The Farrell Cohomology of $\operatorname{SP}(p-1, \mathbb{Z})$

Cornelia Busch

Received: March 24, 2002

Communicated by Günter M. Ziegler

Abstract

Let p be an odd prime with odd relative class number h^{-}. In this article we compute the Farrell cohomology of $\operatorname{Sp}(p-1, \mathbb{Z})$, the first p-rank one case. This allows us to determine the p-period of the Farrell cohomology of $\operatorname{Sp}(p-1, \mathbb{Z})$, which is $2 y$, where $p-1=2^{r} y$, y odd. The p-primary part of the Farrell cohomology of $\operatorname{Sp}(p-1, \mathbb{Z})$ is given by the Farrell cohomology of the normalizers of the subgroups of order p in $\operatorname{Sp}(p-1, \mathbb{Z})$. We use the fact that for odd primes p with h^{-} odd a relation exists between representations of $\mathbb{Z} / p \mathbb{Z}$ in $\operatorname{Sp}(p-1, \mathbb{Z})$ and some representations of $\mathbb{Z} / p \mathbb{Z}$ in $\mathrm{U}((p-1) / 2)$.

2000 Mathematics Subject Classification: 20G10
Keywords and Phrases: Cohomology theory

1 Introduction

We define a homomorphism

$$
\begin{aligned}
\phi: \quad \mathrm{U}(n) & \longrightarrow \mathrm{Sp}(2 n, \mathbb{R}) \\
X=A+i B & \longmapsto\left(\begin{array}{rr}
A & B \\
-B & A
\end{array}\right)=: \phi(X)
\end{aligned}
$$

where A and B are real matrices. Then ϕ is injective and maps $\mathrm{U}(n)$ on a maximal compact subgroup of $\operatorname{Sp}(2 n, \mathbb{R})$. This homomorphism allows to consider each representation

$$
\widetilde{\rho}: \mathbb{Z} / p \mathbb{Z} \longrightarrow \mathrm{U}((p-1) / 2)
$$

as a representation

$$
\phi \circ \widetilde{\rho}: \mathbb{Z} / p \mathbb{Z} \longrightarrow \operatorname{Sp}(p-1, \mathbb{R})
$$

In an article of Busch [6] it is determined which properties $\widetilde{\rho}$ has to fulfil for $\phi \circ \widetilde{\rho}$ to be conjugate in $\operatorname{Sp}(p-1, \mathbb{R})$ to a representation

$$
\rho: \mathbb{Z} / p \mathbb{Z} \longrightarrow \operatorname{Sp}(p-1, \mathbb{Z})
$$

Theorem 2.2. Let $X \in \mathrm{U}((p-1) / 2)$ be of odd prime order p. We define $\phi: \mathrm{U}((p-1) / 2) \rightarrow \operatorname{Sp}(p-1, \mathbb{R})$ as above. Then $\phi(X) \in \operatorname{Sp}(p-1, \mathbb{R})$ is conjugate to $Y \in \operatorname{Sp}(p-1, \mathbb{Z})$ if and only if the eigenvalues $\lambda_{1}, \ldots, \lambda_{(p-1) / 2}$ of X are such that

$$
\left\{\lambda_{1}, \ldots, \lambda_{(p-1) / 2}, \bar{\lambda}_{1}, \ldots, \bar{\lambda}_{(p-1) / 2}\right\}
$$

is a complete set of primitive p-th roots of unity.
The proof of Theorem 2.2 involves the theory of cyclotomic fields. For the p-primary component of the Farrell cohomology of $\operatorname{Sp}(p-1, \mathbb{Z})$, the following holds:

$$
\widehat{\mathrm{H}}^{*}(\operatorname{Sp}(p-1, \mathbb{Z}), \mathbb{Z})_{(p)} \cong \prod_{P \in \mathfrak{P}} \widehat{\mathrm{H}}^{*}(N(P), \mathbb{Z})_{(p)}
$$

where \mathfrak{P} is a set of representatives for the conjugacy classes of subgroups of order p of $\operatorname{Sp}(p-1, \mathbb{Z})$ and $N(P)$ denotes the normalizer of $P \in \mathfrak{P}$. This property also holds if we consider $\mathrm{GL}(p-1, \mathbb{Z})$ instead of the symplectic group. This fact was used by Ash in [1] to compute the Farrell cohomology of GL (n, \mathbb{Z}) with coefficients in \mathbb{F}_{p} for $p-1 \leqslant n<2 p-2$. Moreover, we have

$$
\widehat{\mathrm{H}}^{*}(N(P), \mathbb{Z})_{(p)} \cong\left(\widehat{\mathrm{H}}^{*}(C(P), \mathbb{Z})_{(p)}\right)^{N(P) / C(P)}
$$

where $C(P)$ is the centralizer of P. We will determine the structure of $C(P)$ and of $N(P) / C(P)$. After that we will compute the number of conjugacy classes of those subgroups for which $N(P) / C(P)$ has a given structure. Here again arithmetical questions are involved. In the articles of Brown [2] and Sjerve and Yang [9] is shown that the number of conjugacy classes of elements of order p in $\operatorname{Sp}(p-1, \mathbb{Z})$ is $2^{(p-1) / 2} h^{-}$where h^{-}denotes the relative class number of the cyclotomic field $\mathbb{Q}(\xi), \xi$ a primitive p-th root of unity. If h^{-}is odd, each conjugacy class of matrices of order p in $\operatorname{Sp}(p-1, \mathbb{R})$ that lifts to $\operatorname{Sp}(p-1, \mathbb{Z})$ splits into h^{-}conjugacy classes in $\operatorname{Sp}(p-1, \mathbb{Z})$. The main results in this article are

THEOREM 3.7. Let p be an odd prime for which h^{-}is odd. Then

$$
\widehat{\mathrm{H}}^{*}(\operatorname{Sp}(p-1, \mathbb{Z}), \mathbb{Z})_{(p)} \cong \prod_{\substack{k \mid p-1 \\ k \text { odd }}}\left(\prod_{1}^{\tilde{\mathcal{K}}_{k}} \mathbb{Z} / p \mathbb{Z}\left[x^{k}, x^{-k}\right]\right)
$$

where $\widetilde{\mathcal{K}}_{k}$ denotes the number of conjugacy classes of subgroups of order p of $\operatorname{Sp}(p-1, \mathbb{Z})$ for which $|N / C|=k$. Moreover $\widetilde{\mathcal{K}}_{k} \geqslant \mathcal{K}_{k}$, where \mathcal{K}_{k} is the number of conjugacy classes of subgroups of $\mathrm{U}((p-1) / 2)$ with $|N / C|=k$. As usual N denotes the normalizer and C the centralizer of the corresponding subgroup.

Theorem 3.8. Let p be an odd prime for which h^{-}is odd and let y be such that $p-1=2^{r} y$ and y is odd. Then the period of $\widehat{\mathrm{H}}^{*}(\mathrm{Sp}(p-1, \mathbb{Z}), \mathbb{Z})_{(p)}$ is $2 y$.

Corresponding results have been shown for other groups, for example GL (n, \mathbb{Z}) in the p-rank one case [1] , the mapping class group [8] and the outerautomorphism group of the free group in the p-rank one case 7 .
This article presents results of my doctoral thesis, which I wrote at the ETH Zürich under the supervision of G. Mislin. I thank G. Mislin for the suggestion of this interesting subject.

