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Abstract. In this paper we introduce a formula to compute Chern classes of

�bered products of algebraic surfaces. For f : X ! C P

2

a generic projection

of an algebraic surface, we de�ne X

k

for k � n (n = deg f) to be the closure

of k products of X over f minus the big diagonal. For k = n (or n � 1), X

k

is

called the full Galois cover of f w.r.t. full symmetric group. We give a formula

for c

2

1

and c

2

of X

k

: For k = n the formulas were already known. We apply the

formula in two examples where we manage to obtain a surface with a high slope

of c

2

1

=c

2

: We pose conjectures concerning the spin structure of �bered products

of Veronese surfaces and their fundamental groups.

Keywords and Phrases: Surfaces, Chern classes, Galois covers, �bered product,

generic projection, algebraic surface.
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0. Introduction.

When regarding an algebraic surface X as a topological 4-manifold, it has the Chern

classes c

2

1

; c

2

as topological invariants. These Chern classes satisfy:

c

2

1

; c

2

� 0

5c

2

1

� c

2

� 36

Signature = � =

1

3

(c

2

1

� 2c

2

)

The famous Bogomolov-Miyaoka-Yau inequality from 1978 (see [Re], [Mi], [Y])

states that the Chern classes of an algebraic surface also satisfy the inequality

c

2

1

� 3c

2

:

It is known that this inequality is the best possible since Hirzebruch showed in 1958

that the equality is achieved by complex compact quotients of the unit ball (see [H]).
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322 Mina Teicher

We want to understand the structure of the moduli space of all surfaces with given

c

2

1

; c

2

; and, in particular, to populate it with interesting structures of surfaces. As a

�rst step it is necessary to develop techniques to compute Chern classes of di�erent

surfaces.

In this paper we compute Chern classes of Galois covers of generic projections of

surfaces. This was already computed in [MoTe2] for the case of the full Galois cover,

where the product is taken n times (n is the degree of the projection). In this paper

we deal with products taken k times, k < n; and we manage to give an example of

a surface where the slope (c

2

1

=c

2

) is very high (up to 2.73). In subsequent research,

using the results of this paper and of our ongoing research on this subject, we plan

to further study these constructions, to compute these fundamental groups and to

decide when the examples are spin, of positive index, etc. We conjecture that for X

b

the Veronese surface of order b greater than 4; X

k

is spin if k is even or b = 2; 3(4):

We further conjecture that for the Hirzebruch surfaces in general the fundamental

groups of X

k

are �nite.

In [RoTe], we used similar computations to produce a series of examples of surfaces

with the same Chern classes and di�erent fundamental groups which are spin mani-

folds where one fundamental group is trivial and the other one has a �nite order which

is increasing to in�nity. The computations in this paper will lead to more examples

of pairs in the � > 0 area.

We consider in this paper �bered products and Galois covers of generic projections

of algebraic surfaces. If f : X ! C P

2

is generic of degn; we de�ne the k-th Galois

cover for k � n to be X � � � � �X ��

f f

where � is the big diagonal and the �bered

product is taken k times. There exists a natural projection g

k

: X

k

! C P

2

; deg g

k

=

n(n� 1) : : : (n� k + 1):

The surface X

k

for k = n, is called the full Galois cover (i.e., the Galois cover w.r.t.

full symmetric group), and is also denotedX

Gal

or

~

X. Clearly, deg(X

Gal

! C P

2

) = n!:

It can be shown that X

n

' X

n�1

. The full Galois covers were �rst treated by Miyaoka

in [Mi], who noticed that their signature should be positive. In our papers [MoTe1],

[MoTe2], [MoTe3], [MoRoTe], [RoTe], [Te], [FRoTe], we discussed the full Galois

covers for X = f

ja`

1

+b`

2

j

(C P

1

� C P

1

); Veronese embeddings and Hirzebruch surfaces.

In the papers cited above we computed their fundamental groups (which are �nite),

the Chern numbers and the divisibility of the canonical divisor (to prove that when

considered as 4-manifolds they are spin manifolds). X

Gal

are minimal smooth surfaces

of general type. Other examples of interest on surfaces in the � > 0 area can be found

in [Ch] and [PPX].
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Chern Classes of Fibered Products of Surfaces 323

x1. The Main Theorem.

We start with a precise de�nition.

