,

we �nally prove theorem 1.1 by a homotopy argument which uses the Morse-Smale

property.

Our geometric criterion for hyperbolicity is a slight adaptation of an argument

in [Roc91]. Equilibria u 2 E

�

f

are solutions of

_u = p

_p = �f(x; u; p)

_x = 1

(2.1)

which in addition satisfy the boundary conditions

l

0

: (1� �

0

)u� �

0

p = 0; at x = 0;

l

1

: (1� �

1

)u+ �

1

p = 0; at x = 1:

(2.2)

In passing we note that (2.1), together with _w = f

p

(x; u; p); are the equations of the

characteristics of (1.15). For any real a, let u(x; a); p(x; a) denote the solution of

(2.1) with initial condition

u(0; a) := �

0

a

p(0; a) := (1� �

0

)a

(2.3)

at x = 0: By normalization (1.10), these solutions are globally de�ned. De�ne the

shooting surface S

�

f

� [0; 1]� IR

2

as

S

�

f

:= f(x; u; p) j u = u(x; a); p = p(x; a); a 2 IRg: (2.4)

The sections S

�;x

f

� IR

2

of S

�

f

for given x are called shooting curves . The shooting

curves are planar C

1

Jordan curves, parametrized by the shooting parameter a 2 IR:

The set E

�

f

of equilibria is given by precisely those values a 2 IR where the shooting

curve S

�;x

f

at x = 1 intersects the line l

1

of boundary conditions at x = 1:
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220 Bernold Fiedler

Lemma 2.1 An equilibrium in E

�

f

given by the shooting parameter a is hyperbolic if,

and only if, the shooting curve S

�;x=1

f

intersects the target line l

1

transversely, at the

intersection value a:

Proof: Consider the equilibrium u(x; a) corresponding to the intersection value a;

or vice versa. The partial derivative (u

a

(x; a); p

a

(x; a)) is the nontrivial solution of

the linearized equation which satis�es the homogeneous linear boundary condition

l

0

: (Well, we could take constant multiples instead.) Clearly, u is nonhyperbolic

if, and only if, this partial derivative also satis�es the other boundary condition l

1

;

at x = 1: Reinterpreting geometrically, nonhyperbolicity is then equivalent to the

tangent vector of the shooting curve S

�;x=1

f

: a 7! (u(1; a); p(1; a)) being parallel to

the line l

1

: This is exactly nontransversality of intersection, and the lemma is proved.

2

Augmentation works as follows. We append new segments

I

0

:= [��

0

; 0)

I

1

:= (1; 1 + �

1

]

(2.5)

�

0

; �

1

> 0; to the original x-interval x 2 [0; 1]: In the appended intervals, we de�ne f

by

f(x; u; p) := ��

2

(x)u; (2.6)

where �

2

(x) := �

2

�

> 0 is constant for x 2 I

�

: We will specify � = (�

0

; �

1

) below. In

I

�

the shooting equation (2.1) becomes the hyperbolic linear equation

_u = p

_p = �

2

�

u

(2.7)

In (u; p)-space, this linear equation induces a ow on the lines of boundary conditions

l(�

�

) : (1� �

�

)u� �

�

p = 0: (2.8)

Here � = 1 carries the plus-sign, whereas � = 0 requires a minus. The boundary

condition parameters �

�

(x) are now considered to depend on x 2 I

�

; with their values

at x = � taken from the original boundary conditions (1.2). The ow induced by

(2.7), (2.8) on �

�

is

_�

�

= �(�

2

�

�

2

�

� (1� �

�

)

2

); (2.9)

by direct calculation. This equation plays a central role in the proof of the following

lemma.

For abbreviation, let F denote the set of dissipative nonlinearities f; g 2 C

2

with

hyperbolic equilibria as speci�ed in theorem 1.1.