2 The symplectic group

2.1 Definition

Let R be a commutative ring with 1 . The general linear group $\operatorname{GL}(n, R)$ is defined to be the multiplicative group of invertible $n \times n$-matrices over R.
Definition. The symplectic group $\operatorname{Sp}(2 n, R)$ over the ring R is the subgroup of matrices $Y \in \mathrm{GL}(2 n, R)$ that satisfy

$$
Y^{\mathrm{T}} J Y=J:=\left(\begin{array}{rr}
0 & I_{n} \\
-I_{n} & 0
\end{array}\right)
$$

where I_{n} is the $n \times n$-identity matrix.
It is the group of isometries of the skew-symmetric bilinear form

$$
\begin{aligned}
\langle,\rangle: \quad R^{2 n} \times R^{2 n} & \longrightarrow R \\
(x, y) & \longmapsto\langle x, y\rangle:=x^{\mathrm{T}} J y .
\end{aligned}
$$

It follows from a result of Bürgisser [4] that elements of odd prime order p exist in $\operatorname{Sp}(2 n, \mathbb{Z})$ if and only if $2 n \geqslant p-1$.

Proposition 2.1. The eigenvalues of a matrix $Y \in \operatorname{Sp}(p-1, \mathbb{Z})$ of odd prime order p are the primitive p-th roots of unity, hence the zeros of the polynomial

$$
m(x)=x^{p-1}+\cdots+x+1
$$

Proof. If λ is an eigenvalue of Y, we have $\lambda=1$ or $\lambda=\xi$, a primitive p-th root of unity, and the characteristic polynomial of Y divides $x^{p}-1$ and has integer coefficients. Since $m(x)$ is irreducible over \mathbb{Q}, the claim follows.

2.2 A relation between $\mathrm{U}\left(\frac{p-1}{2}\right)$ and $\operatorname{Sp}(p-1, \mathbb{Z})$

Let $X \in \mathrm{U}(n)$, i.e., $X \in \mathrm{GL}(n, \mathbb{C})$ and $X^{*} X=I_{n}$ where $X^{*}=\bar{X}^{\mathrm{T}}$ and I_{n} is the $n \times n$-identity matrix. We can write $X=A+i B$ with $A, B \in \mathrm{M}(n, \mathbb{R})$, the ring of real $n \times n$-matrices. We now define the following map

$$
\begin{aligned}
\phi: \quad \mathrm{U}(n) & \longrightarrow \mathrm{Sp}(2 n, \mathbb{R}) \\
X=A+i B & \longmapsto\left(\begin{array}{rr}
A & B \\
-B & A
\end{array}\right)=: \phi(X) .
\end{aligned}
$$

The $\operatorname{map} \phi$ is an injective homomorphism. Moreover, it is well-known that ϕ maps $\mathrm{U}(n)$ on a maximal compact subgroup of $\operatorname{Sp}(2 n, \mathbb{R})$.

Theorem 2.2. Let $X \in \mathrm{U}((p-1) / 2)$ be of odd prime order p. We define $\phi: \mathrm{U}((p-1) / 2) \rightarrow \operatorname{Sp}(p-1, \mathbb{R})$ as above. Then $\phi(X) \in \operatorname{Sp}(p-1, \mathbb{R})$ is conjugate to $Y \in \operatorname{Sp}(p-1, \mathbb{Z})$ if and only if the eigenvalues $\lambda_{1}, \ldots, \lambda_{(p-1) / 2}$ of X are such that

$$
\left\{\lambda_{1}, \ldots, \lambda_{(p-1) / 2}, \bar{\lambda}_{1}, \ldots, \bar{\lambda}_{(p-1) / 2}\right\}
$$

is a complete set of primitive p-th roots of unity.
Proof. See (5] or [6].
In the proof of Theorem 2.2 we used the following facts. For a primitive p-th root of unity ξ, we consider the cyclotomic field $\mathbb{Q}(\xi)$. It is well-known that $\mathbb{Q}\left(\xi+\xi^{-1}\right)$ is the maximal real subfield of $\mathbb{Q}(\xi)$, and that $\mathbb{Z}[\xi]$ and $\mathbb{Z}\left[\xi+\xi^{-1}\right]$ are the rings of integers of $\mathbb{Q}(\xi)$ and $\mathbb{Q}\left(\xi+\xi^{-1}\right)$ respectively. Let (\mathfrak{a}, a) denote a pair where $\mathfrak{a} \subseteq \mathbb{Z}[\xi]$ and $a \in \mathbb{Z}[\xi]$ are chosen such that $\mathfrak{a} \neq 0$ is an ideal in $\mathbb{Z}[\xi]$ and $\mathfrak{a} \overline{\mathfrak{a}}=(a)$, a principal ideal. Here $\overline{\mathfrak{a}}$ denotes the complex conjugate of \mathfrak{a}. We define an equivalence relation on the set of those pairs by $(\mathfrak{a}, a) \sim(\mathfrak{b}, b)$ if and only if $\lambda, \mu \in \mathbb{Z}[\xi] \backslash\{0\}$ exist such that $\lambda \mathfrak{a}=\mu \mathfrak{b}$ and $\lambda \bar{\lambda} a=\mu \bar{\mu} b$. We denote by $[\mathfrak{a}, a]$ the equivalence class of the pair (\mathfrak{a}, a) and by \mathcal{P} the set of equivalence classes $[\mathfrak{a}, a]$.
Let \mathcal{S}_{p} denote the set of conjugacy classes of elements of order p in $\operatorname{Sp}(p-1, \mathbb{Z})$. Sjerve and Yang have shown in [9] that a bijection exists between \mathcal{P} and \mathcal{S}_{p}. If $Y \in \operatorname{Sp}(p-1, \mathbb{Z})$ is a matrix of order p, then the equivalence class $[\mathfrak{a}, a] \in \mathcal{P}$ corresponding to the conjugacy class of Y in $\operatorname{Sp}(p-1, \mathbb{Z})$ can be determined in the following way. Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{p-1}\right)^{\mathrm{T}}$ be an eigenvector of Y corresponding to the eigenvalue $\xi=e^{i 2 \pi / p}$, that is $Y \alpha=\xi \alpha$. Then $\alpha_{1}, \ldots, \alpha_{p-1}$ is a basis of an ideal $\mathfrak{a} \subseteq \mathbb{Z}[\xi]$. Sjerve and Yang [9 proved that this ideal \mathfrak{a} has the property $[\mathfrak{a}, a] \in \mathcal{P}$. Let h and h^{+}be the class numbers of $\mathbb{Q}(\xi)$ and $\mathbb{Q}\left(\xi+\xi^{-1}\right)$ respectively. Then $h^{-}:=h / h^{+}$denotes the relative class number. Sjerve and Yang [9] showed that the number of conjugacy classes of matrices of order p in $\mathrm{Sp}(p-1, \mathbb{Z})$ is $h^{-} 2^{(p-1) / 2}$. The number of conjugacy classes in $\mathrm{U}((p-1) / 2)$ of unitary matrices that satisfy the condition in Theorem 2.2 is $2^{(p-1) / 2}$.
Let \mathcal{U}_{p} denote the set of conjugacy classes of matrices in $\mathrm{U}((p-1) / 2)$ that satisfy the condition on the eigenvalues that is given in Theorem 2.2. A consequence of Theorem 2.2 is that it is possible to define a map

$$
\Psi: \mathcal{S}_{p} \longrightarrow \mathcal{U}_{p}
$$

and that this map is surjective. Therefore the map

$$
\psi: \mathcal{P} \longrightarrow \mathcal{U}_{p}
$$

is surjective either.
For a given choice of the ideal \mathfrak{a} (for example $\mathfrak{a}=\mathbb{Z}[\xi]$), we denote by $\mathcal{P}_{\mathfrak{a}}$ the set of those classes $[\mathfrak{a}, a] \in \mathcal{P}$, where \mathfrak{a} corresponds to our choice. If the restriction

$$
\left.\psi\right|_{\mathcal{P}_{\mathfrak{a}}}: \mathcal{P}_{\mathfrak{a}} \longrightarrow \mathcal{U}_{p}
$$

is surjective each conjugacy class in \mathcal{U}_{p} of matrices that satisfy Theorem 2.2 yields h^{-}conjugacy classes in $\operatorname{Sp}(p-1, \mathbb{Z})$. In general $\left.\psi\right|_{\mathcal{P}_{\mathfrak{a}}}$ is not surjective. It is a result of Busch, [5], [6], that $\left.\psi\right|_{\mathcal{P}_{\mathfrak{a}}}$ is surjective if h^{-}is odd. If h^{-}is even and h^{+}is odd, we have no surjectivity of $\left.\psi\right|_{\mathcal{P}_{\mathfrak{a}}}$. This happens for example for the primes 29 and 113.

