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1. INTRODUCTION

Let Y be a smooth irreducible projective curve defined over the real number field
R and & =R (Y) be the field of R-rational functions on Y. For a point P € Y (R) we
denote the completion of k£ at the point P by kp. The present paper is devoted to the
Hasse principle for the existence of a rational point on principal homogeneous spaces
of a connected linear algebraic group G defined over k. It was Colliot-Théléne who
conjectured ([CT], Conjecture 2.9) that for any such space X the Hasse principle
holds relative to all local fields kp, P € Y(R), i.e. X (k) # 0 iff X(kp) # 0 for
each P € Y(R). Since principal homogeneous spaces of (G are in natural one-to-one
correspondence with elements of the set H'(k, ) the latter statement is equivalent
to the following: the natural map of pointed sets

(1) o'k, G)— [ H'(ke,G)
PEY (R)
has trivial kernel ([S]).
In [CT] Colliot-Théléne proved the Hasse principle for algebraic k-tori and re-
duced the general case to that of a simple simply connected algebraic group . The
case of an arbitrary connected k-group G has been studied by Scheiderer ([Schl]).

IThe author gratefully acknowledges the support of the Alexander von Humboldt-Stiftung and
SEFB 343 “Diskrete Strukturen in der Mathematik” and the hospitality of the University of Bielefeld.
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136 VLADIMIR CHERNOUSOV

To prove the Hasse principle he first made an important observation ( which eventu-
ally turned out to be crucial ) that local objects kp can be replaced by real closures
ke of k, £ € Qy, where € denotes the set of all orderings of k. Indeed, using the
description of orderings of & and the so-called Artin-Lang homomorphism theorem
([Srl], Theorem 3.1) it is easy to show that the condition X (kp) # # for each real
point P on Y implies X (k) # 0 for each ordering & of k and hence the triviality of
the kernel of (1) follows immediately from the triviality of the kernel of

(2) 0: H'(k,G)— [] #'(ke, @)
€0
The question whether 6 is injective makes sense not only for the function fields
of curves but also for an arbitrary field k& and it turned out that # is indeed injective
if k£ has virtual cohomological dimension (ved) at most 1 (recall that function fields
in one variable over R are such). We have even more.

THEOREM 1. (Scheiderer, [Schl]) Let K be any field of virtual cohomological dimen-
sion < 1. Then the Hasse principle holds for any homogeneous K-space X of a
connected linear algebraic K-group G.

Scheiderer’s proof can be divided into two parts. In the first one it is proved
that for X as in the theorem (here G may even be not connected) there exists a
principal homogeneous space Z which is everywhere locally trivial and dominates X.
The strategy of the proof in this part going back to Springer ([S],[Sp]) consists of
replacing X by a homogeneous space which dominates X and has a smaller stabilizer.
It is worth mentioning that in this part most arguments do not use specific properties
of K and so most of them are valid over an arbitrary perfect field.

The second part of Scheiderer’s proof is devoted to the case of a principal ho-
mogeneous space. To treat such a space Scheiderer first constructs a locally constant
sheaf of sets H'(G) on Qi whose stalks are just the sets H' (K¢, G). Then he shows
that there exists a natural bijection between the set of global sections of H!(G) and
H'(K,G). As a whole the proof in this part is quite complicated. It is based on using
étale machinery and, in particular, strongly relies on results of the book [Sch2].

The aim of this paper is to provide a simpler and shorter self-contained proof
which is based only on the Bruhat decomposition in semisimple algebraic groups and
the so-called strong approximation property (SAP) of fields (see §3). We show that
in fact the Hasse principle follows immediately modulo two facts. Informally speaking
one of them says that the kernel of the natural map H'(K,T) — H'(K,G), where
G is an (absolutely) simple simply connected linear K-group and T is a K-torus
splitting over K (v/—1), can be parametrized by “good” rational functions (see §2)
and the other says that any field of virtual cohomological dimension < 1 is an SAP

field.

Acknowledgment. The author is grateful to J.-P. Serre and the referee for
remarks that helped to improve the initial exposition.

2. ALGEBRAIC GROUPS SPLITTING OVER QUADRATIC EXTENSIONS

Throughout the section K denotes an arbitrary field of characteristic 0. Let G
be an (absolutely) simple simply connected algebraic group of rank n defined over K
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HAssE PRINCIPLE FOR PRINCIPAL HOMOGENEOUS SPACES 137

and splitting over quadratic extension I = K(\/E). Let
O =Gal(L/K)=(r|7t?=1).

