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Abstract. In [24] Matsumoto associated to each shift space (also
called a subshift) an Abelian group which is now known as Mat-
sumoto’s K0-group. It is defined as the cokernel of a certain map
and resembles the first cohomology group of the dynamical system
which has been studied in for example [2], [28], [13], [16] and [11]
(where it is called the dimension group).

In this paper, we will for shift spaces having a certain property (∗),
show that the first cohomology group is a factor group of Matsumoto’s
K0-group. We will also for shift spaces having an additional property
(∗∗), describe Matsumoto’s K0-group in terms of the first cohomol-
ogy group and some extra information determined by the left special
elements of the shift space.

We determine for a broad range of different classes of shift spaces if
they have property (∗) and property (∗∗) and use this to show that
Matsumoto’s K0-group and the first cohomology group are isomorphic
for example for finite shift spaces and for Sturmian shift spaces.

Furthermore, the ground is laid for a description of the Matsumoto
K0-group as an ordered group in a forthcoming paper.
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1 Introduction

Invariants for symbolic dynamical systems in the form of Abelian groups have
a fruitful history. Important examples are the dimension group defined by
Krieger in [19] and [20], and the Bowen-Franks group defined in [1] by Bowen
and Franks.

In [24] Matsumoto generalized the definition of dimension groups and Bowen-
Franks groups to the whole class of shift spaces and introduced what is now
known as Matsumoto’s K-groups.

In another direction, Putnam [29], Herman, Putnam and Skau [16], Giordano,
Putnam and Skau [15], Durand, Host and Skau [11] and Forrest [13] studied
what they called the dimension group (it is not the same as Krieger’s or Mat-
sumoto’s dimension group) for Cantor minimal systems. The same group has
for a broader class of topological dynamical systems been studied in [2], [28]
and [27] where it is shown that it is the first cohomology group of the standard
suspension of the dynamical system in question.

It turns out that Matsumoto’s K0-group and the first cohomology group are
closely related. We will for shift spaces having a certain property (∗), show
that the first cohomology group is a factor group of Matsumoto’s K0-group,
and we will also for shift spaces having an additional property (∗∗), describe
Matsumoto’s K0-group in terms of the first cohomology group and some extra
information determined by the left special elements of the shift space.

We will for a broad range of different classes of shift spaces, which includes
shift of finite types, finite shift spaces, Sturmian shift spaces, substitution shift
spaces and Toeplitz shift spaces, determine if they have property (∗) and prop-
erty (∗∗). This will allow us to show that Matsumoto’s K0-group and the first
cohomology group are isomorphic for example for finite shift spaces and for
Sturmian shift spaces and to describe Matsumoto’s K0-group for substitution
shift spaces in such a way that we in [8] can for every shift space associated
with a aperiodic and primitive substitution present Matsumoto’s K0-group as
a stationary inductive limit of a system associated to an integer matrix defined
from combinatorial data which can be computed in an algorithmic way (cf. [6],
[7]).

Since both Matsumoto’s K0-group and the first cohomology group are K0-
groups of certain C∗-algebras they come with a natural (pre)order structure.
All the results presented in this paper hold not just in the category of Abelian
groups, but also in the category of preordered groups. Since we do not know
how to prove this without involving C∗-algebras we have decided to defer this
to [9], where we also show that Matsumoto’s K0-group with order is a finer
invariant than Matsumoto’s K0-group without order.

We wish to thank Yves Lacroix for helping us understand Toeplitz sequences
and the referee for constructive criticism.
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2 Preliminaries and notation

Throughout this paper Z will denote the set of integers, N0 will denote the set
of non-negative integers and −N will denote the negative integers.
The symbol Id will always denote the identity map. For a map φ between two
sets X and Y , we will by φ? denote the map which maps a function f on Y to
the function f ◦ φ on X.
Let a be a finite set of symbols, and let a

] denote the set of finite, nonempty
words with letters from a. Thus with ε denoting the empty word, ε 6∈ a

]. By
|µ| we denote the length of a finite word µ (i.e. the number of letters in µ).
The length of ε is 0.

2.1 Shift spaces

We equip
a

Z, aN0 , a−N

with the product topology from the discrete topology on a. We will strive to
denote elements of a

Z by z, elements of a
N0 by x and elements of a

−N by y. If
x ∈ a

N0 and y ∈ a
−N, then we will by y.x denote the element z of a

Z where

zn =

{
yn if n < 0,

xn if n ≥ 0.

We define σ : a
Z → a

Z, σ+ : a
N0 → a

N0 , and σ− : a
−N → a

−N by

(σ(z))n = zn+1 (σ+(x))n = xn+1 (σ−(y))n = yn−1.

Such maps we will refer to as shift maps.
A shift space is a closed subset of a

Z which is mapped into itself by σ. We shall
refer to such spaces by “X”.
With the obvious restriction maps

π+ : X → a
N0 π− : X → a

−N

we get
σ+ ◦ π+ = π+ ◦ σ σ− ◦ π− = π− ◦ σ−1.

We denote π+(X), respectively π−(X), by X+, respectively X−, and notice that
σ+(X+) = X+ and σ−(X−) = X−. For z ∈ a

Z and n ∈ Z, we write

z[n,∞[ = π+(σn(z)) and z]−∞,n[ = π−(σn(z)).

The language of a shift space is the subset of a
] ∪ {ε} given by

L(X) = {z[n,m] | z ∈ X, n ≤ m ∈ Z}

where the interval subscript notation should be self-explanatory. A compact-
ness argument shows that an element z ∈ a

Z (respectively z ∈ a
N0 , z ∈ a

−N)
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is in X (respectively X+, X−) if and only if z[n,m] ∈ L(X) for all n < m ∈ Z

(respectively n < m ∈ N0, n < m ∈ −N) (cf. [21, Corollary 1.3.5 and Theorem
6.1.21]).
We say that shift spaces are conjugate, denoted by “'”, when they are home-
omorphic via a map which intertwines the relevant shift maps. The concept of
conjugacy also makes sense for the “one-sided” shift spaces X+. If X+ ' Y+,
then we say that X and Y are one-sided conjugate. It is not difficult to see that
X+ ' Y+ ⇒ X ' Y (cf. [21, §13.8]).
Finally we want to draw attention to a third kind of equivalence between shift
spaces, called flow equivalence, which we denote by ∼=f . We will not define it
here (see [26], [14], [2] or [21, §13.6] for the definition), but just notice that
X ' Y ⇒ X ∼=f Y.
A flow invariant of a shift space X is a mapping associating to each shift
space another mathematical object, called the invariant, in such a way that
flow equivalent shift spaces give isomorphic invariants. In the same way, a
conjugacy invariant of X, respectively X+, is a mapping associating to each
shift space an invariant in such a way that conjugate, respectively one-sided
conjugate, shift spaces give isomorphic invariants.
Since X ' Y ⇒ X ∼=f Y, a flow invariant of X is also a conjugacy invariant of
X, and since X+ ' Y+ ⇒ X ' Y, a conjugacy invariant of X is also a conjugacy
invariant of X+.

2.2 Special elements

We say (cf. [17]) that z ∈ X is left special if there exists z′ ∈ X such that

z−1 6= z′−1 π+(z) = π+(z′).

It follows from [4, Proposition 2.4.1] (cf. [3, Theorem 3.9]) that a sufficient
condition for a shift space X to have a left special element is that X is infinite.
Conversely, the following proposition shows that this condition is necessary.

Proposition 2.1. Let X be a finite shift space. Then X contains no left special

element.

