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Abstract. Panin and Smirnov deduced the existence of push-forwards,
along projective morphisms, in a cohomology theory with cup products,
from the assumption that the theory is endowed with an extra structure
called orientation. A part of their work is a proof of the Projective Bundle
Theorem in cohomology based on the assumption that we have the first
Chern class for line bundles. In some examples we have to consider a
pair of theories, cohomology and homology, related by a cap product. It
would be useful to construct transfer maps (pull-backs) along projective
morphisms in homology in such a situation under similar assumptions. In
this note we perform the projective bundle theorem part of this project
in homology.
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1. Introduction

Let k be a field and Sm be the category of smooth quasi-projective algebraic
varieties over k. Let P denote the category of pairs (X,U), with X ∈ Sm and
U a Zarisky open in X, where a morphism (X,U) → (X ′, U ′) is a morphism
f : X → X ′ in Sm such that f(U) ⊂ U ′. Sm embeds into P by X 7→ (X, ∅).
For any functor A defined on P, we can compose it with this embedding and
write A(X) for A(X, ∅).
For f : (X,U) → (X ′, U ′) we will denote by fA (resp. fA) the morphism A(f) :
A(X,U) → A(X ′, U ′) (resp. A(f) : A(X ′, U ′) → A(X,U)) if A is covariant
(respectively, contravariant). We will call such maps push-forwards or pull-
backs respectively. Note that the rule (X,U) 7→ (U, ∅) defines an endofunctor
on P.
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Definition. A homology theory over k with values in an abelian category M
is a covariant functor A. : P → M endowed with a natural transformation d :
A.(X,U) → A.(U) called the boundary homomorphism, subject to the following
requirements:
(h1) (Homotopy invariance) The arrow pA : A.(X × A

1) → A.(X) induced by
the projection p : X × A

1 → X is an isomorphism for any X ∈ Sm.
(h2) (Localization sequence) For any (X,U) ∈ P, the sequence

. . . → A.(U) → A.(X) → A.(X,U)
d
−→ A.(U) → A(X) → . . .

is exact.
(h3) (Nisnevich excision) Let (X,U), (X ′, U ′) ∈ P, Z = X − U , and Z ′ =
X ′ − U ′. Then for any étale morphism f : X ′ → X such that f−1(Z) = Z ′

and f : Z ′ → Z is an isomorphism, the map fA : A.(X ′, U ′) → A.(X,U) must
be an isomorphism.

These axioms are dual to the axioms of a cohomology theory given in [PS] and
[PS1].1 The objective of [PS1] is to provide simple conditions under which one
can construct transfer maps (push-forwards) along projective morphisms in a
cohomology theory. This, in its turn, is a prerequisite for the proof of a very
general version of the Riemann-Roch Theorem in [Pa]. All the assumptions
made in [PS] and [Pa] are true for many particular cohomology theories such
as, for instance, K-theory, étale cohomology, higher Chow groups, and the
algebraic cobordism theory introduced by Voevodsky in [V]. We therefore get,
in a very uniform way, the existence of push-forwards and the Riemann-Roch
Theorem in all these theories.
In some situations we have to consider a pair of theories (A·, A.) consisting of
a cohomology and a homology theory related by a cap-product. An impor-
tant example of this is given by motivic cohomology and homology introduced
by Suslin and Voevodsky in [SV]. An ultimate goal in such a situation is to
obtain a Poincaré duality in the sense of [PY] for the pair (A·, A.). Among
the assumptions from which the Poincaré duality is deduced in [PY], there is
the assumption of existence of transfer maps in both A· and A.. However, the
homology part of this, i.e. the verification of existence of transfers (pull-backs)
in homology is still lacking. A general objective in this context is to construct
transfers along projective morphisms in a homology theory starting from simple
assumptions analogous to those made in [PS] for cohomology.
The purpose of this note is to prove the Projective Bundle Theorem in homology
(PBTH), which is a part of the whole program aimed towards the existence of
transfer maps in homology. In Section 2 we provide definitions and state the
main result (PBTH). Its proof is given in Sections 3 and 4.
A similar result was obtained independently by K. Pimenov in a slightly dif-
ferent framework [Pi].

