Multipliers of Improper Similitudes

R. Preetil and J.-P. Tignol ${ }^{2}$

Received: February 11, 2004
Revised: May 5, 2004

Communicated by Alexander Merkurev

Abstract

For a central simple algebra with an orthogonal involution (A, σ) over a field k of characteristic different from 2 , we relate the multipliers of similitudes of (A, σ) with the Clifford algebra $C(A, \sigma)$. We also give a complete description of the group of multipliers of similitudes when $\operatorname{deg} A \leq 6$ or when the virtual cohomological dimension of k is at most 2 .

2000 Mathematics Subject Classification: 11E72. Keywords and Phrases: Central simple algebra with involution, hermitian form, Clifford algebra, similitude.

Introduction

A. Weil has shown in 22 how to obtain all the simple linear algebraic groups of adjoint type D_{n} over an arbitrary field k of characteristic different from 2 : every such group is the connected component of the identity in the group of automorphisms of a pair (A, σ) where A is a central simple k-algebra of degree $2 n$ and $\sigma: A \rightarrow A$ is an involution of orthogonal type, i.e., a linear map which over a splitting field of A is the adjoint involution of a symmetric bilinear form. (See [7] for background material on involutions on central simple algebras and classical groups.) Every automorphism of (A, σ) is inner, and induced by an element $g \in A^{\times}$which satisfies $\sigma(g) g \in k^{\times}$. The group of similitudes of (A, σ) is defined by that condition,

$$
\mathrm{GO}(A, \sigma)=\left\{g \in A^{\times} \mid \sigma(g) g \in k^{\times}\right\} .
$$

[^0]The map which carries $g \in \mathrm{GO}(A, \sigma)$ to $\sigma(g) g \in k^{\times}$is a homomorphism

$$
\mu: \mathrm{GO}(A, \sigma) \rightarrow k^{\times}
$$

called the multiplier map. Taking the reduced norm of each side of the equation $\sigma(g) g=\mu(g)$, we obtain

$$
\operatorname{Nrd}_{A}(g)^{2}=\mu(g)^{2 n}
$$

hence $\operatorname{Nrd}_{A}(g)= \pm \mu(g)^{n}$. The similitude g is called proper if $\operatorname{Nrd}_{A}(g)=\mu(g)^{n}$, and improper if $\operatorname{Nrd}_{A}(g)=-\mu(g)^{n}$. The proper similitudes form a subgroup $\mathrm{GO}_{+}(A, \sigma) \subset \mathrm{GO}(A, \sigma)$. (As an algebraic group, $\mathrm{GO}_{+}(A, \sigma)$ is the connected component of the identity in $\operatorname{GO}(A, \sigma)$.)
Our purpose in this work is to study the multipliers of similitudes of a central simple k-algebra with orthogonal involution (A, σ). We denote by $G(A, \sigma)$ (resp. $G_{+}(A, \sigma)$, resp. $\left.G_{-}(A, \sigma)\right)$ the group of multipliers of similitudes of (A, σ) (resp. the group of multipliers of proper similitudes, resp. the coset of multipliers of improper similitudes),

$$
\begin{aligned}
G(A, \sigma) & =\{\mu(g) \mid g \in \mathrm{GO}(A, \sigma)\} \\
G_{+}(A, \sigma) & =\left\{\mu(g) \mid g \in \mathrm{GO}_{+}(A, \sigma)\right\} \\
G_{-}(A, \sigma) & =\left\{\mu(g) \mid g \in \mathrm{GO}(A, \sigma) \backslash \mathrm{GO}_{+}(A, \sigma)\right\}
\end{aligned}
$$

When A is split ($A=\operatorname{End}_{k} V$ for some k-vector space V), hyperplane reflections are improper similitudes with multiplier 1, hence

$$
G(A, \sigma)=G_{+}(A, \sigma)=G_{-}(A, \sigma)
$$

When A is not split however, we may have $G(A, \sigma) \neq G_{+}(A, \sigma)$.
Multipliers of similitudes were investigated in relation with the discriminant disc σ by Merkurjev-Tignol (14]. Our goal is to obtain similar results relating multipliers of similitudes to the next invariant of σ, which is the Clifford algebra $C(A, \sigma)$ (see [7, §8]). As an application, we obtain a complete description of $G(A, \sigma)$ when $\operatorname{deg} A \leq 6$ or when the virtual cohomological dimension of k is at most 2 .
To give a more precise description of our results, we introduce some more notation. Throughout the paper, k denotes a field of characteristic different from 2 . For any integers $n, d \geq 1$, let $\mu_{2^{n}}$ be the group of 2^{n}-th roots of unity in a separable closure of k and let $H^{d}\left(k, \mu_{2^{n}}^{\otimes(d-1)}\right)$ be the d-th cohomology group of the absolute Galois group with coefficients in $\mu_{2^{n}}^{\otimes(d-1)}\left(=\mathbf{Z} / 2^{n} \mathbf{Z}\right.$ if $\left.d=1\right)$. Denote simply

$$
H^{d} k=\underset{n}{\lim } H^{d}\left(k, \mu_{2^{n}}^{\otimes(d-1)}\right),
$$

so $H^{1} k$ and $H^{2} k$ may be identified with the 2-primary part of the character group of the absolute Galois group and with the 2-primary part of the Brauer group of k, respectively,

$$
H^{1} k=X_{2}(k), \quad H^{2} k=\operatorname{Br}_{2}(k)
$$

In particular, the isomorphism $k^{\times} / k^{\times 2} \simeq H^{1}(k, \mathbf{Z} / 2 \mathbf{Z})$ derived from the Kummer sequence (see for instance [7, (30.1)]) yields a canonical embedding

$$
\begin{equation*}
k^{\times} / k^{\times 2} \hookrightarrow H^{1} k \tag{1}
\end{equation*}
$$

The Brauer class (or the corresponding element in $H^{2} k$) of a central simple k-algebra E of 2-primary exponent is denoted by $[E]$.
If K / k is a finite separable field extension, we denote by $N_{K / k}: H^{d} K \rightarrow H^{d} k$ the norm (or corestriction) map. We extend the notation above to the case where $K \simeq k \times k$ by letting $H^{d}(k \times k)=H^{d} k \times H^{d} k$ and

$$
N_{(k \times k) / k}\left(\xi_{1}, \xi_{2}\right)=\xi_{1}+\xi_{2} \quad \text { for }\left(\xi_{1}, \xi_{2}\right) \in H^{d}(k \times k) .
$$

Our results use the product

$$
\therefore k^{\times} \times H^{d} k \rightarrow H^{d+1} k \quad \text { for } d=1 \text { or } 2
$$

induced as follows by the cup-product: for $x \in k^{\times}$and $\xi \in H^{d} k$, choose n such that $\xi \in H^{d}\left(k, \mu_{2^{n}}^{\otimes(d-1)}\right)$ and consider the cohomology class $(x)_{n} \in$ $H^{1}\left(k, \mu_{2^{n}}\right)$ corresponding to the 2^{n}-th power class of x under the isomorphism $H^{1}\left(k, \mu_{2^{n}}\right)=k^{\times} / k^{\times 2^{n}}$ induced by the Kummer sequence; let then

$$
x \cdot \xi=(x)_{n} \cup \xi \in H^{d+1}\left(k, \mu_{2^{n}}^{\otimes d}\right) \subset H^{d+1} k .
$$

In particular, if $d=1$ and ξ is the square class of $y \in k^{\times}$under the embedding (11), then $x \cdot \xi$ is the Brauer class of the quaternion algebra $(x, y)_{k}$.
Throughout the paper, we denote by A a central simple k-algebra of even degree $2 n$, and by σ an orthogonal involution of A. Recall from $[7,(7.2)$ that $\operatorname{disc} \sigma \in k^{\times} / k^{\times 2} \subset H^{1} k$ is the square class of $(-1)^{n} \operatorname{Nrd}_{A}(a)$ where $a \in A^{\times}$ is an arbitrary skew-symmetric element. Let Z be the center of the Clifford algebra $C(A, \sigma)$; thus, Z is a quadratic étale k-algebra, $Z=k[\sqrt{\operatorname{disc} \sigma}]$, see [7], (8.10)]. The following relation between similitudes and the discriminant is proved in [14, Theorem A] (see also [7, (13.38)]):

Theorem 1. Let (A, σ) be a central simple k-algebra with orthogonal involution of even degree. For $\lambda \in G(A, \sigma)$,

$$
\lambda \cdot \operatorname{disc} \sigma= \begin{cases}0 & \text { if } \lambda \in G_{+}(A, \sigma), \\ {[A]} & \text { if } \lambda \in G_{-}(A, \sigma)\end{cases}
$$

For $d=2$ (resp. 3), let $\left(H^{d} k\right) / A$ be the factor group of $H^{d} k$ by the subgroup $\{0,[A]\}$ (resp. by the subgroup $k^{\times} \cdot[A]$). Theorem 1 thus shows that for $\lambda \in$ $G(A, \sigma)$

$$
\lambda \cdot \operatorname{disc} \sigma=0 \quad \text { in }\left(H^{2} k\right) / A
$$

Our main results are Theorems 2, 3, 4, and 5 below.