Proof: Since X is finite, every z ∈ X is periodic. Hence if π+(z) = π+(z′), then
z = z′. ¤

We say that the left special word z is adjusted if σ−n(z) is not left special for
any n ∈ N, and that z is cofinal if σn(z) is not left special for any n ∈ N.
Thinking of left special words as those which are not deterministic from the
right at index −1, the adjusted and cofinal left special words are those where
this is the leftmost and rightmost occurrence of nondeterminacy, respectively.
Let z, z′ ∈ X. If there exist an n and an M such that zm = z′n+m for all m > M
then we say that z and z′ are right shift tail equivalent and write z ∼r z′. We
will denote the right shift tail equivalence class of z by z.
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2.3 The first cohomology group

The first cohomology group (cf. [2]) of a shift space X is the group

C(X, Z)/(Id−(σ−1)?)(C(X, Z)).

Notice that usually σ is used instead of σ−1, but for our purpose it is
more natural to use σ−1, and we of course get the same group. The group
C(X, Z)/(Id−(σ−1)?)(C(X, Z)) is the first Čech cohomology group of the stan-
dard suspension of (X, σ) (cf. [27, IV.15. Theorem]). It is also isomorphic
to the homotopy classes of continuous maps from the standard suspension of
(X, σ) into the circle (cf. [27, page 60]).

It is proved in [2, Theorem 1.5] that C(X, Z)/(Id−(σ−1)?)(C(X, Z)) is a flow
invariant of X and thus also a conjugacy invariant of X and X+.

2.4 Past equivalence and Matsumoto’s K0-group

Let X be a shift space. For every x ∈ X+ and every k ∈ N we set

Pk(x) = {µ ∈ L(X) | µx ∈ X+, |µ| = k},

and define for every l ∈ N an equivalence relation ∼l on X+ by

x ∼l x′ ⇐⇒ Pl(x) = Pl(x
′).

Likewise we let for every x ∈ X+

P∞(x) = {y ∈ X− | y.x ∈ X},

and define an equivalence relation ∼∞ on X+ by

x ∼∞ x′ ⇐⇒ P∞(x) = P∞(x′).

The set

ND∞(X+) = {x ∈ X+ | ∃k ∈ N : #Pk(x) > 1}

then consists exactly of all words on the form z[n,∞[ where z is left special and
n ∈ N0.

Following Matsumoto ([23]), we denote by [x]l the equivalence class of x and
refer to the relation as l-past equivalence.

Obviously the set of equivalence classes of the l-past equivalence relation ∼l is
finite. We will denote the number of such classes m(l) and enumerate them E l

s

with s ∈ {1, . . . ,m(l)}. For each l ∈ N, we define an m(l + 1) × m(l)-matrix IIIl

by

(IIIl)rs =

{
1 if E l+1

r ⊆ E l
s

0 otherwise,
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and note that IIIl induces a group homomorphism from Zm(l) to Zm(l+1). We
denote by ZX the group given by the inductive limit

lim
−→

(Zm(l), IIIl).

For a subset E of X+ and a finite word µ we let µE = {µx ∈ X+ | x ∈ E}. For
each l ∈ N and a ∈ a we define an m(l + 1) × m(l)-matrix

(LLLl
a)rs =

{
1 if ∅ 6= aE l+1

r ⊆ E l
s

0 otherwise,

and letting LLLl =
∑

a∈a
LLLl

a we get a matrix inducing a group homeomorphism

from Zm(l) to Zm(l+1). Since one can prove that LLLl+1 ◦ IIIl = IIIl+1 ◦ LLLl, a group
endomorphism λ on ZX is induced.

Theorem 2.2 (Cf. [24], [25, Theorem]). Let X be a shift space. The group

K0(X) = ZX/(Id−λ)ZX ,

called Matsumoto’s K0-group, is a conjugacy invariant of X and X+, and a

flow invariant of X.

2.5 The space ΩX

We will now give an alternative description of K0(X). The group K0(X) is
defined by taking a inductive limits of Zm(l), where Zm(l) could be thought of
as C(X+/∼l, Z).
We will now do things in different order. First we will take the projective limit
of X+/∼l and then look at the continuous functions from the projective limit
to Z.
Since ∼l is coarser than ∼l+1, there is a projection πl of X+/∼l+1 onto X+/∼l.

Definition 2.3 (Cf. [23, page 682]). Let X be a shift space. We then define

ΩX to be the compact topological space given by the projective limit

lim
←−

(X+/∼l, πl).

We will identify ΩX with the closed subspace

{([xn]n)n∈N0
| ∀n ∈ N0 : xn+1 ∼n xn}

of
∏∞

l=0 X+/∼l, where
∏∞

l=0 X+/∼l is endowed with the product of the discrete
topologies.
Notice that if we identify C(X+/∼l, Z) with Zm(l), then IIIl is the map induced
by πl, so C(ΩX , Z) can be identified with ZX .
If ([xn]n)n∈N0

∈ ΩX , then

{([x′
n]n)n∈N0

∈ ΩX | x′
1 ∼1 x1}
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is a clopen subset of ΩX , and if a ∈ P1(x1), then ([ax′
n]n)n∈N0

∈ ΩX for every
([x′

n]n)n∈N0
∈ ΩX with x′

1 ∼1 x1, and the map

([x′
n]n)n∈N0

7→ ([ax′
n]n)n∈N0

is a continuous map on {([x′
n]n)n∈N0

∈ ΩX | x′
1 ∼1 x1}. This allows us to define

a map λX : C(ΩX , Z) → C(ΩX , Z) in the following way:

Definition 2.4. Let X be a shift space, h ∈ C(ΩX , Z) and ([xn]n)n∈N0
∈ ΩX .

Then we let

λX(h)(([xn]n)n∈N0
) =

∑

a∈P1(x1)

h([axn]n∈N0
).

Under the identification of C(ΩX , Z) and ZX , λX is equal to λ, thus we have
the following proposition:

Proposition 2.5. Let X be a shift space. Then K0(X) and

C(ΩX , Z)/(Id−λX)(C(ΩX , Z))

are isomorphic as groups.

3 Property (*) and (**)

We will introduce the properties (∗) and (∗∗) and show that they are invariant
under flow equivalence and thus under conjugacy. At the end of the section,
we will for various examples of shift spaces determine if they have property (∗)
and (∗∗).

Definition 3.1. We say that a shift space X has property (∗) if for every

µ ∈ L(X) there exists an x ∈ X+ such that P|µ|(x) = {µ}.

Definition 3.2. We say that a shift space X has property (∗∗) if it has property

(∗) and if the number of left special words of X is finite, and no such left special

word is periodic.

Since flow equivalence is generated by conjugacy and symbolic expansion (cf.
[25, Lemma 2.1] and [26]), it is, in order to prove the following proposition,
enough to check that (∗) and (∗∗) are invariant under symbolic expansion and
conjugacy.

Proposition 3.3. The properties (∗) and (∗∗) are invariant under flow equiv-

alence.

Example 3.4. It follows from Proposition 2.1 that if a shift space X is finite,
then it contains no left special element, and thus has property (∗∗).

Example 3.5. An infinite shift of finite type does not have property (∗).
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Proof: Let X be a shift of finite type. This means (cf. [21, Chapter 2]) that
there is a k ∈ N0 such that

X = {z ∈ a
Z | ∀n ∈ Z : z[n,n+k] ∈ L(X)}.

Suppose that X has property (∗). Let L(X)k = {µ ∈ L(X) | |µ| = k}, and
notice that if µ, ν, ω ∈ L(X)k and µν, νω ∈ L(X), then µνω ∈ L(X).
Let µ ∈ L(X)k. Then there is a x ∈ X+ such that P|µ|(x) = {µ}. Let µ′ = x[0,k[,

and suppose that ν ∈ L(X)k and νµ′ ∈ L(X). Then νx ∈ X+, so ν must be
equal to µ. Thus there is for every µ ∈ L(X)k a µ′ ∈ L(X)k such that

ν ∈ L(X)k ∧ νµ′ ∈ L(X) ⇐⇒ ν = µ.