2.3 Subgroups of order p in $\operatorname{Sp}(p-1, \mathbb{Z})$

It follows from Theorem 2.2 that a mapping exists that sends the conjugacy classes of matrices $Y \in \operatorname{Sp}(p-1, \mathbb{Z})$ of odd prime order p onto the conjugacy classes of matrices X in $\mathrm{U}((p-1) / 2)$ that satisfy the condition on the eigenvalues described in Theorem 2.2. This mapping is surjective.
It is clear that $\operatorname{det} X=e^{l 2 \pi i / p}$ for some $1 \leqslant l \leqslant p$. If $X \in \mathrm{U}((p-1) / 2)$ satisfies the condition on the eigenvalues, then so does $X^{k}, k=1, \ldots, p-1$. If $\operatorname{det} X=e^{l 2 \pi i / p}$ for some $1 \leqslant l \leqslant p-1$, then

$$
\left\{\operatorname{det} X, \ldots, \operatorname{det} X^{p-1}\right\}=\left\{e^{i 2 \pi / p}, \ldots, e^{i(p-1) 2 \pi / p}\right\}
$$

and the X^{k} are in different conjugacy classes. If $\operatorname{det} X=1$, it is possible that some k exists such that X and X^{k} are in the same conjugacy class. In this section we will analyse when and how many times this happens. The number of conjugacy classes of matrices $X \in \mathrm{U}((p-1) / 2)$ that satisfy the condition required in Theorem 2.2 is $2^{(p-1) / 2}$. Herewith we will be able to compute the number of conjugacy classes of subgroups of matrices of order p in $\mathrm{U}((p-1) / 2)$. We remember that the number of conjugacy classes of matrices of order p in $\operatorname{Sp}(p-1, \mathbb{Z})$ is $2^{(p-1) / 2} h^{-}$. If $h^{-}=1$, a bijection exists between the conjugacy classes of matrices of order p in $\operatorname{Sp}(p-1, \mathbb{Z})$ and the conjugacy classes of matrices of order p in $\mathrm{U}((p-1) / 2)$ that satisfy the condition required in Theorem 2.2. Let $X \in \mathrm{U}((p-1) / 2)$ with $X^{p}=1, X \neq 1$. Then X generates a subgroup S of order p in $\mathrm{U}((p-1) / 2)$. If $\operatorname{det} X=1$, it is possible that X is conjugate to $X^{\prime} \in S$ with $X \neq X^{\prime}$. Two matrices in $\mathrm{U}((p-1) / 2)$ are conjugate to each other if and only if they have the same eigenvalues. The set of eigenvalues of X is

$$
\left\{e^{i g_{1} 2 \pi / p}, \ldots, e^{i g_{(p-1) / 2} 2 \pi / p}\right\}
$$

where $1 \leqslant g_{l} \leqslant p-1$ for $l=1, \ldots, \frac{p-1}{2}$ and for all $l \neq j, l, j=1, \ldots,(p-1) / 2$, $g_{l} \neq p-g_{j}$ and $g_{l} \neq g_{j}$. From now on we consider the g_{j} as elements of $(\mathbb{Z} / p \mathbb{Z})^{*}$. The matrix X is conjugate to X^{κ} for some κ if the eigenvalues of X and X^{κ} are the same. This is equivalent to

$$
\left\{g_{1}, \ldots, g_{(p-1) / 2}\right\}=\left\{\kappa g_{1}, \ldots, \kappa g_{(p-1) / 2}\right\} \subset(\mathbb{Z} / p \mathbb{Z})^{*}
$$

where g_{j} and $\kappa g_{j}, j=1, \ldots,(p-1) / 2$, denote the corresponding congruence classes.

We introduce some notation that will be used in the whole section. Let

$$
\begin{aligned}
G & :=\left\{g_{1}, \ldots, g_{(p-1) / 2}\right\} \subset(\mathbb{Z} / p \mathbb{Z})^{*}, \\
\kappa G & :=\left\{\kappa g_{1}, \ldots, \kappa g_{(p-1) / 2}\right\} \subset(\mathbb{Z} / p \mathbb{Z})^{*}
\end{aligned}
$$

for some $\kappa \in(\mathbb{Z} / p \mathbb{Z})^{*}$. Let x be a generator of the multiplicative cyclic group $(\mathbb{Z} / p \mathbb{Z})^{*}$ and let K be a subgroup of $(\mathbb{Z} / p \mathbb{Z})^{*}$ with $|K|=k$. Then K is cyclic and k divides $p-1$. Let $m:=(p-1) / k$, then x^{m} generates K.
First we prove the following proposition.
Proposition 2.3. Let $G \subset(\mathbb{Z} / p \mathbb{Z})^{*}$ be a subset with $|G|=(p-1) / 2$. The following are equivalent.
i) For all $g_{j}, g_{l} \in G, g_{j} \neq-g_{l}$ and $\kappa \in(\mathbb{Z} / p \mathbb{Z})^{*}$ exists with $\kappa G=G, \kappa \neq 1$.
ii) An integer $h \in \mathbb{N}, 1 \leqslant h \leqslant(p-1) / 2$, and $n_{j} \in(\mathbb{Z} / p \mathbb{Z})^{*}, j=1, \ldots, h$, exist with

$$
G=\bigcup_{j=1}^{h} n_{j} K
$$

where

- $K \subset(\mathbb{Z} / p \mathbb{Z})^{*}$ is the subgroup generated by κ,
- the order of K is odd,
- for $\kappa^{\prime} \in K$ and all $j, l=1, \ldots, h, n_{j} \neq-n_{l} \kappa^{\prime}$,
- and for all $j=2, \ldots, h, n_{j} \notin K$.

Then we will analyse the uniqueness of this decomposition of G. This will enable us to determine the number of $G \subset(\mathbb{Z} / p \mathbb{Z})^{*}$ with $|G|=(p-1) / 2$ and $G=\kappa G$ for some $1 \neq \kappa \in(\mathbb{Z} / p \mathbb{Z})^{*}$. Herewith we will determine the number of conjugacy classes of subgroups of order p in $\mathrm{U}((p-1) / 2)$ whose group elements satisfy the condition of Theorem 2.2.

Definition. Let $\kappa \in(\mathbb{Z} / p \mathbb{Z})^{*}$ and let K be the subgroup of $(\mathbb{Z} / p \mathbb{Z})^{*}$ generated by κ. Let $G \subset(\mathbb{Z} / p \mathbb{Z})^{*}$ be a subset with $|G|=(p-1) / 2$. We say that K decomposes G if G, κ and K fulfil the conditions of Proposition 2.3 .
So K decomposes G if the order of the group K is odd and G is a disjoint union of cosets $n_{1} K, \ldots, n_{h} K$ of K in $(\mathbb{Z} / p \mathbb{Z})^{*}$ for which for all $n_{j}, n_{l}, j, l=1, \ldots, h$, holds $n_{j} K \neq-n_{l} K$.
Lemma 2.4. Let $G \subset(\mathbb{Z} / p \mathbb{Z})^{*}$ with $|G|=(p-1) / 2$. Then $1 \neq \kappa \in(\mathbb{Z} / p \mathbb{Z})^{*}$ exists with $\kappa G=G$ if and only if $1 \leqslant h \leqslant(p-1) / 2$ and $n_{j} \in(\mathbb{Z} / p \mathbb{Z})^{*}$, $j=1, \ldots, h$, exist with

$$
G=\bigcup_{j=1}^{h} n_{j} K
$$

where $n_{j} \notin K$ for $j=2, \ldots, h$, and K is the subgroup of $(\mathbb{Z} / p \mathbb{Z})^{*}$ that is generated by κ.