Theorem 2. Suppose A is split by Z. There exists an element $\gamma(\sigma) \in H^{2} k$ such that $\gamma(\sigma)_{Z}=[C(A, \sigma)]$ in $H^{2} Z$. For $\lambda \in G(A, \sigma)$,

$$
\lambda \cdot \gamma(\sigma)=0 \quad \text { in }\left(H^{3} k\right) / A .
$$

Remark 1. In the conditions of the theorem, the element $\gamma(\sigma) \in H^{2} k$ is not uniquely determined if $Z \not \approx k \times k$. Nevertheless, if $\lambda \cdot \operatorname{disc} \sigma=0$ in $\left(H^{2} k\right) / A$, then $\lambda \cdot \gamma(\sigma) \in\left(H^{3} k\right) / A$ is uniquely determined. Indeed, if $\gamma, \gamma^{\prime} \in H^{2} k$ are such that $\gamma_{Z}=\gamma_{Z}^{\prime}$, then there exists $u \in k^{\times}$such that $\gamma^{\prime}=\gamma+u \cdot \operatorname{disc} \sigma$, hence

$$
\lambda \cdot \gamma^{\prime}=\lambda \cdot \gamma+\lambda \cdot u \cdot \operatorname{disc} \sigma
$$

The last term vanishes in $\left(H^{3} k\right) / A$ since $\lambda \cdot \operatorname{disc} \sigma=0$ in $\left(H^{2} k\right) / A$.
The proof of Theorem 2 is given in Section 11. It shows that in the split case, where $A=\operatorname{End}_{k} V$ and σ is adjoint to some quadratic form q on V, we may take for $\gamma(\sigma)$ the Brauer class of the full Clifford algebra $C(V, q)$. Note that the statement of Theorem 2 does not discriminate between multipliers of proper and improper similitudes, but Theorem 11 may be used to distinguish between them. Slight variations of the arguments in the proof of Theorem 2 also yield the following result on multipliers of proper similitudes:

Theorem 3. Suppose the Schur index of A is at most 4. If $\lambda \in G_{+}(A, \sigma)$, then there exists $z \in Z^{\times}$such that $\lambda=N_{Z / k}(z)$ and

$$
N_{Z / k}(z \cdot[C(A, \sigma)])=0 \quad \text { in }\left(H^{3} k\right) / A
$$

The proof is given in Section 11. Note however that the theorem holds without the hypothesis that ind $A \leq 4$, as follows from Corollaries 1.20 and 1.21 in 12 . Using the Rost invariant of Spin groups, these corollaries actually yield an explicit element z as in Theorem 3 from any proper similitude with multiplier λ.
Remark 2. The element $N_{Z / k}(z \cdot[C(A, \sigma)]) \in\left(H^{3} k\right) / A$ depends only on $N_{Z / k}(z)$ and not on the specific choice of $z \in Z$. Indeed, if $z, z^{\prime} \in Z^{\times}$are such that $N_{Z / k}(z)=N_{Z / k}\left(z^{\prime}\right)$, then Hilbert's Theorem 90 yields an element $u \in Z^{\times}$such that, denoting by ι the nontrivial automorphism of Z / k,

$$
z^{\prime}=z u \iota(u)^{-1}
$$

hence

$$
\begin{aligned}
& N_{Z / k}\left(z^{\prime} \cdot[C(A, \sigma)]\right)= \\
& \quad N_{Z / k}(z \cdot[C(A, \sigma)])+N_{Z / k}(u \cdot[C(A, \sigma)])-N_{Z / k}(\iota(u) \cdot[C(A, \sigma)]) .
\end{aligned}
$$

Since $N_{Z / k} \circ \iota=N_{Z / k}$ and since the properties of the Clifford algebra (see [7, (9.12)]) yield

$$
[C(A, \sigma)]-\iota[C(A, \sigma)]=[A]_{Z}
$$

it follows that

$$
N_{Z / k}(u \cdot[C(A, \sigma)])-N_{Z / k}(\iota(u) \cdot[C(A, \sigma)])=N_{Z / k}\left(u \cdot[A]_{Z}\right)
$$

By the projection formula, the right side is equal to $N_{Z / k}(u) \cdot[A]$. The claim follows.

Remark 3. Theorems 2 and 3 coincide when they both apply, i.e., if A is split by Z (hence ind $A=1$ or 2), and $\lambda \in G_{+}(A, \sigma)$. Indeed, if $\lambda=N_{Z / k}(z)$ and $\gamma(\sigma)_{Z}=[C(A, \sigma)]$ then the projection formula yields

$$
N_{Z / k}(z \cdot[C(A, \sigma)])=\lambda \cdot \gamma(\sigma) .
$$

Remarkably, the conditions in Theorems 11 and 2 turn out to be sufficient for λ to be the multiplier of a similitude when $\operatorname{deg} A \leq 6$ or when the virtual cohomological 2 -dimension ${ }^{3}$ of k is at most 2 .

Theorem 4. Suppose $n \leq 3$, i.e., $\operatorname{deg} A \leq 6$.

- If A is not split by Z, then every similitude is proper,

$$
G(A, \sigma)=G_{+}(A, \sigma), \quad G_{-}(A, \sigma)=\varnothing
$$

Moreover, for $\lambda \in k^{\times}$, we have $\lambda \in G(A, \sigma)$ if and only if there exists $z \in Z^{\times}$such that $\lambda=N_{Z / k}(z)$ and

$$
N_{Z / k}(z \cdot[C(A, \sigma)])=0 \quad \text { in }\left(H^{3} k\right) / A
$$

- If A is split by Z, let $\gamma(\sigma) \in H^{2} k$ be as in Theorem R. For $\lambda \in k^{\times}$, we have $\lambda \in G(A, \sigma)$ if and only if

$$
\lambda \cdot \operatorname{disc} \sigma=0 \text { in }\left(H^{2} k\right) / A \quad \text { and } \quad \lambda \cdot \gamma(\sigma)=0 \text { in }\left(H^{3} k\right) / A
$$

The proof is given in Section 2 .
Note that if $\operatorname{deg} A=2$, then A is necessarily split by Z and we may choose $\gamma(\sigma)=0$, hence Theorem 1 simplifies to

$$
\lambda \in G(A, \sigma) \quad \text { if and only if } \quad \lambda \cdot \operatorname{disc} \sigma=0 \text { in }\left(H^{2} k\right) / A
$$

a statement which is easily proved directly. (See [14, p. 15] or [7], (12.25)].)
If $\operatorname{deg} A=4$, multipliers of similitudes can also be described up to squares as reduced norms from a central simple algebra E of degree 4 such that $[E]=\gamma(\sigma)$ if A is split by Z (see Corollary 4.5) or as norms of reduced norms of $C(A, \sigma)$ if A is not split by Z (see Corollary 2.1).

[^1]For the next statement, recall that the virtual cohomological 2-dimension of k (denoted $\operatorname{vcd}_{2} k$) is the cohomological 2-dimension of $k(\sqrt{-1})$. If v is an ordering of k, we let k_{v} be a real closure of k for v and denote simply by $(A, \sigma)_{v}$ the algebra with involution $\left(A \otimes_{k} k_{v}, \sigma \otimes \operatorname{Id}_{k_{v}}\right)$.

Theorem 5. Suppose $\operatorname{vcd}_{2} k \leq 2$, and A is split by Z. For $\lambda \in k^{\times}$, we have $\lambda \in G(A, \sigma)$ if and only if

$$
\begin{gathered}
\lambda>0 \quad \text { at every ordering } v \text { of } k \text { such that }(A, \sigma)_{v} \text { is not hyperbolic, } \\
\lambda \cdot \operatorname{disc} \sigma=0 \text { in }\left(H^{2} k\right) / A \quad \text { and } \quad \lambda \cdot \gamma(\sigma)=0 \text { in }\left(H^{3} k\right) / A .
\end{gathered}
$$

The proof is given in Section 3 .

1 Proofs of Theorems 2 and 3

Theorems 2 and 3 are proved by reduction to the split case, which we consider first. We thus assume $A=\operatorname{End}_{k} V$ for some k-vector space V of dimension $2 n$, and σ is adjoint to a quadratic form q on V. Then $\operatorname{disc} \sigma=\operatorname{disc} q$ and $C(A, \sigma)$ is the even Clifford algebra $C(A, \sigma)=C_{0}(V, q)$. We denote by $C(V, q)$ the full Clifford algebra of q, which is a central simple k-algebra, and by $I^{m} k$ the m-th power of the fundamental ideal $I k$ of the Witt ring $W k$.

Lemma 1.1. For $\lambda \in k^{\times}$, the following conditions are equivalent:
(a) $\lambda \cdot \operatorname{disc} q=0$ in $H^{2} k$ and $\lambda \cdot[C(V, q)]=0$ in $H^{3} k$;
(b) $\langle\lambda\rangle \cdot q \equiv q \bmod I^{4} k$.

Proof. For $\alpha_{1}, \ldots, \alpha_{m} \in k^{\times}$, let

$$
\left\langle\left\langle\alpha_{1}, \ldots, \alpha_{m}\right\rangle\right\rangle=\left\langle 1,-\alpha_{1}\right\rangle \otimes \cdots \otimes\left\langle 1,-\alpha_{m}\right\rangle .
$$

Let $e_{2}: I^{2} k \rightarrow H^{2} k$ be the Witt invariant and $e_{3}: I^{3} k \rightarrow H^{3} k$ be the Arason invariant. By a theorem of Merkurjev (9) (resp. of Merkurjev-Suslin 13] and Rost (17]), we have ker $e_{2}=I^{3} k$ and ker $e_{3}=I^{4} k$. Therefore, the lemma follows if we prove

$$
\begin{equation*}
\lambda \cdot \operatorname{disc} q=0 \quad \text { if and only if } \quad\langle\langle\lambda\rangle\rangle \cdot q \in I^{3} k \tag{2}
\end{equation*}
$$

and that, assuming that condition holds,

$$
\begin{equation*}
e_{3}(\langle\langle\lambda\rangle\rangle \cdot q)=\lambda \cdot[C(V, q)] . \tag{3}
\end{equation*}
$$