Since L(X)k is finite and the map µ 7→ µ′ is injective, there is for every ν ∈
L(X)k a µ ∈ L(X)k such that ν = µ′. Hence there is for every µ ∈ L(X)k a
unique µ′ ∈ L(X)k such that µµ′ ∈ L(X) and a unique µ′′ ∈ L(X)k such that
µ′′µ ∈ L(X). Thus every z ∈ X is determined by z[0,k[, but since L(X)k is finite,
this implies that X is finite. ¤

Example 3.6. An infinite minimal shift space (cf. [21, §13.7]) X has property
(∗∗) precisely when the number of left special words of X is finite.

Proof: Since no elements in such a shift space is periodic, we only need to prove
that property (∗) follows from finiteness of the number of left special elements.
Let µ ∈ L(X) and pick any x ∈ X+. Since X+ is infinite and minimal, x is not
periodic, and since the set of left special words is finite there exists N ∈ N such
that σn(x) is not left special for any n ≥ N . Since X+ is minimal there exists
a k ≥ N such that x[k+1,k+|µ|] = µ. Hence P|µ|(σ

k+|µ|+1(x)) = {µ}. ¤

Example 3.7. If z is a non-periodic, non-regular Toeplitz sequence (cf. [32,
pp. 97 and 99]), then the shift space

O(z) = {σn(z) | n ∈ Z},

where X denotes the closure of X, has property (∗).

Proof: Let µ ∈ L(O(z)). Since O(z) is minimal (cf. [32, page 97]), there is an
m ∈ N such that z[−m−|µ|,−m[ = µ. We claim that P|µ|(z[−m,∞[) = {µ}.

Assume that z′ ∈ O(z) and z′[−m,∞[ = z[−m,∞[. Then π(z′) = π(z), where π is

the factor map of O(z) onto its maximal equicontinuous factor (G, 1̂) (cf. [32,
Theorem 2.2]), because since z′[−m,∞[ = z[−m,∞[, the distance between σn(z′)

and σn(z), and thus the distance between 1̂n(π(z′)) and 1̂n(π(z)), goes to 0 as
n goes to infinity, but since 1̂ is equicontinuous, this implies that π(z′) = π(z).
Since z is a Toeplitz sequence, it follows from [32, Corollary 2.4]) that z′ = z.
Thus P|µ|(z[−m,∞[) = {µ}. ¤

The following example shows that property (∗∗) does not follow from property
(∗).
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Example 3.8. We will construct a non-regular Toeplitz sequence z ∈ {0, 1}Z

such that the shift space

O(z) = {σn(z) | n ∈ Z}

has infinitely many left special elements and thus does not have property (∗∗).
We will construct z by using the technique introduced by Susan Williams in
[32, Section 4]. We will use the same notation as in [32, Section 4]. We let Y
be the full 2-shift {0, 1}Z and defined (pi)i∈N recursively by setting p1 = 3 and
pi+1 = 3ri+ipi for i ∈ N, where ri is as defined in [32, Section 4]. We then have
that

piβri

pi+1
=

2ri

3ri+i
< 3−i,

so
∞∑

i=1

piβri

pi+1

converges, and z is non-regular by [32, Proposition 4.1].

Claim. The shift space O(z) has infinitely many left special elements.

Proof: Let D be as defined on [32, page 103]. If

g ∈ π({z′ ∈ D | −1 ∈ Aper(z′)}),

y, y′ ∈ Y , y[0,∞[ = y′
[0,∞[ and y−1 6= y′

−1, then φ(g, y)[0,∞[ = φ(g, y′)[0,∞[ and

φ(g, y)−1 6= φ(g, y′)−1, where φ is the map define on [32, page 103]. Thus
φ(g, y) and φ(g, y′) are left special elements, and since

π({z′ ∈ D | −1 ∈ Aper(z′)}) × {y ∈ Y | y is left special}

is infinite and contained in π(D) × Y , on which φ is 1 − 1, O(z) has infinitely
many left special elements. ¤

4 The first cohomology group is a factor of K0(X)

We will now show that if a shift space X has property (∗), then the first coho-
mology group is a factor group of K0(X).
Suppose that a shift space X has property (∗). We can then define a map ιX
from X− into ΩX in the following way: For each y ∈ X− and each n ∈ N0 we

choose an xn ∈ X+ such that Pn(xn) = {y[−n,−1]}. Then ([xn]n)n∈N0
∈ ΩX ,

and we denote this element by ιX(y). The map ιX is obviously injective and
continuous.
We denote the map

(ιX ◦ π−)? : C(ΩX , Z) → C(X, Z)

by κ.
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Proposition 4.1. Let X be a shift space which has property (∗). Then there

is a surjective group homomorphism κ̄ from C(ΩX , Z)/(Id−λX)(C(ΩX , Z)) to

C(X, Z)/(Id−(σ−1)?)(C(X, Z)) which makes the following diagram commute:

C(ΩX , Z) κ //

²²²²

C(X, Z)

²²²²
C(ΩX , Z)/(Id−λX)(C(ΩX , Z)) κ̄ // C(X, Z)/(Id−(σ−1)?)(C(X, Z))

Proof: Let q be the quotient map from C(X, Z) to

C(X, Z)/(Id−(σ−1)?)(C(X, Z)).

We will show that 1) q ◦κ is surjective and 2) (Id−λX)(C(ΩX , Z)) ⊆ ker(q ◦κ).
This will prove the existence and surjectivity of κ̄.

1) q ◦ κ is surjective: Given f ∈ C(X, Z). Our goal is to find a function
g ∈ C(ΩX , Z) which is mapped to q(f) by q ◦ κ.

Since f is continuous, there are k,m ∈ N such that

z[−k,m] = z′[−k,m] ⇒ f(z) = f(z′).

Thus

z[−k−m−1,−1] = z′[−k−m−1,−1] ⇒ f ◦ σ−(m+1)(z) = f ◦ σ−(m+1)(z′).

Define a function g from ΩX to Z by

g(([xn]n)n∈N0
) =

{
f ◦ σ−(m+1)(z) if Pk+m+1(xk+m+1) = {z[−k−m−1,−1]},

0 if #Pk+m+1(xk+m+1) > 1.

Then g ∈ C(ΩX , Z), and g ◦ ιX ◦ π− = f ◦ σ−(m+1), so q ◦ κ(g) = q(f).

2) (Id−λX)(C(ΩX , Z)) ⊆ ker(q ◦ κ): Let g ∈ C(ΩX , Z) and y ∈ X−. Then
λX(g)(ιX(y)) = g(ιX(σ−(y)), so

κ(λX(g)) = g ◦ ιX ◦ π− ◦ σ−1,

which shows that (Id−λX)(g) ∈ ker(q ◦ κ). ¤

The following corollary now follows from Proposition 2.5:

Corollary 4.2. Let X be a shift space which has property (∗). Then

C(X, Z)/(Id−(σ−1)?)(C(X, Z)) is a factor group of K0(X).
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5 K0 of shift spaces having property (∗∗)

We saw in the last section that if a shift space X has property (∗), then the
first cohomology group is a factor group of K0(X). This stems from the fact
that property (∗) causes an inclusion of X− into ΩX , and thus a surjection of

C(ΩX , Z) onto C(X−, Z). We will now for shift spaces having property (∗∗)
describe K0 in terms of the first cohomology group and some extra information
determined by the left special elements of the shift space.
We will first define the group GX which is a subgroup of the external direct

product of C(X−, Z) and an infinite product of copies of Z, and isomorphic
to C(ΩX , Z). Next, we will define the group GX which is the external direct
product of C(X, Z) and an infinite sum of copies of Z, and has a factor group
which is isomorphic to K0(X). We will round off by relating this with the fact
that the first cohomology group is a factor group of K0(X) and look at some
examples.