1[PS] is a part of [PS1] which has been published already.
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2. Definitions and the Main Result

Let A. be a homology theory satisfying (h1-h3) and let A· be a cohomology the-
ory in the sense of [PS, Def. 2.0.1]. The latter means that A· is a contravariant
functor P → M equiped with a natural transformation d : A·(U) → A·(X,U)
and satisfying the dual set of axioms that we will call (c1-c3). All the gen-
eral properties of a cohomology theory deduced from (c1-c3) in [PS, Sect. 2.2]
have their duals for a homology theory, obtained by inverting the arrows. In
particular, the Mayer-Vietoris exact sequence in homology and the localization
sequence for a triple can be deduced from (h1-h3).
We will use the “(co)homology with support” notation AZ(X) = A(X,U),
where Z = X − U , for both A. and A·. For simplicity, we will assume that A.

and A· take their values in the category Ab of abelian groups. From now on
we will often write just A for the homology groups, while keeping the upper
dot in the cohomology notation.

2.1. Product structures. We will assume that A· is a ring cohomology
theory in the sense of [PS, Sect. 2.4]. This, in particular, means that A· is
equiped with cup-products

∪ : A·

Z(X) × A·

Z′(X) → A·

Z∩Z′(X)

that are functorial with respect to pull-backs and satisfy the following proper-
ties:
(cup1)(associativity) (a ∪ b) ∪ c = a ∪ (b ∪ c) in A·

Z1∩Z2∩Z3
(X) for any a ∈

A·
Z1

(X), b ∈ A·
Z2

(X), c ∈ A·
Z3

(X).
(cup2) The absolute cohomology groups A·(X) become associative unitary
rings; the pull-back maps fA : A·(X) → A·(Y ) are homomorphisms of such
rings for all f : Y → X.
(cup3) The groups A·

Z(X) become two-sided unitary modules over A·(X) for
all X and closed Z ⊂ X.
We say that a ∈ A·

Z(X) is a central element if a∪ b = b∪ a for any b ∈ A·(X).
We say that a is universally central if fA(a) ∈ A·

Z′(X ′) is central for any
f : (X ′,X ′−Z ′) → (X,X−Z) in P. Note that the notion of a ring cohomology
theory also requires compatibility of cup-products with boundary maps, which
implies compatibility of cup-products with Mayer-Vietoris arguments, etc.
We will also assume that A is a left unitary module over A· in the sense that
we have cap-products

∩ : A·

Z(X) × AZ∩Z′(X) → AZ′(X)
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satisfying the properties:
(cap1) (a∪ b)∩ c = a∩ (b∩ c) in AZ3

(X) for any a ∈ A·
Z1

(X), b ∈ A·
Z2

(X), c ∈
AZ1∩Z2∩Z3

(X).
(cap2) 1 ∩ a = a whenever defined.
(cap3) Let U and U ′ (resp. V and V ′) be Zarisky opens in X (resp. in
Y ). Let Z = X − U, Z ′ = X − U ′, T = Y − V, T ′ = Y − V ′. Then for
any f : (Y, V, V ′) → (X,U,U ′) and any a ∈ A·

Z(X), b ∈ AT∩T ′(Y ), we have
fA(fA(a) ∩ b) = a ∩ fA(b) in AZ′(X).
(cap4) (compatibility with boundary maps)

Chern structure. We will assume that A· is equiped with a Chern structure
in the sense of [PS, Def. 3.2.1], i.e., to any X ∈ Sm and any line bundle L

over X there is assigned a universally central element c(L) ∈ A·(X) called the
(first) Chern class of L, subject to the requirements:
(ch1) Functoriality with respect to pull-backs; c(L) = c(L′) if L ∼= L′ over X.
(ch2) c(1X) = 0 ∈ A·(X), where 1X denotes the trivial line bundle X × A