Let $\delta \in k^{\times}$be such that $\operatorname{disc} q=(\delta)_{1} \in H^{1}(k, \mathbf{Z} / 2 \mathbf{Z}) \subset H^{1} k$. Then

$$
\begin{equation*}
q \equiv\langle\langle\delta\rangle\rangle \bmod I^{2} k \tag{4}
\end{equation*}
$$

hence

$$
e_{2}(\langle\langle\lambda\rangle\rangle \cdot q)=e_{2}(\langle\langle\lambda, \delta\rangle\rangle)=\lambda \cdot \operatorname{disc} q,
$$

proving (2). Now, assuming $\lambda \cdot \operatorname{disc} q=0$, we have $\langle\langle\lambda, \delta\rangle\rangle=0$ in $W k$, hence

$$
\langle\langle\lambda\rangle\rangle \cdot q=\langle\langle\lambda\rangle\rangle \cdot(q \perp\langle\langle\delta\rangle\rangle) .
$$

By ($\mathbb{4}$), we have $q \perp\langle\langle\delta\rangle\rangle \in I^{2} k$, hence

$$
\begin{equation*}
e_{3}(\langle\langle\lambda\rangle\rangle \cdot q)=\lambda \cdot e_{2}(q \perp\langle\langle\delta\rangle\rangle) . \tag{5}
\end{equation*}
$$

The computation of Witt invariants in [8, Chapter 5] yields

$$
\begin{equation*}
e_{2}(q \perp\langle\langle\delta\rangle\rangle)=[C(V, q)]+(-1) \cdot \operatorname{disc} q . \tag{6}
\end{equation*}
$$

Since $\lambda \cdot \operatorname{disc} q=0$ by hypothesis, (3) follows from (5) and (6).
Proof of Theorem 因. If A is split, then using the same notation as in Lemma 1.1 we may take $\gamma(\sigma)=[C(V, q)]$, and Theorem 2 readily follows from Lemma 1.1. For the rest of the proof, we may thus assume A is not split, hence $\operatorname{disc} \sigma \neq 0$ since Z is assumed to split A. Let $G=\{\mathrm{Id}, \iota\}$ be the Galois group of Z / k. The properties of the Clifford algebra (see for instance (7, (9.12)]) yield

$$
[C(A, \sigma)]-\iota[C(A, \sigma)]=[A]_{Z}=0
$$

Therefore, $[C(A, \sigma)]$ lies in the subgroup $(\operatorname{Br} Z)^{G}$ of $\operatorname{Br} Z$ fixed under the action of G. The "Teichmüller cocycle" theory [6] (or the spectral sequence of group extensions, see [19, Remarque, p. 126]) yields an exact sequence

$$
\operatorname{Br} k \rightarrow(\operatorname{Br} Z)^{G} \rightarrow H^{3}\left(G, Z^{\times}\right)
$$

Since G is cyclic, $H^{3}\left(G, Z^{\times}\right)=H^{1}\left(G, Z^{\times}\right)$. By Hilbert's Theorem 90, $H^{1}\left(G, Z^{\times}\right)=1$, hence $(\operatorname{Br} Z)^{G}$ is the image of the scalar extension map $\operatorname{Br} k \rightarrow \operatorname{Br} Z$, and there exists $\gamma(\sigma) \in \operatorname{Br} k$ such that $\gamma(\sigma)_{Z}=[C(A, \sigma)]$. Then, by (9.12)],

$$
2 \gamma(\sigma)=N_{Z / k}([C(A, \sigma)])= \begin{cases}0 & \text { if } n \text { is odd } \tag{7}\\ {[A]} & \text { if } n \text { is even }\end{cases}
$$

hence $4 \gamma(\sigma)=0$. Therefore, $\gamma(\sigma) \in \operatorname{Br}_{2}(k)=H^{2} k$.
Note that ind $A=2$, since A is split by the quadratic extension Z / k, hence A is Brauer-equivalent to a quaternion algebra Q. Let X be the conic associated with Q; the function field $k(X)$ splits A. Since Theorem 2 holds in the split case, we have

$$
\lambda \cdot \gamma(\sigma) \in \operatorname{ker}\left(H^{3} k \rightarrow H^{3} k(X)\right)
$$

By a theorem of (Arason-) Peyre [16, Proposition 4.4], the kernel on the right side is the subgroup $k^{\times} \cdot[A] \subset H^{3} k$, hence

$$
\lambda \cdot \gamma(\sigma)=0 \quad \text { in }\left(H^{3} k\right) / A
$$

Proof of Theorem 3. Suppose first A is split, and use the same notation as in Lemma 1.1. If $\lambda \in G(A, \sigma)$, then $\langle\lambda\rangle \cdot q \simeq q$ and Lemma 1.1 yields

$$
\lambda \cdot \operatorname{disc} q=0 \text { in } H^{2} k \quad \text { and } \quad \lambda \cdot[C(V, q)]=0 \text { in } H^{3} k .
$$

The first equation implies that $\lambda=N_{Z / k}(z)$ for some $z \in Z^{\times}$. Since

$$
[C(A, \sigma)]=\left[C_{0}(V, q)\right]=[C(V, q)]_{Z},
$$

the projection formula yields

$$
N_{Z / k}(z \cdot[C(A, \sigma)])=N_{Z / k}(z) \cdot[C(V, q)]=\lambda \cdot[C(V, q)]=0
$$

proving the theorem if A is split.
If A is not split, we extend scalars to the function field $k(X)$ of the SeveriBrauer variety of A. For $\lambda \in G_{+}(A, \sigma)$, there still exists $z \in Z^{\times}$such that $\lambda=N_{Z / k}(z)$, by Theorem Since Theorem 3 holds in the split case, we have

$$
N_{Z / k}(z \cdot[C(A, \sigma)]) \in \operatorname{ker}\left(H^{3} k \rightarrow H^{3} k(X)\right)
$$

and Peyre's theorem concludes the proof. (Note that applying Peyre's theorem requires the hypothesis that ind $A \leq 4$.)

2 Algebras of low degree

We prove Theorem by considering separately the cases ind $A=1,2$, and 4 .

2.1 Case 1: A is split

Let $A=\operatorname{End}_{k} V, \operatorname{dim} V \leq 6$, and let σ be adjoint to a quadratic form q on V. Since $C(A, \sigma)=C_{0}(V, q)$, we may choose $\gamma(\sigma)=[C(V, q)]$. The equations

$$
\lambda \cdot \operatorname{disc} \sigma=0 \text { in }\left(H^{2} k\right) / A \quad \text { and } \quad \lambda \cdot \gamma(\sigma)=0 \text { in }\left(H^{3} k\right) / A
$$

are then equivalent to

$$
\lambda \cdot \operatorname{disc} q=0 \text { in } H^{2} k \quad \text { and } \quad \lambda \cdot[C(V, q)]=0 \text { in } H^{3} k,
$$

hence, by Lemma 1.1, to $\langle\langle\lambda\rangle\rangle \cdot q \in I^{4} k$. Since $\operatorname{dim} q=6$, the Arason-Pfister Hauptsatz [8, Chapter 10, Theorem 3.1] shows that this relation holds if and only if $\langle\langle\lambda\rangle\rangle \cdot q=0$, i.e., $\lambda \in G(V, q)=G(A, \sigma)$, and the proof is complete.

2.2 Case 2: ind $A=2$

Let Q be a quaternion (division) algebra Brauer-equivalent to A. We represent A as $A=\operatorname{End}_{Q} U$ for some 3 -dimensional (right) Q-vector space. The involution σ is then adjoint to a skew-hermitian form h on U (with respect to the conjugation involution on Q), which defines an element in the Witt group
$W^{-1}(Q)$. Let X be the conic associated with Q. The function field $k(X)$ splits Q, hence Morita equivalence yields an isomorphism

$$
W^{-1}(Q \otimes k(X)) \simeq W k(X)
$$

Moreover, Dejaiffe [4] and Parimala-Sridharan-Suresh (15] have shown that the scalar extension map

$$
\begin{equation*}
W^{-1}(Q) \rightarrow W^{-1}(Q \otimes k(X)) \simeq W k(X) \tag{8}
\end{equation*}
$$

is injective. Let (V, q) be a quadratic space over $k(X)$ representing the image of (U, h) under (8). We may assume $\operatorname{dim} V=\operatorname{deg} A \leq 6$ and σ is adjoint to q after scalar extension to $k(X)$. An element $\lambda \in k^{\times}$lies in $G(V, q)$ if and only if $\langle\langle\lambda\rangle\rangle \cdot q=0$; by the injectivity of (8), this condition is also equivalent to $\langle\langle\lambda\rangle\rangle \cdot h=0$ in $W^{-1}(Q)$, i.e., to $\lambda \in G(A, \sigma)$. Therefore,

$$
\begin{equation*}
G(V, q) \cap k^{\times}=G(A, \sigma) . \tag{9}
\end{equation*}
$$

Suppose first A is not split by Z. Theorem 1 then shows that every similitude of (A, σ) is proper, and it only remains to show that if $\lambda=N_{Z / k}(z)$ for some $z \in Z^{\times}$such that

$$
N_{Z / k}(z \cdot[C(A, \sigma)])=0 \quad \text { in }\left(H^{3} k\right) / A
$$

then $\lambda \in G(A, \sigma)$. Extending scalars to $k(X)$, we derive from the last equation by the projection formula

$$
N_{Z(X) / k(X)}(z) \cdot[C(V, q)]=0 \quad \text { in } H^{3} k(X) .
$$

Therefore, by Lemma 1.1, $\langle\lambda\rangle \cdot q \equiv q \bmod I^{4} k(X)$, i.e.,

$$
\langle\langle\lambda\rangle\rangle \cdot q \in I^{4} k(X) .
$$

Since $\operatorname{dim} q \leq 6$, the Arason-Pfister Hauptsatz implies $\langle\langle\lambda\rangle\rangle \cdot q=0$, hence $\lambda \in G(V, q)$ and therefore $\lambda \in G(A, \sigma)$ by (9). Theorem it is thus proved when ind $A=2$ and A is not split by Z.
Suppose next A is split by Z. In view of Theorems 1 and 2, it suffices to show that if $\lambda \in k^{\times}$satisfies

$$
\lambda \cdot \operatorname{disc} \sigma=0 \text { in }\left(H^{2} k\right) / A \quad \text { and } \quad \lambda \cdot \gamma(\sigma)=0 \text { in }\left(H^{3} k\right) / A
$$

then $\lambda \in G(A, \sigma)$. Again, extending scalars to $k(X)$, the conditions become

$$
\lambda \cdot \operatorname{disc} q=0 \text { in } H^{2} k(X) \quad \text { and } \quad \lambda \cdot[C(V, q)]=0 \text { in } H^{3} k(X) .
$$

By Lemma 1.1, these equations imply $\langle\langle\lambda\rangle\rangle \cdot q \in I^{4} k(X)$, hence $\langle\langle\lambda\rangle\rangle \cdot q=0$ by the Arason-Pfister Hauptsatz since $\operatorname{dim} q \leq 6$. It follows that $\lambda \in G(V, q)$, hence $\lambda \in G(A, \sigma)$ by (8).

