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Abstract. Jansen and Heß – correcting an earlier paper of Dou-
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self-adjoint Hamiltonian and its spectrum, is bounded from below for
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1 Introduction

The energy of relativistic electrons in the electric field of a nucleus of charge
Ze is described by the Dirac Operator

Dγ = cα · ~

i
∇ + mc2β − γ

|x| (1)

with γ = Ze2 and α, β the four Dirac matrices. The constant m is the mass
of the electron, c is the velocity of light, and ~ is the rationalized Planck
constant which we both take equal to one by a suitable choice of units. This
operator describes both electrons and positrons. In low energy processes as,
e.g., in quantum chemistry, there occur, however, only electrons. Brown and
Ravenhall [2] proposed to project the positrons out and to use the electronic
degrees of freedom only. They originally took the electrons and positrons given
by the free Dirac operator D0. Later it was observed that it might be suitable
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to define electrons directly by their external field (Furry picture). (See Sucher
[17] for a review.) This strategy, however, meets immediate difficulties, since
the projection χ(0,∞)(Dγ) is much harder to find for positive γ than for γ = 0.
To handle this problem Douglas and Kroll [4] used an approximate Foldy-Wout-
huysen transform to decouple the positive and negative spectral subspaces of
Dγ . Their approximation is perturbative of second order in the coupling con-
stant γ. Jansen and Heß [11] — correcting a sign mistake in [4] — wrote
down pseudo-relativistic one- and multi-particle operators to describe the en-
ergy which were successfully used to describe heavy relativistic atoms (see, e.g.,
[12]).
This derivation yields the operator (see [11], Equation (17))

Hext
D = βe + E +

1

2
[W,O] , (2)

where

e(p) :=
√

p2 + m2, (3)

E := A(V + RV R)A, (4)

O := βA[R, V ]A, (5)

A(p) :=

(

e(p) + m

2e(p)

)
1

2

, (6)

R(p) :=
α · p

e(p) + m
, (7)

W (p, p′) = β
O(p, p′)

e(p) + e(p′)
. (8)

(Note that we write p for |p|.) Here V is the external potential which in the case
at hand is the Coulomb potential, and in configuration space it is multiplication
by −γ/|x|.
This operator – which acts on four spinors – is then sandwiched by the projec-
tion onto the first two components, namely (1 +β)/2. The resulting upper left
corner matrix operator Jγ : C∞

0 (R3) ⊗ C
2 → L2(R3) ⊗ C

2 is

Jγ := Bγ + γ2K̃ = e − (γ/(2π2))K + γ2K̃. (9)

with

K(p, p′) =
(e(p) + m)(e(p′) + m) + (p · σ)(p′ · σ)

n(p)|p − p′|2n(p′)
(10)

where n(p) := (2e(p)(e(p) + m))1/2, i.e., Bγ is the Brown-Ravenhall operator
[2]. (See also Bethe and Salpeter[1] and Evans et al. [5]).
The last summand in (9) is given by the kernel

K̃(p, p′) = −1

2

∫

dp′′[W (p, p′′)P (p′′, p′) + P (p, p′′)W (p′′, p′)] (11)
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with

P (p, p′) =
σ · p(e(p′) + m) − (e(p) + m)σ · gp′

2π2n(p)|p − p′|2n(p′)
(12)

and

W (p, p′) =
P (p, p′)

e(p) + e(p′)
. (13)

Introducing b(p) := p/n(p) and a(p) := ((e(p) + m)/2e(p))1/2 we get more
explicitly

K̃(p, p′)

=
1

2(2π2)2

∫

dp′′
1

|p − p′′|2|p′′ − p′|2
(

1

e(p) + e(p′′)
+

1

e(p′′) + e(p′)

)

[

(ωp · σ) (ωp′ · σ) b(p)a(p′′)2b(p′) − (ωp · σ) (ωp′′ · σ) b(p)b(p′′)a(p′′)a(p′)

+ a(p)b(p′′)2a(p′) − (ωp′′ · σ) (ωp′ · σ) a(p)b(p′′)a(p′′)b(p′)
]

. (14)

(For later use we name the expression in the first line of the integrand in (14)
C and the four terms in the square bracket T1, ..., T4.)
The corresponding energy in a state u ∈ C∞

