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Abstract. We study spectral and scattering properties of the Lapla-
cian H(σ) = −∆ in L2(R

2
+) corresponding to the boundary condition

∂u
∂ν +σu = 0 for a wide class of periodic functions σ. For non-negative

σ we prove that H(σ) is unitarily equivalent to the Neumann Lapla-
cian H(0). In general, there appear additional channels of scattering
which are analyzed in detail.
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Introduction

0.1 Setting of the problem

The present paper is a continuation of [Fr], but can be read independently. It
studies the Laplacian

H(σ)u = −∆u on R
2
+ (0.1)

together with a boundary condition of the third type

∂u

∂ν
+ σu = 0 on R × {0}, (0.2)

where ν denotes the exterior unit normal and where the function σ : R → R is
assumed to be 2π-periodic. Moreover, let

σ ∈ Lq,loc(R) for some q > 1.
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Under this condition H(σ) can be defined as a self-adjoint operator in L2(R
2
+)

by means of the lower semibounded and closed quadratic form
∫

R2
+

|∇u(x)|2 dx +

∫

R

σ(x1)|u(x1, 0)|2 dx1, u ∈ H1(R2
+).

We analyze the spectrum of H(σ) and develop a scattering theory viewing H(σ)

as a (rather singular) perturbation of H(0), the Neumann Laplacian on R
2
+.

(For the abstract mathematical scattering theory see, e.g., [Ya1].)
By means of the Bloch-Floquet theory we represent H(σ) as a direct integral

∫ 1/2

−1/2

⊕H(σ)(k) dk (0.3)

with fiber operators H(σ)(k) acting in L2(Π) where Π := (−π, π) × R+ is
the halfstrip. Due to the relation (0.3) the investigation of the operator H(σ)

reduces to the study of the operators H(σ)(k).

0.2 The main results

It was shown in [Fr] that the wave operators

W
(σ)
± (k) := W±(H(σ)(k),H(0)(k))

on the halfstrip exist and are complete. This immediately implies the existence
of the wave operators

W
(σ)
± := W±(H(σ),H(0))

on the halfplane and the coincidence of the ranges

R(W
(σ)
+ ) = R(W

(σ)
− ).

(Of course, the existence of the wave operators can also be obtained by a
modification of the Cook method, see Section 17 in [Ya2].) Moreover, it was
shown in [Fr] that the singular continuous spectrum of the operators H(σ)(k)
is empty.
In the present paper we will study the point spectrum of the operators H(σ)(k).
In general, there will be (discrete or embedded) eigenvalues which may produce
bands in the spectrum of the operator H(σ) on the halfplane. In this case,
the wave operators are not complete and there appear additional channels of
scattering. For the additional bands in the spectrum we give some quantitative
estimates and we construct an example where a gap in the spectrum appears.
Moreover, we prove that the spectrum of the operator H(σ) is purely absolutely
continuous.
Under the additional assumption

σ(x1) ≥ 0, a.e. x1 ∈ R, (0.4)
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we prove that the operators H(σ)(k) have no eigenvalues. This implies that the

wave operators W
(σ)
± are unitary and provide a unitary equivalence between

the operators H(σ) and H(0).

0.3 Additional channels of scattering

Additional channels of scattering were already discovered in a number of other
problems that exhibit periodicity with respect to some but not all space di-
rections. Without aiming at completeness we mention the papers [DaSi], [Sa]
concerning the scattering theory of problems of this type, [GrHoMe], [Ka] con-
cerning Schrödinger operators with periodic point interactions and [BeBrPa]
concerning the case of discrete Schrödinger operators.
In the present paper, using the specific properties of the operator under con-
sideration we are able not only to show the appearance of additional channels
of scattering but also to develop a more detailed analysis of these channels. In
particular, we give some sufficient conditions for existence and non-existence
of additional channels and prove that the spectrum of the operator is purely
absolutely continuous.
The problem of absolute continuity in a case with partial periodicity is also in-
vestigated in [FiKl], where the Schrödinger operator with an electric potential
is considered.

0.4 Outline of the paper

Let us explain the structure of this paper. In Section 1 we recall the precise
definition of the operators H(σ) and H(σ)(k) in terms of quadratic forms and
the direct integral decomposition. In Subsection 1.2 we state the main result in
the case of non-negative σ (Theorem 1.1) and the main result about absolute
continuity (Theorem 1.2).
In Section 2 we transform the eigenvalue problem for H(σ)(k) and λ ∈ R in the
spirit of the Birman-Schwinger principle to the problem whether 0 is an eigen-
value of a certain ”discrete pseudo-differential operator” of order one in L2(T).
In this way we reduce the problem of (possibly embedded) eigenvalues to the
study of operators with compact resolvent. In Section 3 we prove the absence
of eigenvalues of H(σ)(k) under the condition (0.4), which implies Theorem
1.1. The general case is treated in Section 4 and the proof of Theorem 1.2 is
given in Subsection 4.3. We supplement this in Section 5 with a more detailed
analysis in the case when σ is a trigonometric polynomial. Finally, in Section
6 we describe and discuss the additional channels of scattering that appear in
the general case. In Subsection 6.2 we construct an example of an open gap.
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1 Setting of the problem. The main result

1.1 Notation

We introduce the halfplane

R
2
+ := {x = (x1, x2) ∈ R

2 : x2 > 0} = R × R+,

and the halfstrip

Π := {x = (x1, x2) ∈ R
2 : −π < x1 < π, x2 > 0} = (−π, π) × R+,

where R+ := (0,+∞). Moreover, we need the lattice 2πZ. Unless stated
otherwise, periodicity conditions are understood with repect to this lattice.
We think of the corresponding torus T := R/2πZ as the interval [−π, π] with
endpoints identified.
We use the notation D = (D1,D2) = −i∇ in R

2.
For a measurable set Λ ⊂ R we denote by meas Λ its Lebesgue measure.
For an open set Ω ⊂ R

d, d = 1, 2, the index in the notation of the norm
‖.‖L2(Ω) is usually dropped. The space L2(T) may be formally identified with
L2(−π, π). We denote the Fourier coefficients of a function f ∈ L2(T) by

f̂n := 1√
2π

∫ π

−π
f(x1)e

−inx1 dx1, n ∈ Z.