2.3 Case 3: ind $A=4$

Since $\operatorname{deg} A \leq 6$, this case arises only if $\operatorname{deg} A=4$, i.e., A is a division algebra. This division algebra cannot be split by the quadratic k-algebra Z, hence all the similitudes are proper, by Theorem 1. Theorem 3 shows that if $\lambda \in G(A, \sigma)$, then there exists $z \in Z^{\times}$such that $\lambda=N_{Z / k}(z)$ and $N_{Z / k}(z \cdot[C(A, \sigma)])=0$ in $\left(H^{3} k\right) / A$, and it only remains to prove the converse.
Let $z \in Z^{\times}$be such that $N_{Z / k}(z \cdot[C(A, \sigma)])=u \cdot[A]$ for some $u \in k^{\times}$. Since by 1 (9.12)], $N_{Z / k}([C(A, \sigma)])=[A]$, it follows that

$$
\begin{equation*}
N_{Z / k}\left(u^{-1} z \cdot[C(A, \sigma)]\right)=0 \quad \text { in } H^{3} k . \tag{10}
\end{equation*}
$$

Since $\operatorname{deg} A=4$, the Clifford algebra $C(A, \sigma)$ is a quaternion algebra over Z. Let

$$
C(A, \sigma)=\left(z_{1}, z_{2}\right)_{Z}
$$

Suppose first $\operatorname{disc} \sigma \neq 0$, i.e., Z is a field. Let $s: Z \rightarrow k$ be a k-linear map such that $s(1)=0$, and let $s_{*}: W Z \rightarrow W k$ be the corresponding (Scharlau) transfer map. By [2, Satz 3.3, Satz 4.18], Equation (10) yields

$$
s_{*}\left(\left\langle\left\langle u^{-1} z, z_{1}, z_{2}\right\rangle\right\rangle\right) \in I^{4} k .
$$

However, the form $s_{*}\left(\left\langle\left\langle u^{-1} z, z_{1}, z_{2}\right\rangle\right\rangle\right)$ is isotropic since $\left\langle\left\langle u^{-1} z, z_{1}, z_{2}\right\rangle\right\rangle$ represents 1 and $s(1)=0$. Moreover, its dimension is 2^{4}, hence the Arason-Pfister Hauptsatz implies

$$
s_{*}\left(\left\langle\left\langle u^{-1} z, z_{1}, z_{2}\right\rangle\right\rangle\right)=0 \quad \text { in } W k
$$

It follows that

$$
s_{*}\left(\left\langle u^{-1} z\right\rangle \cdot\left\langle\left\langle z_{1}, z_{2}\right\rangle\right\rangle\right)=s_{*}\left(\left\langle\left\langle z_{1}, z_{2}\right\rangle\right\rangle\right),
$$

hence the form on the left side is isotropic. Therefore, the form $\left\langle u^{-1} z\right\rangle \cdot\left\langle\left\langle z_{1}, z_{2}\right\rangle\right\rangle$ represents an element $v \in k^{\times}$. Then $v^{-1} u^{-1} z$ is represented by $\left\langle\left\langle z_{1}, z_{2}\right\rangle\right\rangle$, which is the reduced norm form of $C(A, \sigma)$, hence $z \in k^{\times} \operatorname{Nrd}\left(C(A, \sigma)^{\times}\right)$, and

$$
N_{Z / k}(z) \in k^{\times 2} N_{Z / k}\left(\operatorname{Nrd}\left(C(A, \sigma)^{\times}\right)\right)
$$

By [7. (15.11)], the group on the right is $G_{+}(A, \sigma)$. We have thus proved $N_{Z / k}(z) \in G(A, \sigma)$, and the proof is complete when Z is a field.
Suppose finally $\operatorname{disc} \sigma=0$, i.e., $Z \simeq k \times k$. Then $C(A, \sigma) \simeq C^{\prime} \times C^{\prime \prime}$ for some quaternion k-algebras $C^{\prime}=\left(z_{1}^{\prime}, z_{2}^{\prime}\right)_{k}$ and $C^{\prime \prime}=\left(z_{1}^{\prime \prime}, z_{2}^{\prime \prime}\right)_{k}$, and 7, (15.13)] shows

$$
G(A, \sigma)=\operatorname{Nrd}\left(C^{\prime \times}\right) \operatorname{Nrd}\left(C^{\prime \prime \times}\right)
$$

We also have $z=\left(z^{\prime}, z^{\prime \prime}\right)$ for some $z^{\prime}, z^{\prime \prime} \in k^{\times}$, and (10) becomes

$$
u^{-1} z^{\prime} \cdot\left[C^{\prime}\right]+u^{-1} z^{\prime \prime} \cdot\left[C^{\prime \prime}\right]=0 \quad \text { in } H^{3} k
$$

It follows that

$$
\left\langle\left\langle u^{-1} z^{\prime}, z_{1}^{\prime}, z_{2}^{\prime}\right\rangle\right\rangle \simeq\left\langle\left\langle u^{-1} z^{\prime \prime}, z_{1}^{\prime \prime}, z_{2}^{\prime \prime}\right\rangle\right\rangle .
$$

By [2. Lemma 1.7], there exists $v \in k^{\times}$such that

$$
\left\langle\left\langle u^{-1} z^{\prime}, z_{1}^{\prime}, z_{2}^{\prime}\right\rangle\right\rangle \simeq\left\langle\left\langle v, z_{1}^{\prime}, z_{2}^{\prime}\right\rangle\right\rangle \simeq\left\langle\left\langle v, z_{1}^{\prime \prime}, z_{2}^{\prime \prime}\right\rangle\right\rangle \simeq\left\langle\left\langle u^{-1} z^{\prime \prime}, z_{1}^{\prime \prime}, z_{2}^{\prime \prime}\right\rangle\right\rangle,
$$

hence $v^{-1} u^{-1} z^{\prime} \in \operatorname{Nrd}\left(C^{\prime}\right)$ and $v^{-1} u^{-1} z^{\prime \prime} \in \operatorname{Nrd}\left(C^{\prime \prime}\right)$. Therefore,

$$
N_{Z / k}(z)=z^{\prime} z^{\prime \prime} \in \operatorname{Nrd}\left(C^{\prime \times}\right) \operatorname{Nrd}\left(C^{\prime \prime \times}\right),
$$

and the proof of Theorem 4 is complete.
To finish this section, we compare the descriptions of $G_{+}(A, \sigma)$ for $\operatorname{deg} A=4$ or 6 in [7] with those which follow from Theorem (1 (and Remark 3).

Corollary 2.1. Suppose $\operatorname{deg} A=4$. If $\operatorname{disc} \sigma \neq 0$, then

$$
\begin{aligned}
G_{+}(A, \sigma) & =k^{\times 2} N_{Z / k}\left(\operatorname{Nrd}\left(C(A, \sigma)^{\times}\right)\right) \\
& =\left\{N_{Z / k}(z) \mid N_{Z / k}(z \cdot[C(A, \sigma)])=0 \text { in }\left(H^{3} k\right) / A\right\} .
\end{aligned}
$$

If $\operatorname{disc} \sigma=0$, then $C(A, \sigma) \simeq C^{\prime} \times C^{\prime \prime}$ for some quaternion k-algebras $C^{\prime}, C^{\prime \prime}$, and

$$
\begin{aligned}
G_{+}(A, \sigma) & =\operatorname{Nrd}\left(C^{\prime \times}\right) \operatorname{Nrd}\left(C^{\prime \prime \times}\right) \\
& =\left\{z^{\prime} z^{\prime \prime} \mid z^{\prime} \cdot\left[C^{\prime}\right]+z^{\prime \prime} \cdot\left[C^{\prime \prime}\right]=0 \text { in }\left(H^{3} k\right) / A\right\} .
\end{aligned}
$$

Proof. See [7, (15.11)] for the case $\operatorname{disc} \sigma \neq 0$ and [7, (15.13)] for the case $\operatorname{disc} \sigma=0$.