1

over X, for any X.
(ch3) For any X ∈ Sm, let ξ = c(OX×P1(−1)) ∈ A·(X × P

1), where
OX×P1(−1) = p∗(OP1(−1)), OP1(−1) denotes the tautological line bundle over
P

1, and p : X × P
1 → P

1 is the projection. Define the maps f (0), f (1) :
A·(X) → A·(X × P

1) by f (0) = pA and f (1) = (ξ ∪ −) ◦ pA. Then the map
(f (0), f (1)) : A·(X) ⊕ A·(X) → A·(X × P

1) is an isomorphism.
In the homology, define the maps f0, f1 : A.(X × P

1) → A.(X) by f0 = pA

and f1 = pA ◦ (ξ ∩ −). We will say that we have an extended Chern structure
(extended to homology) if
(ch4) The map (f0, f1) : A.(X × P

1) → A.(X) ⊕ A.(X) is an isomorphism for
any X ∈ Sm.
The axioms (ch3) and (ch4) can be considered as a dim = 1 case of the PBTC
and PBTH accordingly. Our goal is to show that the extended Chern structure
on (A·, A.) implies the following general version of PBTH for A.

Projective Bundle Theorem. Let X be a smooth quasiprojective variety
over k and E a vector bundle over X of rank n + 1. Assume that the pair of
theories (A·, A.) is endowed with a product structure and an extended Chern
structure. Denote P(E) the projectivisation of E, O(−1) the tautological line
bundle over P(E), and let ξ = c(O(−1)) ∈ A·(P(E)) be its Chern class. For

0 ≤ i ≤ n, denote fi = fn,i the composite map A.(P(E))
ξi

∩−
−−−→ A.(P(E))

pA
−→

A.(X), where p : P(E) → X is the natural projection. Then the map

Fn := (f0, f1, . . . , fn) : A.(P(E)) −→ A.(X) ⊕ A.(X) ⊕ . . . ⊕ A.(X)

is an isomorphism.

A crucial reason for which we cannot consider the theory A. separately and must
rather work with the pair (A·, A.) is that ξ lives in the cohomology. However,
everything works smoothly along the same guidelines as in [PS, Sect. 3.3].
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3. Proof: Part I

Localizing and applying the Mayer-Vietoris, we reduce the situation to the case
of a trivial bundle E ∼= X × A

n+1, P(E) ∼= X × P
n. Next we can reduce it to

the case X = pt. We leave it to the reader to check that X ×− can be inserted
throughout the proof. Thus we want to prove that the map

(f0, . . . , fn) : A.(Pn) → A.(pt) ⊕ . . . ⊕ A.(pt)

is an isomorphism.

We proceed by induction on n. Choose homogeneous coordinates [x0 : . . . : xn]
in P

n and introduce the following notation:

(i) 0 = [1 : 0 : . . . : 0] the distinguished point;

(ii) for 0 ≤ i ≤ n, P
n−1
i is the projective hyperplane xi = 0;

(iii) for 1 ≤ i ≤ n, P
1
i is the projective axis on which all xj = 0 for j 6= 0, i;

(iv) A
n
i = P

n − P
n−1
i for 0 ≤ i ≤ n; we will often write just A

n for A
n
0 ;

(v) A
1
i = P

1
i ∩ A

n and A
n−1
i = P

n−1
i ∩ A

n for 1 ≤ i ≤ n.

Consider the localization sequence of the pair (Pn, Pn − 0):

(3.1) . . . → A(Pn − 0)
uA−−→ A(Pn)

vA−→ A0(P
n) → . . . ,

where u : P
n−0 → P

n and v : (Pn, ∅) → (Pn, Pn−0) are the natural maps. Note
that P

n − 0 can be considered as a line bundle over P
n−1
0 , with the projection

map t : P
n − 0 → P

n−1
0 given by [x0 : x1 : . . . : xn] 7→ [0 : x1 : . . . : xn]. Denote

by s : P
n−1
0 → P

n−0 the inclusion map, then by (h1), sA : A(Pn−1
0 ) → A(Pn−0)

and tA : A(Pn − 0) → A(Pn−1
0 ) are inverse isomorphisms. Let u′ : P

n−1
0 → P

n

be the inclusion map, then u′ = us and u′
A = uAsA. Consider the diagram

(3.2)