Next, Hs(Ω) is the Sobolev space of order s ∈ R (with integrability index
2). By Hs(T) we denote the closure of C∞(T) in Hs(−π, π). Here C∞(T) is
the space of functions in C∞(−π, π) which can be extended 2π-periodically to
functions in C∞(R). The space Hs(T) is endowed with the norm

‖f‖2
Hs(T) :=

∑

n∈Z

(1 + n2)s|f̂n|2, f ∈ Hs(T).

By H̃s(Π) we denote the closure of C̃∞(Π)∩Hs(Π) in Hs(Π). Here C̃∞(Π) is
the space of functions in C∞(Π) which can be extended 2π-periodically with
respect to x1 to functions in C∞(R2

+).
Statements and formulae which contain the double index ”±” are understood
as two independent assertions.
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The Laplacian with a Periodic Boundary Condition 61

1.2 The operators H(σ) on the halfplane. Main results

Before describing the main results we recall the definition of the operators H(σ)

from [Fr]. Let σ be a real-valued periodic function satisfying

σ ∈ Lq(T) for some q > 1. (1.1)

It is easy to see (cf. [Fr]) that under this condition the quadratic form

D[h(σ)] := H1(R2
+),

h(σ)[u] :=

∫

R2
+

|Du(x)|2 dx +

∫

R

σ(x1)|u(x1, 0)|2 dx1
(1.2)

is lower semibounded and closed in the Hilbert space L2(R
2
+), so it generates

a self-adjoint operator which will be denoted by H(σ). The case σ = 0 corre-
sponds to the Neumann Laplacian on the halfplane, whereas the case σ 6= 0
implements a (generalized) boundary condition of the third type.
The spectrum of the ”unperturbed” operator H(0) coincides with [0,+∞) and
is purely absolutely continuous of infinite multiplicity.
In [Fr] we proved the existence of the wave operators

W
(σ)
± := W±(H(σ),H(0)) = s − lim

t→±∞
exp(itH(σ)) exp(−itH(0)).

We state now the main results of the present part. An especially complete
result can be obtained under the additional assumption

σ(x1) ≥ 0, a.e. x1 ∈ R. (1.3)

Theorem 1.1. Assume that σ satisfies (1.1) and (1.3). Then the wave opera-

tors W
(σ)
± exist, are unitary and satisfy

H(σ) = W
(σ)
± H(0)W

(σ)∗
± . (1.4)

In particular, under the condition (1.3) the spectrum of the operator H(σ) is
purely absolutely continuous. This is also true for general σ.

Theorem 1.2. Assume that σ satisfies (1.1). Then the operator H(σ) has
purely absolutely continuous spectrum.

However, in contrast to the case of non-negative σ now the operator H(σ)

may be not unitarily equivalent to H(0) and then the wave operators W
(σ)
± are

not complete. This is connected with the existence of additional channels of
scattering. The discussion of this phenomenon is conveniently postponed to
Section 6.
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1.3 Definition of the operators H(σ)(k) on the halfstrip. Direct
Integral Decomposition

Let σ be a real-valued periodic function satisfying (1.1) and let k ∈ [− 1
2 , 1

2 ]. It
follows (cf. [Fr]) that the quadratic form

D[h(σ)(k)] := H̃1(Π),

h(σ)(k)[u] :=

∫

Π

(

|(D1 + k)u(x)|2 + |D2u(x)|2
)

dx +

∫ π

−π

σ(x1)|u(x1, 0)|2 dx1

(1.5)

is lower semibounded and closed in the Hilbert space L2(Π), so it generates
a self-adjoint operator which will be denoted by H(σ)(k). In addition to the
Neumann (if σ = 0) or third type (if σ 6= 0) boundary condition at {x2 = 0}, the
functions in D(H(σ)) satisfy periodic boundary conditions at {x1 ∈ {−π, π}}.
The operator H(σ) on the halfplane can be partially diagonalized by means of
the Gelfand transformation. This operator is initially defined for u ∈ S(R2

+),
the Schwartz class on R

2
+, by

(Uu)(k, x) :=
∑

n∈Z

e−ik(x1+2πn)u(x1 + 2πn, x2), k ∈ [− 1
2 , 1

2 ], x ∈ Π,

and extended by continuity to a unitary operator

U : L2(R
2
+) →

∫ 1/2

−1/2

⊕L2(Π) dk. (1.6)

One finds (cf. [Fr]) that

U H(σ) U∗ =

∫ 1/2

−1/2

⊕H(σ)(k) dk. (1.7)

This relation allows us to investigate the operator H(σ) by studying the fibers
H(σ)(k).
In [Fr] it was shown that

σac

(

H(σ)(k)
)

= [k2,+∞), σsc

(

H(σ)(k)
)

= ∅. (1.8)

In the present part we give a detailed analysis of the point spectrum of H(σ)(k).

2 Characterization of eigenvalues of the operator H(σ)(k)

Let σ be a real-valued periodic function satisfying (1.1) and let k ∈ [− 1
2 , 1

2 ],
λ ∈ R. In the Hilbert space L2(T) we consider the quadratic forms

D[b(σ)(λ, k)] := H1/2(T),

b(σ)(λ, k)[f ] :=
∑

n∈Z

βn(λ, k) |f̂n|2 +

∫ π

−π

σ(x1)|f(x1)|2 dx1,
(2.1)
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where

βn(λ, k) :=

{
√

(n + k)2 − λ if (n + k)2 > λ,

−
√

λ − (n + k)2 if (n + k)2 ≤ λ.
(2.2)

It follows from the Sobolev embedding theorems that the forms b(σ)(λ, k) are
lower semibounded and closed, so they generate self-adjoint operators which
will be denoted by B(σ)(λ, k).
The compactness of the embedding of H1/2(T) in L2(T) implies that the oper-
ators B(σ)(λ, k) have compact resolvent.
Now we characterize the eigenvalues of the operator H(σ)(k) as the values λ for
which 0 is an eigenvalue of the operators B(σ)(λ, k). More precisely, we have

Proposition 2.1. Let k ∈ [− 1
2 , 1

2 ] and λ ∈ R.