Definition. A Galois cover of a generic projection w.r.t. the symmetric group S

k

(for k < degree of the generic projection). Let X ,! C P

N

be an embedded

algebraic surface. Let f : X ! C P

2

be a generic projection, n = deg f: For 1 � k � n;

let

X � � � ��

f f

X = f(x

1

; : : : x

k

)

�

�

x

i

2 X; f(x

i

) = f(x

j

) 8i8jg;

� = f(x

1

; : : : ; x

k

) 2 X � � � ��

f f

X

�

�

x

i

= x

j

for some i 6= jg

X

k

= X � � � � �

f f

| {z }

k

X ��:

X

k

is the closure of X � � � ��

f f

X ��. X

k

is the Galois cover w.r.t. the symmetric

group on k elements. We denote X

0

= C P

2

:

For every k � 1 we have the canonical projections g

k

: X

k

! C P

2

and a natural

projection (on the �rst k factors) f

k

: X

k

! X

k�1

; which satisfy

f

1

= g

1

= f

g

k�1

f

k

= g

k

; (k � 2):

Clearly,

deg g

k

= n � (n� 1) : : : (n� k + 1)

deg f

k

= n� k + 1;

X

n�1

' X

n

(f

n

is an isomorphism).

.

For k = n (or n� 1), we call X

k

the Galois cover w.r.t. the full symmetric group

or the full Galois cover and denote it also by X

Gal

.

Remark. X

k

is the interesting component in the �bered product X � � � � �X

f f

| {z }

k

Notations.

For the rest of the paper we shall use the following notations:

n = deg f:

X

k

; the Galois cover of f : X ! C P

2

as above, k � n:

S = the branch curve of f in C P

2

(S is a cuspidal curve)

m = degS

� = degS

�

(S

�

the dual to S)

= number of branch points in S w.r.t. a generic projection of C

2

to C

1

:

d = number of nodes in S

� = number of cusps in S
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324 Mina Teicher

Theorem 1. The Chern classes of X

k

are as follows:

(a) c

2

1

(X

1

) = 9n+

�

m

2

� 6

�

m� �� d:

For 2 � k � n� 1

c

2

1

(X

k

) = 9(n� k + 1) : : : n

+

1

2

[(n� k + 1) : : : (n� 2)](2n� k � 1)k

�

m

2

� 6

�

m

� [(n� k � 1) : : : (n� 3)]k�

�

1

2

[(n� k � 1) : : : (n� 4)](2n� k � 5)kd

(b)

c

2

(X

1

) = 3n� 2m+ �

c

2

(X

2

) = 3n(n� 1)� 2(2n� 3)m+ (2n� 3)�+ �+ 2d

c

2

(X

3

) = 3n(n� 1)(n� 2)� 3(2n� 4)(n� 2)m+

3

2

(2n� 4)(n� 2)�

+ 2(3n� 9)d+ (3n� 8)�

For 4 � k � n� 1

c

2

(X

k

) = 3(n� k + 1) : : : n

� (n� k + 1) : : : (n� 2)(2n� k � 1)km

+

1

2

(n� k + 1) : : : (n� 2)(2n� k � 1)k�

+ (n� k + 1) : : : (n� 3)(k � 1)k

�

n

2

�

k + 1

3

�

�

+ [(n� k + 1) : : : (n� 4)]

k(k + 1)

4

f(k + 6)(k � 1) + 4n(n� k � 1)gd

+ [(n� k + 1) : : : (n� 4)]f4nk � 2n

2

kgd

Remarks.

(a) We consider an empty multiplication as 1.

(b) The case k = n � 1(X

k

= X

Gal

); of this Theorem was treated in [MoTe2],

Proposition 0.2 (proof there is given by F. Catanese). (See also [MoRoTe]). One can

easily see that for k = n the formulas here coincide with the formulas from [MoTe2].

For c

2

1

it is enough to use remark (a) about empty multiplication. We get:

c

2

1

(X

Gal

) = c

2

1

(X

n�1

) =

n!

4

(m� 6)

2

:

Note that d and � do not appear in this formula. For c

2

we get here (using (a

1

))

c

2

(X

Gal

) = c

2

(X

n�1

) = n!

�

3�m+

1

4

d+

�

2

+

�

6

�
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Chern Classes of Fibered Products of Surfaces 325

which coincide with [MoTe2], using the formula for the degree of the dual curve:

� = m

2

�m� 2d� 3�:

Proof of the Theorem.