Lemma 2.2 Let f 2 F and consider arbitrary boundary conditions � 2 (0; 1)

2

; in the

interior of the closed unit square Q = [0; 1]

2

; and � 2 Q: Then there exists g 2 F

such that the global attractors A

�

f

;A

�

g

are orbit equivalent,

A

�

f

�

=

A

�

g

(2.10)
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Do Global Attractors Depend on Boundary Conditions? 221

Proof: We will use augmentation (2.5){(2.9) to construct g on an interval x 2

[��

0

; 1 + �

1

]: Rescaling x by a scaling factor s := 1=(1 + �

0

+ �

1

) and adjusting �

accordingly, �rst, we will not lose generality. As a main step, we will then construct a

dissipative homotopy from (f; �) to (g; �); by augmentation, such that hyperbolicity

of equilibria is preserved throughout the homotopy. In a �nal, third step we address

the issue of C

2

-regularization of our piecewise de�ned nonlinearities, by smoothing.

By Morse-Smale structural stability, the homotopy which preserves hyperbolicity of

equilibria then proves the lemma.

Rescaling x to ~x by x = s(~x+ �) transforms the x-interval [0; 1] to an ~x-interval

[��; 1+ �]; if we choose s = (1 + 2�)

�1

2 (0; 1): Simultaneously, boundary conditions

� = (�

0

; �

1

) at x = 0; 1 get transformed to boundary conditions ~� = (~�

0

; ~�

1

), for

~u(t; ~x) := u(t; x), which are given explicitly by

~�

�

=

s�

�

1� �

�

+ s�

�

: (2.11)

Note that ~�

�

= 0; 1 for �

�

= 0; 1, respectively.

We consider the case 0 � �

�

< 1 �rst. Fix � =

�

� > 0 large enough or, equivalently,

s = (1 + 2

�

�)

�1

small enough, such that in particular

0 � ~�

�

< �

�

< 1: (2.12)

Now consider the �

�

ow (2.9) in an equation which is augmented according to (2.6).

We choose �

�

> 0; � = 0; 1; such that the time which the �

�

ow (2.9) takes from �

�

to

~�

�

coincides with the large prescribed value

�

� :

~�

�

= �

�

(�

�

�) (2.13)

for the initial values �

�

(0) = �

�

at x = �: Indeed this can be achieved by choosing

�

�

> 0 such that the unique equilibrium

�

�

�

= (1 + �

�

)

�1

(2.14)

of (2.9) in (0; 1) is slightly above �

�

< 1:

In the remaining Neumann case ~�

�

= �

�

= 1; we simply choose �

�

�

> 0 slightly

below �

�

> 0; and (2.13) remains valid.

We describe our homotopy of attractors in terms of changing the boundaries

x = ��; 1 + �, simultaneously, from their original value � = 0 to their �nal values

� =

�

�: On these larger x-intervals the nonlinearity f is augmented to f

�

by (2.6).

The boundary conditions � = �(�) are adjusted, according to (2.9), in parallel with

the homotopy parameter �: Note that by a rescaling of x with factor s = 1=(1 + 2�);

this induces a homotopy of global attractors for rescaled nonlinearities in the class F :

Clearly, dissipativeness is preserved. In view of Morse-Smale structural stability, it

therefore only remains to prove that hyperbolicity of equilibria is preserved throughout

the homotopy.

Hyperbolicity of equilibria follows from lemma 2.1. Indeed, transversality of the

shooting curve S

�(�);x

f

�

; at x = 1 + �; to the line l(�

1

(�)) follows in three steps, using

(2.5){(2.9). First, in I

0

= [��; 0); the initial line l(~�

0

) = l(�

0

(�)) = S

�(�);��

f

�

gets
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mapped di�eomorphically to the line l(�

0

(0)) = l(�

0

) = l

0

: Second, in x 2 [0; 1]; we

obtain the original f -shooting curve

S

�;1

f

\
l(�

1

): (2.15)

Here we use hyperbolicity of E

�

f

and lemma 2.1. Third, in I

1

= (1; 1 + �]; the line

l

1

= l(�

1

) = l(�

1

(0)) and the f -shooting curve S

�;1

f

get mapped onto

S

�(�);1+�

f

�

\ l(~�

1

); (2.16)

by the shooting di�eomorphism. Transversality is inherited from (2.15). A �nal

application of lemma 2.1 proves that hyperbolicity of equilibria is preserved during

our homotopy 0 � � �

�

�: Of course, rescaling of x does not a�ect hyperbolicity.