Proof. \Leftrightarrow : Let $\kappa^{l} \in K$. Then

$$
\kappa^{l} G=\kappa^{l} \bigcup_{j=1}^{h} n_{j} K=\bigcup_{j=1}^{h} n_{j} \kappa^{l} K=\bigcup_{j=1}^{h} n_{j} K=G
$$

\Rightarrow : Without loss of generality we assume that $1 \in G$. If $1 \notin G, \lambda \in(\mathbb{Z} / p \mathbb{Z})^{*}$ exists with $1 \in \lambda G$ because $(\mathbb{Z} / p \mathbb{Z})^{*}$ is a multiplicative group. Of course $\kappa \lambda G=\lambda G$. Moreover, it is easy to see that if λG is a union of cosets of K, this is also true for G. The equation $\kappa G=G$ implies that $K G=G$. If $1 \in G$, then $K \subseteq G$ since $K G=G$. If $K=G$, we have finished the proof. If $K \neq G$, we consider $G_{1}^{\prime}=G \backslash K$. For all $\kappa^{l} \in K$ we have $\kappa^{l} K=K$ and

$$
\kappa^{l} G_{1}^{\prime}=\kappa^{l}(G \backslash K)=G \backslash K=G_{1}^{\prime} .
$$

Now $\lambda_{1} \in(\mathbb{Z} / p \mathbb{Z})^{*}$ exists with $1 \in \lambda_{1} G_{1}^{\prime}=: G_{1}$. Then $G=K \cup \lambda_{1}^{-1} G_{1}$ and we can repeat the construction on G_{1} instead of G. This procedure finishes after $h:=(p-1) / 2 k$ steps. Let $n_{1}:=1$ and for $j=2, \ldots, h$ let $n_{j}:=n_{j-1} \lambda_{j-1}^{-1}$. Then $G=\bigcup_{j=1}^{h} n_{j} K$.
Let $G=\left\{g_{1}, \ldots, g_{(p-1) / 2}\right\} \subset(\mathbb{Z} / p \mathbb{Z})^{*}$ with $|G|=(p-1) / 2$ and $\kappa G=G$ for some $\kappa \in(\mathbb{Z} / p \mathbb{Z})^{*}$ with $\kappa \neq 1, \kappa^{k}=1$. The following lemma will give an answer to the question when G satisfies the conditions $g_{l} \neq g_{j}, g_{l} \neq-g_{j}$ for all $j \neq l$ with $j, l=1, \ldots, \frac{p-1}{2}$.

Lemma 2.5. Let $G=\bigcup_{j=1}^{h} n_{j} K \subset(\mathbb{Z} / p \mathbb{Z})^{*}$ be defined like in Lemma 2.4. Then for all $g_{j}, g_{l} \in G$ holds $g_{j} \neq-g_{l}$ if and only if $-1 \notin K$ and for all $\kappa \in K$ and all $j, l=1, \ldots, h$ holds $n_{j} \neq-n_{l} \kappa$.
Proof. \Rightarrow : Suppose $-1 \in K$. Then $-1=\kappa^{l}$ for some l and $n_{1}=-n_{1} \kappa^{l}$. But then we have found $g_{1}:=n_{1} \in G$ and $g_{2}:=n_{1} \kappa^{l} \in G$ with $g_{1}=-g_{2}$.
$\Leftarrow:$ Suppose $g_{j}, g_{l} \in G$ exist with $g_{j}=-g_{l}$. Let $g_{j}=n_{j} \kappa^{j}, g_{l}=n_{l} \kappa^{l}$. Then $n_{j} \kappa^{j}=-n_{l} \kappa^{l}$, and we have found $\kappa^{j-l} \in K$ with $n_{l}=-n_{j} \kappa^{j-l}$.

Which subgroups $K \subseteq(\mathbb{Z} / p \mathbb{Z})^{*}$ satisfy the condition $-1 \notin K$?
Lemma 2.6. Let $K \subseteq(\mathbb{Z} / p \mathbb{Z})^{*}$ be a subgroup of order k. Then $-1 \notin K$ if and only if k is odd.

Proof. The group $(\mathbb{Z} / p \mathbb{Z})^{*}$ is cyclic of order $p-1$ and K is a cyclic group. Let x be a generator of K, then $x^{k}=1$. If k is even, $k / 2 \in \mathbb{Z}$ and $x^{k / 2} \in K$. But then $\left(x^{k / 2}\right)^{2}=x^{k}=1$ and therefore $x^{k / 2}=-1 \in K$ since -1 is the element of order 2 in $(\mathbb{Z} / p \mathbb{Z})^{*}$. On the other hand if $-1 \in K$, then K contains an element of order 2 . But then k is even, since the order of any element of K divides the order of K.

Proof of Proposition 2.3. A subgroup K decomposes a set G as required in Lemma 2.5 if and only if the order of K is odd. Moreover, the order of K divides $p-1$. Now Proposition 2.3 follows from Lemma 2.4 and Lemma 2.5.

We did not yet analyse the uniqueness of the decomposition of a set G. It is evident that the n_{j} can be permuted and multiplied with any $\kappa^{l} \in K$, but we will see that K and h are not uniquely determined. The next lemma states that if K decomposes G then so does any nontrivial subgroup of K.

Lemma 2.7. Let $G=\bigcup_{j=1}^{h} n_{j} K \subset(\mathbb{Z} / p \mathbb{Z})^{*},|G|=(p-1) / 2$, be such that K decomposes G (Proposition 2.3). Let $|K|=k$ be not a prime and let $K^{\prime} \neq K$ be a nontrivial subgroup of K. Then K^{\prime} decomposes G.

Proof. Since K^{\prime} is a subgroup of K, K can be written as a union of cosets of K^{\prime} in K. Moreover, G is a union of cosets of K in $(\mathbb{Z} / p \mathbb{Z})^{*}$. Therefore

$$
G=\bigcup_{j=1}^{h} n_{j} K=\bigcup_{i=1}^{h^{\prime}} n_{i}^{\prime} K^{\prime}
$$

Since K decomposes G, we have $n_{l} K \neq-n_{j} K$ for all $l, j=1, \ldots, h$. This implies that $n_{l}^{\prime} K^{\prime} \neq-n_{i}^{\prime} K^{\prime}$ for all $i, l=1, \ldots, h^{\prime}$. So K^{\prime} decomposes G.

Our next aim is to determine the number of sets G. Therefore we consider for a given G the group K with $|K|$ maximal and K decomposes G.

Lemma 2.8. Let $K \subset(\mathbb{Z} / p \mathbb{Z})^{*}$ be a nontrivial subgroup of odd order k. Then $2^{(p-1) / 2 k}$ different sets G exist such that K decomposes G and $|G|=(p-1) / 2$.

Proof. The order of $K \subset(\mathbb{Z} / p \mathbb{Z})^{*}$ is odd. Then it follows from Lemma 2.6 that $-1 \notin K$. Consider the cosets $n_{j} K$ of K in $(\mathbb{Z} / p \mathbb{Z})^{*}$. Since $-1 \notin K$, we have $n_{j} K \neq-n_{j} K$. So $n_{j}, j=1, \ldots,(p-1) / 2 k$, exist such that

$$
(\mathbb{Z} / p \mathbb{Z})^{*}=\bigcup_{j=1}^{(p-1) / 2 k}\left(n_{j} K \cup-n_{j} K\right)
$$

The group K decomposes G if and only if G is a union of cosets of K and $m_{j} K \subseteq G$ implies that $-m_{j} K \nsubseteq G$ for $m_{j}= \pm n_{j}, j=1, \ldots,(p-1) / 2 k$. Therefore $2^{(p-1) / 2 k}$ sets G exist such that K decomposes G.