0 (R3) ⊗ C
2 is

J (u) := (u, Jγu) = B(u) + γ2(u, K̃u) (15)

with

B(u) =

∫

R3

dp e(p)|u(p)|2 − γ

2π2

∫

R3

dp

∫

R3

dp′u(p)∗K(p, p′)u(p′) (16)

It is the quadratic form J which is our prime interest.
Throughout the paper we will use the following constants γc := 4π(π2 + 4 −√
−π4 + 24π2 − 16)/(π2−4)2), γB

c := 2/(π/2+2/π), and dγ := 1−γ−4
√

2(3+√
2)γ2. Our goal is to show

Theorem 1. For all nonnegative masses m the following holds:

1. If γ ∈ [0, γc] then J is bounded from bellow, i.e., there exist a constant

c ∈ R such that for all u ∈ C∞

0 (R3) ⊗ C
2

J (u) ≥ −cm‖u‖2.

2. If γ > γc, then J (u) is unbounded from below.

3. If γ ∈ [0, γB
c ] then

J (u) ≥ dγm‖u‖2.

Note that γc ≈ 1.006077340. Because γ = αZ where α is the Sommerfeld
fine structure constant which has the physical value of about 1/137 and Z
is the atomic number, this allows for the treatment of all known elements.
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It also means that the method is applicable for all αZ where the Coulomb-
Dirac operator can be defined in a natural way through form methods (Nenciu
[15]). — Note, in particular, that the energy is bounded from below, even if
γc > γ > 1 although the perturbative derivation of the symmetric operator
Hext

D is questionable in this case.
We would like to remark that the lower bound can most likely be improved
for positive masses. In fact, we conjecture that the energy is positive for all
sub-critical γ. However, this is outside the scope of this work.
According to Friedrichs our theorem has the following immediate consequence:

Corollary 1. The symmetric operator Jγ has a unique self-adjoint extension

whose form domain contains C∞

0 (R3) ⊗ C
2 for γ ∈ [0, γc].

In fact for γ < γc, since the potential turns out to be form bounded with
relative bound less than one, the self-adjoint operator defined has form domain
H1/2(R3) ⊗ C

2.
The structure of the paper is as follow: in Section 2 using spherical symme-
try we decompose the operator in angular momentum channels. In Section 3
we prove the positivity of the massless operators. Since these operators are
homogeneous under dilation an obvious tool to use is the Mellin transform, a
method that previously has been used with success to obtain tight estimates
on critical coupling constant (see, e.g., [3]). In Section 4 we find that the differ-
ence between the massless and the massive operator is bounded. Finally, some
useful identities are given in the Appendix.

2 Partial Wave Analysis of the Energy

To obtain a sharp estimate for the potential energy we decompose the operator
as direct sum on invariant subspaces. Because of the rotational symmetry of the
problem one might suspect that the angular momenta are conserved quantities.
Indeed, as a somewhat lengthy calculation shows, the total angular momentum
J = 1

2 (x× p + σ) commutes with Hext. In fact we can largely follow a strategy
carried out by Hardekopf and Sucher [9] and Evans et al. [5] in somewhat
simpler contexts.
We begin by observing that those of the spherical spinors

Ωl,m,s(ω) :=













































√

l+s+m
2(l+s) Y

l,m−
1
2
(ω)

√

l+s−m
2(l+s) Y

l,m+
1
2
(ω)






s = 1

2







−
√

l+s−m+1
2(l+s)+2 Y

l,m−
1
2
(ω)

√

l+s+m+1
2(l+s)+2 Y

l,m+
1
2
(ω)






s = − 1

2

(17)

with l = 0, 1, 2, ... and m = −l − 1
2 , ..., l + 1

2 , that do not vanish, form an
orthonormal basis of L2(S2)⊗C

2. Here Yl,k are normalized spherical harmonics
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on the unit sphere S2 (see, e.g., [14], p. 421) with the convention that Yl,k = 0,
if |k| > l. We denote the corresponding index set by I, i.e., I := {(l,m, s)|l ∈
N0,m = −l − 1

2 , ..., l + 1
2 , s = ± 1

2 ,Ωl,m,s 6= 0}. Thus any u ∈ L2(R3) ⊗ C
2 can

be written as
u(p) =

∑

(l,m,s)∈I

p−1fl,m,s(p)Ωl,m,s(ωp) (18)

where p = |p|, ωp = p/p, and

∑

(l,m,s)∈I

∫

∞

0

|fl,m,s(p)|2dp =

∫

R3

|u(p)|2dp.