Smoothing the discontinuities of our augmentation of f , at x = 0; 1; we obtain

a C

2

-augmentation. Making the x-intervals, where smoothing acts, small enough,

we can guarantee transversality (2.16) to hold throughout our homotopy 0 � � �

�

�:

In particular, all f

�

are Morse-Smale. De�ning g as (the rescaled version of) f

�

�

;

structural stability of Morse-Smale systems �nally implies

A

�

f

�

=

A

�

g

: (2.17)

In (2.17) we have used that rescaling does not change the orbit type of the global

attractor and, simultaneously, transforms ~� = �(

�

�) to the boundary condition � by

(2.11). This proves the lemma. 2

In the previous lemma we have shown A(�) = A(�); for attractor classes with

�; � 2 (0; 1)

2

: (The transformation (1.8) would even allow for �; � 2 (0; 1]

2

:) To

complete the proof of theorem 1.1, anyway, it remains to address the case of � or �

in the boundary @Q of the square Q = [0; 1]: If g 2 F ; � 2 @Q; then local structural

stability of Morse Smale systems shows that for f := g and any � 2 (0; 1)

2

close to �

we have orbit equivalence A

�

g

�

=

A

�

f

: Therefore A(�) � A(�): To complete the proof

of theorem 1.1 it remains to show that, conversely,

A(�) � A(�); (2.18)

for some � 2 (0; 1)

2

: By lemma 2.2, claim (2.18) actually holds for all � 2 (0; 1)

2

; � 2

Q: This completes our proof of theorem 1.1. 2

3 Discussion

We begin our discussion with remarks on x-dependent di�usion and on another at-

tempt of simplifying our proof, by transformation of x. We then indicate why periodic

boundary conditions x 2 S

1

produce a class of Morse-Smale attractors quite di�erent

from the class A(�) of separated boundary conditions � = (�

0

; �

1

) 2 Q = [0; 1]

2

.

We conclude with a few comments on global attractors in the case of higher space

dimension, dim x > 1, and the case of systems, dim u > 1.
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Do Global Attractors Depend on Boundary Conditions? 223

Transforming x to y = �(x) 2 [0; 1] in (1.1), (1.2) and denoting v(y) := u(x)

yields an equation

D(y)

�1

v

t

= v

yy

+ g(y; v; v

y

) (3.1)

with transformed boundary conditions

(1� �

�

)v � �

�

v

y

= 0 (3.2)

at y = � = 0; 1. Explicitly, we have

D(y) = (�

x

(x))

2

> 0;

�

�

= (1 +

1��

�

�

�

�

x

)

�1

:

(3.3)

Given � 2 (0; 1)

2

we can clearly reach all � 2 (0; 1)

2

by a proper choice of the function

�. The standard linear homotopy from D(y)

�1

v

t

to v

t

, in (3.1), is a Morse-Smale

homotopy of attractors which does not change the equilibria. Indeed, the shooting

surface never changes, during the homotopy, because D(y)

�1

only multiplies the time

derivative. Therefore we conclude A

�

g

�

=

A

�

f

, as stated in lemma 2.2.

A main disadvantage of this rather simple argument is the fact that Neumann as

well as Dirichlet boundary conditions �

�

= 0; 1 remain unchanged by the transforma-

tion �; see (3.3). It is the case � 2 @Q, where we really seem to need the augmentation

in lemma 2.2.

Of course we could have discussed orbit equivalence of attractors in the class

of pairs (f;D), allowing for space{dependent di�usion from the very start. Fixing

D � 1; though, provides a stronger statement in theorem 1.1. Parenthetically we

note that introducing D > 0 does not produce any additional global attractors, by

the above arguments. As we have argued in the discussion section of [FiRo96], we

do not expect additional global attractors to arise, even in fully nonlinear, uniformly

parabolic, dissipative cases.

Passing to higher-dimensional domains x 2 
 � IR

d

, with @
 smooth and

bounded, we may again consider dissipative scalar equations

u

t

= �u+ f(x; u;ru) (3.4)

on 
, under mixed boundary conditions

(1� �)u+ �@

�

u = 0: (3.5)

Now � = �(x) 2 [0; 1] is a given function on @
. A transformation u(x) = A(x)v(x)

is still feasible, normalizing � 2 (0; 1] to become a uniform Neumann condition � � 1

for v; see (1.8), (1.9). But we have lost variational structure, nodal properties, and

Morse-Smale when passing to (3.4), (3.5). Essentially arbitrary �nite-dimensional

ows occur in (3.4), see [Pol95]. Even if we assume the global attractor A

�

f

to be

structurally stable, there is no reason to believe that its orbit equivalence class is

determined by the equilibria, alone.