A(Pn−1
0 )

u′

A−−−−→ A(Pn)

Fn−1





y





y

Fn

⊕n−1
i=0 A(pt)

an−1,n

−−−−→
⊕n

i=0 A(pt)

where an−1,n maps each summand of
⊕n−1

i=0 A(pt) to the same summand in
⊕n

i=0 A(pt) as the identity map, the last summand in the latter group is there-
fore not being covered. We claim that the diagram commutes. For it suffices
to prove that the diagram

A(Pn−1
0 )

u′

A−−−−→ A(Pn)

fn−1,i





y





y

fn,i

A(pt)
1

−−−−→ A(pt)
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commutes for every 0 ≤ i ≤ n − 1 and that fn,nu′
A = 0. The first assertion

follows from the commutativity of the diagram

A(Pn−1
0 )

u′

A−−−−→ A(Pn)

ξi
n−1∩−





y





y
ξi

n∩−

A(Pn−1
0 )

u′

A−−−−→ A(Pn)

which commutes by (cap3) since the restriction of OPn(−1) to P
n−1
0 is isomor-

phic to O
P

n−1
0

(−1) and (u′)A(ξn) = ξn−1. The same diagram with i = n implies

that the composition fn,nu′
A vanishes as ξn

n−1 = 0. (See [PS, Sect. 3.3] for a
standard argument that proves ξn

n−1 = 0.)

Now consider the map an,n−1 :
⊕n

i=0 A(pt) →
⊕n−1

i=0 A(pt) that identically
maps the ith summand to the ith summand for all 0 ≤ i ≤ n− 1 and vanishes
on the nth summand. As an,n−1an−1,n = 1, the commutativity of (3.2) implies
Fn−1 = an,n−1an−1,nFn−1 = an,n−1Fnu′

A. By the inductional hypothesis Fn−1

is an isomorphism, whence u′
A is a split monomorphism, and so is uA as sA is

an isomorphism. This has two important consequences:
(i) (3.1) is in fact a split short exact sequence;
(ii) the map fn,n : A(Pn) → A(pt) factors uniquely through vA.
Denote by g : A0(P

n) → A(pt) the factoring map: fn,n = gvA. The diagram

0 −−−−→ A(Pn−1
0 )

u′

A−−−−→ A(Pn)
vA−−−−→ A0(P

n) −−−−→ 0




y

Fn−1





y

Fn





y

g

0 −−−−→
⊕n−1

i=0 A(pt)
an−1,n

−−−−→
⊕n

i=0 A(pt) −−−−→ A(pt) −−−−→ 0

shows that we will be done as soon as it is proved that g is an isomorphism.
For 1 ≤ i ≤ n, consider the cohomology localization sequence of the pair
(Pn, An

i ):

(3.3) A·

P
n−1
i

(Pn)
vA

i−−→ A·(Pn)
uA

i−−→ A·(An
i ) ,

where ui : A
n
i → P

n and vi : (Pn, ∅) → (Pn, An
i ) are the natural maps. As

A·(An
i ) ∼= A·(pt) by (c1), this is a split short exact sequence, the splitting

for uA
i given by 1 7→ 1. The element ξn ∈ A·(Pn) maps to zero via uA

i as
the restriction of O(−1) to A

n
i is isomorphic to the trivial line bundle. Thus

ξn comes from a uniquely determined element ξ̄n,i ∈ A·

P
n−1
i

(Pn). Note that

P
n−1
1 ∩ . . . ∩ P

n−1
n = {0} and consider the diagram

A·

P
n−1
1

(Pn) ⊕ A·

P
n−1
2

(Pn) ⊕ . . . ⊕ A·

P
n−1
n

(Pn)
∪

−−−−→ A·
0(P

n)

vA
1 ⊕...⊕vA

n





y





yvA

A·(Pn) ⊕ A·(Pn) ⊕ . . . ⊕ A·(Pn)
∪

−−−−→ A·(Pn)
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which commutes since ∪ is compatible with pull-backs. It follows that the
element

t̄hn := ξ̄n,1 ∪ ξ̄n,2 ∪ . . . ∪ ξ̄n,n ∈ A·

0(P
n)

satisfies vA(t̄hn) = ξn
n .