Consider a Borel L-subgroup B such that T = B N 7(B) is a maximal torus which
will be assumed for simplicity to be K-anisotropic. Since T is splitting over L, one
has

T R (Gm) X oo % R (G,

To prove the Hasse principle we need to describe Ker [H(©,T(L)) —
HY(©,G(L))]. This description can be easily extracted from [Ch]. However this
paper is written in Russian and the translation made by the AMS is unreadable and
contains a lot of misprints. So for the sake of expository completeness and the reader’s
convenience we include here details.

First recall some basic facts about the structure of the group G(L) (for details
see [Stl]). Let ¥ = R(T,G) be the root system of G relative to T. The Borel
subgroup B determines an ordering on the set X and hence a system of simple roots
I={ay,...,an}t. Ifa =3 nja; € EF, then the number ht(a) = Y n; is called the
height of «. If { X, € ¥;H,,,,...,H,, }is aChevalley basis of the Lie algebra of G,
then G(L) is generated by the corresponding root subgroups G, = (214(t) |t € L),
where

ra(l) =D _1"X7 /0!,
n=0

and the torus T is generated by T, = T N Gy = (ha(l)), where ho(t) =
wao (Hwe (1)1 and wy (t) = zo(H)x_o(—t~Ha(1).

Furthermore, since G' is simply connected the following relations hold in G (cf.
[St1], Lemma 28 b), Lemma 20 ¢), Lemma 15 ):

A) T = (he,(t1)) X -+ - X {hqo, (t5)) and for @ € ¥ we have

(3) ha(t) = Hhal(t)"’, where H, = ZniHm;

i=1 i=1

B) For a,f€X let {B,a) =2(5,a)/(c,«). Then we have

(4) ha(t)zs(wha (1) = 25(t ) u)

C) TFor all u,v € L such that 1 4+ uv # 0 we have

(5) oo (u)re(v) = 24(v(l + uv)_l)ha(l + uv)_lx_a(u(l + uv)_l)

D) Forall o, € X, §# —a, we have

(6) va()rs(W)ra(0) 25 (0" = T[ wiassolegon)

3,5 >0
where the product on the right hand side is taken over all roots of the form o + j3
and the ¢; ; are integers which depend on a, 3 and on the chosen ordering of the roots
but do not depend on v and wu.
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138 VLADIMIR CHERNOUSOV

Since T' is K-defined, 7 acts on the root system Y. More exactly, for any a €
Y the character o + 7(«) is K-defined and hence is zero, i.e. 7(a) = —a, since,
by assumption, T is K-anisotropic. It follows that there exists ¢, € L* such that
T(Xa) = ca X_4; in particular, the subgroup Gy, is K-defined.

The constants ¢, actually lie in K and c¢_, = ¢;!. Indeed, for rank one groups,
i.e. of the form SL (1, D), where D is a quaternion K-algebra, this fact can be verified
directly. The general case easily reduces to the rank one case since GG, is a simple
simply connected K-group of rank 1. Thus, we have

LEMMA 1. There exists constant ¢, € K™ such that for any u € L one has T(zq(u)) =
t_o(car(u)). Moreover, G ~ SL(1, D), where D is a quaternion algebra over K of

the form D = (d,cq).
Proor: Straightforward computations. |

LEMMA 2. The positive roots ¥ = {B1,..., Bm} can be ordered in such a way that
the following two properties hold:

1) for any pair of roots B;, B;, for which i < j and B; + Bj = Bi € X%, the root By is
between 3; and B3;, t.e. 1 <k < j;

2) if ¥ is a root system of type either Ag,_1 or Dy or Eg and o is the outer au-
tomorphism of ¥ induced by the non-trivial automorphism of order 2 (resp. 3) of
the corresponding Dynkin diagram, then for any root 3; € 1 the roots 8; and o(3;)

(resp. Bi, o(Bi), 0%(3:)) are neighbours.

ProoF. a) Let ¥ = {g; —¢; | 1 <i# j < 2n} be aroot system of type As,_1. Let
Q1 = E1—€32,...,Q2,_1 = £9,—1—F2, be a basis of ¥ and X1 be the subsystem generated
by the roots as, ..., ag,_2. By induction, we can pick an ordering Ei" ={B1,--., P}
with the required properties. Let vy = a1+- - -4 ag,_1. We number the remaining roots
ST\{ZF U~} = {Bes1,---, Bn—1} in the order of decreasing height. If 3; denotes
the last root among {841, .., Bm—1} such that ht (5;) > n, then the ordering

E+ = {517"' 761@7 6k+17-" 762'7 Y 6i+17-" 7ﬁm—1}

is as required.
b) X is a root system of type Aap, By, Cy,y Dy, E7. Tt follows from the description
of root systems of these types that there exists a subsystem X, generated by n — 1

simple roots, say arp,...,a,_1, such that any root 3 € ¥t \ Ei" can be written as a
sum 8 = mya1+- -+ mp_1a,_1+a,. If Xis of type D,, and |o| = 2, we may assume
in addition that the set {a1,...,a,_1} is stable under o. The root system X; has

rank n — 1 and so by induction, there exists an ordering of the required type on the
set X7 = {B1,...,3}. We number the remaining roots X+ \ ©F = {Bx11,...,8n}
in the order of decreasing height. Then the ordering {3i,..., B} is as required.