Lemma 5.1. Let X be a shift space which has property (∗). Then

ιX(X−) = {([xn]n)n∈N0
∈ ΩX | ∀n ∈ N0 : #Pn(xn) = 1}.

Proof: Clearly

ιX(X−) ⊆ {([xn]n)n∈N0
∈ ΩX | ∀n ∈ N0 : #Pn(xn) = 1}.

Suppose ([xn]n)n∈N0
∈ ΩX and Pn(xn) = {µn} for every n ∈ N0. Let for every

n ∈ N, y−n be the first letter of µn. Since y[−n,−1] = µn for every n ∈ N,

y ∈ X−, and clearly ιX(y) = ([xn]n)n∈N0
. ¤

Denote by IX the set ND∞(X+)/∼∞ (cf. Section 2.4). We will now define a

map φX from IX to ΩX . We see that for x ∈ ND∞(X+), ([x]n)n∈N0
∈ ΩX , and

we notice that x ∼∞ x̃, if and only if ([x]n)n∈N0
= ([x̃]n)n∈N0

. So if we let

φX([x]∞) = ([x]n)n∈N0
,

then φX is a well-defined and injective map from IX to ΩX .

Lemma 5.2. Let X be a shift space which has property (∗). Then ιX(X−) ∩

φX(IX) = ∅, and if X has property (∗∗), then ιX(X−) ∪ φX(IX) = ΩX .

Proof: If ([xn]n)n∈N0
∈ ιX(X−), then according to Lemma 5.1, #Pn(xn) = 1

for every n ∈ N0, and if ([xn]n)n∈N0
∈ φX(IX), then #Pn(xn) > 1 for some

n ∈ N0. Hence ιX(X−) ∩ φX(IX) = ∅.

Suppose that X has property (∗∗). If ([xn]n)n∈N0
∈ ΩX \ιX(X−), then according

to Lemma 5.1, there is an n ∈ N0 such that #Pn(xn) > 1, and since there only
are finitely many left special words, [xn]n must be finite. Since [xk]k 6= ∅ and
[xk+1]k+1 ⊆ [xk]k for every k ∈ N0, this implies that

⋂
k∈N0

[xk]k is not empty.

Let x ∈
⋂

k∈N0
[xk]k. Since #Pn(x) = #Pn(xn) > 1, x ∈ ND∞(X+), and since

([xn]n)n∈N0
= φX([x]∞), we have that ([xn]n)n∈N0

∈ φX(IX). ¤
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5.1 The group GX

We will from now on assume that X has property (∗∗). Let for every
function h : ΩX → Z,

γX(h) = (h ◦ ιX , (h(φX(i)))i∈IX
).

It follows from Lemma 5.2 that γX is a bijective correspondence between func-

tions from ΩX to Z and pairs (g, (αi)i∈IX
), where g is a function from X− to Z

and each αi is an integer.

Lemma 5.3. Let g be a function from X− to Z and let for every i ∈ IX , αi be

an integer. Then (g, (αi)i∈IX
) ∈ γX(C(ΩX , Z)) if and only if there is an N ∈ N0

such that

1. ∀y, y′ ∈ X− : y[−N,−1] = y′
[−N,−1] ⇒ g(y) = g(y′),

2. ∀x, x′ ∈ ND∞(X+) : [x]N = [x′]N ⇒ α[x]∞ = α[x′]∞ ,

3. ∀x ∈ ND∞(X+), y ∈ X− : PN (x) = {y[−N,−1]} ⇒ α[x]∞ = g(y).

Proof: A function from ΩX to Z is continuous if and only if there is an N ∈ N0

such that

[xN ]N = [x′
N ]N ⇒ h(([xn]n)n∈N0

) = h(([x′
n]n)n∈N0

),

for ([xn]n)n∈N0
, ([x′

n]n)n∈N0
∈ ΩX , and since we have that if y, y′ ∈ X−, and

([xn]n)n∈N0
= ιX(y) and ([x′

n]n)n∈N0
= ιX(y′), then

[xN ]N = [x′
N ]N ⇐⇒ y[−N,−1] = y′

[−N,−1],

and if x ∈ ND∞(X+), y ∈ X− and ([x′
n]n)n∈N0

= ιX(y), then

[x]N = [x′
N ]N ⇐⇒ PN (x) = {y[−N,−1]},

the conclusion follows. ¤

Definition 5.4. Let X be a shift space which has property (∗∗). We denote

γX(C(ΩX , Z)) by GX , and we let for every function g : X− → Z and (αi)i∈IX
∈

ZIX ,

AX(g, (αi)i∈IX
) = (g ◦ σ−, (α̃i)i∈IX

),

where

α̃[x]∞ =
∑

x′∈ND∞(X+)

σ+(x′)=x

α[x′]∞ +
∑

z∈X

z[0,∞[ /∈ND∞(X+)
z[1,∞[=x

g(π−(z)).
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Lemma 5.5. The map AX maps GX into GX , and the following diagram com-

mutes:

C(ΩX , Z)
γX

//

λX

²²

GX

AX

²²
C(ΩX , Z)

γX

// GX

Proof: Let h ∈ C(ΩX , Z) and ([xn]n)n∈N0
∈ ΩX . Then

λX(h)(([xn]n)n∈N0
) =

∑

a∈P1(x1)

h([axn]n∈N0
).

We will show that λX(h)(([xn]n)n∈N0
) = γ−1

X
◦AX ◦ γX(h)(([xn]n)n∈N0

). It will

then follow that AX = γX ◦ λX ◦ γ−1
X

, and thus that AX maps GX into GX , and

the diagram commutes.

Assume first that ([xn]n)n∈N0
∈ ιX(X−). Then #P1(x1) = 1 and

ιX(σ−(ι−1
X

(([xn]n)n∈N0
))) = [axn]n∈N0

,

where a ∈ P1(x1). Thus

λX(h)(([xn]n)n∈N0
) = h(([axn]n)n∈N0

) = γ−1
X

◦ AX ◦ γX(h)(([xn]n)n∈N0
).

Now assume that ([xn]n)n∈N0
∈ φX(IX) and choose x ∈ ND∞(X+) such that

φX([x]∞) = ([xn]n)n∈N0
. We claim that

∑

a∈P1(x1)

h([axn]n∈N0
) =

∑

x′∈ND∞(X+)

σ+(x′)=x

h(φX([x′]∞)) +
∑

z∈X

z[0,∞[ /∈ND∞(X+)
z[1,∞[=x

h(ιX(z[−∞,−1])). (1)

To see this let a ∈ P1(x1). Assume first that ([axn]n)n∈N0
∈ ιX(X−), and

let z be the element of a
Z satisfying z]−∞,0[ = ι−1

X
(([axn]n)n∈N0

), z0 = a,

and z[1,∞[ = x. Then z ∈ X, z[0,∞[ /∈ ND∞(X+), z[1,∞[ = x, and
ιX(z]−∞,−1]) = [axn]n∈N0

. Let us then assume that ([axn]n)n∈N0
∈ φX(IX).

Then ax ∈ ND∞(X+), σ+(ax) = x, and φX([ax]∞) = [axn]n∈N0
.