1. Let u ∈ N (H(σ)(k) − λI) and define

f(x1) := u(x1, 0), x1 ∈ T. (2.3)

Then f ∈ N (B(σ)(λ, k)), f̂n = 0 if (n + k)2 ≤ λ and, moreover,

u(x) =
1√
2π

∑

(n+k)2>λ

f̂n einx1 e−βn(λ,k) x2 , x ∈ Π. (2.4)

2. Let f ∈ N (B(σ)(λ, k)) such that f̂n = 0 if (n + k)2 ≤ λ and define u by
(2.4).
Then u ∈ N (H(σ)(k) − λI) and, moreover, (2.3) holds.

For the proof of Proposition 2.1 we use the following notation. For u ∈ L2(Π)
and n ∈ Z we define

ûn(x2) :=
1√
2π

∫ π

−π

u(x)e−inx1 dx1, x2 ∈ R+,

so that, with respect to convergence in L2(Π),

u(x) =
1√
2π

∑

n∈Z

einx1 ûn(x2), x ∈ Π.

Moreover, one finds that u ∈ H̃1(Π) iff

ûn ∈ H1(R+), n ∈ Z, and
∑

n∈Z

(

(1 + n2)‖ûn‖2 + ‖D2ûn‖2
)

< ∞.

The proof of the following observation is straightforward.

Lemma 2.2. Let k ∈ [− 1
2 , 1

2 ] and λ ∈ R.

1. Let u ∈ H̃1(Π), then the following are equivalent:
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(i) u ∈ N (H(σ)(k) − λI),

(ii)
∫ ∞
0

D2ûnD2ϕ dx2 + 1√
2π

∫ π

−π
σ(x1)u(x1, 0)e−inx1 dx1 ϕ(0) =

= (λ − (n + k)2)
∫ ∞
0

ûnϕdx2, n ∈ Z, ϕ ∈ H1(R+).

2. Let f ∈ H1/2(T), then the following are equivalent:

(i) f ∈ N (B(σ)(λ, k)),

(ii) βn(λ, k) f̂n + 1√
2π

∫ π

−π
σ(x1)f(x1)e

−inx1 dx1 = 0, n ∈ Z.

Proof of Proposition 2.1. The proof follows easily from Lemma 2.2. Note that
if u ∈ N (H(σ)(k) − λI), then D2

2ûn = ((λ − (n + k)2)ûn. Therefore

ûn(x2) =

{

0 if (n + k)2 ≤ λ,

f̂n e−βn(λ,k) x2 if (n + k)2 > λ,

with f defined by (2.3).

Remark 2.3. Obviously, the statement of Proposition 2.1 does not depend on
the definition of βn(λ, k) for (n + k)2 ≤ λ. The reason for our choice (2.2) is of
technical nature and will become clear in Subsection 4.2 below.

3 The case of non-negative σ

Proposition 2.1 allows us to deduce easily the main result if σ is non-negative.
We start with the operators H(σ)(k) on the halfstrip.

Theorem 3.1. Assume that σ satisfies (1.1) and (1.3) and let k ∈ [− 1
2 , 1

2 ].

Then the operator H(σ)(k) has purely absolutely continuous spectrum.

Proof. In view of (1.8) it suffices to prove that H(σ)(k) has no eigenvalues. For

this we use Proposition 2.1. Let λ ∈ R and f ∈ N (B(σ)(λ, k)) such that f̂n = 0
if (n + k)2 ≤ λ. It follows that

b(σ)(λ, k)[f ] ≥ γ‖f‖2

where γ := min{βn(λ, k) : n ∈ Z, f̂n 6= 0} > 0. Together with b(σ)(λ, k)[f ] =
0 this implies f = 0. So by Proposition 2.1 (1), λ is not an eigenvalue of
H(σ)(k).

Concerning the operator H(σ) on the halfplane we obtain immediately the

Proof of Theorem 1.1. In [Fr] we showed that W
(σ)
± is unitarily equivalent to

the direct integral of the operators W
(σ)
± (k), k ∈ [− 1

2 , 1
2 ]. The latter were shown

to be complete, and by Theorem 3.1 they are actually unitary. Thus W
(σ)
± is

unitary and (1.4) follows from the intertwining property of wave operators.
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4 The general case

4.1 The point spectrum of the operators H(σ)(k)

If we impose no additional condition on σ we have the following result on the
point spectrum of the operators H(σ)(k).

Theorem 4.1. Assume that σ satisfies (1.1) and let k ∈ [− 1
2 , 1

2 ]. Then

σp

(

H(σ)(k)
)

(if non-empty) consists of eigenvalues of finite multiplicities which
may accumulate at +∞ only.

Note that the case of an infinite sequence of (embedded) eigenvalues actually
occurs.

Example 4.2. Let σ ≡ σ0 < 0 be a negative constant and k ∈ [− 1
2 , 1

2 ]. Then

σp

(

H(σ)(k)
)

= {−σ2
0 + (n + k)2 : n ∈ Z}.

This follows easily by Proposition 2.1 or directly by separation of variables.

For the proof of Theorem 4.1 we need an auxiliary result. For k ∈ [− 1
2 , 1

2 ],

λ ∈ R we denote by µm(λ, k), m ∈ N, the eigenvalues of B(σ)(λ, k) arranged in
non-decreasing order and repeated according to their multiplicities. Then we
have

Lemma 4.3. Let k ∈ [− 1
2 , 1

2 ], then the functions µm(., k), m ∈ N, are continu-
ous and strictly decreasing on R.

The proof (of strict monotonicity) uses an analyticity argument and is conve-
niently postponed to Subsection 4.2.

Proof of Theorem 4.1. Proposition 2.1 (1) implies for λ ∈ R

dimN (H(σ)(k) − λI) ≤ dimN (B(σ)(λ, k)). (4.1)

Since B(σ)(λ, k) has compact resolvent, it follows that eigenvalues λ of H(σ)(k)
have finite multiplicities.
To prove that the only possible accumulation point of σp

(

H(σ)(k)
)

is +∞, let
Λ = (λ−, λ+) be an open interval. It follows from (4.1) and Lemma 4.3 that

]cm{λ ∈ (λ−, λ+) : λ is eigenvalue of H(σ)(k)} ≤
≤

∑

λ∈(λ−,λ+)

dimN (B(σ)(λ, k)) =

= ]{m ∈ N : µm(λ, k) = 0 for some λ ∈ (λ−, λ+)} =

= ]{m ∈ N : µm(λ−, k) > 0 and µm(λ+, k) < 0} =

= ]cm{µ < 0 : µ is eigenvalue of B(σ)(λ+, k)}−
− ]cm{µ ≤ 0 : µ is eigenvalue of B(σ)(λ−, k)},

(4.2)
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where ]cm{...} means that the cardinality of {...} is determined according to
multiplicities. The RHS of (4.2) is finite since B(σ)(λ+, k), B(σ)(λ−, k) are
lower semibounded and have compact resolvent. This completes the proof of
the theorem.

