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Abstract.

A model for long range di�usion reaction on population dynamics has been

considered, and conditions for the existence and uniqueness of solutions to

the model in L

p;q

norms has been obtained.
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1 Introduction

The dynamics of population has been described using mathematical models which

have been very successful in giving good e�ect in the study of animal and human

populations. Fisher [4] introduced a model for the spatial distribution of an advanta-

geous gene as non-linear di�usion equations. Later, Hoppensteadt [6] p.50, derived an

equation of age-dependent population growth which involves �rst order partial deriva-

tives with respect to age and time, where Fife [3] considered reaction and di�usion

systems which are distributed in 3-dimensional space or on a surface rather than on

the line. In addition, Abual-rub studied di�usion in two dimensional spaces for which

di�usion is more realistic and applicable in life. Most of these di�usion models deal

with usual di�usion or short range di�usion. Such models have played a major role

in the study of population dynamics. However, long range di�usion could also have a

big in
uence on the dynamics of some populations with the form it takes depending

on the nature of the populations themselves. Abual-rub talked about long range dif-

fusion with population pressure in Plankton-Herbivore populations. He considered a

model of the following form:
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P (x; 0) = g(x); x 2 R

2

; (2)

and

H

t

� `�

(2)

H = kPH � dH

2

+

u

�+ 1

�

�

H

�+1

�

(3)

H(x; 0) = h(x); x 2 R

2

; (4)

where P (x; t) andH(x; t) represent the Plankton and Herbivore densities, respectively.

Here � represents the Laplacian operator and
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(2)

=

2

X

i;j=1

@

4

@x

2

i

@x

2

j

: (5)

The existence and uniqueness of solutions to (1)-(4) have been proved by Abual-

rub in the L

p;q

spaces. Okubo [8] p. 194, discussed the e�ect of density-dependent

dispersal on population dynamics by considering the Gurtin and MacCamy [5] model

which combines the 
ux with the population reaction term, F (S), he considered

di�usion-reaction problems in one dimension of the form:

@S

@t

= K

@

2

S

m+1

@x

2

+ F (s); (6)

where

K = k (m+ 1) > 0: (7)

Murray [7] p.245, which is one of the good books in mathematical biology, con-

sidered a long range di�usion model of population by taking the 
ux J to be:

J = �D

1

rS +rD

2

(�S) (8)

where D

1

and D

2

are the constants which measure short range and long range e�ects,

respectively. He obtained a long range di�usion approximation of the form:

@S

@t

= r �D

1

rS �r � r(D

2

�S): (9)

For this model, Murray mentioned that the e�ect of short range di�usion is,

usually, larger than that of long range di�usion, i.e. D

1

> D

2

. In this paper we will

see what happens if the e�ect of long range di�usion is larger. This assumption might

not be realistic in general, but we think that it might be true in some rare cases of

population dynamics such as for certain epidemics and Plankton-Herbivore systems.
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2 Model

We will consider the two dimensional case in our model rather than the �rst dimen-

sional case i.e., x = (x

1

; x

2

); because it is more realistic that di�usion takes place in

spaces and not along lines. Therefore, we will use �S instead of

@

2

S

@x

2

. As mentioned

in the introduction we will assume that the e�ect of long range di�usion is larger than

that of short range di�usion and investigate what will happen if at some stage D

1

is negligible compared with D

2

. We believe that this might happen at some stages

depending on the nature of the population and the nature of its dynamic. Its known

that in short rang di�usion the 
ux J takes the following form

J = �DrS: (10)

Murray [7] p.245, derived the equation for 
ux J in (8). In our model, according

to the above assumptions, we will consider the 
ux to be of the form

J = r (D

2

�S) : (11)

The conservation equation for S is given by

@S

@t

= �r � J + F (S); (12)

where F (S) is the population reaction term. By substituting (11) into (12) we get

the following model for long range di�usion reaction, namely

@S

@t

= �D

2

�

(2)

S + F (S) (13)

In this paper we will impose the initial condition on S , namely

S(x; 0) = g(x) (14)

In addition, we will consider F (S) to be directly proportional to S

n

, i.e,

F (S) = aS

n

(15)

for some positive constant a and integer n which has to be determined later. The

reason for writing S

n

here is that in usual di�usion we have always S or S

2

but in

long range di�usion things might di�er and if it does we want to determine the right

exponent, n, for S. Let C = �D

2

, our model is thus

@S

@t

� C�

(2)

S = aS

n

; (16)

S(x; 0) = g(x): (17)

where the term C�

(2)

S represents long range di�usion.
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3 Existence and uniqueness of solutions:

We will look for solutions to model (16), (17) in the L

p;q

space, the function space

consisting of Lebesgue measurable functions S(x; t) such that kSk

p;q

< 1, where

k(�)k

p;q

is the norm in L

p;q

de�ned by :

kSk

p;q

=

"

Z

T

0

�

Z

R

2

jSj

p

dx

�

q

p

dt

#

1

q

(18)

We will now state and prove the main result in this paper.

3.1 LEMMA

The solution to model (16), (17), S(x; t), exists and is unique in the space

L

3

2

(n�1);

1

2

(n�1)

for n > 3, whenever the initial data g (x) is small enough in the

norm of its space.