c) X is a root system of type Fs, Es, Fy, G'3. Here one can argue as in case a).
Namely, there exists a subsystem X7 generated by simple roots aq, ..., a,_1 such that
any root g € Xt \Ei" is of the form 8 = myay + -+ -+ mu_1a5,_1 + oy except for the
maximal root & and & is of the form & = mya1+- - -+mp_10n_1+20,. Let b = ht (&).
Again, applying induction we can find an ordering Ei" ={p1,..., B} with the desired
properties and then we number the roots ¥\ {XF U&} = {Bry1,.--,Bm_1} in the
order of decreasing height. If X has type Fg, we may assume in addition that 3 and
o(3) are neighbours for all 3 € ©*. Let 3; be the last root among {Bx41,.-.,8m-1}
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HAssE PRINCIPLE FOR PRINCIPAL HOMOGENEOUS SPACES 139

such that ht (8;) > b/2. We claim that the ordering

E+ = {617"' 761@7 6k+17-" 762'7 6‘7 6i+17-" 7ﬁm—1}

has the desired properties. Indeed, if 3; = 8,4+, where s < tand j € {k+1,...,m—
1}, then clearly 3; belongs to 7. It follows that B; lies between 3, and 3;, since
ht (3;) > ht (3),ht (8¢). Now let & = 3, + B¢, s < t,. Then s,t e {k+1,...,m—1}
and ht (85) > b/2, ht (3;) < b/2 (we use the fact that ht(&) is odd ), implying & is
also between 35 and j;.

d) ¥ has type D4 and |o| = 3. Let ay,...,a4 be simple roots such that o
permutes a1, as, as. Then the required ordering is as follows: first we place ag, then
all roots of the height 2, then the maximal root and then the roots of heights 3, 4, 1
respectively. O

COROLLARY 1. Let 3, 3;, j < i, be any two positive roots. Then for any positive root
B of the form B, = rpB; —15;, r,1 > 0, one has k < j. Analogously, for any negative
root of the form —fy = r3; —153;, r,1 > 0, one has k > 1.

ProoF. We distinguish three cases.

a) {Bi,3;)gN T has type As. Then r = =1 and hence if 8y = 3; — §; is a
positive root then 8, + 3; = §;, implying & < j < ¢. Analogously, if 8; — 8; = =0
then we have j < i < k.

b) {8, 3;)a N T has type By. Then either r=[{=1orr=1and/=2or r =2
and [ = 1. The case r = = 1 was already handled in part a). Now let 8 = 3; — 24;.
Then 3; — 8; = 3, is also a positive root implying s < j. Futhermore, 8, = 3, — 5;
and s < 7 < ¢. So again we have k < s < j. The remaining cases can be handled in a
similar way.

c) (B, B;)pN T has type G2. Here the proof is similar to that of case b) and we
omit it. |

ProrosiTION 1. Fiz an order in X1 as in Lemma 2. Then the regular map

2
w: Gy x A" — G, (T1y oo s tny ULy e ee y Uy U1y e e, Un) —

ho (i) 2, (w1) s, (v1) -+ 2 g, (um)2s,, (vn)
i=1
is birational over L.

n

REMARK 1. This statement is also true in positive characteristic. There is the only
place which require additional work: one need additionally to check that w is a sepa-
rable map.

Proor. Both sides have the same dimension and hence it suffices to prove the injec-
tivity of w on some Zariski open subset, since char K = 0.

First we show that for any integer ¢ and any parameters uy,...,u; and vy,...,v;
from some Zariski open subset the element

A = x_g (u)eg, (v1) -z g, (ui)es, (v;)

of the group G can be written in the form

n m i—1
A; = H hock(fk) l’-ﬁj(rj) H l‘@j(Sj)l‘@l(Ui),
1 j=1

k=1 Jj=
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140 VLADIMIR CHERNOUSOV

where f, r;, s; are rational functions depending on wuy, ..., %;, v1,...,v;_1.
If i = 1 there is nothing to prove. By induction, we may write A4;_; in the form
n m i—2
I oo () TT 2=, ) T 26, (55) 2., (via).
k=1 Jj=1 j=1
To write A; = A;_1 2_p,(u;) 5, (v;) in the same form we have to transpose z_g, (u;)
with each factor in the product H;_jl xg,(s5) xp,_, (vi—1). By (6) and by Corollary 1,
every time doing so we obtain additional factors g, () or #_g, (), where s < i—1 in the
first case and s > 7 in the second case. Collecting together all these factors correspond-
. . . =2 .
ing to negative roots we can write the element ;27 2p,(s;) zp,_, (vi—1) z—p,(u;) in
the form

n m i—1
IT #e ) TT w-s,5) T 2, 59)
k=1 j=1 j=1

and so our claim follows.
Now we are ready to prove the injectivity of w. Suppose that