If on the other hand z is an element of X which satisfies z[0,∞[ /∈ ND∞(X+),
and z[1,∞[ = x, then z0 ∈ P1(x1), and ιX(z]−∞,−1]) = ([z0xn]n)n∈N0

, and if x′ ∈

ND∞(X+) and σ+(x′) = x, then x′
0 ∈ P1(x1), and φX([x′]∞) = [x′

0xn]n∈N0
.
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Thus (1) holds, and

λX(h)(([xn]n)n∈N0
) =

∑

a∈P1(x1)

h([axn]n∈N0
)

=
∑

x′∈ND∞(X+)

σ+(x′)=x

h(φX([x′]∞)) +
∑

z∈X

z[0,∞[ /∈ND∞(X+)
z[1,∞[=x

h(ιX(z[−∞,−1]))

= γ−1
X

◦ AX ◦ γX(h)(([xn]n)n∈N0
).

¤

The following corollary now follows from Proposition 2.5:

Corollary 5.6. Let X be a shift space which has property (∗∗). Then K0(X)
and

GX/(Id−AX)GX

are isomorphic as groups.

5.2 The space IX

In order to get a better understanding of the group GX and the map AX , we
will now try to describe IX in the case where X has properties (∗∗). For that
we will need the concept of right shift tail equivalence (cf. section 2.2).
Denote the set of those right shift tail equivalence classes of X which contains
a left special element by JX . Notice that it is finite. Let for every j ∈ JX , Mj

be the set of adjusted left special elements belonging to j. Notice that there
only is a finite – but positive – number of elements in Mj.
Let us take a closer look at π+(j). It is clear that

π+(j) = {z[n,∞[ | z ∈ Mj, n ∈ Z},

and it follows from the definition of adjusted left special elements that z[n,∞[ ∈

ND∞(X+) if and only if n ≥ 0. It follows from the definition of adjusted left
special elements and the fact that X contains no periodic left special elements
that if z, z′ ∈ Mj and n, n′ < 0, then

z[n,∞[ = z′[n′,∞[ ⇐⇒ z = z′ ∧ n = n′.

Contrary to this, it might happen that z[n,∞[ = z′[n′,∞[ for z 6= z′ if n, n′ ≥ 0.
In fact, it turns out that j has a “common tail”.

Definition 5.7. Let j ∈ JX . An x ∈ X+ such that there for every z ∈ j is an

n ∈ Z such that z[n,∞[ = x is called a common tail of j.

Lemma 5.8. Let z be a left special element and n ∈ Z. Then z[n,∞[ is a common

tail of z if and only if σm(z) is not left special for any m > n.
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Proof: Assume that σm(z) is not left special for any m > n, and let z′ ∈ z.
Then there are k, k′ ∈ Z such that z[k,∞[ = z′[k′,∞[, and since σm(z) is not left

special for any m > n, z[n,∞[ = z′[n−k+k′,∞[ if k > n. If k ≤ n, then obviously

z[n,∞[ = z′[n−k+k′,∞[. Thus z[n,∞[ is a common tail of z.

Assume now that there is an m > n such that σm(z) is left special. Then
there is a z′ ∈ X such that z[m,∞[ = z′[m,∞[, but zm−1 6= z′m−1. This implies

that z′ ∈ z, so if z[n,∞[ is a common tail of z, then there is a k ∈ Z such that
z′[k,∞[ = z[n,∞[, and since zm−1 6= z′m−1, k 6= n. But we then have for all i ≥ m
that

zi = z′i+k−n = zi+k−n,

which cannot be true, since there are no periodic left special words in X. ¤

The reason for introducing the concept of common tails is illustrated by the
following lemma.

Lemma 5.9. If x is a common tail of a j ∈ JX , then in the notation of Definition

5.4,

α̃[σn+1
+ (x)]∞

= α[σn
+(x)]∞

for every n ∈ N0.

Proof: It follows from Lemma 5.8 that P1(σ
n+1
+ (x)) = {xn}. Thus there is

no z ∈ X such that z[0,∞[ /∈ ND∞(X+) and z[1,∞[ = σn+1
+ (x), and the only

x′ ∈ ND∞(X+) such that σ+(x′) = σn+1
+ (x) is σn

+(x). Hence α̃[σn+1
+ (x)]∞

=

α[σn
+(x)]∞ . ¤

Definition 5.10. An x ∈ X+ is called isolated if there is a k ∈ N0 such that

[x]k = {x}.

Lemma 5.11. Every j ∈ JX has an isolated common tail.

Proof: Let z be the cofinal left special element of j. Then z[0,∞[, and thus
z[n,∞[ for every n ∈ N0, is a common tail by Lemma 5.8. Since there only are
finitely many left special words, [z[0,∞[]1 is finite. Hence there is an n ∈ N such
that

x ∈ [z[0,∞[]1 ∧ x[0,n] = z[0,n] ⇒ x = z[0,∞[.

Thus [z[n,∞[]n+1 = {z[n,∞[} and therefore z[n,∞[ is an isolated common tail. ¤

Remark 5.12. In [22] Matsumoto introduced the condition (I) for shift spaces,
which is a generalization of the condition (I) for topological Markov shifts in
the sense of Cuntz and Krieger (cf. [10]).
A shift space X satisfies condition (I) if and only if X+ has no isolated elements
(cf. [22, Lemma 5.1]). Thus, it follows from Lemma 5.11 that a shift space
which has property (∗∗) does not satisfy condition (I).

Let X be a shift space which has property (∗∗). Choose once and for all, for
each j ∈ JX an isolated common tail xj and a zj ∈ X such that π+(zj) = xj.
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Remark 5.13. Notice that σn
+(xj) is isolated for every j ∈ JX and every n ∈ N0,

because if [xj]k = {xj}, then [σn
+(xj)]k+n = {σn

+(xj)}.

Let z be an adjusted left special element of X. Since xz is a common tail of z,
there exists an nz ∈ N0 such that z[nz,∞[ = xz. We let

KX = {[z[n,∞[]∞ | z is an adjusted left special element of X, 0 ≤ n < nz},

and we let for each j ∈ JX ,

Kj = {[z[n,∞[]∞ | z ∈ Mj, 0 ≤ n ≤ nz}.

We notice that
KX =

⋃

j∈JX

(
Kj \ {x

j}
)
.

The following lemma shows that

KX ∪
⋃

j∈JX

⋃

n∈N0

{[σn
+(xj)]∞}

is a partition of IX .

Lemma 5.14.

1. KX ∪ {[σn
+(xj)]∞ | j ∈ JX , n ∈ N0} = IX ,

2. KX ∩ {[σn
+(xj)]∞ | j ∈ JX , n ∈ N0} = ∅,

3. the map (j, n) 7→ [σn
+(xj)]∞, from JX × N0 to IX is injective.

Proof: Let x ∈ ND∞(X+). Then there is an adjusted left special word z and
an n ∈ N0 such that x = z[n,∞[. If n ≥ nz, then

x = z[n,∞[ = zz
[n−nz,∞[,

and if n < nz, then [x]∞ = [z[n,∞[]∞ ∈ KX . Thus

KX ∪ {[σn
+(xj)]∞ | j ∈ JX , n ∈ N0} = IX .

Assume that j ∈ JX , n ∈ N0 and [σn
+(xj)]∞ ∈ KX . Since σn

+(xj) is isolated,
this implies that there exist an adjusted left special element z and 0 ≤ m < nz

such that σn
+(xj) = z[m,∞[. But then

z[m,∞[ = σn
+(xj) = z[nz+n,∞[

which cannot be true since there are no periodic left special words in X. Thus

KX ∩ {[σn
+(xj)]∞ | j ∈ JX , n ∈ N0} = ∅.
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Assume that [σn1
+ (xj1)]∞ = [σ+(xj2)]∞. Since σn1

+ (xj1) is isolated, σn1
+ (xj1)

must be equal to σn2
+ (xj2). This implies that zj1 and zj2 are right shift tail

equivalent, so j1 = j2, and since there are no periodic left special words in X,
n1 and n2 must be equal. ¤

Remark 5.13 shows that if [x]∞ ∈ {[σn
+(xj)]∞ | j ∈ JX , n ∈ N0}, then x is

isolated. Although it can happen that x is not isolated if [x]∞ ∈ KX , the

following lemma shows that we anyway can separate KX from {[σn
+(xj)]∞ | j ∈

JX , n ∈ N0}.