Remark 4.4. We emphasize the equality

]cm{λ ∈ (−∞, k2) : λ is eigenvalue of H(σ)(k)} =

= ]cm{µ < 0 : µ is eigenvalue of B(σ)(k2, k)}.
(4.3)

Indeed, it follows from Proposition 2.1 (2) that the estimate (4.1) becomes an
equality for λ < k2, therefore also (4.2) for λ+ = k2, and we obtain (4.3) by
choosing −λ− so large that B(σ)(λ−, k) is positive.
The equality (4.3) can be used to obtain estimates on the number of eigenval-
ues of H(σ)(k) below k2 and on its asymptotics in the limit of large coupling
constant. Such calculations for the operators B(σ)(k2, k) are rather standard,
so we do not go into details.

4.2 Complexification

Now we extend the operator family B(σ)(λ, k) to complex values of λ and k.
For this construction we fix k0 ∈ [− 1

2 , 1
2 ], λ0 ∈ R \ {(n+ k0)

2 : n ∈ Z}. We can
choose δ0 > 0 (depending on λ0, k0) such that

(n + κ)2 − z 6= 0, n ∈ Z,

for all z, κ ∈ C such that |z − λ0| < δ0, |κ − k0| < δ0. Therefore, if we put

Ũ := {z ∈ C : |z − λ0| < δ}, Ṽ := {κ ∈ C : |κ − k0| < δ},

the functions βn, n ∈ Z, admit a unique analytic continuation to Ũ × Ṽ , and
we can define sectorial and closed forms b(σ)(z, κ) for z ∈ Ũ , κ ∈ Ṽ by (2.1)
with βn(λ, k) replaced by βn(z, κ). The corresponding m-sectorial operators
will be denoted by B(σ)(z, κ). For fixed κ ∈ Ṽ (z ∈ Ũ , respectively) they form
an analytic family of type (B) with respect to z ∈ Ũ (κ ∈ Ṽ , respectively) (see,
e.g., Section VII.4 in [K]).
From this construction we obtain

Lemma 4.5. Let k0 ∈ [− 1
2 , 1

2 ], λ0 ∈ R \ {(n + k0)
2 : n ∈ Z} such that 0 is an

eigenvalue of B(σ)(λ0, k0). Then there exist open neighbourhoods U, V ⊂ R of
λ0, k0 and a real-analytic function h : U × V → C such that for all λ ∈ U ,
k ∈ V ∩ [− 1

2 , 1
2 ] one has

0 ∈ σp

(

B(σ)(λ, k)
)

iff h(λ, k) = 0.
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Proof. The proof is rather standard, so we only sketch the major steps. We
consider the family B(σ)(z, κ), z ∈ Ũ , κ ∈ Ṽ , constructed above. Since these
operators have compact resolvent, we can use a Riesz projection to separate
the eigenvalues around 0 from the rest of the spectrum. The resulting operator
has finite rank and is analytic with respect to z and κ, so its determinant h
has the desired properties.

Our next goal is to show that for every λ ∈ U the function h(λ, .) con-
structed above is not identically zero. For the proof of this we need to consider
quasimomenta κ = k + iy with large imaginary part y. So fix k ∈ [− 1

2 , 1
2 ],

λ ∈ R \ {(n + k)2 : n ∈ Z}, then the above construction (with λ0, k0 replaced
by λ, k) yields a δ > 0 and an analytic family B(σ)(λ, κ), |κ − k| < δ. If we
assume in addition that k 6= 0 and choose δ ∈ (0, |k|), we find that

(n + κ)2 − λ 6= 0, n ∈ Z,

holds for all κ ∈ C such that |Re κ − k| < δ. Therefore B(σ)(λ, κ) admits a
further analytic extension to

˜̃V := {κ ∈ C : |Re κ − k| < δ}.

Concerning quasimomenta with large imaginary part we have the technical

Lemma 4.6. Let k ∈ [− 1
2 , 1

2 ] \ {0}, λ ∈ R \ {(n + k)2 : n ∈ Z} and δ ∈ (0, |k|)
as above. Then there exist constants y0 = y0(λ, k, δ), C = C(λ, k, δ) such that
for all k′ ∈ [− 1

2 , 1
2 ], y ∈ R satisfying |k′ − k| < δ, |y| > y0 the operator

B(σ)(λ, k′ + iy) is boundedly invertible with

∥

∥

∥

∥

(

B(σ)(λ, k′ + iy)
)−1

∥

∥

∥

∥

≤ C

1 + |y| .

Proof. It suffices to find constants y0, C̃ = C̃(λ, k, δ) > 0 such that for all
0 6= f ∈ H1/2(T), k′ ∈ [− 1

2 , 1
2 ], y ∈ R satisfying |k′ − k| < δ, |y| > y0 there

exists 0 6= g ∈ H1/2(T) such that

|b(σ)(λ, k′ + iy)[f, g]| ≥ C̃ (1 + |y|) ‖f‖‖g‖.

For given 0 6= f ∈ H1/2(T), k′ ∈ [− 1
2 , 1

2 ] ∩ (k − δ, k + δ), y ∈ R we define g by
its Fourier coefficients

ĝn :=
βn(λ, k′ + iy)

|βn(λ, k′ + iy)| f̂n, n ∈ Z.