We now remind the reader that the expansion of the Coulomb potential in
spherical harmonics is given by

1

|p − p′|2 =
2π

pp′

∞
∑

l=0

l
∑

m=−l

ql(p/p′)Yl,m(ωp)Y l,m(ωp′) (19)

where ql(x) := Ql((x + 1/x)/2); Ql are Legendre functions of the second kind,
i.e.,

Ql(z) = 1
2

∫ 1

−1
Pl(t)
z−t dt (20)

where the Pl are Legendre polynomials. [See Stegun [16] for the notation and
some properties of these special functions.]
Inserting the expansion (18) and (19) into (15) yields

J (u) =
∑

(l,m,s)∈I

Jl,s(fl,m,s)

with

Jl,s(f) :=

∫

∞

0

e(p)|f(p)|2dp − γ

π

∫

∞

0

∫

∞

0

f(p)kl,s(p, p′)f(p)dpdp′

+ γ2

∫

∞

0

dp

∫

∞

0

dp′f(p)k̃l,s(p, p′)f(p′) (21)

and

kl,s(p
′, p) =

(e(p′) + m)ql(
p′

p )(e(p) + m) + p′ql+2s(
p′

p )p

n(p′)n(p)
(22)

and

k̃l,s(p, p′) =
1

2π2

∫

∞

0

dp′′
(

1

e(p) + e(p′′)
+

1

e(p′′) + e(p′)

)

[

ql+2s(
p

p′′
)ql+2s(

p′

p′′
)b(p)a(p′′)2b(p′) − ql+2s(

p

p′′
)ql(

p′′

p′
)b(p)b(p′′)a(p′′)a(p′)

+ql(
p

p′′
)ql(

p′

p′′
)a(p)b(p′′)2a(p′) − ql(

p

p′′
)ql+2s(

p′′

p′
)a(p)b(p′′)a(p′′)b(p′)

]

. (23)
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The Legendre functions of the second kind appear here for exactly the same
reasons as in the treatment of the Schrödinger equation for the hydrogen atom
in momentum space (Flügge [6], Problem 77).] To obtain (21), we also use that
(ωp ·σ)Ωl,m,s(ωp) = −Ωl+2s,m,−s(ωp) (see, e.g., Greiner [8], p. 171, (12)). The
operators hl,s defined by the sesquilinear form (21) via the equation (f, hl,sf) =
Jl,s(f) are reducing the operator Hext on the corresponding angular momentum
subspaces.

3 The Massless Operators and Their Positivity

To proceed, we will first consider the massless operators. The lower bound in
the massive case will be a corollary of the positivity of the massless one. The
energy in angular momentum channel (l,m, s) in the massless case can be read
of from (14) and is given by

Jl,s(f) := Bl,s(f) + γ2

∫

∞

0

dp

∫

∞

0

dp′f(p)k̃l,s(p, p′)f(p′) (24)

with

Bl,s(f)

=

∫

∞

0

p|f(p)|2dp − γ

2π

∫

∞

0

dp

∫

∞

0

dp′f(p)

(

ql(
p

p′
) + ql+2s(

p

p′
)

)

f(p′) (25)

and

k̃l,s(p, p′) =
1

8π2

∫

∞

0

dp′′
(

1

p + p′′
+

1

p′′ + p′

)

[

ql+2s(
p

p′′
)ql+2s(

p′′

p′
) − ql+2s(

p

p′′
)ql(

p′′

p′
)

+ql(
p

p′′
)ql(

p′′

p′
) − ql(

p

p′′
)ql+2s(

p′′

p′
)

]

. (26)

Using the simplifications of Appendix A, Formulae (57) and (59) we get

k̃l,s(p, p′) =
1

8π2

∫

∞

0

dp′′

p′′

(

ql(
p

p′′
)ql(

p′′

p′
) − ql+2s(

p

p′′
)ql(

p′′

p′
)