Definition. Let $K \subset(\mathbb{Z} / p \mathbb{Z})^{*}$ be a group of odd order k. We define \mathcal{N}_{k} to be the number of $G \subset(\mathbb{Z} / p \mathbb{Z})^{*}$ such that K decomposes G but any K^{\prime} with $K \subset K^{\prime} \subset(\mathbb{Z} / p \mathbb{Z})^{*}, K \neq K^{\prime}$, does not decompose G.

To determine \mathcal{N}_{k} we have to subtract the number $\mathcal{N}_{k^{\prime}}$ from $2^{(p-1) / 2 k}$ for each odd $k^{\prime} \neq k$ with $k\left|k^{\prime}, k^{\prime}\right| p-1$. The integer k^{\prime} is the order of the group K^{\prime} with $K \subset K^{\prime}$. Therefore we get a recursive formula

$$
\mathcal{N}_{k}=2^{(p-1) / 2 k}-\sum_{\substack{k^{\prime} \text { odd, } k^{\prime}>k \\ k\left|k^{\prime}, k^{\prime}\right| p-1}} \mathcal{N}_{k^{\prime}}
$$

Now it remains to determine \mathcal{N}_{y}. Let $y \in \mathbb{Z}$ be such that $p-1=2^{r} y$ and y is odd. Then

$$
\mathcal{N}_{y}=2^{(p-1) / 2 y}=2^{2^{r-1}}
$$

Let $p-1=2^{r} p_{1}^{r_{1}} \ldots p_{l}^{r_{l}}$ be a factorisation of $p-1$ into primes where p_{1}, \ldots, p_{l} are odd and $p_{i} \neq p_{j}$ for all $i \neq j$ with $i, j=1, \ldots, l$. Since $p-1$ is even, $r \geqslant 1$. Let K be of order $k=p_{1}^{s_{1}} \ldots p_{l}^{s_{l}}$ where $0 \leqslant s_{j} \leqslant r_{j}$ for $j=1, \ldots, l$. Let x be a generator of $(\mathbb{Z} / p \mathbb{Z})^{*}$. Then K is generated by $x^{m}, m=2^{r} p_{1}^{r_{1}-s_{1}} \ldots p_{l}^{r_{l}-s_{l}}$. If $k^{\prime}=p_{1}^{t_{1}} \ldots p_{l}^{t_{l}}$ where $s_{j} \leqslant t_{j} \leqslant r_{j}$ for $j=1, \ldots, l$, then K is a proper subgroup of K^{\prime} of order k^{\prime} if $s_{j}<t_{j}$ for some $1 \leqslant j \leqslant l$. Herewith $-1+\prod_{j=1}^{l}\left(r_{j}-s_{j}+1\right)$ groups K^{\prime} exist such that K is a proper subgroup of K^{\prime}. So the number of sets G that are decomposed by K and for which no $K^{\prime} \supsetneq K$ exists such that K^{\prime} decomposes G is

$$
\mathcal{N}_{k}=2^{(p-1) / 2 k}-\sum_{y \in T_{k}} \mathcal{N}_{y}
$$

where

$$
T_{k}:=\{y \in \mathbb{N} \mid y \text { odd, } k \mid y, y \neq k \text { and } y \mid p-1\}
$$

Now we have to determine the number of sets G that satisfy the conditions of Proposition 2.3. Let this be the number \mathcal{N}_{G}. One easily sees that

$$
\mathcal{N}_{G}=\sum_{\substack{K \subset(\mathbb{Z} / p \mathbb{Z})^{*} \\|K| \neq 1 \\|K| \text { odd }}} \mathcal{N}_{|K|}=\sum_{\substack{k \mid p-1 \\ k \neq 1 \\ k \text { odd }}} \mathcal{N}_{k} .
$$

Now let $G \subset(\mathbb{Z} / p \mathbb{Z})^{*}$ with $|G|=(p-1) / 2$, such that for all $g_{i}, g_{j} \in G$, $g_{i} \neq-g_{j}$. Let \mathcal{N}_{1} be the number of sets G for which no $\kappa \in(\mathbb{Z} / p \mathbb{Z})^{*}, \kappa \neq 1$, exists such that $\kappa G=G$. Then

$$
\mathcal{N}_{1}=2^{(p-1) / 2}-\mathcal{N}_{G}=2^{(p-1) / 2}-\sum_{\substack{1 \neq k \mid p-1 \\ k \text { odd }}} \mathcal{N}_{k}
$$

We have seen that each set G corresponds to the set of eigenvalues of a matrix in $\mathrm{U}((p-1) / 2)$ that satisfies Theorem 2.2.

Definition. We define a matrix $X_{G} \in \mathrm{U}\left(\frac{p-1}{2}\right)$ with the eigenvalues

$$
\left\{e^{i g_{1} 2 \pi / p}, \ldots, e^{i g_{(p-1) / 2} 2 \pi / p}\right\}
$$

where $G=\left\{g_{1}, \ldots, g_{(p-1) / 2}\right\} \subset(\mathbb{Z} / p \mathbb{Z})^{*}$. We used the same notation for the elements of $(\mathbb{Z} / p \mathbb{Z})^{*}$ and their representatives in \mathbb{Z}.

Let the maximal order of K that decomposes G be k. Then G yields k elements of the group generated by X_{G}. As a result we have:

Proposition 2.9. The number of conjugacy classes of subgroups of order p in $\mathrm{U}((p-1) / 2)$ whose group elements satisfy the necessary and sufficient condition is

$$
\mathcal{K}(p)=\frac{1}{p-1} \sum_{\substack{k \text { odd } \\ k \mid p-1}} k \mathcal{N}_{k} .
$$

3 The Farrell cohomology

3.1 An introduction to Farrell cohomology

An introduction to the Farrell cohomology can be found in the book of Brown [3]. The Farrell cohomology is a complete cohomology for groups with finite virtual cohomological dimension (vcd). It is a generalisation of the Tate cohomology for finite groups. If G is finite, the Farrell cohomology and the Tate cohomology of G coincide. It is well-known that the groups $\operatorname{Sp}(2 n, \mathbb{Z})$ have finite vcd.

Definition. An elementary abelian p-group of rank $r \geqslant 0$ is a group that is isomorphic to $(\mathbb{Z} / p \mathbb{Z})^{r}$.

It is well-known that $\widehat{\mathrm{H}}^{i}(G, \mathbb{Z})$ is a torsion group for every $i \in \mathbb{Z}$. We write $\widehat{\mathrm{H}}^{i}(G, \mathbb{Z})_{(p)}$ for the p-primary part of this torsion group, i.e., the subgroup of elements of order some power of p. We will use the following theorem.

Theorem 3.1. Let G be a group such that $\operatorname{vcd} G<\infty$ and let p be a prime. Suppose that every elementary abelian p-subgroup of G has rank $\leqslant 1$. Then

$$
\widehat{\mathrm{H}}^{*}(G, \mathbb{Z})_{(p)} \cong \prod_{P \in \mathfrak{P}} \widehat{\mathrm{H}}^{*}(N(P), \mathbb{Z})_{(p)}
$$

where \mathfrak{P} is a set of representatives for the conjugacy classes of subgroups of G of order p and $N(P)$ denotes the normalizer of P.