Lemma 5.15. There exists an NKX
∈ N0 such that if [x]∞ ∈ KX , then

#PNK
X
(x) > 1 and

[x]NK
X

= [x′]NK
X
⇒ [x]∞ = [x′]∞

for every x′ ∈ X+.

Proof: Since KX is a finite set, it is enough to find for each adjusted left special
word z ∈ X and each 0 ≤ n < nz, an m ∈ N0 such that #Pm(z[n,∞[) > 1 and

[z[n,∞[]m = [x]m ⇒ [z[n,∞[]∞ = [x]∞ for every x ∈ X+.
If z is an adjusted left special element and 0 ≤ n < nz, then #Pn+1(z[n,∞[) > 1,
and since there only is a finite number of left special element in X, [z[n,∞[]n+1

is finite, so there exists an m ∈ N0 such that #Pm(z[n,∞[) > 1 and

[z[n,∞[]m = [x]m ⇒ [z[n,∞[]∞ = [x]∞ for every x ∈ X+. ¤

We have now described the space IX is such great detail that we are able to
rephrase the condition of Lemma 5.3 for when a pair (g, (αi)i∈IX

) belongs to
GX into a condition which is more readily checkable.

Lemma 5.16. Let g be a function from X− to Z and let for every i ∈ IX , αi be an

integer. Then (g, (αi)i∈IX
) ∈ GX if and only if g is continuous and there exists

an N ∈ N0 such that α[σn
+(xj)]∞ = g(zj

]−∞,n[) for all j ∈ JX and all n > N .

Proof: Assume that (g, (αi)i∈IX
) ∈ GX . Then there exists by Lemma 5.3 an

N ∈ N0 such that

1. ∀y, y′ ∈ X− : y[−N,−1] = y′
[−N,−1] ⇒ g(y) = g(y′),

2. ∀x, x′ ∈ ND∞(X+) : [x]N = [x′]N ⇒ α[x]∞ = α[x′]∞ ,

3. ∀x ∈ ND∞(X+), y ∈ X− : PN (x) = {y[−N,−1]} ⇒ α[x]∞ = g(y).

It follows from 1. that g is continuous, and since PN (σn
+(xj)) = {zj

[n−N,n−1]}

for every j ∈ JX and all n > N , it follows from 3. that α[σn
+(xj)]∞ = g(zj

]−∞,n[).

Assume now that g is continuous and there exists an N ∈ N0 such that
α[σn

+(xj)]∞ = g(zj

]−∞,n[) for all j ∈ JX and all n > N . Since g is continu-

ous there is an M ∈ N0 such that y[−M,−1] = y′
[−M,−1] ⇒ g(y) = g(y′) for all
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y, y′ ∈ X−, and since σn
+(xj) is isolated for every j ∈ JX and every n ∈ N0

(cf. Remark 5.13), there is for each 0 ≤ n ≤ max{M,N} a kj
n ∈ N such that

[σn
+(xj)]kj

n
= {σ+(xj)}, and by increasing kj

n if necessary, we may (and will)

assume that #Pkj
n
(σ+(xj)) > 1. Let

N ′ = max
(
{kj

n | j ∈ JX , 0 ≤ n ≤ max{M,N}} ∪ {NKX
,M,N}

)
,

where NKX
is as in Lemma 5.15. We claim that

1. ∀y, y′ ∈ X− : y[−N ′,−1] = y′
[−N ′,−1] ⇒ g(y) = g(y′),

2. ∀x, x′ ∈ ND∞(X+) : [x]N ′ = [x′]N ′ ⇒ α[x]∞ = α[x′]∞,

3. ∀x ∈ ND∞(X+), y ∈ X− : PN ′(x) = {y[−N ′,−1]} ⇒ α[x]∞ = g(y),

which implies that (g, (αi)i∈IX
) ∈ GX . 1. follows from the fact that N ′ ≥ M .

Notice that if

[x]∞ ∈ KX ∪ {[σn
+(xj)]∞ | j ∈ JX , 0 ≤ n ≤ max{M,N}},

then [x]N ′ = [x′]N ′ ⇒ [x]∞ = [x′]∞. This takes care of 2. in the case where

[x]∞ ∈ KX ∪ {[zj

[n,∞[]∞ | j ∈ JX , 0 ≤ n ≤ max{M,N}}.
Since

[σn
+(xj)]N ′ = [σn′

+ (xj′)]N ′ ⇒ zj

[n−M,n−1] = zj′

[n′−M,n′−1]

⇒ α[σn
+(xj)]∞ = g(zj

]−∞,n[) = g(zj′

]−∞,n′[) = α[σn′

+ (xj′ )]∞
,

for j, j′ ∈ JX and n, n′ > max{M,N}, 2. and 3. hold, and (g, (αi)i∈IX
) ∈ GX . ¤

We will now look at IX for three examples. First let X be the shift space
associated with the Morse substitution (see for example [12])

0 7→ 01, 1 7→ 10.

The shift space X is minimal and has 4 left special elements:

y0.x0 y0.x1 y1.x0 y1.x1

where y0, y1 are the fixpoints in X− of the substitution ending with 0 respec-
tively 1, and x0, x1 are the fixpoints in X+ of the substitution beginning with
0 respectively 1. Thus it follows from Example 3.6 that X has property (∗∗).
We see that JX consists of 2 elements: y0.x0 and y1.x1. Notice that although
all of the 4 left special elements are cofinal (and adjusted) neither x0 nor x1

are isolated, because [x0]∞ = [x1]∞, but σ+(x0) and σ+(x1) are, so we can
choose σ(y0.x0) and σ(y1.x1) as zy0.x0 and zy1.x1 respectively. We then have
that KX = {[x0]∞}, and that the whole of IX looks like this:
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[σ3
+(x0)]∞

[σ2
+(x1)]∞

Ky1.x1
Ky0.x0

[σ3
+(x1)]∞

[σ+(x0)]∞
[σ+(x1)]∞

[x0]∞

[σ2
+(x0)]∞

where an arrow from a to b means that in Definition 5.4, α̃b = αa. We notice
further that α̃[x0]∞ = g(σ−(y0)) + g(σ−(y1)).
Our second example is the shift space associated to the substitution

1 7→ 123514, 2 7→ 124, 3 7→ 13214, 4 7→ 14124, 5 7→ 15214.

The shift space X is minimal and has 8 left special elements (4 adjusted and 4
cofinal) as illustrated on this figure:

5

2

4
2

3

x
y1

y2

where x ∈ X+ and y1, y2 ∈ X−. Thus it follows from 3.6 that X has property
(∗∗). The set JX consists of one element y152.x, and since x is isolated, we
can choose y152.x as zy152.x. We then have that KX = {[2x]∞, [4x]∞}, and
that the whole of IX looks like this:

[4x]∞

[2x]∞

[σ+(x)]∞

[σ2
+(x)]∞

Ky152.x

[x]∞

where an arrow from a to b means that in Definition 5.4, α̃b = αa. We notice
further that α̃[x]∞ = α[2x]∞ + α[4x]∞ , α̃[2x]∞ = 2g(y1) and α̃[4x]∞ = g(y1) +
g(σ−(y2)).
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The third example is the shift space associated to the substitution

a 7→ adbac, b 7→ aedbbc, c 7→ ac, d 7→ adac, e 7→ aecadbac.