Now apply (cap3), with X = Y = P
n, U = U ′ = P

n−0, V = V ′ = ∅ and f = v,
to a = t̄hn and any b ∈ A(Pn) and get the commutativity of the diagram

A(Pn)
ξn

n∩−

−−−−→ A(Pn) −−−−→ A(pt)

vA





y





y
1





y
1

A0(P
n)

t̄hn∩−
−−−−→ A(Pn) −−−−→ A(pt)

The composition of the top arrows is fn,n. As g is the unique arrow satisfying
fn,n = gvA, we can conclude that g equals the composition of the bottom
arrows.
Let j : A

n → P
n denote the inclusion map, and let ji : (An, An − A

n−1
i ) →

(Pn, Pn − P
n−1
i ), with 1 ≤ i ≤ n, and j̃ : (An, An − 0) → (Pn, Pn − 0) denote

the corresponding maps of pairs. Define ξn,i ∈ A·

A
n−1
i

(An) to be the image of

ξ̄n,i under the map jA
i : A·

P
n−1
i

(Pn) → A·

A
n−1
i

(An). The diagram

A·

P
n−1
1

(Pn) ⊕ . . . ⊕ A·

P
n−1
n

(Pn)
∪

−−−−→ A·
0(P

n)

jA
1 ⊕...⊕jA

n





y





y
j̃A

A·

A
n−1
1

(An) ⊕ . . . ⊕ A·

A
n−1
n

(An)
∪

−−−−→ A·
0(A

n)

shows that the element

thn := ξn,1 ∪ . . . ∪ ξn,n ∈ A·

0(A
n)

satisfies j̃A(t̄hn) = thn.
Consider the diagram

A0(A
n)

thn∩−
−−−−→ A(An)

∼
−−−−→ A(pt)

j̃A





y





y

jA





y
1

A0(P
n)

t̄hn∩−
−−−−→ A(Pn) −−−−→ A(pt)

that commutes by (cap3). Recall that our current goal is to prove that g, which
equals the composition of the bottom arrows in the diagram, is an isomorphism.
As j̃A is an isomorphism by excision and A(An) → A(pt) is an isomorphism by
homotopy invariance, it now suffices to prove that thn ∩ − : A0(A

n) → A(An)
is an isomorphism. This will be done in the next section.
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4. Proof: Part II

First we will obtain another description for the elements ξn,i and thn. Consider
the short exact sequnce

0 −→ A·

0(P
1) −→ A·(P1) −→ A·(P1 − 0) −→ 0 ,

which is the one-dimensional version of (3.3). The element ξ1 = c(O(−1)) ∈
A·(P1) maps to zero and comes therefore from a uniquely determined element
t̄ ∈ A·

0(P
1). Let t ∈ A·

0(A
1) denote its image under the restriction map

A·
0(P

1) → A·
0(A

1). (As the one-dimensional case plays a distinguished role,
we change the notation and denote these elements by t̄ and t.) If we think of
P

1 and A
1 as coordinate axes P

1
i and A

1
i in P

n and A
n accordingly, 1 ≤ i ≤ n,

then we will denote the corresponding elements by t̄i ∈ A·
0(P

1
i ) and ti ∈ A·

0(A
1
i ).

Denote by pri : A
n → A

1
i the projection to the i-th coordinate and consider

the map prA
i : A·

0(A
1
i ) → A·

A
n−1
i

(An). It is proved in [PS] that prA
i (ti) = ξn,i,

and we can therefore rewrite thn in the form

(4.1) thn = prA
1 (t1) ∪ prA

2 (t2) ∪ . . . ∪ prA
n (tn).