Let g

k

: X

k

! C P

2

; f

k

: X

k

! X

k�1

be the natural projections. Clearly, g

1

=

f

1

= f; g

k

= g

k�1

f

k

, for k � 2 deg f

k

= n � k + 1; deg g

k

=

n!

(n� k)!

: Let E

k

and

K

X

k

be the hyperplane and canonical divisors of X

k

; respectively (E

k

= g

�

(`) for a

line ` in C P

2

).

Let S

k

be the branch curve of f

k

(in X

k�1

); m

k

its degree and �

0

k

the number of

branch points that do not come from S

k�1

(S

1

= S): Let S

0

k

be the rami�cation locus

of f

k

(in X

k

): Let T

0

k

be the rami�cation locus of g

k

(in X

k

):

We recall that the branch points in S (or S

k

) come from two points coming together

in the �bre, the cusps from (isolated) occurrences of three points coming together and

nodes from 4 points coming together into 2 distinct points. Generically, cusps and

nodes are unbranched. We use this observation in the sequel.

To compute c

2

1

(X

k

) we shall use:

c

2

1

(X

k

) = K

2

X

k

K

X

k

= �3E

k

+ T

0

k

and the following identities.

T

0

k

=

(

S

0

k

+ f

�

k

(T

0

k�1

) k � 2

S

0

1

k = 1

T

0

k

= �

1

2

S

k+1

+

1

2

g

�

k

(S)

To compute c

2

(X

k

) we shall assume that all cusps and nodes of S are vertices

of a triangulation. Using the standard strati�cation computations, this implies the

following recursive formula:

c

2

(X

k

) = deg f

k

� c

2

(X

k�1

)� 2m

k

+ �

0

k

:

Thus we need to get a formula for E

k

� T

0

k

; S

k+1

� T

0

k

; m

k

and �

0

k

: We shall use the

following 3 claims:

Claim 1.

(i) Let m

k

= degS

k

: For k � 2; m

k

= (n� k) : : : (n� 2)m; m

1

= m:

(ii) Let d

k

= # nodes in S

k

: For k � 2, d

k

= (n� k � 2) : : : (n� 4)d; d

1

= d.

(iii) Let �

k

= # cusps in S

k

: For k � 2; �

k

= (n� k � 1) : : : (n� 3)�; �

1

= �:

(iv) Let �

0

k

be the number of branch points of S

k

that do not come from S

k�1

;

�

0

k

= �

k

� (n�k+1)�

k�1

(k � 2) and �

0

1

= �: Then for k = 2, �

0

2

= (n�2)�+�+2d

and for k � 3 �

0

k

= (n � k) : : : (n � 2)�+ (n � k) : : : (n � 3)(k � 1)� + [(n � k) : : :

(n� 4)](k � 1)(2n� k � 4)d: (For k = 3 the coe�cient of d is 2(2n� 7):)
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326 Mina Teicher

Claim 2.

E

k:

T

0

k

=

�

m k = 1

1

2

m[(n� k + 1) : : : (n� 2)]f(2n� 1)k � k

2

g k � 2

Claim 3.

S

k+1:

T

0

k

=

�

2�+ 2d k = 1

2(n�k�1) : : : (n�3)k�+ (n�k�1) : : : (n�4)(2n�k�5)kd k � 2

Proof of Claim 1.

Items (i), (ii) and (iii) are easy to verify from the de�nition of �bered product. For

(iv) we notice that f�

0

k

g satisfy the following recursive equations:

�

0

k

= (n� k)�

0

k�1

+ �

k�1

+ 2d

k�1

k � 2

�

0

1

= �:

The formula for �

0

2

; �

0

3

follows immediately from the recursive formula. For k � 4

we substitute the formulas for �

k�1

and d

k�1

from (ii) and (iii) to get �

0

k

= (n �

k)�

0

k�1

+ (n � k) : : : (n � 3)� + 2(n � k � 1) : : : (n � 4)d and we shall proceed by

induction. By the induction hypothesis �

0

k�1

= (n � k + 1) : : : (n � 2)� + (n � k +

1) : : : (n� 3)(k � 2)�+ [(n� k + 1) : : : (n� 4)](k � 2)(2n� k � 3)d:

We substituted the last expression in the previous one to get

�

0

k

= (n� k)(n� k + 1) : : : (n� 2)�+ (n� k)(n� k + 1) : : : (n� 3)(k � 2)�

+ (n� k)(n� k + 1) : : : (n� 4)(k � 2)(2n� k � 3)d

+ (n� k) : : : (n� 3)�+ 2(n� k � 1) : : : (n� 4)d

= (n� k) : : : (n� 2)�+ (n� k) : : : (n� 3)(k � 1)�

+ (n� k) : : : (n� 4)f(k � 2)(2n� k � 3) + 2(n� k � 1)gd

which coincide with the claim since (k � 2)(2n � k � 3) + 2(n � k � 1) =

(k � 1)(2n� k � 4): � for Claim 1

Proof of Claim 2.