The shift space X is minimal and has 9 left special elements (1 which is both
adjusted and cofinal, 3 which are adjusted but not cofinal, 3 which are cofinal
but not adjusted, and 2 which are neither adjusted nor cofinal) as illustrated
on this figure:

y1 e

d

a

c

y4

y2

y3

x

where x ∈ X+ and y1, y2, y3, y4 ∈ X−. Thus it follows from 3.6 that X has
property (∗∗). The set JX consists of one element y1e.x, and since x is isolated,
we can choose y1e.x as zy1e.x. We then have that KX = {[cax]∞, [ax]∞}, and
that the whole of IX looks like this:

[ax]∞

[cax]∞

[σ+(x)]∞

[σ2
+(x)]∞

Ky1e.x

[x]∞

where an arrow from a to b means that in Definition 5.4, α̃b = αa. We notice
further that α̃[x]∞ = α[ax]∞ + g(y1), α̃[ax]∞ = α[cax]∞ + g(y2) and α̃[cax]∞ =
g(σ−(y3)) + g(σ−(y4)).

5.3 K0(X) is a factor of GX

We are now ready to define the group GX which has a factor which is isomorphic
to GX/(Id−AX)(GX).
Loosely speaking, the idea is to simplify GX in three ways. First we collapse
for each j ∈ JX , Kj to one point, which makes it possible to replace IX by
JX × N0, secondly we replace the condition of Lemma 5.16 for when a pair
belongs to GX , by the condition that the corresponding sequence in JX × N0

is eventually 0, and thirdly, we replace X− by X. The resulting group GX is
of course not necessarily isomorphic to GX , but it turns out that we can still

define a map AX : GX → GX such that GX/(Id−AX)
(
GX

)
is isomorphic to

GX/(Id−AX)(GX).
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Definition 5.17. Let X be a shift space which has property (∗∗). Denote by

GX the group C(X, Z)⊕
∑

n∈N0
ZJX , let AX be the map from GX to itself defined

by

(f, (aj
n)j∈JX ,n∈N0

) 7→ (f ◦ σ−1, (ãj
n)j∈JX ,n∈N0

),

where ãj
0 =

∑
z∈Mj

f(σ−1(z)) − f(σ−1(zj)), and ãj
n = aj

n−1 for n > 0, and let

ψ be the map from GX to GX defined by

(g, (αi)i∈IX
) 7→ (g ◦ π−, (aj

n)j∈JX ,n∈N0
),

where for each j ∈ j, aj
0 =

∑
i∈Kj

αi−g(π−(zj)) and aj
n = α[σn

+(xj)]∞−g(zj

]−∞,n[)

for n > 0.

Remark 5.18. It directly follows from Lemma 5.16 that ψ in fact maps GX

into GX .

Proposition 5.19. Let X be a shift space which has property (∗∗). Then there

is an isomorphism

ψ̄ : GX/(Id−AX)(GX) → GX/(Id−AX)
(
GX

)

which makes the following diagram commute:

GX

ψ
//

²²²²

GX

²²²²
GX/(Id−AX)(GX)

ψ̄
// GX/(Id−AX)

(
GX

)

We will postpone the proof of proposition 5.19 to section 5.5, and instead
state our main theorem which immediately follows from Proposition 5.19 and
Corollary 5.6.

Theorem 5.20. Let X be a shift space which has property (∗∗). Then K0(X)
and

GX/(Id−AX)
(
GX

)

are isomorphic as groups.

5.4 Examples

Example 5.21. Let X be a finite shift space. Then K0(X) and

C(X, Z)/(Id−(σ−1)?)(C(X, Z))

are isomorphic as groups.
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Proof: We saw in Example 3.4, that a finite shift space has property (∗∗) and
has no left special elements. Thus JX = ∅, so GX = C(X, Z) and AX = (σ−1)?

and it follows from Theorem 5.20, that K0(X) and

C(X, Z)/(Id−(σ−1)?)(C(X, Z))

are isomorphic as groups. ¤

Let η be the canonical projection from GX to C(X, Z). We tie things up with
the following proposition:

Proposition 5.22. Let X be a shift space which has property (∗∗). Then there

is a surjective group homomorphism

η̄ : GX/(Id−AX)
(
GX

)
→ C(X, Z)/(Id−(σ−1)?)(C(X, Z))

which makes the following diagram commute:

C(ΩX , Z)

²²²²

κ //

ψ◦γX

''PPPPPPPPPPPPP
C(X, Z)

²²²²

GX

²²²²

η
66nnnnnnnnnnnnnn

GX/(Id−AX)
(
GX

)

η̄

''OOOOOOOOOOOO

C(ΩX ,Z)

(Id−λX )(C(ΩX ,Z))

κ̄ //

ψ̄◦γ̄X

77ppppppppppp

C(X,Z)

(Id−(σ−1)?)(C(X,Z))

where γ̄X is the map from C(ΩX , Z)/(Id−λX)(C(ΩX , Z)) to GX/(Id−AX)GX

induced by γX .

Proof: Since

η ◦ AX = (σ−1)? ◦ η,

η induces a map from GX/(Id−AX)
(
GX

)
to C(X, Z)/(Id−(σ−1)?)(C(X, Z)).

It is easy to check that this map makes the diagram commute. ¤

Corollary 5.23. Let X be a shift space which has property (∗∗) and only has

two left special words. Then η̄ is an isomorphism from GX/(Id−AX)
(
GX

)
to

C(X, Z)/(Id−(σ−1)?)(C(X, Z)). Thus K0(X) and

C(X, Z)/(Id−(σ−1)?)(C(X, Z))

are isomorphic as groups.
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Proof: If X only has two left special words, z1 and z2, then they must necessarily
be right shift tail equivalent, so JX = {j}, where j = z1 = z2. We also have
that z1[0,∞[ = z2[0,∞[ is an isolated common tail of j, so we can choose z2 to be

zj. The set Mj is equal to {z1, z2}, so for any (h, (bjn)n∈N0
) ∈ GX is

AX((h, (bjn)n∈N0
)) = (h ◦ σ−1, (b̃jn)n∈N0

),

where b̃j0 = h(σ−1(z1)), and b̃jn = bjn−1 for n > 0.
Suppose that (f, (aj

n)n∈N0
) ∈ GX and that

η((f, (aj
n)n∈N0

)) ∈ (Id−(σ−1)?)(C(X, Z)).

Then there is a f̃ ∈ C(X, Z) such that f = f̃ − f̃ ◦ σ−1. Since (aj
n)n∈N0

∈∑
n∈N0

Z, there is an N ∈ N0 such that aj
n = 0 for n > N . Let

c = −f̃(σ−1(z1)) −
N∑

n=0

aj
n

and h ∈ C(X, Z) the function f̃ plus the constant c, and let bjn =
∑n

i=0 aj
i +

h(σ−1(z1)) for n ∈ N0. Then bjn = 0 for n > N , so (h, (bjn)n∈N0
) ∈ GX , and

(f, (aj
n)n∈N0

) = (Id−AX)((h, (bjn)n∈N0
)) ∈ (Id−AX)

(
GX

)
,

which prove that η̄ is injective and thus an isomorphism. ¤

Example 5.24. As noted in [12], a Sturmian shift space Xα, α ∈ [0, 1]\Q is
minimal and has two special words. Thus it follows from Example 3.6 and
Corollary 5.23 that K0(Xα) and

C(Xα, Z)/(Id−(σ−1)?)(C(Xα, Z))

are isomorphic as groups.
In [31] it is shown that

C(Xα, Z)/(Id−(σ−1)?)(C(Xα, Z))

is isomorphic to Z + Zα as an ordered group. Thus it follows that K0(Xα) and
Z + Zα are isomorphic as groups.
In [9, Corollary 5.2] we prove that K0(Xα) with the order structure mentioned
in the Introduction is isomorphic to Z + Zα.