Proof. See Brown's book (3).
We also have

$$
\widehat{\mathrm{H}}^{*}(G, \mathbb{Z}) \cong \prod_{p} \widehat{\mathrm{H}}^{*}(G, \mathbb{Z})_{(p)}
$$

where p ranges over the primes such that G has p-torsion.
A group G of finite virtual cohomological dimension is said to have periodic cohomology if for some $d \neq 0$ there is an element $u \in \widehat{\mathrm{H}}^{d}(G, \mathbb{Z})$ that is invertible in the ring $\widehat{\mathrm{H}}^{*}(G, \mathbb{Z})$. Cup product with u then gives a periodicity isomorphism $\widehat{\mathrm{H}}^{i}(G, M) \cong \widehat{\mathrm{H}}^{i+d}(G, M)$ for any G-module M and any $i \in \mathbb{Z}$. Similarly we say that G has p-periodic cohomology if the p-primary component $\widehat{\mathrm{H}}^{*}(G, \mathbb{Z})_{(p)}$, which is itself a ring, contains an invertible element of non-zero degree d. Then we have

$$
\widehat{\mathrm{H}}^{i}(G, M)_{(p)} \cong \widehat{\mathrm{H}}^{i+d}(G, M)_{(p)}
$$

and the smallest positive d that satisfies this condition is called the p-period of G.

Proposition 3.2. The following are equivalent:
i) G has p-periodic cohomology.
ii) Every elementary abelian p-subgroup of G has rank $\leqslant 1$.

Proof. See Brown's book [3].

3.2 Normalizers of subgroups of order p in $\operatorname{Sp}(p-1, \mathbb{Z})$

In order to use Theorem 3.1, we have to analyse the structure of the normalizers of subgroups of order p in $\operatorname{Sp}(p-1, \mathbb{Z})$. We already analysed the conjugacy classes of subgroups of order p in $\operatorname{Sp}(p-1, \mathbb{Z})$. Let N be the normalizer and let C be the centralizer of such a subgroup. Then we have a short exact sequence

$$
1 \longrightarrow C \longrightarrow N \longrightarrow N / C \longrightarrow 1 \text {. }
$$

Moreover, it follows from the discussion in the paper of Brown [2] that for p an odd prime

$$
C \cong \mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \cong \mathbb{Z} / 2 p \mathbb{Z}
$$

and therefore N is a finite group. We will use the following proposition.

Proposition 3.3. Let

$$
1 \longrightarrow U \longrightarrow G \longrightarrow Q \longrightarrow 1
$$

be a short exact sequence with Q a finite group of order prime to p. Then

$$
\widehat{\mathrm{H}}^{*}(G, \mathbb{Z})_{(p)} \cong\left(\widehat{\mathrm{H}}^{*}(U, \mathbb{Z})_{(p)}\right)^{Q}
$$

Proof. See Brown [3], the Hochschild-Serre spectral sequence.
Applying this to our case, we get

$$
\widehat{\mathrm{H}}^{*}(N, \mathbb{Z})_{(p)} \cong\left(\widehat{\mathrm{H}}^{*}(C, \mathbb{Z})_{(p)}\right)^{N / C}
$$

Therefore we have to determine N / C and its action on $C \cong \mathbb{Z} / 2 p \mathbb{Z}$. From now on, if we consider subgroups or elements of order p in $\mathrm{U}((p-1) / 2)$, we mean those that satisfy the condition of Theorem 2.2. In what follows we assume that p is an odd prime for which $h^{-}=1$, because in this case we have a bijection between the conjugacy classes of subgroups of order p in $\mathrm{U}((p-1) / 2)$ and those in $\operatorname{Sp}(p-1, \mathbb{Z})$. Therefore, in order to determine the structure of the conjugacy classes of subgroups of order p in $\operatorname{Sp}(p-1, \mathbb{Z})$, we can consider the corresponding conjugacy classes in $\mathrm{U}((p-1) / 2)$. We have already seen that
in a subgroup of $\mathrm{U}((p-1) / 2)$ of order p different elements can be in the same conjugacy class. Let \mathcal{N}_{k} be the number of conjugacy classes of elements of order p in $\mathrm{U}((p-1) / 2)$ where k powers of one element are in the same conjugacy class. Let \mathcal{K}_{k} be the number of conjugacy classes of subgroups of $\mathrm{U}((p-1) / 2)$ with $|N / C|=k$, where N denotes the normalizer and C the centralizer of this subgroup. Then the number $\mathcal{K}(p)$ of conjugacy classes of subgroups of order p in $\mathrm{U}((p-1) / 2)$ is

$$
\mathcal{K}(p)=\sum_{\substack{k \mid p-1, k \text { odd }}} \mathcal{K}_{k}
$$

If $|N / C|=k$, then

$$
N / C \cong \mathbb{Z} / k \mathbb{Z} \subseteq \mathbb{Z} /(p-1) \mathbb{Z} \cong \operatorname{Aut}(\mathbb{Z} / 2 p \mathbb{Z})
$$

where $k \mid p-1$ and k is odd. This means that N / C is isomorphic to a subgroup of $\operatorname{Aut}(\mathbb{Z} / p \mathbb{Z})$. So we get the short exact sequence

$$
1 \longrightarrow \mathbb{Z} / 2 p \mathbb{Z} \longrightarrow N \longrightarrow \mathbb{Z} / k \mathbb{Z} \longrightarrow 1
$$

Moreover, we have an injection $\mathbb{Z} / p \mathbb{Z} \hookrightarrow \mathbb{Z} / 2 p \mathbb{Z} \hookrightarrow N$. Applying the proposition to this case yields

$$
\widehat{\mathrm{H}}^{*}(N, \mathbb{Z})_{(p)} \cong\left(\widehat{\mathrm{H}}^{*}(\mathbb{Z} / 2 p \mathbb{Z}, \mathbb{Z})_{(p)}\right)^{\mathbb{Z} / k \mathbb{Z}}
$$

The action of $\mathbb{Z} / k \mathbb{Z}$ on $\mathbb{Z} / 2 p \mathbb{Z}$ is given by the action of $\mathbb{Z} / k \mathbb{Z}$ as a subgroup of the group of automorphisms of $\mathbb{Z} / p \mathbb{Z} \subset \mathbb{Z} / 2 p \mathbb{Z}$.
Lemma 3.4. The Farrell cohomology of $\mathbb{Z} / l \mathbb{Z}$ is

$$
\widehat{\mathrm{H}}^{*}(\mathbb{Z} / l \mathbb{Z}, \mathbb{Z})=\mathbb{Z} / l \mathbb{Z}\left[x, x^{-1}\right]
$$

where $\operatorname{deg} x=2, x \in \widehat{\mathrm{H}}^{2}(\mathbb{Z} / l \mathbb{Z}, \mathbb{Z})$, and $\langle x\rangle \cong \mathbb{Z} / l \mathbb{Z}$.
Proof. See Brown's book [3]. For finite groups the Farrell cohomology and the Tate cohomology coincide.