Proof. We begin by transforming equation (16) and the initial condition (17)

into the following integral equation

S = a

Z

t

0

Z

R

2

K(x� y; t� �)S

n

(y; �)dyd� +

Z

R

2

K(x� y; t)g(y)dy (19)

We will now rewrite (19) simply as

S = aK � S

n

+K � g (20)

where � denotes the convolution in space and time and � denotes the convolution

in space only. Here the kernel K is the Fundamental solution to the homogeneous

problem of (16), namely

K(x; t) = t

�

1

2

�

�

xt

�

1

4

�

;where K 2 C

1

(R

2

) (21)

Using (21), K can be approximated by

jK(x; t)j �

c

�

jxj+ t

1

4

�

2

; t > 0 (22)

Now, if g 2 L

q

(R

2

) we have

K � g �

Z

R

2

cg(y) dy

�

jx� yj+ t

1=4

�

2

:

We �rst take the p norm in t, namely

kK � gk

p

�
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:
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Applying Minkowski's integral on the right hand side of the above inequality, we

obtain

kK � gk

p

� c

Z

R

2

jg(y)j

 

Z

R

+

dt

�

jx� yj+ t

1=4

�

2p

!

1

p

dy

� c�

Z

R

2

jg(y)j

 

1

�

jx� yj+ t

1=4

�

2p�4

!

1

p

dy

= c�

Z

R

2

jg(y)j dy

�

jx� yj+ t

1=4

�

2�

4

p

;

where � is a constant.

We now take the q norm in x of the above inequality to obtain

kK � gk

p;q

� c�



















Z

R

2

jg(y)j dy

�

jx� yj+ t

1=4

�

2�

4

p



















q

:

The right hand side of the above inequality is less than or equal to constant�kgk

q

; if

1

p

=

1

q

�

4

2p

(using the Benedek-Panzone Potential Theorem [1], see Appendix). This

implies that p = 3q and hence

K � g 2 L

3q

(23)

This concludes the proof for the initial data.

Now, for the �rst term in (20), note that we can rewrite (22) as

jKj �

c

�

jxj+ t

1

4

�

2

=

c

�

jxj+ t

1

4

�

2+4�4

(24)

By doing the calculations to the �rst term in (20), using (24), similar to what has

been done to the second term in (20) in the previous page 5, using (22), then applying

the Benedek-Panzone Potential Theorem [1], see appendix, we conclude that

1

r

=

n

p

�

4

2 + 4

=

n

p

�

2

3

; 1 <

p

n

<

3

2

(25)

Now, by setting r = p in (25) we get :

p =

3

2

(n� 1) (26)

Using (25) and (26) we have :

n <

3

2

(n� 1) <

3

2

n (27)

Therefore, since

3

2

(n � 1) <

3

2

n is true always, we must have n <

3

2

(n � 1) which in

turns gives :

n > 3 (28)
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To get a contraction mapping (see appendix) L

p

�

R

2

�R

+

�

! L

p

�

R

2

�R

+

�

in (20),

the exponents in (23) and (26) must be equal, that is

3

2

(n� 1) = 3q (29)

and thus

q =

n� 1

2

(30)

Hence

S(x; t) 2 L

3

2

(n�1);

1

2

(n�1)

(31)

Now, its enough to show the uniqueness of the solution.

Lets apply the mapping T to (20) to obtain :

T (S) = aK � S

n

+K � g (32)

Its easy to see that:

kT (S)k

3

2

(n�1)

� C(n) kSk

n

3

2

(n�1)

+ khk

3

2

(n�1)

(33)

where h is an auxiliary function which represents the term K � g in (32).

We are going now to compare equation (33) to the following mapping :

y = �x

n

+ � ; (x � 0) (34)

where both � and � are positive constants. Of course �x

n

is convex and increases

faster that a linear function.

Its obvious to see that if � = 0, there is only one non-zero root of (34) but if

0 < � < � (where � is su�ciently small), we will have two roots, say fx

1

and fx

2

:

Let fx

1

be the smallest root, then if fx

1

is small enough then the mapping T will

be a contraction mapping which maps the ball of radius fx

1

into itself. This implies

that the solution to the equation S = T (S) in (32) exists and its unique in the ball

of radius fx

1

. This concludes the proof of Lemma 3.1.

Remark 1: The extension of the results in Lemma 3.1 to three or n dimensions is

straight forward.

Remark 2: See [2] for a general method for studying long-time asymptotics of non-

linear parabolic partial di�erential equations. In [2], p.898, Remark 1, the

existence and uniqueness of solutions have been shown. Comparing our results

with the results obtained in [2], we conclude that if we take � = 4, then equation

(8) in [2], p. 898, is analogous to our equation (16) here and u(x; t) used in [2]

is the same as K(x; t) used here in (21). This shows that our method coinsides

with the method used in [2] and thus therorem 1 in [2] is applicable to our case.
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4 Conclusion:

We conclude that solutions to our model (16), (17) can not exist in L

p;q

spaces unless

n > 3. But this does not mean that there are no solutions for n � 3, because solution

might exist for n � 3 but in other spaces di�erent from L

p;q

spaces. Its very important

to notice that under the assumption we have made at the beginning, namely the long

range di�usion dominance, we have shown that n > 3. This means that we should

have terms like S

4

or S

5

or of larger degree of S in the right hand side of (16) and this

in turns says that we must have interaction between four Kinds of species or more in

the population.

5 Appendix:

� Benedek-Panzone Potential Theorem :Let X = E

n

(the nth dimensional

Euclidean space), and � = (�

1

; �

2

; : : : ; �

n

) be an n-tuple of real numbers,0 <

�

i

< 1. If P and Q are such that

1

P

�

1

Q

= �, 1 < P <

1

�

, then










f � jxj

��n










Q

�

c kfk

P

holds for every f 2 L

P

, where � =

P

n

i=1

�

i

, and c = c(�; P ).

� Contraction Mappings :Let T be a mapping of a metric space X into itself.

Then x is called a �xed point of T if T (x) = x . Suppose there exists a number

c < 1 such that kT (x)� T (y)k < c kx� yk for every pair of points x; y 2 X .

Then T is called a contraction mapping.

� Fixed Point Theorem:Every contraction mapping T de�ned on a complete

metric space (or Banach space) has a unique �xed point.
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