(Note that βn(λ, k′+iy) 6= 0 by the choice of δ.) Then we have 0 6= g ∈ H1/2(T),
‖g‖ = ‖f‖ and

|b(σ)(λ, k′+iy)[f, g]| ≥
∑

n∈Z

|βn(λ, k′+iy)||f̂n|2− 1
2‖

√

|σ|f‖2− 1
2‖

√

|σ|g‖2. (4.4)
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Using the elementary estimates

|βn(λ, k′ + iy)| ≥ c1 (1 + |y|), n ∈ Z, |k′ − k| < δ,

|βn(λ, k′ + iy)| ≥ c2 (1 + |n|), n ∈ Z, |k′ − k| < δ,
(4.5)

(with some constants c1 = c1(λ, k, δ) > 0, c2 = c2(λ, k, δ) > 0) and the Sobolev
embedding theorem we find that for sufficiently large y0

‖
√

|σ|f‖2 ≤ 1
2

∑

n∈Z

|βn(λ, k′ + iy)||f̂n|2, |k′ − k| < δ, |y| > y0.

Using a similar estimate for ‖
√

|σ|g‖2 and (4.4), (4.5) we obtain

|b(σ)(λ, k′ + iy)[f, g]| ≥ 1
2 c1 (1 + |y|) ‖f‖‖g‖, |k′ − k| < δ, |y| > y0,

which concludes the proof.

As announced above, we have

Lemma 4.7. Let k0, λ0, h, U and V be as in Lemma 4.5. Then for all λ ∈ U
one has h(λ, .) 6≡ 0.

Proof. To arrive at a contradiction we assume that h(λ, .) ≡ 0 for some λ ∈ U .

We choose k ∈ V \ {0} and consider the family B(σ)(λ, κ), κ ∈ ˜̃V constructed
above. It follows from the Analytic Fredholm Alternative (see, e.g., Theorem
VII.1.10 in [K]) that all operators of this family have 0 as an eigenvalue. But
this contradicts Lemma 4.6.

As an immediate consequence of Lemmas 4.5 and 4.7 and relation (4.1) we
obtain the following result which will be needed in Subsection 4.3 to prove that
the spectrum of the operator H(σ) is purely absolutely continuous.

Corollary 4.8. There exists a countable number of open intervals Uj , Vj ⊂ R

and real-analytic functions hj : Uj × Vj → C satisfying

1. for all k ∈ [− 1
2 , 1

2 ] and λ ∈ R \ {(n + k)2 : n ∈ Z} such that λ ∈
σp

(

H(σ)(k)
)

there is a j such that (λ, k) ∈ Uj ×Vj and hj(λ, k) = 0, and

2. for all j and all λ ∈ Uj one has hj(λ, .) 6≡ 0.

To complete this subsection we prove Lemma 4.3 which was used in the proof
of Theorem 4.1.

Proof of Lemma 4.3. That µm(., k) is a continuous, non-increasing function
follows from the variational principle and the continuity and monotonicity of
the operators B(σ)(λ, k) with respect to λ.
To prove the strict monotonicity we assume to the contrary that for some m ∈ N

the function µm(., k) coincides on an interval Λ with a constant µ0 ∈ R. We
choose λ0 ∈ Λ \ {(n + k)2 : n ∈ Z} and consider the family B(σ)(z, k), z ∈ Ũ ,
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constructed at the beginning of this subsection (with λ0, k0 replaced by λ0, k).
It follows from the Analytic Fredholm Alternative (see, e.g., Theorem VII.1.10
in [K]) that µ0 is an eigenvalue of B(σ)(z, k) also for complex z ∈ Ũ .
However, let z ∈ Ũ ∩C± and f ∈ N (B(σ)(z, k)−µ0I). We have ∓Imβn(z, k) >

0, n ∈ Z, so Im b(σ)(λ, k)[f ] = 0 implies that f̂n = 0, n ∈ Z, i.e., f = 0. So µ0

is not an eigenvalue of B(σ)(z, k).

4.3 Proof of Theorem 1.2

Now we prove Theorem 1.2 following the method suggested in [FiKl]. We need
the following result from Complex Analysis of Several Variables which can be
proved by means of the Implicit Function Theorem (see [FiKl]).

Lemma 4.9. Let U, V ⊂ R be open intervals and h : U×V → C be real-analytic.
Let Λ ⊂ U with meas Λ = 0 such that for all λ ∈ Λ one has h(λ, .) 6≡ 0. Then

meas {k ∈ V : h(λ, k) = 0 for some λ ∈ Λ} = 0.

Proof of Theorem 1.2. Let Λ ⊂ R with meas Λ = 0. We denote the spec-
tral projection of H(σ) (H(σ)(k), respectively) corresponding to Λ by E(σ)(Λ)
(E(σ)(Λ, k), respectively). Then it follows from (1.7) that

U E(σ)(Λ)U∗ =

∫ 1/2

−1/2

⊕E(σ)(Λ, k) dk

and we have to prove that this operator is equal to 0.
For this we write [− 1

2 , 1
2 ] = K1 ∪ K2 ∪ K3 where

K1 =
{

k ∈ [− 1
2 , 1

2 ] : σp

(

H(σ)(k)
)

∩ Λ = ∅
}

,

K2 =
{

k ∈ [− 1
2 , 1

2 ] : σp

(

H(σ)(k)
)

∩ Λ ∩ {(n + k)2 : n ∈ Z} 6= ∅
}

,

K3 =
{

k ∈ [− 1
2 , 1

2 ] : ∅ 6= σp

(

H(σ)(k)
)

∩ Λ ⊂
(

R \ {(n + k)2 : n ∈ Z}
)

}

.

Since σsc

(

H(σ)(k)
)

= ∅ we immediately obtain E(σ)(Λ, k) = 0 for k ∈ K1.
Now

K2 ⊂
⋃

n∈Z

{k ∈ [− 1
2 , 1

2 ] : (n + k)2 − λ = 0 for some λ ∈ Λ}, (4.6)

and with the notation of Corollary 4.8

K3 ⊂
⋃

j

{k ∈ Vj ∩ [− 1
2 , 1

2 ] : hj(λ, k) = 0 for some λ ∈ Uj ∩ Λ}. (4.7)

It follows from Lemma 4.9 that meas K2 = meas K3 = 0, which concludes the
proof.
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5 The case of a trigonometric polynomial σ

We have seen in Example 4.2 that the operators H(σ)(k) may have embedded
eigenvalues. Let us investigate this phenomenon under the additional assump-
tion that only finitely many Fourier coefficients of σ are non-zero. Note that
in this case the operator B(σ)(λ, k) acts in Fourier space as a finite-diagonal
matrix. This allows us to exclude the existence of large embedded eigenvalues.