−ql(
p

p′′
)ql+2s(

p′′

p′
) + ql+2s(

p

p′′
)ql+2s(

p′′

p′
)

)

. (27)

Since the operator in question is homogeneous of degree minus one we Mellin
transform (see Appendix B) the quadratic form εl,s. If we write this form as a

functional J#
l,s of the Mellin transformed radial functions f#, we get

J#
l,s

(

f#
)

= B#
l,s

(

f#
)

+
1

2

( γ

2π

)2
∫

∞

−∞

dt
∣

∣f# (t + i/2)
∣

∣

2
F#(t) (28)
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where B#
l,s is the Brown-Ravenhall energy in angular momentum channel (l, s)

in Mellin space, i.e.,

B#
l,s(g) :=

∫

∞

−∞

dt |g (t + i/2)|2
[

1 − γ

2
(Vl(t) + Vl+2s(t))

]

(29)

with

Vl(t) =

√

2

π
q#
l (t − i/2) =

1

2

∣

∣

∣

∣

∣

Γ
(

l+1−it
2

)

Γ
(

l+2−it
2

)

∣

∣

∣

∣

∣

2

(30)

(see Tix [19] [note also the factor
√

2/π which is different from Tix’s original
formula]) and

F#(t) =
√

2π
(

q#
l (t − i/2) − q#

l+2s(t − i/2)
)2

. (31)

Formulae (29), (30), and (31) are obtained from (24), (25), and (27) using the
fact that the occurring integrals can be read as a Mellin convolution which is
turned by the Mellin transform into a product (see Appendix B, Formulae (61)
and (63)).

Note that Vl is the Coulomb potential after Fourier transform, partial wave
analysis, and Mellin transform.

3.1 Positivity of the Brown-Ravenhall Energy

To warm up for the minimization of J#
l,s we start with B#

l,s only. To this end
we first note

Lemma 1. We have

Vl+1(t) ≤ Vl+1(0) ≤ Vl(0). (32)

Note, that this is similar to Lemma 2 in [5].

Proof. First note that q0 ≥ q1 ≥ q2... which follows from the integral represen-
tation in [21], Chapter XV, Section 32, p. 334. This implies

∣

∣

∣
q#
l+1(t − i/2)

∣

∣

∣
=

1√
2π

∣

∣

∣

∣

∫

∞

0

ql+1(p)p−it dp

p

∣

∣

∣

∣

≤ 1√
2π

∫

∞

0

ql+1(p)
dp

p

≤ 1√
2π

∫

∞

0

ql(p)
dp

p
,

(33)

which implies the lemma.

Theorem 2. For all u ∈ C∞

0 (R3) ⊗ C
2 and m = 0 we have B ≥ 0 if and only

if γ ≤ γB
c .
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Proof. Note that

Vl(t) + Vl+2s(t) ≤ V0(0) + V1(0) =
π

2
+

2

π
. (34)

Thus

B#
l,s(g) ≥

∫

∞

−∞

dt |g (t + i/2)|2
(

1 − γ

2

(

π

2
+

2

π

))

(35)

which implies that the energy is nonnegative if γ ≤ 2/(π/2 + 2/π).

We remark that Theorem 2 was proved by Evans et al. [5]. However, since g
can be localized at t = 0, our method shows that Inequality (35) is sharp, i.e.,
the present proof shows also the sharpness of γB

c , a result of Hundertmark et
al. [10] obtained by different means.

Since — according to Tix [19] — the difference of the massive and massless
Brown-Ravenhall operators is bounded, Theorem 2 shows also that the energy
in the massive case is bounded from below under the same condition on γ as
in the massless case.

3.2 The Jansen-Hess Energy

We now wish to treat the full relativistic energy according to Jansen and Heß as
given in (28) through (31). From these equations it is obvious that the energy
is positive, if the coupling constant γ does not exceed γB

c , since the additional
energy term is non-negative. However, as can be expected, the critical coupling
constant is in fact bigger, i.e. we want to prove Theorem 1 in the massless case.

Lemma 2. For all u ∈ C∞

0 (R3)⊗C
2, m = 0, and γ ≤ γc we have (u,J u) ≥ 0.