(7) Wty ey tny ULy oo s Uy U1y en s V) = W(E1y oo e sty Uty enn s )

From the above argument and the Bruhat decomposition we get immediately v, =
Om,. To show that wu, = @y, we use (4), (5). Namely, it follows from (4), (5) that the
left hand side of (7) may be written in the form

n

IT foc (o) 26, (1) @y (r0)] - [y (5mm1) 2=, (P )]

=1
28, [vm (1 + Umvm)] 2_g,, [tm (1l + umvm)_l] ,

where f1,..., fn, S15--+,8m—1, T1,--- s 'm—1 are rational functions. Rewriting the
right hand side of (7) in the same form we conclude that

U (14 0 ) ™Y = U (1 4 U B ) ™7,
hence w,, = . After cancelling the factor z_g, (um)zs,, (vm) in (7) the same
argument shows that v,,_1 = 9_1, Um—1 = Um—1 and so on. O
Now we are in position to formulate the main result of the section.

THEOREM 2. Let g € G(L) be such that g*=" € T(L). Then there exist quaternion

algebras Dy, ..., Dy, over K and elements wy,...,w; € K which are reduced norm
of Di,..., Dy, respectively and elements t1,...,t, € L such that
n m
9" = [ e tir(t)) T hp. (i)
i=1 i=1

Proo¥. If g'=7 € T(L), then for any « € G(K) one has ¢1=7 = (g2)!=7. Since
G(K) is Zariski dense in GG, we may always assume that our element g is in “generic”
position by which we mean point in some Zariski open subset U C G which can be
easily specified from the argument. So let

n

9= H ho,(t:) x—g, (1) s, (v1) - 2—p,, (um)2s,, (Vm)
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HAssE PRINCIPLE FOR PRINCIPAL HOMOGENEOUS SPACES 141

n

where ¢;, u;, v; € L. Denote t = [[_; hq,(t;) and g; = x_g, (u;)zg, (vi), 1 =1,...,m.
Let also ¢ = ¢'~7, so that

(8) togreegm =t -7(t) - 7(g1) - T(gm)

By Lemma 1, we have 7(g;) € G,. Then applying Proposition 1 we conclude that
gm and 7(g,) coincide modulo Ty (L) = T(L) N Gg,, and so the element g7~ ! is
of the form hg, (w;) for some parameter w,,. We claim that v, € K and it is a
reduced norm of the quaternion K-algebra D,, = (d,dg,,), where dg,, = ca,, . Indeed,
by construction the cocycle (¢71) € Z1(©,Tjs,, (L)) is trivial in Z1(0, G, (L)) and
by Lemma 1, G, ~ SL(1, D,,), hence our claim follows.

Substituting 7(gm) = hg,, (wm) - ¢ in (8) and cancelling g, we have then

togigmor =1 7(t) hg, (wm) - [, (wm) "' 7(g1)hg,, (wm)] -

v [hg,, (W) T T (gm-1)hg,, (wm)]
Applying again Proposition 1 and arguing analogously we have

s, () T T (gm=1) P, (wm)] = b,y (Wm1) * gm—1

for some parameter w,,_1, which is again a reduced norm of the quaternion K-algebra
D1 = (d,dgs,,_,), where

dﬁm—l = Clm_1 wmﬁm_hﬁm)'

To see it, let Gm—1 = ha,, (W) 7(gm-1)hg,, (Wm). Using (4) we have

1

)
m_lwn;(ﬁm-l,ﬁm)T(um)) . xﬁm_l(cﬁm_lwr(nﬁm—lvﬁm)T(vm)).

gm-1 = $ﬁm—1(cg

It follows that (hg,, _, (Wm-1)) = (Gm-1 -g;f_l) can be viewed as a trivial cocycle in
an K-group of rank 1 whose K-structure, i.e. action of 7, is given by the constant
dg, _,. This fact combined with Lemma 1 implies wy,_1 is a reduced norm of D,,_;,
as claimed, and so on. Theorem 2 is proved. O

In § 4 we will also deal with a simple simply connected algebraic K-group & which
is quasi-split over a quadratic extension L/K and for such a group we also need to
describe elements of the form g'=7 € T(L), where g € G(L).

Clearly, K-groups of type A, split over a quadratic extension of K. Since this
case has been already handled, we may assume that G is an outer form of type not
Aspn. As above, let B be an L-Borel subgroup B of G such that T = BN 7(B) is a
maximal K-anisotropic torus.