Proposition 5.1. Assume that σ is a trigonometric polynomial of degree N >
0 and let k ∈ [− 1

2 , 1
2 ]. Then

σp

(

H(σ)(k)
)

⊂
(

−‖σ−‖2
∞ + k2, (N − |k|)2

)

.

Here σ− := 1
2 (|σ| − σ) denotes the negative part of σ.

Proof. The proof of σp

(

H(σ)(k)
)

⊂ [−‖σ−‖2
∞ +k2,+∞) is similar to the proof

of Theorem 3.1. Moreover, it is easy to see that −‖σ−‖2
∞ + k2 ∈ σp

(

H(σ)(k)
)

only if σ coincides a.e. with a negative constant, which is excluded by the
assumption N > 0.
Let us prove now that σp

(

H(σ)(k)
)

⊂ (−∞, (N − |k|)2). For this we use

Proposition 2.1. Let λ ≥ (N − |k|)2 and f ∈ N (B(σ)(λ, k)) such that

f̂n = 0 if (n + k)2 ≤ λ. (5.1)

In particular, we see from B(σ)(λ, k)f = 0 that

√

(n + k)2 − λ f̂n +
1√
2π

N
∑

m=−N

σ̂mf̂n−m = 0 if (n + k)2 ≥ λ. (5.2)

The estimate

]{n ∈ Z : (n + k)2 ≤ λ} ≥ ]{n ∈ Z : (n + k)2 ≤ (N − |k|)2} ≥ 2N

and (5.1) imply that f̂n = 0 for at least 2N consecutive n. Using σ̂N = σ̂−N 6= 0

it is easy to see from (5.2) that f̂n = 0 for all n, i.e. f = 0. So by Proposition
2.1 (1), λ is not an eigenvalue of H(σ)(k).

We show now that embedded eigenvalues in the interval [(N − 1 + |k|)2, (N −
|k|)2) can occur but are ”rare”.

Proposition 5.2. Assume that σ is a trigonometric polynomial of degree N >
0 and let k ∈ (− 1

2 , 1
2 ). Then H(σ)(k) may have only simple eigenvalues in

[(N − 1 + |k|)2, (N − |k|)2) and the set

{(λ, k) ∈ R× (− 1
2 , 1

2 ) : λ ∈ σp

(

H(σ)(k)
)

∩ [(N − 1 + |k|)2, (N − |k|)2)} (5.3)

is finite.
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For the proof of this proposition we introduce the following auxiliary operators
in the Hilbert space l2(N).

D(A(σ)(λ, k)) := {α ∈ l2(N) :

∞
∑

n=1

(1 + n2)|αn|2 < ∞},

(

A(σ)(λ, k)α
)

n
:=

{

βn(λ, k)αn + 1√
2π

∑n−1
m=−N σ̂m αn−m if n ≤ N,

βn(λ, k)αn + 1√
2π

∑N
m=−N σ̂m αn−m if n > N.

(5.4)

The operators A(σ)(λ, k) are self-adjoint and have compact resolvent.

Lemma 5.3. Let k ∈ (− 1
2 , 1

2 ) and λ ∈ [(N − 1 + |k|)2, (N − |k|)2). Then λ is

an eigenvalue of H(σ)(k) iff there exist 0 6= α+, α− ∈ D(A(σ)(λ, k)) such that
A(σ)(λ, k)α+ = A(σ)(λ,−k)α− = 0 and α+

n = α−
n = 0 for n < N . In this case,

λ is a simple eigenvalue.

Proof. We use Proposition 2.1. If λ is an eigenvalue of H(σ)(k), there exists

a 0 6= f ∈ N (B(σ)(λ, k)) such that f̂n = 0 if |n| < N . We note that the only
relation between the positive and the negative Fourier coefficients of f is the
equation

σ̂N f̂−N + σ̂−N f̂N = 0.

Therefore f is unique up to multiples. We put

α+
n := f̂n, α−

n := f̂−n, n ∈ N, (5.5)

and find (using σ̂n = σ̂−n, n ∈ Z) that α+, α− are as claimed.
Conversely, let α+, α− have the properties of the lemma. Then α+

Nα−
N 6= 0

and multiplying α+ by a constant if necessary, we can assume that σ̂Nα−
N +

σ̂−Nα+
N = 0. Defining f by (5.5) and f̂n := 0 if |n| < N we find that 0 6= f ∈

N (B(σ)(λ, k)), so λ is an eigenvalue of H(σ)(k) by Proposition 2.1 (2). This
completes the proof.

The reason for introducing the operators A(σ)(λ, k) is that they are not only
monotone with respect to λ but also with respect to k. This is essentially used
in the

Proof of Proposition 5.2. It remains to prove that the set (5.3) is finite. We
denote by νm(λ, k), m ∈ N, the eigenvalues of the operator A(σ)(λ, k), arranged
in non-decreasing order and repeated according to their multiplicities. By the
same arguments as in the proof of Lemma 4.3 one finds that the functions
νm(λ, .) (νm(., k), respectively) are continuous and strictly increasing (strictly
decreasing, respectively) for fixed λ (k, respectively).
Now Lemma 5.3 implies that if λ is an eigenvalue of H(σ)(k) in [(N − 1 +
|k|)2, (N − |k|)2) then there exist m, m′ ∈ N such that

νm(λ, k) = νm′(λ,−k) = 0. (5.6)
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It follows easily from the monotonicity properties mentioned above that for
each pair (m,m′) ∈ N × N there exists at most one pair (λ, k) with λ ∈ [(N −
1 + |k|)2, (N − |k|)2) such that (5.6) holds. Since the functions νm are strictly
positive for sufficiently large m we conclude that the set (5.3) is finite.