Proposition 3.5. Let p be an odd prime and let $k \in \mathbb{Z}$ divide $p-1$. Then

$$
\left(\widehat{\mathrm{H}}^{*}(\mathbb{Z} / 2 p \mathbb{Z}, \mathbb{Z})_{(p)}\right)^{\mathbb{Z} / k \mathbb{Z}} \cong \mathbb{Z} / p \mathbb{Z}\left[x^{k}, x^{-k}\right]
$$

where $x \in \widehat{\mathrm{H}}^{2}(\mathbb{Z} / 2 p \mathbb{Z}, \mathbb{Z})$.
Proof. For an odd prime p

$$
\widehat{\mathrm{H}}^{*}(\mathbb{Z} / 2 p \mathbb{Z}, \mathbb{Z})_{(p)}=\left(\mathbb{Z} / 2 p \mathbb{Z}\left[x, x^{-1}\right]\right)_{(p)}=\mathbb{Z} / p \mathbb{Z}\left[x, x^{-1}\right]
$$

We have to consider the action of $\mathbb{Z} / k \mathbb{Z}$ on $\mathbb{Z} / p \mathbb{Z}\left[x, x^{-1}\right]$. We have $p x=0$ and $x \in \widehat{\mathrm{H}}^{2}(\mathbb{Z} / 2 p \mathbb{Z}, \mathbb{Z})$. The action is given by $x \mapsto q x$ with q such that $(q, p)=1$,
$q^{k} \equiv 1(\bmod p)$ and k is the smallest number such that this is fulfilled. The action of $\mathbb{Z} / k \mathbb{Z}$ on

$$
\widehat{\mathrm{H}}^{2 m}(\mathbb{Z} / 2 p \mathbb{Z}, \mathbb{Z})_{(p)} \cong\left(\left\langle x^{m}\right\rangle\right) \cong \mathbb{Z} / p \mathbb{Z}
$$

is given by

$$
x^{m} \mapsto q^{m} x^{m}
$$

The $\mathbb{Z} / k \mathbb{Z}$-invariants of $\widehat{\mathrm{H}}^{*}(\mathbb{Z} / 2 p \mathbb{Z}, \mathbb{Z})_{(p)}$ are the $x^{m} \in \widehat{\mathrm{H}}^{2 m}(\mathbb{Z} / 2 p \mathbb{Z}, \mathbb{Z})_{(p)}$ with $x^{m} \mapsto x^{m}$, or equivalently $q^{m} \equiv 1(\bmod p)$. Herewith we get

$$
\begin{aligned}
\widehat{\mathrm{H}}^{*}(N, \mathbb{Z})_{(p)} & \cong\left(\widehat{\mathrm{H}}^{*}(\mathbb{Z} / 2 p \mathbb{Z}, \mathbb{Z})_{(p)}\right)^{\mathbb{Z} / k \mathbb{Z}} \cong\left(\mathbb{Z} / p \mathbb{Z}\left[x, x^{-1}\right]\right)^{\mathbb{Z} / k \mathbb{Z}} \\
& \cong \mathbb{Z} / p \mathbb{Z}\left[x^{k}, x^{-k}\right] .
\end{aligned}
$$

Proposition 3.6. Let p be an odd prime for which $h^{-}=1$. Then

$$
\widehat{\mathrm{H}}^{*}(\operatorname{Sp}(p-1, \mathbb{Z}), \mathbb{Z})_{(p)} \cong \prod_{\substack{k \mid p-1 \\ k \text { odd }}}\left(\prod_{1}^{\mathcal{K}_{k}} \mathbb{Z} / p \mathbb{Z}\left[x^{k}, x^{-k}\right]\right)
$$

where \mathcal{K}_{k} is the number of conjugacy classes of subgroups of $\mathrm{U}((p-1) / 2)$ with $|N / C|=k$. As usual N denotes the normalizer and C the centralizer of this subgroup.

Proof. Let p be a prime with $h^{-}=1$. Then a bijection exists between the conjugacy classes of matrices of order p in $\mathrm{U}((p-1) / 2)$ that satisfy the conditions of Theorem 2.2 and the conjugacy classes of matrices of order p in $\operatorname{Sp}(p-1, \mathbb{Z})$. Now this proposition follows from Theorem 3.1.

Now it remains to determine \mathcal{K}_{k}, the number of conjugacy classes of subgroups of $\mathrm{U}((p-1) / 2)$ of order p with $N / C \cong \mathbb{Z} / k \mathbb{Z}$. Therefore we need \mathcal{N}_{k}, the number of conjugacy classes of elements $X \in \mathrm{U}((p-1) / 2)$ of order p for which $1=j_{1}<\cdots<j_{k}<p$ exist such that the $X^{j_{l}}, l=1, \ldots, k$, are in the same conjugacy class than X and k is maximal. One such class yields k elements in a group for which $|N / C|=k$ and therefore

$$
\mathcal{K}_{k}=k \mathcal{N}_{k} \frac{1}{p-1}
$$

We recall the formula for \mathcal{N}_{k} :

$$
\mathcal{N}_{k}=2^{\frac{p-1}{2 k}}-\sum_{\substack{k^{\prime} \text { odd, } k^{\prime}>k \\ k\left|k^{\prime}, k^{\prime}\right| p-1}} \mathcal{N}_{k^{\prime}}
$$

Now we have everything we need to compute the p-primary part of the Farrell cohomology of $\operatorname{Sp}(p-1, \mathbb{Z})$ for some examples of primes with $h^{-}=1$.
C. Busch

3.3 Examples with $3 \leqslant p \leqslant 19$

$p=3:$ It is $\mathrm{Sp}(2, \mathbb{Z})=\mathrm{SL}(2, \mathbb{Z})$. One conjugacy class exists with $N=C$.
Therefore

$$
\widehat{\mathrm{H}}^{*}(\operatorname{Sp}(2, \mathbb{Z}), \mathbb{Z})_{(3)} \cong \mathbb{Z} / 3 \mathbb{Z}\left[x, x^{-1}\right]
$$

and $\operatorname{Sp}(2, \mathbb{Z})$ has 3 -period 2 .
$p=5$: One conjugacy class exists with $N=C$. Therefore

$$
\widehat{\mathrm{H}}^{*}(\operatorname{Sp}(4, \mathbb{Z}), \mathbb{Z})_{(5)} \cong \mathbb{Z} / 5 \mathbb{Z}\left[x, x^{-1}\right]
$$

and $\operatorname{Sp}(4, \mathbb{Z})$ has 5 -period 2 .
$p=7$: One conjugacy class exists with $N / C \cong \mathbb{Z} / 3 \mathbb{Z}$, and one class exists with $N=C$. Therefore

$$
\widehat{\mathrm{H}}^{*}(\operatorname{Sp}(6, \mathbb{Z}), \mathbb{Z})_{(7)} \cong \mathbb{Z} / 7 \mathbb{Z}\left[x^{3}, x^{-3}\right] \times \mathbb{Z} / 7 \mathbb{Z}\left[x, x^{-1}\right]
$$

and $\operatorname{Sp}(6, \mathbb{Z})$ has 7-period 6 .
$p=11:$ One conjugacy class exists with $N / C \cong \mathbb{Z} / 5 \mathbb{Z}$ and 3 classes exist with $N=C$. Therefore

$$
\widehat{\mathrm{H}}^{*}(\operatorname{Sp}(10, \mathbb{Z}), \mathbb{Z})_{(11)} \cong \mathbb{Z} / 11 \mathbb{Z}\left[x^{5}, x^{-5}\right] \times \prod_{1}^{3} \mathbb{Z} / 11 \mathbb{Z}\left[x, x^{-1}\right]
$$

and $\operatorname{Sp}(10, \mathbb{Z})$ has 11-period 10 .
$p=13:$ One conjugacy class exists with $N / C \cong \mathbb{Z} / 3 \mathbb{Z}$ and 5 classes exist with
$N=C$. Therefore

$$
\widehat{\mathrm{H}}^{*}(\operatorname{Sp}(12, \mathbb{Z}), \mathbb{Z})_{(13)} \cong \mathbb{Z} / 13 \mathbb{Z}\left[x^{3}, x^{-3}\right] \times \prod_{1}^{5} \mathbb{Z} / 13 \mathbb{Z}\left[x, x^{-1}\right]
$$

and $\operatorname{Sp}(12, \mathbb{Z})$ has 13 -period 6 .
$p=17: 16$ conjugacy classes exist with $N=C$. Therefore

$$
\widehat{\mathrm{H}}^{*}(\operatorname{Sp}(16, \mathbb{Z}), \mathbb{Z})_{(17)} \cong \prod_{1}^{16} \mathbb{Z} / 17 \mathbb{Z}\left[x, x^{-1}\right]
$$

and $\operatorname{Sp}(16, \mathbb{Z})$ has 17 -period 2 .
$p=19$: One conjugacy class exists with $N / C \cong \mathbb{Z} / 9 \mathbb{Z}$, one class exists with $N / C \cong \mathbb{Z} / 3 \mathbb{Z}$, and 28 classes exist with $N=C$.