Let F//K be the minimal extension over which (7 is an inner form and let £ = F-L.
Let 7 and o be non-trivial automorphisms of E/K such that r|p = 1 and | = 1
respectively. In the case 3D, by ¢ we denote any automorphism of order 3.

Clearly, o induces an outer automorphism of the root system ¥ = R (T, ) which
will be denoted by the same letter. Let A = {y1,...,7:} C Xt (resp. A’) be a set
of representatives of all orbits of & in X1 (resp. in IT). We divide A into two parts:
A ={yi € Al o(y) =~} and A2 = A\Ay. Let also A} = A'NA;, i = 1,2. For
vi € A1 (resp. Ay) we denote by H; the subgroup in G generated by G, (resp.
Gryiy Goyyy and Goz(y,, if |o| = 3).

LEMMA 3. H; is a simple simply connected K-group of type Ay (resp. Ay X Ay or
Ay x A1 X Ay ) ifvi € Ay (resp. v € Ay and |o| =2 or |o| =3 ).
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Proor. It suffices to note that 7 acts on X as either —1, if ¥ has type Ds,, or —¢
otherwise, since it permutes positive and negative roots. Moreover, the combination

B; £ (i) is not a root, hence G, and G,(,,) commute. O
THEOREM 3. Let g € G(L) be such that g*=" € T(L). Then there exist quaternion
algebras Dy, ..., D, and elements wy, ... ,ws which are reduced norm of Dy,..., D
respectively and elements t1, ... ,t, such that:

1) If ¥ is not of type >°Dy, then
g T = H ho,(tiT(t:)) H ha (tiT(ti)) ho(anlo(ti) (T o o) (t:)]-

o €AY o €EAL
IT Avod) T Ao (wid b (o(wi)
Vi EA Vi EA2

2) If ¥ is of type 3°Dy, then
977 = I hai@ir(ti) ho(anlo(t) (7 0 0)(t)]hoz ([0 (1) (7 0 ) (1))

o €EAL

TT fetsrttd) TT Ao () TT o () (i) oo (o 00)
o €AY Vi EA Vi EA2
Here D; is over K (resp. over F' ) and w; € K (resp. F), if vi € Ay (resp. v € Aa ),
and t; € L (resp. E), if a; € A} (resp. a; € A}).

ProOOF. As in the L-split case first we may assume that g is in “generic” position
and so by property 2 in Lemma 2 and by Proposition 1, it can be written in the
form g = tgy1---gs, where t € T, g; € H;, @ = 1,...,s. Then the rest of the proof
works exactly as in the L-split case, since by Lemma 3 all subgroups H; are of the
form Rg//x (SL(1, D)), where D is a quaternion algebra over K’ and K’ is either I
or K. |

3. SOME COHOMOLOGICAL COMPUTATIONS

From now on we assume that ved (K) < 1 and we let L = K(v/—1). We also
assume that the set Qg of all orderings on K is non-empty; this means, in particular,
that char K = 0. Recall ([Sr]]) that there is a canonical topology on Qg under which
Qg is compact and totally disconnected.

REMARK 2. If 2 = @, then —1 is a sum of squares in K and so cd (K) =
cd (K(y/—1)) <1 ([S], Ch. 2, Prop. 10"). Therefore, if Qx = @, then by Steinberg’s
theorem ([St2]) one has H'(K,G) = 1 for any connected linear algebraic K-group
G.

To reduce the proof of the Hasse principle to the case of simply connected
semisimple groups we need two auxiliary cohomological statements (Propositions 2
and 4 below) which are very particular cases of the general Theorem 12.13 in [Sch2].
Since we do not need to consider such a generality as in [Sch2] we include here the
straightforward proofs of these statements.

Let A be a discrete I'-module, where I' = Gal (K /K), and let

i H(K,A) » ] H (K¢, A)
EEQK
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be the canonical map induced by resg,. We want to describe Kerp;, i > 2, and
Impy. To do so first remind that there is not a canonical way of choosing a real
closure of K at £ € Q. If K¢ and Ké are two real closures of K at &, then by the
theorem of Artin-Schreier ([Srl] Ch. 3, Theorem 2.1) there is a unique K-isomorphism
K¢ ~ K, hence there is an element g € I' such that greg~! = 74, where ¢ (resp.
Té) is the involution (= element of order 2) in I' corresponding to K¢ (resp. Ké) (in
other words, there is a natural one-to-one correspondence between points of the set
1k and conjugacy classes of involutions in T).

The element g induces a natural map A; 4 : H' (K¢, A) — Hi(lfé,A) and obvi-
ously we have resg: = A; 4 0 resg,. It follows that the question on whether ¢; is
injective does not depend on a choice of real closures K¢, £ € Q.