Example 5.4. In the case N = 1 it is convenient to write σ as

σ(x1) := −α + Reβ cos x1 + Imβ sin x1, x1 ∈ T,

with α ∈ R, β ∈ C. Under the conditions

0 < α < 1, 0 < |β| ≤ 1 − α, (5.7)

one finds that

νm(λ, k) > 0 for m ≥ 2, k ∈ (− 1
2 , 1

2 ), λ ∈ [k2, (1 − |k|)2).
Thus it follows from (5.6) and the strict monotonicity of ν1(λ, .) that the op-
erator H(σ)(k) has no eigenvalues in [k2, (1− |k|)2) for k 6= 0. We consider the
case k = 0. Under condition (5.7) one easily derives the estimates

ν1(λ, 0) ≥ 0 for λ ∈ [0, 1 − (α + |β|)2],
ν1(λ, 0) < 0 for λ ∈ (1 − α2, 1),

which imply that H(σ)(0) has a (unique) embedded eigenvalue in [0, 1). It
can be shown (see Remark 5.5 below) that it depends real-analytically on the
”coupling parameter” |β| > 0.
Let us emphasize that if 0 < α < 1 and β = 0, the operator H(σ)(0) has
embedded eigenvalues −α2 +m2, m ∈ N, each double degenerate (see Example
4.2). As soon as the coupling is turned on (i.e., |β| > 0) all the eigenvalues
above 1 as well as one of the eigenvalues in (0, 1) dissolve, whereas the other
one of the eigenvalues in (0, 1) depends smoothly on |β| ∈ [0, 1 − α].

Remark 5.5. Let us mention that the eigenvalue in the above example is due
to the following symmetry. Since the operator is (up to unitary equivalence)
invariant under a shift with respect to x1 we may assume that β ∈ R. Then σ
is even with respect to x1 = 0 and so for k = 0 the decomposition into even
and odd functions reduces the operator H(σ)(0). It remains to notice that the
essential spectrum of the part of the operator acting on odd functions starts at
the point λ = 1.

6 Additional Channels of Scattering of the operators H(σ)

6.1 Additional Channels due to discrete eigenvalues

Here we construct the additional channels of scattering of H(σ) which arise
from the discrete eigenvalues of the operators H(σ)(k).
For k ∈ [− 1

2 , 1
2 ] we denote by

λ1(k) ≤ λ2(k) ≤ · · ·λl(k)(k) < k2 (6.1)
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the discrete eigenvalues of H(σ)(k), arranged in non-decreasing order and re-
peated according to their multiplicities. By Theorem 4.1 l(k) is a finite number,
possibly equal to 0. It is convenient to set λl(k) := k2 if l > l(k). The functions
λl are continuous on [− 1

2 , 1
2 ] for each l ∈ N. Combining this with (1.7) we find

σ
(

H(σ)
)

=
⋃

l∈N

λl([− 1
2 , 1

2 ]) ∪ [0,+∞), (6.2)

i.e., the spectrum of H(σ) has band structure.
According to Theorem 1.2 none of the functions λl is constant (since this would
correspond to an eigenvalue of H(σ)).
To construct the additional channels of scattering we introduce some notation.
We put

Kl := {k ∈ [− 1
2 , 1

2 ] : l ≤ l(k)}, l ∈ N0.

These sets are open in [− 1
2 , 1

2 ] and Kl = ∅ for sufficiently large l. We define

l0 := max{l ∈ N0 : Kl 6= ∅}.

Now assume l0 > 0 (which means that some of the operators H(σ)(k) have
discrete eigenvalues). For each k ∈ [− 1

2 , 1
2 ] we can choose orthonormal eigen-

functions ψl(., k), 1 ≤ l ≤ l(k), corresponding to the eigenvalues (6.1),

H(σ)(k)ψl(., k) = λl(k)ψl(., k),

such that the mappings

Kl → L2(Π), k 7→ ψl(., k), 1 ≤ l ≤ l0,

are piecewise analytic. Recall that the functions ψl(., k) are of the form (2.4).
It is convenient to define ψl(., k) := 0 if k 6∈ Kl and to extend the functions
ψl(., k) periodically with respect to the variable x1 to functions on R

2
+ for all

k ∈ [− 1
2 , 1

2 ].
For 1 ≤ l ≤ l0 we denote by Pl(k), k ∈ [− 1

2 , 1
2 ], the projection in L2(Π) onto

the subspace spanned by ψl(., k). With this notation, we call the subspaces

Cl := R
(

U∗
(

∫ 1/2

−1/2

⊕Pl(k) dk

)

U
)

, 1 ≤ l ≤ l0,

additional channels of scattering (ACS) of the operator H(σ). Here U is the
Gelfand transformation (1.6). Thus the functions u ∈ Cl are precisely the
functions of the form

u(x) =

∫ 1/2

−1/2

f(k)ψl(x, k)eikx1 dk, x ∈ R
2
+, (6.3)

with f ∈ L2(Kl) arbitrary. In particular, it follows from the form (2.4) of the
eigenfunction ψl(., k) that functions u ∈ Cl decay exponentially with respect to
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the variable x2 provided Kl = [− 1
2 , 1

2 ].
Let us list some more properties of the spaces Cl. One has for all 1 ≤ l, j ≤ l0

Cl ⊥Cj , j 6= l, and Cl ⊥R(W
(σ)
± ).

Indeed, this follows from the fact that ψl(., k) is orthogonal to ψj(., k), j 6= l,

and to the subspace R(W
(σ)
± (k)) for all k ∈ [− 1

2 , 1
2 ]. In particular, Theorem

1.2 implies that the wave operators W
(σ)
± are not complete if there exists an

ACS (i.e., l0 > 0). Moreover, the spaces Cl reduce the operator H(σ), and
on functions u ∈ Cl of the form (6.3) H(σ) acts by multiplying the function f
with the function λl. Thus, the part of H(σ) on Cl is unitarily equivalent to
multiplication with the function λl on L2(Kl).
Remark 1.10 of [Fr] shows that functions u ∈ Cl correspond to states which
propagate along the boundary.

6.2 Existence of ACS. Existence of gaps

It is clear from Theorem 1.1 that there are no ACS if σ is non-negative. Let us
give an easy sufficient condition for the existence of ACS. It requires σ to be
”negative in mean”.

Proposition 6.1. Assume that σ̂0 := 1√
2π

∫ π

−π
σ(x1) dx1 < 0. Then

σ
(

H(σ)
)

∩ (−∞, 0) 6= ∅.

Proof. Indeed, we prove that H(σ)(k) has an eigenvalue smaller or equal to
k2 − 1

2π σ̂2
0 for all k ∈ [− 1

2 , 1
2 ]. For this we consider the trial function defined by

u(x) := eσ̂0x2/
√

2π, x ∈ Π, which satisfies

h(σ)(k)[u] = (k2 − 1
2π σ̂2

0)‖u‖2.