(NB: In [PS] thn is defined by the above formula and then it is proved that
prA

i (ti) can be replaced by ξn,i, with a different notation.)
To proceed further we first need to prove a technical lemma which is the ho-
mology counterpart of [PS, Lemma 3.3.2]. Let Y ∈ Sm and Z ⊂ Y be a closed
subset. Let p : Y × A

1 → Y and pr : Y × A
1 → A

1 denote the projections.
Consider the map prA : A·

0(A
1) → A·

Y ×0(Y × A
1) and the image prA(t) of

t ∈ A·
0(A

1) under this map. The cap-product

∩ : A·

Y ×0(Y × A
1) × AZ×0(Y × A

1) → AZ×A1(Y × A
1)

induces the map prA(t) ∩ − : AZ×0(Y × A
1) → AZ×A1(Y × A

1).

Lemma. The map prA(t) ∩ − : AZ×0(Y × A
1) → AZ×A1(Y × A

1) is an iso-
morphism.

Proof. As pA : AZ×A1(Y × A
1) → AZ(Y ) is an isomorphism by (h1), the

assertion of the lemma is equivalent to the claim that the composed map

T := pA ◦ (prA(t) ∩ −) : AZ×0(Y × A
1) → AZ(Y )

is an isomorphism. It is this claim that we will actually prove.
We will make use of the localization sequence of the triple (Y × P

1, Y × P
1 −

Z × 0, (Y − Z) × P
1):

(4.2)

. . . −→ AZ×A1
∞

(Y ×P
1 −Z × 0)

αA−−→ AZ×P1(Y ×P
1)

βA
−−→ AZ×0(Y ×P

1) −→ . . . ,

where A
1
∞ := P

1−0 and α and β are the corresponding inclusion maps of pairs.
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Consider the inclusion i : (Y × A
1
∞, (Y − Z) × A

1
∞) → (Y × P

1 − Z × 0, (Y −
Z) × P

1). One checks that i satisfies the excision conditions (Zarisky version),
whence iA : AZ×A1

∞

(Y × A
1
∞) → AZ×A1

∞

(Y × P
1 − Z × 0) is an isomorphism.

Let p̃ : (Y × P
1 − Z × 0, (Y − Z) × P

1) → (Y, Y − Z) and p′ = p̃i : (Y ×
A

1
∞, (Y −Z)×A

1
∞) → (Y, Y −Z) be the projections. As p′A is an isomorphism

by (h1), p′A = p̃AiA shows that p̃A : AZ×A1
∞

(Y × P
1 − Z × 0) → AZ(Y ) is an

isomorphism too.

Let p̄ : (Y ×P
1, (Y −Z)×P

1) → (Y, Y −Z) denote the projection. Then p̃ = p̄α

and p̃A = p̄AαA, which implies that αA is a split monomorphism. It follows
that βA is surjective and (4.2) is a short exact sequence.

Let p̄r : Y × P
1 → P

1 denote the projection. Consider the diagram

(4.3)

A·
0(P

1) −−−−→ A·(P1)

p̄rA





y





y
p̄rA

A·
Y ×0(Y × P

1) −−−−→ A·(Y × P
1)

and the cap-products

∩ : A·

Y ×0(Y × P
1) × AZ×0(Y × P

1) → AZ×P1(Y × P
1)

∩ : A·(Y × P
1) × AZ×P1(Y × P

1) → AZ×P1(Y × P
1) .

The element p̄rA(t̄) maps to p̄rA(ξ1) via the bottom arrow in (4.3). By (cap3),
it follows that the diagram

(4.4)

AZ×P1(Y × P
1)

βA
−−−−→ AZ×0(Y × P

1)

p̄rA(ξ1)∩−





y





y
p̄rA(t̄)∩−

AZ×P1(Y × P
1)

1
−−−−→ AZ×P1(Y × P

1)

commutes. Denote T̄ = p̄A◦(p̄rA(t̄)∩−), fZ
0 = p̄A, and fZ

1 = p̄A◦(p̄rA(ξ1)∩−).
We are now prepared to consider the diagram

AZ×A1
∞

(Y × P
1 − Z × 0)