Clearly, any cocycle from Z'(K¢, A) is determined by the single element a € A
such that are(a) = 1. We will say that an element {a¢}ecay € [[eeqy, H' (K¢, A) is
locally constant if there are a decomposition Qg = Uy U...U U, into disjoint clopen
(= open and closed) sets and elements {aj,...,a;} of A for which the following
condition holds: for any £ € U; there are a cocycle c¢ representing a; and g¢ € I' such
that the cocycle Ay 4, (c¢) is determined by a;. Analogously, for any ¢ > 1 one defines
the subset of elements in HEEQK H'(K¢, A) which are locally constant. We denote

. le .
this subset by (ngm{ o (Kg,A)) . Since for any ¢ € H'(K, A) the element ;(¢)
is locally constant we denote by the same letter the canonical map

le

gpi:Hi(K,A)H H Hi(ngA) C H Hi(l‘rﬁvA)
§EQK §€E0K

PRrROPOSITION 2. If A is a finite discrete I'-module, then the maps ¢; are injective for
all integers ¢ > 2.

ProOF. Since H!(L,A) = 1,7 > 2, the “res-cores” argument shows that H'(K, A)
has exponent 2. So replacing A, if necessary, by its 2-Sylow subgroup we may assume
that A is a 2-group. First examine the case A = Z/27.

LEMMA 4. Let A = Z/27. Then p; is surjective if i > 1 and injective if i > 2.

ProoF. Recall ([L], §17) that a field F' is said to be an SAP field (strong approxima-
tion property) if for any two disjoint closed subsets A, B C 2p there exists an element
f € F such that f is positive at all orderings in A, but negative at all orderings in B.
We need

ProposITION 3. ([L], Theorem 17.9) If ved (K) < 1, then K is a SAP field.

Surjectivity of @i, i > 1. In view of the periodicity of H'(K¢,Z/27Z) it suffices to
consider the cases i = 1,2. If i = 1 then HY(K,Z/27Z) = K*/K*?, hence the sur-
jectivity of ¢ follows immediately from Proposition 3. Furthermore, any element
from H?(K,Z/27) splits over L and so can be represented by a quaternion algebra
having L as a maximal subfield. Then clearly, the surjectivity of ¢o again follows
from Proposition 3.

Injectivity of @;, i > 2. The proof is similar to that of [B-P], Lemma 2.3. Namely,
by Arason’s theorem ([A1], Satz 3 ), local triviality of ¢ € H'(K,Z/27Z) implies that
CU(=1)" = 0 for some integer r, where U denotes the cup product. On the other
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hand from the exact sequence

cor

Hi(L,2/22) %% 1i(K,2)27) "2 mi+i(i, 2)22) 75 B+Y(L, 2/22)
([A2], Corollary 4.6) and from the equalities
HY(L,7./27) = H*Y(L,Z/27) =1, i>2

we conclude that the product U(—1) is an isomorphism. Therefore, ¢ = 1, as required.
Lemma 4 is proved. [l

We come back to an arbitrary finite 2-primary module A. Let I's be a Sylow
2-subgroup of I'. Since the restriction map H'(K, A) — H'(Tz, A) is injective, after
replacing I' by 'y we may assume that ' is a pro-2-group. But for such a group any
irreducible module is isomorphic to Z/27Z ( [S], §4, Proposition 20). Therefore there
exists a submodule A’ C A such that A/A" = Z/2Z. Tt induces the commutative
diagram

H(K,7/27) — HF(K, A —
I I

( I1 Hi(ffg,Z/QZ)) — ( I1 HH—l(I(E,A/)) N

§EQK EEQK

HH(K, A) — H*(K,7./27)
o b

le le
[1 H*(K, A) — | II H*N (K, 2/27)
€K €K

By what has been proved above, 01 (resp. 64) is surjective (resp. injective) and by
induction, 6, is injective. It follows that 03 is injective as well. Proposition 2 is
proved. [l

ProrosiTION 4. If A is a finite discrete I'-module, then 1 is surjective.

PrROOF. Since ¢;, ¢ > 2, are injective, one can easily verify that if the statement
holds both for a submodule A’ C A and the quotient A/A’, then it also holds for A.
So we may assume, if necessary, that A is irreducible. It suffices to prove that for a
given £ € Qg and an element a € A for which am(a) = 1 there exist a small clopen
neighbourhood U C Qk of ¢ and a cocycle ¢ € Z'(K, A) such that for a proper real
closure K¢ of K at &' the cocycle resg,, (€) is determined by the element a if &' € U,
and is trivial otherwise.
We need the following simple property of orderings of K (see [Srl]):

if F/K is an extension of odd degree then for any ordering & € Qg there is an eaten-
ston of & to F'; moreover, the restriction map ¢ : Qp — Qg is a local homeomorphism.