Corollary 2.2. Suppose $\operatorname{deg} A=6$. If $\operatorname{disc} \sigma \neq 0$, let ι be the nontrivial automorphism of the field extension Z / k and let $\underline{\sigma}$ be the canonical (unitary) involution of $C(A, \sigma)$. Let also

$$
\mathrm{GU}(C(A, \sigma), \underline{\sigma})=\left\{g \in C(A, \sigma) \mid \underline{\sigma}(g) g \in k^{\times}\right\}
$$

Then

$$
\begin{aligned}
& G_{+}(A, \sigma)= \\
& \qquad \begin{aligned}
\left\{N_{Z / k}(z) \mid z \iota(z)^{-1}=\right. & \left.(\underline{\sigma}(g) g)^{-2} \operatorname{Nrd}(g) \text { for some } g \in \mathrm{GU}(C(A, \sigma), \underline{\sigma})\right\} \\
& =\left\{N_{Z / k}(z) \mid N_{Z / k}(z \cdot[C(A, \sigma)])=0 \text { in }\left(H^{3} k\right) / A\right\}
\end{aligned}
\end{aligned}
$$

If $\operatorname{disc} \sigma=0$, then $C(A, \sigma) \simeq C \times C^{\text {op }}$ for some central simple k-algebra C of degree 4, and

$$
\begin{aligned}
G_{+}(A, \sigma) & =k^{\times 2} \operatorname{Nrd}\left(C^{\times}\right) \\
& =\left\{z \in k^{\times} \mid z \cdot[C]=0 \text { in }\left(H^{3} k\right) / A\right\} .
\end{aligned}
$$

Proof. See [7, (15.31)] for the case $\operatorname{disc} \sigma \neq 0$ and $[7$, (15.34)] for the case $\operatorname{disc} \sigma=0$. In the latter case, Theorem 3 shows that $G_{+}(A, \sigma)$ consists of products $z^{\prime} z^{\prime \prime}$ where $z^{\prime}, z^{\prime \prime} \in k^{\times}$are such that

$$
z^{\prime} \cdot[C]+z^{\prime \prime} \cdot\left[C^{\mathrm{op}}\right]=0 \quad \text { in }\left(H^{3} k\right) / A
$$

However, $\left[C^{\mathrm{op}}\right]=-[C]$, and $2[C]=[A]$ by 团, (9.15)], hence

$$
z^{\prime} \cdot[C]+z^{\prime \prime} \cdot\left[C^{\mathrm{op}}\right]=z^{\prime} z^{\prime \prime} \cdot[C] \quad \text { in }\left(H^{3} k\right) / A
$$

Note that the equation

$$
k^{\times 2} \operatorname{Nrd}\left(C^{\times}\right)=\left\{z \in k^{\times} \mid z \cdot[C]=0 \text { in }\left(H^{3} k\right) / A\right\}
$$

can also be proved directly by a theorem of Merkurjev [11, Proposition 1.15].

3 Fields of low virtual cohomological dimension

Our goal in this section is to prove Theorem Together with Theorem (2), the following lemma completes the proof of the "only if" part:

Lemma 3.1. If $\lambda \in G(A, \sigma)$, then $\lambda>0$ at every ordering v such that $(A, \sigma)_{v}$ is not hyperbolic.

Proof. If $(A, \sigma)_{v}$ is not hyperbolic, then A_{v} is split, by 18, Chapter 10, Theorem 3.7]. We may thus represent $A_{v}=\operatorname{End}_{k_{v}} V$ for some k_{v}-vector space V, and $\sigma \otimes \operatorname{Id}_{k_{v}}$ is adjoint to a non-hyperbolic quadratic form q. If $\lambda \in G(A, \sigma)$, then $\lambda \in G(V, q)$, hence

$$
\langle\lambda\rangle \cdot q \simeq q .
$$

Comparing the signatures of each side, we obtain $\lambda>0$.
For the "if" part, we use the following lemma:
Lemma 3.2. Let F be an arbitrary field of characteristic different from 2. If $\operatorname{vcd}_{2} F \leq 3$, then the torsion part of the 4 -th power of IF is trivial,

$$
I_{t}^{4} F=0
$$

Proof. Our proof uses the existence of the cohomological invariants $e_{n}: I^{n} F \rightarrow$ $H^{n}\left(F, \mu_{2}\right)$, and the fact that ker $e_{n}=I^{n+1} F$, proved for fields of virtual cohomological 2-dimension at most 3 by Arason-Elman-Jacob [3].
Suppose first $-1 \notin F^{\times 2}$. From $\operatorname{vcd}_{2} F \leq 3$, it follows that $H^{n}\left(F(\sqrt{-1}), \mu_{2}\right)=0$ for $n \geq 4$, hence the Arason exact sequence

$$
H^{n}\left(F(\sqrt{-1}), \mu_{2}\right) \xrightarrow{N} H^{n}\left(F, \mu_{2}\right) \xrightarrow{(-1)_{1} \cup} H^{n+1}\left(F, \mu_{2}\right) \rightarrow H^{n+1}\left(F(\sqrt{-1}), \mu_{2}\right)
$$

(see [2, Corollar 4.6] or [7, (30.12)]) shows that the cup-product with $(-1)_{1}$ is an isomorphism $H^{n}\left(F, \mu_{2}\right) \simeq H^{n+1}\left(F, \mu_{2}\right)$ for $n \geq 4$. If $q \in I_{t}^{4} F$, there is an integer ℓ such that $2^{\ell} q=0$, hence the 4-th invariant $e_{4}(q) \in H^{4}\left(F, \mu_{2}\right)$ satisfies

$$
\underbrace{(-1)_{1} \cup \cdots \cup(-1)_{1}}_{\ell} \cup e_{4}(q)=0 \quad \text { in } H^{\ell+4}\left(F, \mu_{2}\right) .
$$

Since $(-1)_{1} \cup$ is an isomorphism, it follows that $e_{4}(q)=0$, hence $q \in I_{t}^{5} F$. Repeating the argument with e_{5}, e_{6}, \ldots, we obtain $q \in \bigcap_{n} I^{n} F$, hence $q=0$ by the Arason-Pfister Hauptsatz [8, p. 290].
If $-1 \in F^{\times 2}$, then the hypothesis implies that $H^{n}\left(F, \mu_{2}\right)=0$ for $n \geq 4$, hence for $q \in I^{4} F$ we get successively $e_{4}(q)=0, e_{5}(q)=0$, etc., and we conclude as before.

Proof of Theorem 5. As observed above, the "only if" part follows from Theorem 2 and Lemma 3.1. The proof of the "if" part uses the same arguments as the proof of Theorem 2 in the case where ind $A=2$.
We first consider the split case. If $A=\operatorname{End}_{k} V$ and σ is adjoint to a quadratic form q on V, then we may choose $\gamma(\sigma)=C(V, q)$, and the conditions

$$
\lambda \cdot \operatorname{disc} \sigma=0 \text { in }\left(H^{2} k\right) / A \quad \text { and } \quad \lambda \cdot \gamma(\sigma)=0 \text { in }\left(H^{3} k\right) / A
$$

imply, by Lemma 1.1, that $\langle\langle\lambda\rangle\rangle \cdot q \in I^{4} k$. Moreover, for every ordering v on k, the signature $\operatorname{sgn}_{v}(\langle\langle\lambda\rangle\rangle \cdot q)$ vanishes, since $\lambda>0$ at every v such that $\operatorname{sgn}_{v}(q) \neq$ 0 . Therefore, by Pfister's local-global principle [8, Chapter 8, Theorem 4.1], $\langle\langle\lambda\rangle \cdot q$ is torsion. Since the hypothesis on k implies, by Lemma 3.2, that $I_{t}^{4} k=0$, we have $\langle\langle\lambda\rangle\rangle \cdot q=0$, hence $\lambda \in G(V, q)=G(A, \sigma)$. Note that Lemma 3.2 yields $I_{t}^{4} k=0$ under the weaker hypothesis $\operatorname{vcd}_{2} k \leq 3$. Therefore, the split case of Theorem 5 holds when $\operatorname{vcd}_{2} k \leq 3$.
Now, suppose A is not split. Since A is split by Z, it is Brauer-equivalent to a quaternion algebra Q. Let $k(X)$ be the function field of the conic X associated with Q. This field splits A, hence there is a quadratic space (V, q) over $k(X)$ such that $A \otimes k(X)$ may be identified with $\operatorname{End}_{k(X)} V$ and $\sigma \otimes \operatorname{Id}_{k(X)}$ with the adjoint involution with respect to q. As in Section 2 (see Equation (9)), we have

$$
G(V, q) \cap k^{\times}=G(A, \sigma)
$$

Therefore, it suffices to show that the conditions on λ imply $\lambda \in G(V, q)$. If v is an ordering of k such that $(A, \sigma)_{v}$ is hyperbolic, then q_{w} is hyperbolic for any ordering w of $k(X)$ extending v, since hyperbolic involutions remain hyperbolic over scalar extensions. Therefore, $\lambda>0$ at every ordering w of $k(X)$ such that q_{w} is not hyperbolic. Moreover, the conditions

$$
\lambda \cdot \operatorname{disc} \sigma=0 \text { in }\left(H^{2} k\right) / A \quad \text { and } \quad \lambda \cdot \gamma(\sigma)=0 \text { in }\left(H^{3} k\right) / A
$$

imply

$$
\begin{gathered}
\lambda \cdot \operatorname{disc} q=0 \text { in } H^{2} k(X) \quad \text { and } \quad \lambda \cdot[C(V, q)]=0 \text { in } H^{3} k(X) . \\
\text { Documenta Mathematica } 9(2004) 183-204
\end{gathered}
$$

Since X is a conic, Proposition 11, p. 93 of 20 implies

$$
\operatorname{vcd}_{2} k(X)=1+\operatorname{vcd}_{2} k \leq 3
$$

As Theorem 5 holds in the split case over fields of virtual cohomological 2dimension at most 3 , it follows that $\lambda \in G(V, q)$.

Remark. The same arguments show that if $\operatorname{vcd}_{2} k \leq 2$ and ind $A=2$, then $G_{+}(A, \sigma)$ consists of the elements $N_{Z / k}(z)$ where $z \in Z^{\times}$is such that

$$
N_{Z / k}(z \cdot[C(A, \sigma)])=0 \quad \text { in }\left(H^{3} k\right) / A
$$

4 Examples

In this section, we give an explicit description of the element $\gamma(\sigma)$ of Theorem 2 in some special cases. Throughout this section, we assume the algebra A is not split, and is split by Z (hence Z is a field and $\operatorname{disc} \sigma \neq 0$). Our first result is easy:

Proposition 4.1. If A is split by Z and σ becomes hyperbolic after scalar extension to Z, then we may choose $\gamma(\sigma)=0$.