$$
\begin{aligned}
\widehat{\mathrm{H}}^{*}(\operatorname{Sp}(18, \mathbb{Z}), \mathbb{Z})_{(19)} \cong & \mathbb{Z} / 19 \mathbb{Z}\left[x^{9}, x^{-9}\right] \times \mathbb{Z} / 19 \mathbb{Z}\left[x^{3}, x^{-3}\right] \\
& \times \prod_{1}^{28} \mathbb{Z} / 19 \mathbb{Z}\left[x, x^{-1}\right]
\end{aligned}
$$

and $\operatorname{Sp}(18, \mathbb{Z})$ has 19-period 18 .
3.4 The p-Primary part of the Farrell cohomology of $\operatorname{Sp}(p-1, \mathbb{Z})$

Let p be an odd prime and let ξ be a primitive p-th root of unity. Let h^{-}be the relative class number of the cyclotomic field $\mathbb{Q}(\xi)$. In this section we compute $\widehat{\mathrm{H}}^{*}(\mathrm{Sp}(p-1, \mathbb{Z}), \mathbb{Z})_{(p)}$ and its period for any odd prime p for which h^{-}is odd.
Theorem 3.7. Let p be an odd prime for which h^{-}is odd. Then

$$
\widehat{\mathrm{H}}^{*}(\operatorname{Sp}(p-1, \mathbb{Z}), \mathbb{Z})_{(p)} \cong \prod_{\substack{k \mid p-1 \\ k \text { odd }}}\left(\prod_{1}^{\tilde{\mathcal{K}}_{k}} \mathbb{Z} / p \mathbb{Z}\left[x^{k}, x^{-k}\right]\right)
$$

where $\widetilde{\mathcal{K}}_{k}$ denotes the number of conjugacy classes of subgroups of order p of $\operatorname{Sp}(p-1, \mathbb{Z})$ for which $|N / C|=k$. Moreover $\widetilde{\mathcal{K}}_{k} \geqslant \mathcal{K}_{k}$, where \mathcal{K}_{k} is the number of conjugacy classes of subgroups of $\mathrm{U}((p-1) / 2)$ with $|N / C|=k$. As usual N denotes the normalizer and C the centralizer of the corresponding subgroup.

Proof. We have seen in Section 2.2 that if h^{-}is odd, a bijection exists between the conjugacy classes of matrices of order p in $\mathrm{U}((p-1) / 2)$ that satisfy the conditions of Theorem 2.2 and the conjugacy classes of matrices of order p in $\operatorname{Sp}(p-1, \mathbb{Z})$ that correspond to the equivalence classes $[\mathbb{Z}[\xi], u] \in \mathcal{P}$. Each conjugacy class of subgroups of order p in $\mathrm{U}((p-1) / 2)$ whose group elements satisfy the condition required in Theorem 2.2 yields at least one conjugacy class in $\operatorname{Sp}(p-1, \mathbb{Z})$. This implies that the p-primary part of the Farrell cohomology of $\operatorname{Sp}(p-1, \mathbb{Z})$ is a product

$$
\prod_{\substack{k \mid p-1, k \text { odd }}}\left(\prod_{1}^{\widetilde{\mathcal{K}}_{k}} \mathbb{Z} / p \mathbb{Z}\left[x^{k}, x^{-k}\right]\right)
$$

where $\widetilde{\mathcal{K}}_{k}$ denotes the number of conjugacy classes of subgroups of order p of $\operatorname{Sp}(p-1, \mathbb{Z})$ that satisfy $|N / C|=k$. Let \mathcal{K}_{k} be the number of such subgroups in $\mathrm{U}((p-1) / 2)$. Because h^{-}is odd, each such subgroup gives at least one such subgroup of $\operatorname{Sp}(p-1, \mathbb{Z})$. Therefore, if h^{-}is odd, $\widetilde{\mathcal{K}}_{k} \geqslant \mathcal{K}_{k}$. If h^{-}is even, it may be possible that no subgroup of $\operatorname{Sp}(p-1, \mathbb{Z})$ of order p exists for which $|N / C|=k$.

Theorem 3.8. Let p be an odd prime for which h^{-}is odd and let y be such that $p-1=2^{r} y$ and y is odd. Then the period of $\widehat{\mathrm{H}}^{*}(\operatorname{Sp}(p-1, \mathbb{Z}), \mathbb{Z})_{(p)}$ is $2 y$.

Proof. By Theorem 3.7 we know that the p-primary part of the Farrell cohomology of $\operatorname{Sp}(p-1, \mathbb{Z})$ is

$$
\widehat{\mathrm{H}}^{*}(\operatorname{Sp}(p-1, \mathbb{Z}), \mathbb{Z})_{(p)} \cong \prod_{\substack{k \mid p-1 \\ k \text { odd }}}\left(\prod_{1}^{\widetilde{\mathcal{K}}_{k}} \mathbb{Z} / p \mathbb{Z}\left[x^{k}, x^{-k}\right]\right)
$$

Moreover, $\widetilde{\mathcal{K}}_{k} \geqslant 1$ and the period of $\mathbb{Z} / p \mathbb{Z}\left[x^{k}, x^{-k}\right]$ is $2 k$. Herewith the period of the p-primary part of the Farrell cohomology is $2 y$.
If p is a prime for which h^{-}is even, the p-period of $\widehat{\mathrm{H}}^{*}(\operatorname{Sp}(p-1, \mathbb{Z}), \mathbb{Z})$ is $2 z$ where z is odd and divides $p-1$. The period is not necessarily $2 y$ because there may be no subgroup of order p in which y elements are conjugate in $\operatorname{Sp}(p-1, \mathbb{Z})$ even if we know that they are conjugate in $\operatorname{Sp}(p-1, \mathbb{R})$.

References

[1] A. Ash, Farrell cohomology of $G L(n, \mathbb{Z})$, Israel J. of Math. 67 (1989), 327-336.
[2] K. S. Brown, Euler characteristics of discrete groups and G-spaces, Invent. Math. 27 (1974), 229-264.
[3] K. S. Brown, Cohomology of Groups, GTM, vol. 87, Springer, 1982.
[4] B. Bürgisser, Elements of finite order in symplectic groups, Arch. Math. 39 (1982), 501-509.
[5] C. Busch, Symplectic characteristic classes and the Farrell cohomology of $\operatorname{Sp}(p-1, \mathbb{Z})$, Diss. ETH No. 13506, ETH Zürich (2000).
[6] C. Busch, Symplectic characteristic classes, L'Ens. Math. t. 47 (2001), 115-130.
[7] H. H. Glover, G. Mislin, On the p-primary cohomology of $\operatorname{Out}\left(F_{n}\right)$ in the p-rank one case, J. Pure Appl. Algebra 153 (2000), 45-63.
[8] H. H. Glover, G. Mislin, Y. Xia, On the Farrell cohomology of mapping class groups, Invent. Math. 109 (1992), 535-545.
[9] D. Sjerve and Q. Yang, Conjugacy classes of p-torsion in $\operatorname{Sp}_{p-1}(\mathbb{Z})$, J. Algebra 195, No. 2 (1997), 580-603.

Cornelia Busch
Katholische Universität Eichstätt

- Ingolstadt

Mathematisch-Geographische Fakultät
Ostenstr. 26-28
D-85072 Eichstätt
Cornelia.Busch@ku-eichstaett.de