Moreover, if γ > γc, then J is not bounded from bellow.

Proof. We write the energy density in Mellin space as given in Equations (28)
through (31) as

jl,s(t) := 1 − γ

2
(Vl(t) + Vl+2s(t)) +

γ2

8
(Vl(t) − Vl+2s(t))

2. (36)

As in the case of the Brown-Ravenhall energy we want to show that jl,s attains
its minimum for l = 0 and t = 0.

First we note, that jl,s(t) = jl+2s,−s(t) which means that we can restrict the
following to s = 1/2, i.e., to jl,1/2.

Next we show that it is monotone decreasing in l. For γ ≤ 4/π we have

0 ≤ 1 − γ

2
V0(0) ≤ 1 − γ

2
Vl(t) ≤ 1 − γ

4
Vl(t) −

γ

4
Vl+2(t)

≤ 1 +
γ

2
Vl+1(t) −

γ

4
Vl(t) −

γ

4
Vl+2(t)

(37)
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where use successively (64), (32), Lemma 6 in Appendix C, and the positivity
of the Vl. Inequality (37) is – after multiplication by γ((Vl(t) − Vl+2(t))/2 –
identical with the desired monotonicity inequality

jl+1,1/2(t) ≥ jl,1/2(t). (38)

For later purposes we note that functions jl,1/2 are symmetric about the origin.
Next we will show that the energy density has its absolute minimum at the
origin: to this end we simply show that the derivative of j0,1/2 is nonnegative
on the positive axis, if γ ≤ 2/(π/2 + 2/π) which is bigger than 4/π. Since

|V0(t) − V1(t)| ≤
∫

∞

0

(q0(x) − q1(x))
dx

x
= V0(0) − V1(0) =

π

2
− 2

π

we have
−1 +

γ

2
(V0(t) − V1(t)) ≤ 0 (39)

and obviously we have

−1 − γ

2
(V0(t) − V1(t)) ≤ 0. (40)

Thus the derivative of the energy j0,1/2 is

j′0,1/2(t) =
γ

2
[−V ′

0(t) − V ′

1(t) +
γ

2
(V0(t) − V1(t))(V

′

0(t) − V ′

1(t))]

=
γ

2
{V ′

0(t)[−1 +
γ

2
(V0(t) − V1(t))] + V ′

1(t)[−1 − γ

2
(V0(t) − V1(t))]} ≥ 0, (41)

since V0 and V1 are symmetrically decreasing about the origin (see Appendix
C).
Finally, the polynomial

j0,1/2(0) = 1 − γ

2

(

π

2
+

2

π

)

+
γ2

8

(

π

2
− 2

π

)2

is nonnegative for γ ≤ γc as defined in the hypothesis. Thus, we have

jl,s(t) ≥ j0,1/2(0) ≥ 0.

4 Lower Bound on the Energy According to Jansen and Heß

To distinguish the massive and the massless expressions we will indicate in this
section the dependence their on the mass m by a superscript m, if it seems
appropriate.
The goal of this section is to show Theorem 1 for the massive case. We proceed
by enunciating the following lemmata.

Documenta Mathematica 7 (2002) 167–182



176 R. Brummelhuis, H. Siedentop, and Edgardo Stockmeyer

Lemma 3 (Tix [18, 20]). For all u ∈ C∞

0 (R3) ⊗ C
2,m ≥ 0, and γ ≤ γB

c then

B(u) ≥ m(1 − γ).

Lemma 4 (Tix [19]). The expression |Bm(u) − B0(u)| is bounded for u ∈
C∞

0 (R3) ⊗ C
2.

Lemma 5. For all m ≥ 0 and for all u ∈ C∞

0 (R3) ⊗ C
2 we have

|K̃m(u) − K̃0(u)| ≤ md‖u‖2 (42)

where d :=
√

2(12 + 25/2).

We note that the first part of Theorem 1 follows from Lemmata 2, 4, and 5.
The third part is a consequence of Lemmata 3 and 5.

Proof. First we remark that

sup{|J m(u) − J 0(u)| | ‖u‖ = 1} = m sup{|J 1(u) − J 0(u)| | ‖u‖ = 1}.