αA−−−−→ AZ×P1(Y × P
1)

βA
−−−−→ AZ×0(Y × P

1)

p̃A





y





y

(

fZ
0

fZ
1

)





yT̄

AZ(Y )

(

1

0

)

−−−−→ AZ(Y ) ⊕ AZ(Y )
(0,1)

−−−−→ AZ(Y )

where the rows are short exact sequences, with undisplayed zeros on both sides.
The right square commutes since (4.4) commutes. To prove the commutativity
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on the left we must check that fZ
1 αA = 0 (recall that p̄AαA = p̃A). Consider

the diagram

AZ×A1
∞

(Y × A
1
∞)

αAiA−−−−→ AZ×P1(Y × P
1)

iA(p̄rA(ξ1))∩−





y





y
p̄rA(ξ1)∩−

AZ×A1
∞

(Y × A
1
∞)

αAiA−−−−→ AZ×P1(Y × P
1)

which commutes by (cap3). But iA(p̄rA(ξ1)) ∈ A·(Y ×A
1
∞) vanishes as O(−1)

restricted to A
1 is trivial. Thus (p̄rA(ξ1) ∩ −)αAiA = 0. As iA is an isomor-

phism, (p̄rA(ξ1)∩−)αA = 0, whence fZ
1 αA = 0 and the big diagram commutes.

Now we claim that the arrow
(

fZ
0

fZ
1

)

is an isomorphism. The absolute (without

supports) version of this is postulated in (ch4). The ‘with supports’ version
can be deduced from (ch4) by applying the five-lemma to obvious localiza-
tion sequences. Recall that p̃A is an isomorphism and conclude that T̄ is an
isomorphism.
To complete the proof, consider the diagram

AZ×0(Y × A
1)

prA(t)∩−

−−−−−−→ AZ×A1(Y × A
1) −−−−→ AZ(Y )





y





y





y
1

AZ×0(Y × P
1)

p̄rA(t̄)∩−

−−−−−−→ AZ×P1(Y × P
1) −−−−→ AZ(Y )

where A
1 now denotes P

1 − ∞ (as opposed to A
1
∞). It commutes by (cap3)

as p̄rA(t̄) maps to prA(t) via the map A·
Y ×0(Y × P

1) → A·
Y ×0(Y × A

1). The

top composition is T , the bottom one is T̄ , and the left vertical arrow is an
isomorphism by excision. We conclude that T is an isomorphism. The lemma
is proved.

Define A
(k) to be the k-dimensional affine subspace of A

n given by x1 = . . . =
xn−k = 0, for 0 ≤ k ≤ n. Then A

(k+1) ∩ A
n−1
n−k = A

(k). By (4.1) and (cap1),
the map thn ∩ − : A0(A

n) → A(An) can be decomposed as

A0(A
n)

prA
n (tn)∩−

−−−−−−−→ AA(1)(An)
prA

n−1(tn−1)∩−

−−−−−−−−−−→ AA(2)(An)
prA

n−2(tn−2)∩−

−−−−−−−−−−→

. . .
prA

1 (t1)∩−

−−−−−−−→ A(An) .

A generic step of this decomposition is a map

(4.5) prA
n−k(tn−k) : AA(k)(An) → AA(k+1)(An) .

In the notation of the lemma, put Y = A
n−1
n−k, Z = A

(k), and think of A
1 as

A
1
n−k. Then Y × A

1 can be identified with A
n, Z × A

1 with A
(k+1), prA(t)

becomes prA
n−k(tn−k), and we get that (4.5) is an isomorphism. The theorem

is proved.

Applying (h2) we obtain
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Corollary (PBTH with supports). If Z is a closed subvariety in a smooth
X, E is a vector bundle over X of rank n + 1, and EZ is its restriction to Z,
then the map

Fn = (f0, . . . , fn) : AP(EZ)(P(E)) → AZ(X) ⊕ . . . ⊕ AZ(X)

defined the same way as Fn in PBTH is an isomorphism.
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