Let E be a finite Galois extension of K over which A is a trivial module and let
F C F be the subfield corresponding to a Sylow 2-subgroup of Gal (E/K). Denote
A =Gal(K/F). Let ¢71(¢) = {&1,..., &} C Qp, where, as above, ¢ : Qp — Qx is

the restriction map.
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By construction, ¢(&;) = £. So we can pick a small clopen neighbourhood U C Qg
of ¢ and disjoint small clopen neighbourhoods U; C QF of &, ¢ =1,...,%, such that
the restriction map ¢|y, : U; — U is a homeomorphism and ¢=3(U) = U U... U ;.
Taking smaller neighbourhoods, if necessary, one can additionally assume that for
any &' € Uy there is an involution 72+ € A corresponding to ¢’ for which the following
property holds:

if ¢ € T\ A be such that 7/ = g 7z g~ € A then the point of Qp
(9) corresponding to the involution 7z does not lie in Uj.

Indeed, let In C A be a subset of involutions and 7 € In be an involution
which corresponds to £;. Assume the contrary. Since Ia, I' are compact and totally
disconnected there exist then in A a sequence of involutions (71, 72, ... ) converging to
7 and a converging sequence of elements (g1, ¢2,...) in T\A such that g; ; gi_1 € A.
Letting ¢ = limg;, one has ¢ € T\A and 7 = grg~! € A. But by assumption,
the point & of Qp corresponding to 7' lies in Uy and ¢(&') = £. This means that
& = &, hence there is § € A such that 7 = 67671, implying ¢~ § lies in the
centralizer C(7). But every involution in T is self-centralizing, i.e. Cp(7) = {r),— a
contradiction.

The map ¢ is clearly surjective for the field F, since A can be viewed
as Gal (F/F)-module and Gal (F/F) is a 2-group, implying that any irreducible
Gal (E/F)-module is of the form Z/27Z. Therefore, we can pick ¢! € Z!(F, A) such
that for proper real closures the cocycle resp,, (¢’) is determined by the element a if
¢ € Uy and is trivial otherwise. We claim that the cocycle ¢ = cor £ ({’) has the
same property. To verify it we need

ProposITION 5. ([Br], Ch. III, Proposition 9.5) Let A be a T'-module and © C A C

T be subgroups. If [I': A] < o0 and z € H*(A, A) then we have
res g ocor i (2) = Zcor gngAg—l ores %ﬁz;g—l (g(2)),

geA
where A is a set of representatives of double cosets © g A and
Gg:H (A A) = H (gAg™h A)
is the natural map induced by pair (int(g=1), g).
To prove our claim first take n € U. Let & = ¢7'(n) NU; and let 7 € A be

an involution corresponding to ¢ and satisfying (9). Then applying Proposition 5 we
have

resicy (C) = D res S0 0 (9(C)) = D res g, yna () =res§, (C)

where @g = (7}, hence resg,, (€) is defined by a. Analogously, one shows that
resg, (C) is trivial if » ¢ U. Proposition 4 is proved. O

COROLLARY 2. Let A be a commutative connected linear algebraic K-group. Then
o s injective.

ProoF. One has H'(L, A) = 1,7 > 1. So H'(K, A) has exponent 2 and hence the
map H'(K, 3A) — H'(K, A) is surjective, where yA consists of all elements of A
killed by 2. By Proposition 4, it gives the surjectivity of ¢; for A. Then the result
follows from the injectivity of ¢, for 5 A. O
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COROLLARY 3. The Hasse principle holds for algebraic K-tori.

ProoFr. Let T be a K-torus. There exists K-quasi-split torus S and its connected
K-subtorus H such that T'= S/H. Then the commutative diagram
HYK,S)=1 — HYK,T) — H?*(K,H)
[ [ [
[ H'(K:,8)=1 — ] H'(K,T) — ][ H*(K¢ H)
EEQK §€E0K §€E0K
shows that the injectivity of 65 follows from that of 3. [l

4. THE HASSE PRINCIPLE FOR PRINCIPAL HOMOGENEOUS SPACES

Let us keep the notations of § 3. In particular, we assume that K is a field with
ved (K) < 1, L = K(v/—1) and Qg # 0. Let also 7 be the non-trivial element of
Gal (L/K). Using the results of the previous sections we may produce a simple proof
of the triviality of the kernel of (2).

a) Let G’ be a connected linear algebraic K-group, Z < G’ be a finite central
K-subgroup and let G = G'/Z.

LEMMA b. If the Hasse principle holds for G' then it also holds for G.