Then it is enough to start bounding |(u, K̃1u)− (u, K̃0u)|: By the mean value
theorem we have

|K̃1(p, p′) − K̃0(p, p′)| ≤ λ|D(µ, p, p′)| (43)

for some µ ∈ (0, λ) where λ ∈ (0, 1) is a deformation parameter and D(µ, p, p′)
is the derivative of K̃µ(p, p′) with respect to µ. Computing the derivative yields

|D(µ, p, p′)| =

∣

∣

∣

∣

∫

dp′′F (µ, p, p′′, p′)

∣

∣

∣

∣

(44)

with

F (µ, p, p′′, p′)

:=
1

2(2π2)2

(

∂C

∂λ
(T1 + ... + T4) + C

∂(T1 + ... + T4)

∂λ

)

(µ, p, p′′, p′) (45)

where C and T1, ..., T4 are defined right below (14). Note that a(p)2 ≤ 1 and
b(p)2 ≤ 1/2, i.e., by the definition T1, ..., T4 ≤ 1/2. Furthermore we note that

∂C

∂λ
=

−λ

E(p′′)

1

|p − p′′|2|p′′ − p′|2
(

1

(E(p) + E(p′′))E(p)
+

1

(E(p′′) + E(p′))E(p′)

)

. (46)

First we treat ∂C
∂λ (T1+...+T4). We get using the above estimates on T1 through

T4 and (46)
∣

∣

∣

∣

∂C

∂λ
(T1 + ... + T4)(µ, p, p′′, p′)

∣

∣

∣

∣

≤ 2

p′′
1

|p − p′′|2|p′′ − p′|2
(

1

p + p′′
+

1

p′′ + p′

)

(47)
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Next we treat C ∂(T1+...+T4)
∂λ . To this end we note

∣

∣

∣

∣

∂a

∂λ
(p)

∣

∣

∣

∣

=
p2

4E(p)3

√

2E(p)

E(p) + λ
≤

√
2

4p
(48)

and
∣

∣

∣

∣

∂b

∂λ
(p)

∣

∣

∣

∣

= p

√

E(p) + λ

8E(p)5
≤ 1

2p
. (49)

Thus

|C ∂(T1 + ... + T4)

∂λ
(µ, p, p′′, p′)|

≤ 3

23/2

1

|p − p′′|2|p′′ − p′|2
(

1

p + p′′
+

1

p′′ + p′

)(

1

p
+

2

p′′
+

1

p′

)

. (50)

We now bound the integral operator K̃1 − K̃0 by a multiplication operator:
First pick α ∈ R. Then we have — using the symmetry of F (µ, p, p′′, p′) in p

and p′ for fixed p′′ —

|(u, (K̃1 − K̃0)u)| =

∣

∣

∣

∣

∫

dp′′
∫

dp

∫

dp′u(p)∗F (µ, p, p′′, p′)u(p′)

∣

∣

∣

∣

≤
∫

dp′′
∫

dp|u(p)|2
∫

dp′
∣

∣

∣

∣

p

p′

∣

∣

∣

∣

α

|F (µ, p, p′′, p′)| (51)

where we used the Schwarz inequality in the measure dpdp′ in the last step for
fixed p′′. Now using the estimates (47) and (50) and collecting similar terms
yields

|(u, (K̃1 − K̃0)u)| ≤ 1

25/2(2π2)2

∫

dp|u(p)|2
∫

dp′′
∫

dp′
∣

∣

∣

∣

p

p′

∣

∣

∣

∣

α

1

|p − p′′|2|p′′ − p′|2
(

1

p + p′′
+

1

p′′ + p′

)

(

3

p
+

2
5

2 + 6

p′′
+

3

p′

)

(52)

where we claim the last line to be bounded by 32(12 + 25/2)π4, i.e.,

|(u, (K̃1 − K̃0)u)| ≤
√

2

∫

dp|u(p)|2(12 + 25/2). (53)

To show the above bound we break the integral into three parts

I :=

∫

dp′′
∫

dp′
(

p

p′

)α
1

|p − p′′|2|p′′ − p′|2
(

1

p + p′′
+

1

p′′ + p′

)

1

p
,

I ′′ :=

∫

dp′′
∫

dp′
(

p

p′

)α
1

|p − p′′|2|p′′ − p′|2
(

1

p + p′′
+

1

p′′ + p′

)

1

p′′
,

I ′ :=

∫

dp′′
∫

dp′
(

p

p′

)α
1

|p − p′′|2|p′′ − p′|2
(

1

p + p′′
+

1

p′′ + p′

)

1

p′
.