Proof. Let ι be the nontrivial automorphism of Z / k. Since Z is the center of $C(A, \sigma)$,

$$
\begin{equation*}
C(A, \sigma) \otimes_{k} Z \simeq C(A, \sigma) \times{ }^{\iota} C(A, \sigma) \tag{11}
\end{equation*}
$$

On the other hand, $C(A, \sigma) \otimes_{k} Z \simeq C\left(A \otimes_{k} Z, \sigma \otimes \operatorname{Id}_{Z}\right)$, and since σ becomes hyperbolic over Z, one of the components of $C\left(A \otimes_{k} Z, \sigma \otimes \mathrm{Id}_{Z}\right)$ is split, by [7] (8.31)]. Therefore,

$$
[C(A, \sigma)]=\left[{ }^{\iota} C(A, \sigma)\right]=0 \quad \text { in } \operatorname{Br} Z .
$$

Corollary 4.2. In the conditions of Proposition 4.1, if $\operatorname{deg} A \leq 6$ or $\operatorname{vcd}_{2} k \leq$ 2, then

$$
G_{+}(A, \sigma)=\left\{\lambda \in k^{\times} \mid \lambda \cdot \operatorname{disc} \sigma=0 \text { in } H^{2} k\right\}
$$

and

$$
G_{-}(A, \sigma)=\left\{\lambda \in k^{\times} \mid \lambda \cdot \operatorname{disc} \sigma=[A] \text { in } H^{2} k\right\} .
$$

Proof. This readily follows from Proposition 4.1 and Theorem 2 or 5.
To give further examples where $\gamma(\sigma)$ can be computed, we fix a particular representation of A as follows. Since A is assumed to be split by Z, it is Brauer-equivalent to a quaternion k-algebra Q containing Z. We choose a quaternion basis $1, i, j$, ij of Q such that $Z=k(i)$. Let $A=\operatorname{End}_{Q} U$ for some
right Q-vector space U, and let σ be the adjoint involution of a skew-hermitian form h on U with respect to the conjugation involution on Q. For $x, y \in U$, we decompose

$$
h(x, y)=f(x, y)+j g(x, y) \quad \text { with } f(x, y), g(x, y) \in Z
$$

It is easily verified that f (resp. g) is a skew-hermitian (resp. symmetric bilinear) form on U viewed as a Z-vector space. (See 18, Chapter 10, Lemma 3.1].) We have

$$
A \otimes_{k} Z=\left(\operatorname{End}_{Q} U\right) \otimes_{k} Z=\operatorname{End}_{Z} U
$$

Moreover, for $x, y \in U$ and $\varphi \in \operatorname{End}_{Q} U$, the equation

$$
h(x, \varphi(y))=h(\sigma(\varphi)(x), y)
$$

implies

$$
g(x, \varphi(y))=g(\sigma(\varphi)(x), y)
$$

hence $\sigma \otimes_{k} \operatorname{Id}_{Z}$ is adjoint to g.
Proposition 4.3. With the notation above,

$$
[C(A, \sigma)]=[C(U, g)] \quad \text { in } \operatorname{Br} Z .
$$

Proof. Since $\sigma \otimes \operatorname{Id}_{Z}$ is the adjoint involution of g,

$$
\begin{equation*}
C\left(A \otimes_{k} Z, \sigma \otimes \operatorname{Id}_{Z}\right) \simeq C_{0}(U, g) \tag{12}
\end{equation*}
$$

Now, $\operatorname{disc} \sigma$ is a square in Z, hence $C_{0}(U, g)$ decomposes into a direct product

$$
\begin{equation*}
C_{0}(U, g) \simeq C^{\prime} \times C^{\prime \prime} \tag{13}
\end{equation*}
$$

where $C^{\prime}, C^{\prime \prime}$ are central simple Z-algebras Brauer-equivalent to $C(U, g)$. The proposition follows from (11), (12), and (13).

To give an explicit description of g, consider an h-orthogonal basis $\left(e_{1}, \ldots, e_{n}\right)$ of U. In the corresponding diagonalization of h,

$$
h \simeq\left\langle u_{1}, \ldots, u_{n}\right\rangle
$$

each $u_{\ell} \in Q$ is a pure quaternion, since h is skew-hermitian. Let $u_{\ell}^{2}=a_{\ell} \in k^{\times}$ for $\ell=1, \ldots, n$. Then

$$
\operatorname{disc} \sigma=(-1)^{n} \operatorname{Nrd}\left(u_{1}\right) \ldots \operatorname{Nrd}\left(u_{n}\right)=a_{1} \ldots a_{n}
$$

so we may assume $i^{2}=a_{1} \ldots a_{n}$. Write

$$
\begin{equation*}
u_{\ell}=\mu_{\ell} i+j v_{\ell} \quad \text { where } \mu_{\ell} \in k \text { and } v_{\ell} \in Z \tag{14}
\end{equation*}
$$

Each $e_{\ell} Q$ is a 2 -dimensional Z-vector space, and we have a g-orthogonal decomposition

$$
U=e_{1} Q \oplus \cdots \oplus e_{n} Q
$$

If $v_{\ell}=0$, then $g\left(e_{\ell}, e_{\ell}\right)=0$, hence $e_{\ell} Q$ is hyperbolic. If $v_{\ell} \neq 0$, then $\left(e_{\ell}, e_{\ell} u_{\ell}\right)$ is a g-orthogonal basis of $e_{\ell} Q$, which yields the following diagonalization of the restriction of g :

$$
\left\langle v_{\ell},-a_{\ell} v_{\ell}\right\rangle .
$$

Therefore,

$$
\begin{equation*}
g=g_{1}+\cdots+g_{n} \tag{15}
\end{equation*}
$$

where

$$
g_{\ell}= \begin{cases}0 & \text { if } v_{\ell}=0 \tag{16}\\ \left\langle v_{\ell}\right\rangle\left\langle 1,-a_{\ell}\right\rangle & \text { if } v_{\ell} \neq 0\end{cases}
$$

We now consider in more detail the cases $n=2$ and $n=3$.

4.1 Algebras of degree 4

Suppose $\operatorname{deg} A=4$, i.e., $n=2$, and use the same notation as above. If $v_{1}=0$, then squaring each side of (14) yields $a_{1}=\mu_{1}^{2} a_{1} a_{2}$, hence $a_{2} \in k^{\times 2}$, a contradiction since Q is assumed to be a division algebra. The case $v_{2}=0$ leads to the same contradiction. Therefore, we necessarily have $v_{1} \neq 0$ and $v_{2} \neq 0$. By (15) and (16),

$$
g=\left\langle v_{1}\right\rangle\left\langle 1,-a_{1}\right\rangle+\left\langle v_{2}\right\rangle\left\langle 1,-a_{2}\right\rangle,
$$

hence by \& 8 , p. 121],

$$
\begin{align*}
{[C(A, \sigma)] } & =\left(a_{1}, v_{1}\right)_{Z}+\left(a_{2}, v_{2}\right)_{Z}+\left(a_{1}, a_{2}\right)_{Z} \\
& =\left(a_{1},-v_{1} v_{2}\right)_{Z} \tag{17}
\end{align*}
$$

Since the division algebra Q contains the pure quaternions u_{1}, u_{2} and i with $u_{1}^{2}=a_{1}, u_{2}^{2}=a_{2}$ and $i^{2}=a_{1} a_{2}$, we have $a_{1}, a_{2}, a_{1} a_{2} \notin k^{\times 2}$ and we may consider the field extension

$$
L=k\left(\sqrt{a_{1}}, \sqrt{a_{2}}\right) .
$$

We identify Z with a subfield of L by choosing in L a square root of $a_{1} a_{2}$, and denote by ρ_{1}, ρ_{2} the automorphisms of L / k defined by

$$
\begin{array}{ll}
\rho_{1}\left(\sqrt{a_{1}}\right)=-\sqrt{a_{1}}, & \rho_{2}\left(\sqrt{a_{1}}\right)=\sqrt{a_{1}} \\
\rho_{1}\left(\sqrt{a_{2}}\right)=\sqrt{a_{2}}, & \rho_{2}\left(\sqrt{a_{2}}\right)=-\sqrt{a_{2}}
\end{array}
$$

Thus, $Z \subset L$ is the subfield of $\rho_{1} \circ \rho_{2}$-invariant elements. Let $j^{2}=b$. Then (14) yields

$$
a_{1}=\mu_{1}^{2} a_{1} a_{2}+b N_{Z / k}\left(v_{1}\right), \quad a_{2}=\mu_{2}^{2} a_{1} a_{2}+b N_{Z / k}\left(v_{2}\right)
$$

hence $N_{Z / k}\left(-v_{1} v_{2}\right)=a_{1} a_{2} b^{-2}\left(1-\mu_{1}^{2} a_{2}\right)\left(1-\mu_{2}^{2} a_{1}\right)$ and

$$
\frac{-v_{1} v_{2}}{\rho_{1}\left(-v_{1} v_{2}\right)}=\frac{-v_{1} v_{2}}{\rho_{2}\left(-v_{1} v_{2}\right)}=\frac{a_{1} a_{2}}{b^{2} \rho_{1}\left(-v_{1} v_{2}\right)^{2}}\left(1-\mu_{1}^{2} a_{2}\right)\left(1-\mu_{2}^{2} a_{1}\right)
$$

Since $L=Z\left(\sqrt{a_{1}}\right)=Z\left(\sqrt{a_{2}}\right)$, it follows that $1-\mu_{1}^{2} a_{2}$ and $1-\mu_{2}^{2} a_{1}$ are norms from L / Z. Therefore, the preceding equation yields

$$
\frac{-v_{1} v_{2}}{\rho_{1}\left(-v_{1} v_{2}\right)}=\frac{-v_{1} v_{2}}{\rho_{2}\left(-v_{1} v_{2}\right)}=N_{L / Z}(\ell) \quad \text { for some } \ell \in L^{\times} .
$$