The assertion follows now from the variational principle.

Remark 6.2. With more elaborate techniques one can show that the conclusion
of Proposition 6.1 remains valid under the assumption σ̂0 = 0, σ 6≡ 0.

We give now an example where the first gap of H(σ) is open, i.e. where

max
k∈[− 1

2
, 1
2
]
λ1(k) < min

k∈[− 1
2
, 1
2
]
λ2(k). (6.4)

We start with a more general construction. Let −π ≤ c ≤ π be given. For

k ∈ [− 1
2 , 1

2 ] we consider the self-adjoint operators H
(σ)
D (k), H

(σ)
N (k) in L2(Π)

which differ from H(σ)(k) only by Dirichlet and natural boundary conditions,

respectively, at {x1 ∈ {−π, c, π}}. More precisely, the operators H
(σ)
ν (k), ν ∈
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{D,N}, are defined by the quadratic forms h
(σ)
ν (k) given by the same formal

expression (1.5) as h(σ)(k) but with domains

D[h
(σ)
D (k)] := {u ∈ H1(Π) : u(.,−π) = u(., c) = u(., π) = 0},

D[h
(σ)
N (k)] := {u ∈ L2(Π) : u|(−π,c)×R+

∈ H1((−π, c) × R+),

u|(c,π)×R+
∈ H1((c, π) × R+)}.

It follows that
H

(σ)
N (k) ≤ H(σ)(k) ≤ H

(σ)
D (k). (6.5)

Moreover, it is easy to see that for each ν all the operators H
(σ)
ν (k), k ∈ [− 1

2 , 1
2 ],

are unitarily equivalent. Their essential spectrum starts at ( π
π+|c| )

2 if ν = D

and at 0 if ν = N . We define the numbers λν
l , l ∈ N, as the successive infima

of the variational quotient

h
(σ)
ν (k)[u]

‖u‖2
, 0 6= u ∈ D[h(σ)

ν (k)].

By the variational principle the λN
l < 0 coincide with the discrete eigenvalues

of the operator H
(σ)
N (k), and similarly for ν = D. It follows from (6.5) together

with the variational principle that for all l ∈ N

λN
l ≤ λl(k) ≤ λD

l , k ∈ [− 1
2 , 1

2 ]. (6.6)

Let us give now an example of an open gap.

Example 6.3. Let a, b ∈ R and

σ(x1) :=

{

−a if x1 ∈ [−π, c],
b if x1 ∈ (c, π).

We claim that under the assumptions

a > π
π+c , b ≥ 0, −π < c < π, (6.7)

the inequality (6.4) holds.
Indeed, one easily finds that λD

1 = λN
2 = −a2 +( π

π+c )2, so because of (6.6) and
the continuity of λ1 it suffices to prove that

λ1(k) < −a2 + ( π
π+c )2, k ∈ [− 1

2 , 1
2 ].

To arrive at a contradiction we assume that we have equality for some k.

Consider the eigenfunction u of H
(σ)
D (k) corresponding to the eigenvalue −a2 +

( π
π+c )2,

u(x) :=

{

2
√

a
π+c e−ikx1 sin( π

π+c (x1 + π)) e−ax2 , x1 ∈ [−π, c],

0, x1 ∈ (c, π).
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Then u ∈ H̃1(Π), ‖u‖ = 1 and h(σ)(k)[u] = inf{h(σ)(k)[v] : v ∈ H̃1(Π), ‖v‖ =
1}. It follows from general principles that u ∈ D(H(σ)(k)) and H(σ)(k)u =
λ1(k)u. By Elliptic Regularity we must have u ∈ H2

loc(Π), which is obviously
not true. This contradiction completes the proof of (6.4).

Remark 6.4. It follows from (6.6) that the condition λD
l < λN

l+1 for some l ∈ N

is sufficient for an open gap. This can be used to construct further examples.

Remark 6.5. By an argument similar to the one in Example 6.3 we find that
if there exists a non-empty connected open subset Λ of the torus such that
σ(x1) ≤ − π

meas Λ , x1 ∈ Λ, then σ
(

H(σ)
)

∩ (−∞, 0) 6= ∅, so there exist ACS.

To conclude this subsection we note that the number of ACS (due to discrete
eigenvalues) can be estimated using (4.3).

6.3 Additional Channels due to embedded eigenvalues

In general, the embedded eigenvalues of the operators H(σ)(k), k ∈ [− 1
2 , 1

2 ],

also contribute to the spectrum of the operator H(σ). Therefore the subspace

C∗ := R
(

U∗
(

∫ 1/2

−1/2

⊕E(σ)
(

σp

(

H(σ)(k)
)

∩
[

k2,+∞
)

, k
)

dk

)

U
)

may be non-trivial and, in this case, will be called an ACS. We have

L2(R
2
+) = R(W

(σ)
± ) ⊕ (

∑l0
l=1 ⊕Cl) ⊕ C∗.

The subspace C∗ reduces the operator H(σ) and is orthogonal to the ACS Cl,

1 ≤ l ≤ l0, and to R(W
(σ)
± ).

Let us consider some examples. If σ ≡ σ0 < 0 is a negative constant, we know
from Example 4.2 that the embedded eigenvalues of H(σ)(k) depend piecewise
analytically on k and all of them contribute to the spectrum of H(σ). We note
that in this case the part of H(σ) on C∗ is an unbounded operator.
If σ is a trigonometric polynomial of degree N > 0, we know from Proposition
5.1 that H(σ)(k) has no embedded eigenvalues greater or equal to (N − |k|)2.
Moreover, we know from Proposition 5.2 that the embedded eigenvalues in the
interval [(N − 1 + |k|)2, (N − |k|)2) do not contribute to the spectrum of the
operator H(σ). So the part of H(σ) on C∗ is a bounded operator with spectrum
contained in [0, (N − 1

2 )2].
In the special case when σ is a trigonometric polynomial of degree one, it follows
again from Proposition 5.1 and Proposition 5.2 that C∗ = {0}. We emphasize
(see Example 5.4) that embedded eigenvalues of the operators H(σ)(k) actually
occur in this case.
The question whether C∗ can be non-trivial for non-constant σ remains open.
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