(54)
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We will also use the following integral (see [13], p.124)

Υ(β) :=

∫

R3

dp
1

|e − p|2
1

pβ
= π2 Γ(β−1

2 )Γ(1 − β−1
2 )

Γ(2 − β
2 )Γ(β

2 )
, (55)

where e is an (arbitrary) unit vector in R
3 and β ∈ (1, 3). We observe that

each of the integrals in (54) do not depend on the value of p (what becomes
evident after substitution of p′ → pp′ and p′′ → pp′′). So picking p = 1 and
doing p′ → p′′p′ in each integral in (54) we find

I =

∫

dp′′
∫

dp′
(

1

p′p′′

)α
1

|u − p′′|2|u′′ − p′|2
{

p′′

1 + p′′
+

1

1 + p′

}

≤ 2Υ(α)2,

I ′′ =

∫

dp′′
∫

dp′
(

1

p′p′′

)α
1

|u − p′′|2|u′′ − p′|2
{

1

1 + p′′
+

1

p′′(1 + p′)

}

≤ Υ(α)2 + Υ(α)Υ(α + 1),

I ′ =

∫

dp′′
∫

dp′
(

1

p′p′′

)α
1

|u − p′′|2|u′′ − p′|2
{

1

p′(1 + p′′)
+

1

p′p′′(1 + p′)

}

≤ 2Υ(α + 1)2,

(56)

We choose α = 3/2 and using (55) we obtain the same bound for each integral,
namely 32π4. Equation (53) proves Lemma 5 and follows by using the latter
bound in (52).

A Some Useful Integral Identities

Suppose f(x) = f(1/x) and suppose f(x)/(1+x) is integrable on (0,∞). Then

∫

∞

0

f(x)

1 + x
dx =

∫ 1

0

f(x)

x
dx =

1

2

∫

∞

0

f(x)

x
dx (57)

To show (57) we split the first integral

∫ 1

0

dx

x
f(x)

x

1 + x
+

∫

∞

1

dx

x
f(x)

x

1 + x
=

∫ 1

0

dx

x
f(x)

=

∫

∞

0

dx

x
f(x) −

∫

∞

1

dx

x
f(x) =

∫

∞

0

dx

x
f(x) −

∫ 1

0

dx

x
f(x). (58)

where we used the invariance under inversion of f for the first and third equality.

Next we wish to simplify the kernel jl,s. To this end we use again the abbrevi-
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ation ql(x) := Ql

(

1
2

(

x + 1
x

))

as in (26). We claim

I(p, p′)

:=

∫

∞

0

dp′′

p′′

(

ql(
p

p′′
)qm(

p′′

p′
) + qm(

p

p′′
)ql(

p′′

p′
)

) (

p′′

p + p′′
+

p′′

p′′ + p′

)

(59)

=

∫

∞

0

dp′′

p′′

(

ql(
p

p′′
)qm(

p′′

p′
) + qm(

p

p′′
)ql(

p′′

p′
)

)

To prove this we take the integral with the complete first factor times the
first summand of the second factor –we name I1– and the integral over the
complete first factor times the second summand of the second factor, I2. In I1

we substitute p′′ → pp′′ whereas in I2 we substitute p′′ → p′p′′. This yields
using (57)

I(p, p′) = I1 + I2 =
1

2

∫

∞

0

dp′′

p′′

[

ql (p
′′) qm

(

p′′p

p′

)

+ qm(p′′)ql

(

p′′
p

p′

)

+ ql

(

p′′p′

p

)

qm(p′′) +qm

(

p′′
p′

p

)

ql(p
′′)

]

. (60)

Undoing the substitutions yields the desired result.

B The Mellin Transform

The Mellin transform is a unitary map from L2(R+) to L2(R) given by the
formula

f#(s) :=
1√
2π

∫

∞

0

f(p)p−
1

2
−isdp.