For k � 2

E

k:

T

0

k

=

1

2

E

k:

(g

�

k

(S)� S

k+1

)

=

1

2

E

k

g

�

k

(S)�

1

2

E

k:

S

k+1

=

1

2

g

�

k

(`)g

�

k

(S)�

1

2

E

k:

S

k+1

=

1

2

g

�

k

(`:S)�

1

2

E

k:

S

k+1

=

1

2

(deg g

k:

)m�

1

2

m

k+1
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Chern Classes of Fibered Products of Surfaces 327

=

1

2

m(n� k + 1) : : : n�

1

2

(n� k � 1)(n� k) : : : (n� 2)m

=

1

2

m[(n� k + 1) : : : (n� 2)]f(n� 1)n� (n� k � 1)(n� k)g

=

1

2

m[(n� k + 1) : : : (n� 2)]f2nk � k � k

2

g: � for Claim 2

Proof of Claim 3.

Since T

0

1

= S

0

1

; the formula trivializes for k = 1: S

2

� T

0

1

= S

2

� S

0

1

= 2� + 2d =

2�

1

+ 2d

1

: For k � 2

S

k+1

� T

0

k

= S

k+1

(f

k

(T

0

k�1

)

0

+ S

0

k

)

= S

k+1

� f

�

k

(T

0

k�1

) + (S

k+1

� S

0

k

)

= (deg f

k

�

�

S

k+1

) � (S

k

� T

0

k�1

) + 2�

k

+ 2d

k

= (deg f

k

� 2)(S

k

� T

0

k�1

) + 2�

k

+ 2d

k

= (n� k � 1)(S

k

� T

0

k�1

) + 2�

k

+ 2d

k

:

Denote a

k

= S

k+1

� T

0

k

.

We shall prove the claim by induction using the recursive formula

a

k

= (n� k � 1)a

k�1

+ 2�

k

+ 2d

k

. For k = 2 :

a

2

= (n� 3)a

1

+ 2�

2

+ 2d

2

= (n� 3)(2�+ 2d) + 2(n� 3)�+ 2(n� 4)d

= 4(n� 3)�+ 2d(n� 3 + n� 4)

= 4(n� 3)�+ 2d(2n� 7):

Thus the statement is true for k = 2:

Let k � 3: Assume the formula is true for k � 1: We shall prove it for k:

a

k

= (n�k�1)a

k�1

+ 2�

k

+ 2d

k

= (n�k�1)f2(n�k) : : : (n�3)(k�1)�+ (k�1)(n�k) : : : (n�4)(2n�k�4)dg

+ 2(n�k�1) : : : (n�3)�+ 2(n�k�2) : : : (n�4)d

= 2(n�k�1) : : : (n�3)k�+ (n�k�1) : : : (n�4)f(2n�k�4)(k�1) + 2(n�k�2)g

= 2(n�k�1) : : : (n�3)k�+ (n�k�1) : : : (n�4)f2nk�k

2

�5kgd:

From the two formulae, we can see that the product (n� k � 1):::(n� 4) should be

1 for k � 2: � for Claim 3

We go back to the proof of the theorem. To prove (a) we write

c

2

1

(X

k

) = K

2

X

k

= (�3E

k

+ T

0

k

)

2

= 9E

2

k

� 6E

k

:T

0

k

+ (T

0

k

)

2

= 9E

2

k

� 6E

k:

T

0

k

+ T

0

k

�

�

1

2

S

k+1

+

1

2

g

�

k

(S)

�

= 9E

2

k

� 6E

k

� T

0

k

�

1

2

T

0

k

� S

k+1

+

1

2

T

0

k

� g

�

k

(S):
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Now: E

2

k

= deg g

k

= (n�k+1) : : : n

�

=

n!

(n� k)!