Since $N_{Z / k}\left(-v_{1} v_{2} \rho_{1}\left(-v_{1} v_{2}\right)^{-1}\right)=1$, we have $N_{L / k}(\ell)=1$. By Hilbert's Theorem 90 , there exists $b_{1} \in L^{\times}$such that

$$
\begin{equation*}
\rho_{1}\left(b_{1}\right)=b_{1} \quad \text { and } \quad b_{1} \rho_{2}\left(b_{1}\right)^{-1}=\ell \rho_{1}(\ell) \tag{18}
\end{equation*}
$$

Set $b_{2}=-v_{1} v_{2} \rho_{1}(\ell) b_{1}^{-1}$. Computation yields

$$
\begin{equation*}
\rho_{2}\left(b_{2}\right)=b_{2} \quad \text { and } \quad \rho_{1}\left(b_{2}\right) b_{2}^{-1}=\ell \rho_{2}(\ell) \tag{19}
\end{equation*}
$$

Define an algebra E over k by

$$
E=L \oplus L r_{1} \oplus L r_{2} \oplus L r_{1} r_{2}
$$

where the multiplication is defined by

$$
\begin{aligned}
& r_{1} x=\rho_{1}(x) r_{1}, \quad r_{2} x=\rho_{2}(x) r_{2} \quad \text { for } x \in L, \\
& r_{1}^{2}=b_{1}, \quad r_{2}^{2}=b_{2}, \quad \text { and } \quad r_{1} r_{2}=\ell r_{2} r_{1} .
\end{aligned}
$$

Since b_{1}, b_{2} and ℓ satisfy (18) and (19), the algebra E is a crossed product, see [11). It is thus a central simple k-algebra of degree 4.

Proposition 4.4. With the notation above, we may choose $\gamma(\sigma)=[E] \in \operatorname{Br} k$.
Proof. The centralizer $C_{E} Z$ of Z in E is $L \oplus L r_{1} r_{2}$. Computation shows that

$$
\left(r_{1} r_{2}\right)^{2}=-v_{1} v_{2}
$$

Since conjugation by $r_{1} r_{2}$ maps $\sqrt{a_{1}} \in L$ to its opposite, it follows that

$$
C_{E} Z=\left(a_{1},-v_{1} v_{2}\right)_{Z}
$$

Since $\left[C_{E} Z\right]=[E]_{Z}$, the proposition follows from (17).

Corollary 4.5. Let

$$
E_{+}=C_{E} Z=\left\{x \in E^{\times} \mid x z=z x \text { for all } z \in Z\right\}
$$

and

$$
E_{-}=\left\{x \in E^{\times} \mid x z=\rho_{1}(z) x \text { for all } z \in Z\right\}
$$

Then

$$
G_{+}(A, \sigma)=k^{\times 2} \operatorname{Nrd}_{E}\left(E_{+}\right) \quad \text { and } \quad G_{-}(A, \sigma)=k^{\times 2} \operatorname{Nrd}_{E}\left(E_{-}\right)
$$

Proof. As observed in the proof of Proposition 4.4, $C_{E} Z \simeq C(A, \sigma)$. Since, by [5. Corollary 5, p. 150],

$$
\operatorname{Nrd}_{E}(x)=N_{Z / k}\left(\operatorname{Nrd}_{C_{E} Z} x\right) \quad \text { for } x \in C_{E} Z
$$

the description of $G_{+}(A, \sigma)$ above follows from (15.11)] (see also Corollary 2.1).
To prove $k^{\times 2} \operatorname{Nrd}_{E}\left(E_{-}\right) \subset G_{-}(A, \sigma)$, it obviously suffices to prove $\operatorname{Nrd}_{E}\left(E_{-}\right) \subset$ $G_{-}(A, \sigma)$. From the definition of E, it follows that $r_{1} \in E_{-}$. By [10, p. 80],

$$
\begin{equation*}
\operatorname{Nrd}_{E}\left(r_{1}\right) \cdot[E]=0 \quad \text { in } H^{3} k \tag{20}
\end{equation*}
$$

Let $L_{1} \subset L$ be the subfield fixed under ρ_{1}. We have $r_{1}^{2}=b_{1} \in L_{1}$, hence

$$
\operatorname{Nrd}_{E}\left(r_{1}\right)=N_{L_{1} / k}\left(b_{1}\right)
$$

On the other hand, the centralizer of L_{1} is

$$
C_{E} L_{1}=L \oplus L r_{1} \simeq\left(a_{1} a_{2}, b_{1}\right)_{L_{1}}
$$

hence

$$
\begin{equation*}
\left[N_{L_{1} / k}\left(C_{E} L_{1}\right)\right]=\left(a_{1} a_{2}, N_{L_{1} / k}\left(b_{1}\right)\right)_{k}=\operatorname{Nrd}_{E}\left(r_{1}\right) \cdot \operatorname{disc} \sigma \quad \text { in } H^{2} k \tag{21}
\end{equation*}
$$

Since $\left[C_{E} L_{1}\right]=\left[E_{L_{1}}\right]$, we have $\left[N_{L_{1} / k}\left(C_{E} L_{1}\right)\right]=2[E]$. But $2[E]=2 \gamma(\sigma)=[A]$ by (7), hence (21) yields

$$
\begin{equation*}
\operatorname{Nrd}_{E}\left(r_{1}\right) \cdot \operatorname{disc} \sigma=[A] \quad \text { in } H^{2} k \tag{22}
\end{equation*}
$$

From (20), (22) and Theorems 1. 2 it follows that $\operatorname{Nrd}_{E}\left(r_{1}\right) \in G_{-}(A, \sigma)$.
Now, suppose $x \in E_{-}$. Then $r_{1} x \in E_{+}$, hence $\operatorname{Nrd}_{E}\left(r_{1} x\right) \in G_{+}(A, \sigma)$ by the first part of the corollary. Since

$$
G_{+}(A, \sigma) G_{-}(A, \sigma)=G_{-}(A, \sigma)
$$

it follows that

$$
\operatorname{Nrd}_{E}(x) \in \operatorname{Nrd}_{E}\left(r_{1}\right) G_{+}(A, \sigma)=G_{-}(A, \sigma)
$$

We have thus proved $k^{\times 2} \operatorname{Nrd}_{E}\left(E_{-}\right) \subset G_{-}(A, \sigma)$.
To prove the reverse inclusion, consider $\lambda \in G_{-}(A, \sigma)$. Since

$$
G_{-}(A, \sigma) G_{-}(A, \sigma)=G_{+}(A, \sigma)
$$

we have $\lambda \operatorname{Nrd}_{E}\left(r_{1}\right) \in G_{+}(A, \sigma)$, hence by the first part of the corollary,

$$
\lambda \operatorname{Nrd}_{E}\left(r_{1}\right) \in k^{\times 2} \operatorname{Nrd}_{E}\left(E_{+}\right)
$$

It follows that

$$
\lambda \in k^{\times 2} \operatorname{Nrd}_{E}\left(r_{1} E_{+}\right)=k^{\times 2} \operatorname{Nrd}_{E}\left(E_{-}\right) .
$$

4.2 Algebras of degree 6

Suppose $\operatorname{deg} A=6$, i.e., $n=3$, and use the same notation as in the beginning of this section. If σ (i.e., h) is isotropic, then h is Witt-equivalent to a rank 1 skew-hermitian form, say $\langle u\rangle$. Hence $i^{2}=\operatorname{disc} \sigma=u^{2} \in k^{\times}$. Hence we may assume that h is Witt-equivalent to the rank 1 skew-hermitian form $\langle\mu i\rangle$ for some $\mu \in k^{\times}$. This implies that the form g is hyperbolic and $C(U, g)$ is split. Hence we may choose $\gamma(\sigma)=0$. By Theorem 4 , we then have $\lambda \in G(A, \sigma)$ if and only if λ. disc $\sigma=0$ in $\left(H^{2} k\right) / A$. If σ becomes isotropic over Z, the form g is isotropic, hence we may choose a diagonalization of h

$$
h \simeq\left\langle u_{1}, u_{2}, u_{3}\right\rangle
$$

such that $g\left(u_{3}, u_{3}\right)=0$, i.e., in the notation of (14), $u_{3}=\mu_{3} i$. Raising each side to the square, we obtain

$$
a_{3}=\mu_{3}^{2} a_{1} a_{2} a_{3},
$$

hence $a_{1} \equiv a_{2} \bmod k^{\times 2}$. It follows that u_{2} is conjugate to a scalar multiple of u_{1}, i.e., there exists $x \in Q^{\times}$and $\theta \in k^{\times}$such that

$$
u_{2}=\theta x u_{1} x^{-1}=\theta \operatorname{Nrd}_{Q}(x)^{-1} x u_{1} \bar{x} .
$$

Since $\left\langle u_{1}\right\rangle \simeq\left\langle x u_{1} \bar{x}\right\rangle$, we may let $\nu=-\theta \operatorname{Nrd}(x)^{-1} \in k^{\times}$to obtain

$$
h \simeq\left\langle u_{1},-\nu u_{1}, \mu_{3} i\right\rangle .
$$

If $v_{1}=0$, then g is hyperbolic, hence we may choose $\gamma(\sigma)=0$ by Proposition 4.1. If $v_{1} \neq 0$, then (15) and (16) yield

$$
g=\left\langle v_{1}\right\rangle\left\langle 1,-a_{1}\right\rangle+\left\langle-\nu v_{1}\right\rangle\left\langle 1,-a_{1}\right\rangle=\left\langle v_{1}\right\rangle\left\langle\left\langle a_{1}, \nu\right\rangle\right\rangle .
$$