The Mellin convolution of two function f and g is defined as

(f ? g)(p) =

∫

∞

0

f

(

p

q

)

g(q)
dq

q
. (61)

If f ∈ C∞

0 (R+), then f# extends to an entire function, and we have

(pαf)#(s) = f#(s + iα). (62)

We also have

(f ? g)#(s) =
√

2πf#(s)g#(s). (63)

Both, (62) and (63), can be verified by direct computation.
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C Some Properties Related to the Partial Wave Analysis of the
Coulomb potential in Mellin Space

We first remark the follow property on the difference of Vl and Vl+2.

Lemma 6. For l = 0, 1, 2, ... and t ∈ R we have Vl+2(t) < Vl(t).

Proof. From the definition of Vl in (30) we see that the claim is equivalent to

∣

∣

∣

∣

∣

Γ
(

l+1−it
2

)

Γ
(

l+2−it
2

)

∣

∣

∣

∣

∣

2

>

∣

∣

∣

∣

∣

Γ
(

l+3−it
2

)

Γ
(

l+4−it
2

)

∣

∣

∣

∣

∣

2

.

This, however, can be easily verified using the functional equation Γ(x + 1) =
xΓ(x) of the Gamma function in the numerator and denominator of the right
hand side with x = (l + 1 − it)/2 and x = (l + 2 − it)/2.

From the definition of the Vl and from Formulae 8.332.2 and 8.333.3 in [7] one
finds V0 and V1 in terms of the hyperbolic tangent and cotangent:

V0(t) =
Tg(πt/2)

t
(64)

V1(t) =
t

1 + t2
Ctg(πt/2). (65)

Moreover, both of these functions are decreasing symmetricly about the origin.
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[10] Dirk Hundertmark, Norbert Röhrl, and Heinz Siedentop. The sharp bound
on the stability of the relativistic electron-positron field in Hartree-Fock
approximation. Commun. Math. Phys., 211(3):629–642, May 2000.

[11] Georg Jansen and Bernd A. Heß. Revision of the Douglas-Kroll transfor-
mation. Physical Review A, 39(11):6016–6017, June 1989.
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[14] Albert Messiah. Mécanique Quantique, volume 1. Dunod, Paris, 2 edition,
1969.

[15] G. Nenciu. Self-adjointness and invariance of the essential spectrum
for Dirac operators defined as quadratic forms. Commun. Math. Phys.,
48:235–247, 1976.

[16] Irene A. Stegun. Legendre functions. In Milton Abramowitz and Irene A.
Stegun, editors, Handbook of Mathematical Functions with Formulas,

Graphs, and Mathematical Tables, chapter 8, pages 331–353. Dover Pub-
lications, New York, 1965.

Documenta Mathematica 7 (2002) 167–182



182 R. Brummelhuis, H. Siedentop, and Edgardo Stockmeyer

[17] J. Sucher. Foundations of the relativistic theory of many-electron atoms.
Phys. Rev. A, 22(2):348–362, August 1980.

[18] C. Tix. Lower bound for the ground state energy of the no-pair Hamilto-
nian. Phys. Lett. B, 405(3-4):293–296, 1997.

[19] C. Tix. Self-adjointness and spectral properties of a pseudo-relativistic
Hamiltonian due to Brown and Ravenhall. Preprint, mp-arc: 97-441, 1997.

[20] C. Tix. Strict positivity of a relativistic Hamiltonian due to Brown and
Ravenhall. Bull. London Math. Soc., 30(3):283–290, 1998.

[21] E. T. Whittaker and G. N. Watson. A Course of Modern Analysis; An

Introduction to the General Theory of Infinite Processes and of Analytic

Functions, with an Account of the Principal Transcendental Functions.
Cambridge University Press, Cambridge, 4 edition, 1927.

Raymond Brummelhuis
Birkbeck College
University of London
School of Economics,
Mathematics and Statistics
Gresse Street
London W1T 1LL
United Kingdom
r.brummelhuis@statistics.bbk.ac.uk

Heinz Siedentop
Mathematik
Theresienstr. 39
80333 München
Germany
h.s@lmu.de

Edgardo Stockmeyer
Pontificia Universidad
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