�

: Since S is of degm T

0

k

:g

�

k

(S) =

mE

k

:T

0

k

: We substitute the results from Claim 2 and Claim 3 to get (a).

We prove (b) by induction on k: For k = 1 we take the recursive formula c

2

(X

k

) =

(n� k + 1)c

2

(X

k�1

) � 2m

k

+ �

0

k

and substitute k = 1 to get c

2

(X

1

) = 3n� 2m+ �

which coincides with formula (b) for k = 1: We do the same for k = 2; 3: To prove

k � 1 implies k we use Claim 1(iv) and (ii) to write

c

2

(X

k

) = (n� k + 1)c

2

(X

k�1

)� 2(n� k) : : : (n� 2)m+ (n� k) : : : (n� 2)�

+ (k � 1)(n� k) : : : (n� 3)�

+ (n� k) : : : (n� 4)(k � 1)(2n� k � 4)d

When substituting the inductive statement for c

2

(X

k�1

) and shifting around terms,

we get (b).

� for the Theorem

x2. A Different Presentation of the Chern Classes.

Proposition 2. Let E and K denote the hyperplane and canonical divisors of X,

respectively. Then the Chern classes of X

k

are functions of c

2

1

(X), c

2

(X), deg(X),

E; K; and k.

Proof. (Proof for X

n

appeared in [RoTe]) Let S be the branch curve of the generic

projection f : X ! C P

2

(S � C P

2

). By Theorem 1, the Chern classes of X

k

depend

on k; deg(S); deg(X) and �; d; �; the number of branch points, nodes and cusps of S;

respectively.

We shall �rst show that �; d; � depends on c

2

(X); degX; deg(S); e(E) and g(R)

where g denotes the genus of an algebraic curve, e denotes the topological Euler

characteristic of a space, and R (� X) is the rami�cation locus of f which is, in fact,

the non-singular model of S.

Recall that � also is equal to deg(S

�

); where S

�

is the dual curve to S: For short

we write n = deg(X); m = deg(S):

We show this by presenting three linearly independent formulae:

� = m(m� 1)� 2d� 3�

g(R) =

(m� 1)(m� 2)

2

� d� �

c

2

(X) + n = 2e(E) + �

The �rst two are well-known formulae for the degree of the dual curve and the genus

of a non singular model of a curve. For the third, we may �nd a Lefschetz pencil

of hyperplane sections of X whose union is X . The number of singular curves in

the pencil is equal to �. The topological Euler characteristic of the �bration equals

e(X) = e(C P

1

) � e(E) +��n (n appears from blowing up n points in the hyperplane

sections). The formula follows from e(C P

1

) = 2 and e(X) = c

2

(X):

We shall conclude by showing that deg(S), e(E) and g(R) depend on c

2

1

(X); degX

and E:K:
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This follows from the Riemann-Hurwitz formula, R = K + 3E; the adjunction

formula 2� 2g(C) = �C:(C +K); and the fact that E

2

= degX and K

2

= c

2

1

(X): In

fact, we have:

g(R) = 1 +

1

2

R(R+K) = 1 +

1

2

(K + 3E)(2K + 3E)

e(E) = 2� 2g(E) = �E(E +K)

deg(S) = deg(R) = E:R = E(K + 3E): �

From the above proof we can, in fact, get the precise formulae of c

2

1

(X

k

) and

c

2

(X

k

) in terms of c

2

1

(X); c

2

(X); deg(X), E:K; and k: For certain (computer-

ized) computations, it is easier to work with these formulae rather than those of

Theorem 1.

Corollary 2.1. In the notations of the above proposition:

c

2

1

(X

n

) =

n!

4

[(E:K)

2

+ 6n(E:K) + 9n

2

� 12(E:K)� 36n+ 36]

c

2

(X

n

) =

n!

24

[72� 10c

2

1

(X)� 54(E:K)� 114n+ 27n

2

+ 14c

2

(X) + 3(E:K)

2

+ 18n(E:K)]

Similar formulas can be obtained for X

k

for k < n:

x3. Examples.

To use Theorem 1, we need computations of n; m, �; � and d: We compute them for

two examples.

Examples 3.1. For X = V

b

, a Veronese embedding of order b, we have

n = b

2

m = 3b(b� 1)

� = 3(b� 1)

2

' = 3(b� 1)(4b� 5)

d =

3

2

(b� 1)(3b

3

� 3b

2

� 14b+ 16)

(see [MoTe3]).