The Clifford algebra of g is the quaternion algebra $\left(a_{1}, \nu\right)_{Z}$, hence we may choose

$$
\gamma(\sigma)=\left(a_{1}, \nu\right)_{k}
$$

Suppose finally that σ does not become isotropic over Z, hence $v_{1}, v_{2}, v_{3} \neq 0$. Then

$$
g=\left\langle v_{1}\right\rangle\left\langle 1,-a_{1}\right\rangle+\left\langle v_{2}\right\rangle\left\langle 1,-a_{2}\right\rangle+\left\langle v_{3}\right\rangle\left\langle 1,-a_{3}\right\rangle
$$

and, by Proposition 4.3,
$[C(A, \sigma)]=\left(a_{1}, v_{1}\right)_{Z}+\left(a_{2}, v_{2}\right)_{Z}+\left(a_{3}, v_{3}\right)_{Z}+\left(a_{1}, a_{2}\right)_{Z}+\left(a_{1}, a_{3}\right)_{Z}+\left(a_{2}, a_{3}\right)_{Z}$.
Since $Z=k\left(\sqrt{a_{1} a_{2} a_{3}}\right)$, the right side simplifies to

$$
\begin{equation*}
[C(A, \sigma)]=\left(a_{1}, v_{1} v_{3}\right)_{Z}+\left(a_{2}, v_{2} v_{3}\right)_{Z}+\left(a_{1}, a_{2}\right)_{Z}+\left(a_{1} a_{2},-1\right)_{Z} \tag{23}
\end{equation*}
$$

By [7. (9.16)], $N_{Z / k} C(A, \sigma)$ is split, hence

$$
\left(a_{1}, N_{Z / k}\left(v_{1} v_{3}\right)\right)_{k}=\left(a_{2}, N_{Z / k}\left(v_{2} v_{3}\right)\right)_{k} \quad \text { in } \operatorname{Br} k .
$$

By the "common slot lemma" (see for instance [2, Lemma 1.7]), there exists $\alpha \in k^{\times}$such that

$$
\begin{aligned}
\left(a_{1}, N_{Z / k}\left(v_{1} v_{3}\right)\right)_{k}=\left(\alpha, N_{Z / k}\left(v_{1} v_{3}\right)\right)_{k} & = \\
& \left(\alpha, N_{Z / k}\left(v_{2} v_{3}\right)\right)_{k}=\left(a_{2}, N_{Z / k}\left(v_{2} v_{3}\right)\right)_{k}
\end{aligned}
$$

Then

$$
\left(\alpha a_{1}, N_{Z / k}\left(v_{1} v_{3}\right)\right)_{k}=\left(\alpha a_{2}, N_{Z / k}\left(v_{2} v_{3}\right)\right)_{k}=\left(\alpha, N_{Z / k}\left(v_{1} v_{2}\right)\right)_{k}=0
$$

By [21, (2.6)], there exist $\beta_{1}, \beta_{2}, \beta_{3} \in k^{\times}$such that

$$
\begin{aligned}
\left(\alpha a_{1}, v_{1} v_{3}\right)_{Z}=\left(\alpha a_{1}, \beta_{1}\right)_{Z}, & \left(\alpha a_{2}, v_{2} v_{3}\right)_{Z}=\left(\alpha a_{2}, \beta_{2}\right)_{Z}, \\
\left(\alpha, v_{1} v_{2}\right)_{Z}= & \left(\alpha, \beta_{3}\right)_{Z} .
\end{aligned}
$$

Since

$$
\left(a_{1}, v_{1} v_{3}\right)_{Z}+\left(a_{2}, v_{2} v_{3}\right)_{Z}=\left(\alpha a_{1}, v_{1} v_{3}\right)_{Z}+\left(\alpha a_{2}, v_{2} v_{3}\right)_{Z}+\left(\alpha, v_{1} v_{2}\right)_{Z}
$$

it follows from (23) that

$$
[C(A, \sigma)]=\left(\alpha a_{1}, \beta_{1}\right)_{Z}+\left(\alpha a_{2}, \beta_{2}\right)_{Z}+\left(\alpha, \beta_{3}\right)_{Z}+\left(a_{1}, a_{2}\right)_{Z}+\left(a_{1} a_{2},-1\right)_{Z}
$$

We may thus take

$$
\begin{aligned}
\gamma(\sigma) & =\left(a_{1}, \beta_{1}\right)_{k}+\left(a_{2}, \beta_{2}\right)_{k}+\left(\alpha, \beta_{1} \beta_{2} \beta_{3}\right)_{k}+\left(a_{1}, a_{2}\right)_{k}+\left(a_{1} a_{2},-1\right)_{k} \\
& =\left(a_{1},-a_{2} \beta_{1}\right)_{k}+\left(a_{2},-\beta_{2}\right)_{k}+\left(\alpha, \beta_{1} \beta_{2} \beta_{3}\right)_{k}
\end{aligned}
$$

References

[1] S. A. Amitsur and D. Saltman, Generic Abelian crossed products and p-algebras, J. Algebra 51 (1978), no. 1, 76-87. MR0491789 (58 \#10988)
[2] J. Kr. Arason, Cohomologische invarianten quadratischer Formen, J. Algebra 36 (1975), no. 3, 448-491. MR0389761 (52 \#10592)
[3] J. Kr. Arason, R. Elman and B. Jacob, Fields of cohomological 2dimension three, Math. Ann. 274 (1986), no. 4, 649-657. MR0848510 ($87 \mathrm{~m}: 12006$)
[4] I. Dejaiffe, Formes antihermitiennes devenant hyperboliques sur un corps de déploiement, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), no. 2, 105-108. MR1813765 (2001m:11054)
[5] P. K. Draxl, Skew fields, Cambridge Univ. Press, Cambridge, 1983. MR0696937 (85a:16022)
[6] S. Eilenberg and S. MacLane, Cohomology and Galois theory. I. Normality of algebras and Teichmüller's cocycle, Trans. Amer. Math. Soc. 64 (1948), 1-20. MR0025443 (10,5e)
[7] M.-A. Knus et al., The book of involutions, Amer. Math. Soc., Providence, RI, 1998. MR1632779 (2000a:16031)
[8] T. Y. Lam, The algebraic theory of quadratic forms, W. A. Benjamin, Inc., Reading, Mass., 1973. MR0396410 (53 \#277)
[9] A. S. Merkurjev, On the norm residue symbol of degree 2, Dokl. Akad. Nauk SSSR 261 (1981), no. 3, 542-547. MR0638926 (83h:12015)
[10] A. S. Merkurjev, K-theory of simple algebras, in K-theory and algebraic geometry: connections with quadratic forms and division algebras (Santa Barbara, CA, 1992), 65-83, Proc. Sympos. Pure Math., Part 1, Amer. Math. Soc., Providence, RI. MR1327281 (96f:19004)
[11] A. S. Merkurjev, Certain K-cohomology groups of Severi-Brauer varieties, in K-theory and algebraic geometry: connections with quadratic forms and division algebras (Santa Barbara, CA, 1992), 319-331, Proc. Sympos. Pure Math., Part 2, Amer. Math. Soc., Providence, RI. MR1327307 (96g:19004)
[12] A. S. Merkurjev, R. Parimala and J.-P. Tignol, Invariants of quasi-trivial tori and the Rost invariant, Algebra i Analiz 14 (2002) 110-151; St. Petersburg Math. J. 14 (2003) 791-821.
[13] A. S. Merkurjev and A. A. Suslin, Norm residue homomorphism of degree three, Izv. Akad. Nauk SSSR Ser. Mat. 54 (1990), no. 2, 339-356; translation in Math. USSR-Izv. 36 (1991), no. 2, 349-367. MR1062517 (91f:11083)
[14] A. S. Merkurjev and J.-P. Tignol, The multipliers of similitudes and the Brauer group of homogeneous varieties, J. Reine Angew. Math. 461 (1995), 13-47. MR1324207 (96c:20083)
[15] R. Parimala, R. Sridharan and V. Suresh, Hermitian analogue of a theorem of Springer, J. Algebra 243 (2001), no. 2, 780-789. MR1850658 (2002g:11043)
[16] E. Peyre, Products of Severi-Brauer varieties and Galois cohomology, in K-theory and algebraic geometry: connections with quadratic forms and division algebras (Santa Barbara, CA, 1992), 369-401, Proc. Sympos. Pure Math., Part 2, Amer. Math. Soc., Providence, RI. MR1327310 (96d:19008)
[17] M. Rost, On Hilbert Satz 90 for K_{3} for degree-two extensions, preprint, Regensburg 1986.
http://www.mathematik.uni-bielefeld.de/~rost/K3-86.html
[18] W. Scharlau, Quadratic and Hermitian forms, Springer, Berlin, 1985. MR0770063 (86k:11022)
[19] J.-P. Serre, Corps locaux, Actualités Sci. Indust., No. 1296. Hermann, Paris, 1962. MR0150130 (27 \#133)
[20] J-P. Serre, Cohomologie galoisienne, Fifth edition, Springer, Berlin, 1994. MR1324577 (96b:12010)
[21] J.-P. Tignol, Corps à involution neutralisés par une extension abélienne élémentaire, in The Brauer group (Sem., Les Plans-sur-Bex, 1980), 1-34, Lecture Notes in Math., 844, Springer, Berlin. MR0611863 (82h:16013)
[22] A. Weil, Algebras with involutions and the classical groups, J. Indian Math. Soc. (N.S.) 24 (1960), 589-623 (1961). MR0136682 (25 \#147)

[^2]J.-P. Tignol

Université catholique de Louvain B-1348 Louvain-la-Neuve, Belgium tignol@math.ucl.ac.be

[^0]: ${ }^{1}$ The first author gratefully acknowledges the generous support of the Université catholique de Louvain, Belgium and the ETH-Z, Switzerland.
 ${ }^{2}$ Work supported in part by the European Community's Human Potential Programme under contract HPRN-CT-2002-00287, KTAGS. The second author is supported in part by the National Fund for Scientific Research (Belgium).

[^1]: ${ }^{3}$ The authors are grateful to Parimala for her suggestion to investigate the case of low cohomological dimension.

[^2]: R. Preeti

 Université de Rennes 1
 F-35042 Rennes, France
 preeti.raman@math.univ-rennes1.fr