To include the Dirichlet cases, it is tempting to try and augment 
, by attaching

a collar outside @
, such that boundary conditions on the enlarged region di�er from

the original ones. A structurally stable attractor A

�;


f

should still be recovered in

the enlarged region 


0

. If 
 is starshaped with respect to the origin, a homothety
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0

= s
 by a scaling factor s > 1 comes to mind. In the annular region A = 


0

n
 we

can determine an eigenfunction for a positive eigenvalue � of the Laplacian � with

boundary conditions

(1� �)u� �@

�

0

u = 0 on @


(1� �)u+ �@

�

0

u = 0 on @


0

:

(3.6)

Here �

0

denotes the outward normal of A; on @
 we have �

0

= ��. In the one-

dimensional case, this eigenfunction was the crucial shooting augmentation in the

"annulus\ A = I

0

[ I

1

. The task remains open to augment the PDE (3.4) in A in

such a "singular way\ that the original attractor A

�;


f

is recovered on 


0

with new

boundary conditions �. For systems, u 2 IR

k

, a similar problem arises. Even in the

case of one-dimensional x, though, is is not yet clear how to properly recover A

�

f

on

the enlarged interval 


0

then.

Jacobi systems are the spatially discrete ODE analogue to our scalar PDE (1.1),

(1.2) in one space dimension; see [FO88]. Speci�cally, Jacobi systems have the tri-

diagonal nonlinear form

_u

i

= f

i

(u

i�1

; u

i

; u

i+1

); (3.7)

i = 0; : : : ; n, with strictly positive partial derivatives of the nonlinearities f

i

with re-

spect to the o�-diagonal entries u

i�1

; u

i+1

. For convenience we impose linear bound-

ary conditions in the following form

(1 + �

0

)u

�1

� 2�

0

u

0

= 0

(1 + �

1

)u

n+1

� 2�

1

u

n

= 0:

(3.8)

System (3.7), (3.8) may, but need not, arise by �nite di�erence semidiscretization

in space of (1.1), (1.2). Then �

�

= 1; � = 0; 1 corresponds to Neumann boundary

conditions, as before, and �

�

= 0 are Dirichlet conditions

u

�1

= u

n+1

= 0: (3.9)

Only boundary conditions 0 � �

�

� 1 arise by discretization of dissipatively admissible

PDE boundary conditions. Note, however, that the choice �

�

= �1 again corresponds

to Dirichlet boundary conditions

u

0

= u

n

= 0; (3.10)

at least formally.

For �

�

6= �1, the state space of our system (3.7), (3.8) is u = (u

0

; � � � ; u

n

) 2 X =

IR

n+1

. A natural dissipation condition is

u

i

� f

i

(u

i

; u

i

; u

i

) < 0 (3.11)

for all i = 0; � � � ; n, provided ju

i

j � C. Here C is a large constant. Under boundary

conditions (3.8) with

j�

0

j; j�

1

j � 1; (3.12)

condition (3.11) ensures that kuk := max ju

i

j decreases to level C or below, eventu-

ally. If �

0

or �

1

violate condition (3.12), then max ju

i

j may grow inde�nitely on the
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boundary, in spite of dissipation condition (3.11). Therefore we restrict attention to

the region (3.12).

For Neumann condition �

�

= 1, it was argued in [FiRo96], theorem 8.2, that

the attractor class A

dis

(�) for Jacobi systems (3.7), (3.8) coincides with the PDE

attractor class A

con

(�) := A(�) of our present theorem 1.1. Here A

dis

(�) ranges over

all Jacobi systems of any dimension n. For 0 � �

�

� 1, we expect similar arguments

to provide

A

dis

(�) = A

con

(�) (3.13)

to be � -independent, by theorem 1.1.