ProoFr. Consider the commutative diagram

HY(K,7) —  HYK,G') —  HY(K,G) 2%

o 2 2
[ H'(Ke,2) — [l H' (K, ') — [ H'(Ke,G) =
EENK EEQK EENK
2y HYK, Z)

v

] MK, 2)
§€E0K
By assumption and by Proposition 2, the maps 03, 04 are injective. Then from the
above diagram and from Proposition 4 we have Kerf3 = 1. |

b) Reduction to semisimple groups. Since unipotent K-groups have trivial co-
homology we may assume without loss of generality that G is reductive. Then
G = T - H is an almost direct product of the central torus 7" and the semisimple
group H = [G,G]. Let G = T x H. Clearly, the kernel of the natural morphism
G' — @G is finite and by induction and by Corollary 3, the Hasse principle holds for
H and T. So by Lemma 5, it holds for G as well.

) Reduction to simple simply connected groups. One can again apply Lemma 5
to a simply connected covering G’ of (5.

d) Let G be an (absolutely) simple simply connected K-group. By Stein-
berg’s theorem ([St2]), G has a Borel subgroup B over L. We may assume
that T = B N 7(B) is a maximal K-torus of G. Since HY(L,G) = 1, the
map HY(L/K,G(L)) — HY(K,G) is surjective. By Lemma 6.28 [PI-R], the map
HYL/K,T(L)) — HYL/K,G(L)) is surjective as well, hence any class [(] €
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HY(K,G) can be represented by a cocycle ¢! € ZY(L/K,T(L)). Let S be a max-
imal K-split subtorus of T

First let S # 1. Then Cg(S) is a proper connected subgroup of G. Since Cg(5)
is a reductive part of some parabolic K-subgroup, one has Ker (H'(E,Cg(S)) —
HYE,G)) = 1 for any extension E/K ([Pr-R], Lemma 5.1). So if in addition
¢ € Ker0, then for each { € Qg the element resg,(¢’) is trivial as an element of
H'(K¢,Cg(S)), hence the claim follows by induction.

€) S =1, i.e. Tis a K-anisotropic torus. By Steinberg’s theorem, G is either split
or quasi-split over L. We examine the L-splitting case only, since the L-quasi-splitting
case can be handled analogously. Identify Z1(©,T(L)) with (K*)*. Arguing as in d)
we get that any element from Ker @ can be represented by a cocycle ¢ € Z'(0,T(L)).
We claim that there exist a maximal K-torus 7" C G isomorphic to T over K and a
cocycle ¢’ € Z1(©,T'(L)) equivalent to ¢ in Z1(0,G(L)) such that ¢’ is everywhere
locally positive. By Corollary 3, the last would mean that ¢’ is trivial as an element
of HY(©,T'(L)), hence ( is trivial in H1(©,G(L)) as well.

To show it, we proceed as in Theorem 2. Namely, we construct inductively
quaternion algebras Di,..., Dy, over K and elements g; € Gg,(L) such that for
¢ = g1+ gm the element ¢g'=7 € T(L) and the components of the cocycles (g'~7)
and ¢ everywhere locally have the same signs.

As in Theorem 2, we begin with D,,, = (—1,dg,,), where dg, = ¢s,,. For £ € Qg
let g¢ € G(K¢) be such that ¢ = (gg_T) (note that T is still anisotropic over K¢ ).
We may assume that g¢ is in “generic” position and so we may write g¢ as a product
ge =tcGe 1 Gem, Where te €T, ge; € Gyt =1,...,m.

We have already known that 7(g¢.m) = hg,, (Wem) ge,m for some parameter
wem € K¢. By virtue of the facts that our field K has the property SAP and
the Hasse principle holds for groups of type A; ([B-P], [Sch1]) we can pick w,, € K,
which has everywhere locally the same sign as we p,, and g, € Gg, (L) such that
hg,, (W) = gy 7

Next consider the quaternion K-algebra D,,_1 = (—1,dg,,_,), where

dp,_ = Cg_ywlfm=r0m),

Let wg -1 € K¢ be such that hg,,_, (wem—1) hg,. (We,m) = (9e,m—19e,m) "7 Again
we can pick wy,—1 € K such that for all £ € Qx the elements wy,_1 and w¢ -1 have
the same sign. By construction, the equation ks, (wm-1) ks, (Wm) = (€ gm)'™7,
where # € G5,,_, (L), has solution everywhere locally, so it has solution g,,_1 globally,
and so on.

Thus, there exists ¢ € (L) such that the components of both cocycles (g7(g71))
and ¢ have the same signs in K, for each £ € Q. To complete the proof of the
theorem it remains to notice that the cocycle ' = r(g)~1(g is equivalent to ¢ in
ZY(©,G (L)), takes values in the K-defined and L-splitting torus 7" = 7(g)~'T(g)
and ¢’ is everywhere locally positive. O

REMARK 3. The same argument shows that 6 is still injective if we replace Qg by a
dense set of orderings.
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