Proof. For n;m; � and �; see [MoTe3] and [MoTe4]. Since � = m(m� 1)� 2d� 3�;

we get the following formula for d : 2d = m

2

�m� �� 3' and thus

2d = 3b(b� 1)(3b(b� 1)� 1)� 3(b� 1)

2

� 9(b� 1)(4b� 5)

= 3(b� 1)f(3b

2

� 3b� 1)b� (b� 1)� 3(4b� 5)g

= 3(b� 1)f3b

3

� 3b

2

� 14b+ 16g:

When one substitutes b = 3 and k = 4, one gets

c

2

1

c

2

= 2:73: By experimental

substitutions it seems that for large b, the signature �(X

k

) (= c

2

1

� 2c

2

), changes

from negative to positive at about

3

4

n:
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Example 3.2. For X = X

t(a;b)

= f

ja`+bC

+

j

(Hirzebruch surface of order t); where `

is a �ber, (C

+

)

2

= t; and a � 1, we have

n = 2ab+ tb

2

m = 6ab� 2a� 2b+ t(3b

2

� b)

� = 6ab� 4a� 4b+ 4 + t(3b

2

� 2b)

' = 24ab� 18a� 18b+ 12 + t(12b

2

� 9b)

Proof. [MoRoTe], Lemma 7.1.3.

Example 3.3. (in the � < 0 area)

For X a K3 surface:

K = 0

c

2

1

(X) = K

2

= 0

c

2

(X) = 24

n = 4

m = 12

� = 36

� = 24

d = 12

c

2

1

(X

2

) = 48

c

2

(X

2

) = 144

c

2

1

(X

3

) = c

2

1

(X

Gal

) = 216

c

2

(X

3

) = c

2

(X

Gal

) = 240:

Proof. It is well known that for a K3 surfaces K = 0; c

2

1

= 0; c

2

= 24; S

0

= 3E;

n = E

2

= 4: Using this we can get m and �:

m = S

0

:E = 3E:E = 3E

2

= 12

� = c

2

(X)� 2e(E) + n (see proof of Proposition 2)

= c

2

(X)� 2(2� 2g(E)) + n

= c

2

(X) + 2E:(E +K) + n = 36

Now from

m(m� 1) = �+ 3�+ 2d

and

m(m� 3) = 2g(S

0

)� 2 + 2�+ 2d = (K + S

0

); S

0

+ 2�+ 2d

= 3E:3E + 2�+ 2d = 9E

2

+ 2�+ 2d;

we get 2m = �� 9E

2

+ � = 24 and � = 2m+ 9E

2

� � = 24:

Moreover, we get d =

1

2

(m(m� 1)� � � 3�) = 12: We substitute these quantities

in the formula from Theorem 1 to get the values of the Chern classes.

Remark. For t = 0; X

t(a;b)

are actually embeddings of C P

1

� C P

1

. In [FRoTe], we

computed the fundamental group of X

n

= X

Gal

for X = X

t(a;b)

which is Z

n�2

c

for
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c = g:c:d:(a; b): Thus for (a; b) = 1 these surfaces are simply connected. All these

surfaces are smooth minimal surfaces of general type. For a � 6, b � 5; the signature

of these surfaces is positive. For �ve pairs of (a; b), these surfaces have signature 0

(see [MoRoTe]). Four of these surfaces are simply connected and the �fth one for

which a = b = 5; �

1

(X

Gal

) = Z

48

5

.

In our ongoing research, we shall apply Theorem 1 and Proposition 2 in order to

obtain more examples of non di�eomorphic surfaces or surfaces in di�erent deforma-

tion families with the same c

2

1

and c

2

, as well as to compute the slope

c

2

1

c

2

and to search

for higher slopes.

We are also interested in the fundamental groups (in particular, in the �nite ones)

and the divisibility of the canonical class (in particular, the case where the canonical

class is divided by 2, i.e., the spin case), which we will investigate in a subsequent

paper. The results in this paper are a basis for producing interesting examples of

surfaces with positive index, (c

2

1

� c

2

), �nite fundamental groups and spin (K even)

structure. In particular, we plan to prove the following two conjectures.

Conjecture. For X = V

b

, Veronese of order b; b > 4; we have X

k

is a spin

manifold , k even or b = 2; 3(4):

Conjecture. For X = F

t(a;b)

(the Hirzebruch surface), �

1

(X

k

) is �nite.
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