Augmentation to i 2 f�2;�1; � � � ; n + 1; n + 2g also seems a viable approach

to discrete attractor classes. Consider the new left boundary u

�2

; u

�1

, for example.

Comparing a new boundary condition � = (�

0

; �

1

) with the old � -condition (3.8), at

the left end, we obtain

(1 + �

0

)u

�1

� 2�

0

u

0

= 0

(1 + �

0

)u

�2

� 2�

0

u

�1

= 0:

(3.14)

Adding the two equations with real coe�cients ��; � we obtain the right hand side

of an augmentation

_u

�1

= �(1 + �

0

)u

�2

� (2��

0

+ �(1 + �

0

))u

�1

+ 2��

0

u

0

: (3.15)

This augmentation is Jacobi and dissipative, for j�

�

j; j�

�

j � 1, if

� > 0

��

0

> 0

�(1� �

0

) < �(1� �

0

)

(3.16)

Note that equilibrium shooting, _u

�1

� 0, maps the �

0

boundary condition to the �

0

condition under our choice (3.15) of augmentation.

Let A

n

(�) denote the attractor class for Jacobi systems (3.7), (3.8), this time

with �xed dimension n+1. In view of theorem 1.1 and (3.13) it seems natural to ask

whether A

n

(�) can be independent of � , at least for 0 � �

�

� 1. More daringly: let

A

con

n

denote the set of attractor classes in A

con

of dimension at most n+1. Is it true,

for 0 � �

�

� 1 and at least for large n, that

A

n

(�) = A

con

n

? (3.17)

In particular A

n

(�) would not depend on � , of course.

Transforming the boundary value at i = �1 by s~u

�1

:= u

�1

requires 0 < s < 1

to remain in the class of dissipative Jacobi systems where (3.11) holds. For 0 < j�

0

j �

j�

0

j � 1 of equal sign we obtain an embedding

A

n

(�

0

; �

1

) � A

n

(�

0

; �

1

); (3.18)

which does not quite answer our question. Dissipative Jacobi augmentation (3.15),

(3.16) does not provide an answer, either. Some modest conclusions are

A

n

(�

0

; �

1

) � A

n+1

(1; �

1

)

A

n

(�

0

; �

1

) � A

n+1

(�

0

; �

1

):

(3.19)
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Again j�

�

j; j�

�

j � 1. In addition we require �

0

6= 0 and, in the second equation, �

0

6= 1.

Aside from these constraints, � and � are arbitrary. Replacing i by n � i we also

observe symmetry for all � ,

A

n

(�

0

; �

1

) = A

n

(�

1

; �

0

): (3.20)

For example, this implies Neumann embedding

A

n

(�

0

; �

1

) � A

n+2

(1; 1); (3.21)

for �

0

; �

1

6= 1. Similarly, for �

0

; �

1

6= 0; 1 and all � we obtain

A

n

(�) � A

n+2

(�) (3.22)

from (3.19), (3.20).

Note that independence of A

n+1

(�) from � might break down, at least for

�

0

& �1. In that case, the boundary condition (3.14) collapses to u

�1

= 0, formally.

This is equivalent to the Dirichlet attractor class A

n

(0; �

1

) of Jacobi systems in one

lower dimension.

As a �nal remark, we emphasize that periodic boundary conditions x 2 S

1

gen-

erate sets A

con

(per); A

n

(per) of attractor classes which are much richer than their

colleagues A

con

(�) = A

con

(sep) living in separated boundary conditions. In fact, the

Neumann class can be shown to be contained in the periodic class � = (1; 1), by

reection through the boundary and smoothing:

A

con

(sep) � A

con

(per); (3.23)

again by theorem 1.1. As remarked in [AF88], even for nonlinearities f = f(u; p)

independent of x, time periodic rotating waves can arise in A

con

(per), which simply do

not possess any counterpart in the gradient case A

con

(sep). In particular, Lyapunov

functionals like V fail. A similar remark applies to the spatially discrete case A

n

(per)

of cyclic Jacobi systems i (mod (n + 1)). Since reection through the boundary for

Neumann condition yields only an embedding

A

n

(1; 1) 6� A

2n+1

(per);

the characterization of attractor classes in the case of periodic boundary conditions

remains wide open.
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