Example 5.25. It is proved in [30, pp. 90 and 107] that if τ is an aperiodic and
primitive substitution, then the associated shift space Xτ is minimal and only
has a finite number of left special words. Thus by Example 3.6, Xτ has property
(∗∗). It follows from [6, Proposition 3.5] that if τ furthermore is proper and
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elementary, then π+(z) is isolated for every left special word z. Thus K0(Xτ )
is isomorphic to the cokernel of the map

Aτ (f, [(aj
0)j∈JXτ

, (aj
1)j∈JXτ

, . . . ]) =

f ◦ σ−1,









∑

z∈Mj

f(σ−1(z))


 − f(σ−1(zj))




j∈JXτ

, (aj
0)j∈JXτ

, (aj
1)j∈JXτ

, . . .







defined on

Gτ = C(Xτ , Z) ⊕
∞∑

i=0

ZJXτ ,

where JXτ
and Mj are as defined in section 5.2, and zj is a cofinal special

element belonging to the right shift tail equivalence class j.
In the notation of [8],

JXτ
= {ỹ1, ỹ2, . . . , ỹnτ }, Mỹj = {yj

1, y
j
2, . . . , y

j
pj+1} and zỹj

= ỹ
j .

In [8], this is used for every aperiodic and primitive (but not necessarily proper
or elementary) substitution τ , to present K0(Xτ ) as a stationary inductive limit
of a system associated to an integer matrix defined from combinatorial data
which can be computed in an algorithmic way (cf. [6] and [7]).

5.5 The proof of Proposition 5.19

In order to prove Proposition 5.19, we will define maps and groups as indicated
on the diagram:

GX

ψ1

²²

// // GX/(Id−AX)(GX)

ψ1

²²
ψ1(GX)

ψ2

²²

// // ψ1(GX)/(Id−A1)(ψ1(GX))

ψ2

²²

C(X−, Z) ⊕
∑

n∈N0
ZJX

ψ3

²²

// //
C(X−,Z)⊕

∑
n∈N0

Z
J

X

(Id−A2)
(

C(X−,Z)⊕
∑

n∈N0
Z
J

X

)

ψ3

²²
GX

// // GX/(Id−AX)
(
GX

)
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such that the diagram commutes, ψ3 ◦ ψ2 ◦ ψ1 = ψ, and ψ1, ψ2 and ψ3 are
isomorphisms.
Let ψ1 : GX → C(X−, Z) ⊕

∏
n∈N0

ZJX be the map defined by

(g, (αi)i∈IX
) 7→ (g, (aj

n)j∈JX ,n∈N0
),

where for each j ∈ JX , aj
0 =

∑
i∈Kj

αi, and aj
n = α[σn

+(xj)]∞ for n ∈ N.

Lemma 5.26. Let (g, (aj
n)j∈JX ,n∈N0

) ∈ C(X−, Z) ⊕
∏

n∈N0
ZJX . Then

(g, (aj
n)j∈JX ,n∈N0

) ∈ ψ1(GX) if and only if

∃N ∈ N0∀j ∈ JX∀n > N : aj
n = g(zj

]−∞,n[).

Proof: The forward implication directly follows from Lemma 5.16.
Assume that (g, (aj

n)j∈JX ,n∈N0
) ∈ C(X−, Z) ⊕

∏
n∈N0

ZJX and there exists an

N ∈ N0 such that aj
n = g(zj

]−∞,n[) for all n > N . We let αi = 0 for each

i ∈ KX , and we let for each j ∈ JX and each n ∈ N0, α[zj

[n,∞[
]∞

= aj
n. It then

follows from Lemma 5.16 that (g, (αi)i∈IX
) ∈ GX , and since ψ1(g, (αi)i∈IX

) =

(g, (aj
n)j∈JX ,n∈N0

), we have that (g, (aj
n)j∈JX ,n∈N0

) ∈ ψ1(GX).
¤

Let A1 : C(X−, Z) ⊕
∏

n∈N0
ZJX → C(X−, Z) ⊕

∏
n∈N0

ZJX be the map defined
by

(g, (aj
n)j∈JX ,n∈N0

) 7→ (g ◦ σ−, (ãj
n)j∈JX ,n∈N0

),

where for each j ∈ JX , ãj
0 =

∑
z∈Mj

g(σ−(π−(z))), and ãj
n = aj

n−1 for n ∈ N.

It follows from Lemma 5.26 that A1 maps ψ1(GX) into itself. Thus
(Id−A1)ψ1(GX) is a subgroup of ψ1(GX), and we can form the quotient
ψ1(GX)/(Id−A1)ψ1(GX). Let

q : ψ1(GX) 7→ ψ1(GX)/(Id−A1)ψ1(GX)

be the quotient map. We then have:

Lemma 5.27. ker(q ◦ ψ1) = (Id−AX)(GX).

Proof: Assume (g, (αi)i∈IX
) ∈ ker(q ◦ ψ1). That means that

(g, (aj
n)j∈JX ,n∈N0

) = ψ1(g, (αi)i∈IX
) ∈ (Id−A1)ψ1(GX).

Thus there exists (g̃, (ãj
n)j∈JX ,n∈N0

) ∈ ψ1(GX) such that g = g̃ − g̃ ◦ σ−, and
such that for every j ∈ JX ,

aj
0 =

∑

i∈Kj

αi = ãj
0 −

∑

z∈Mj

g̃(σ−(π−(z))),
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and aj
n = α[σn

+(xj)]∞ = ãj
n − ãj

n−1 for all n ∈ N.

Now let i ∈
⋃

j∈JX
Kj. Choose xi ∈ ND∞(X+) such that [xi]∞ = i. Then there

is, for each z ∈ X which satisfies π+(z) = xi, a unique mz ∈ N0 such that
σ−mz (z) is an adjusted left special word. We let

Li = {[z[−m,∞[]∞ | π+(z) = xi, 0 ≤ m ≤ mz} ⊆ IX ,

Bi = {σ−mz (z) | π+(z) = xi} ⊆ X,

and

α̃i =
∑

i′∈Li

αi′ +
∑

z∈Bi

g̃(σ−(π−(z))),

and we let for j ∈ JX and n ∈ N, α̃[σn
+(xj)]∞ = ãj

n.

Since (g̃, (ãj
n)j∈JX ,n∈N0

) ∈ ψ1(GX), g̃ is continuous and there exists by Lemma

5.26, an N ∈ N0 such that for all j ∈ JX and all n > N , α̃[σn
+(xj)]∞ = ãj

n =

g̃(zj

]−∞,n[), so (g̃, (α̃i)i∈IX
) ∈ GX by Lemma 5.16.

Let (˜̃g, ( ˜̃αi)i∈IX
) = AX(g̃, (α̃i)i∈IX

). Then ˜̃g = g̃ ◦ σ−, and by lemma 5.9,

˜̃α[σn+1
+ (xj)]∞

= α̃[σn
+(xj)]∞ = ãj

n,

for j ∈ JX and n ∈ N.

Now let j ∈ JX . Then L[xj]∞ = Kj and B[xj]∞ = Mj, so

˜̃α[σ+(xj)]∞ = α̃[xj]∞

=
∑

i∈Kj

αi +
∑

z∈Mj

g̃(σ−(π−(z)))

= aj
0 +

∑

z∈Mj

g̃(σ−(π−(z)))

= ãj
0.

If [x]∞ ∈ Kj, then L[x]∞ is the disjoint union of L[x′]∞ , where [x′]∞ ∈ IX

and σ+(x′) = x, and {[x]∞}, and B[x]∞ is the disjoint union of B[x′]∞ , where

[x′]∞ ∈ IX and σ+(x′) = x, and {σ(z) | z ∈ X, z[0,∞[ /∈ ND∞(X+), z[1,∞[ = x}.
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Hence

˜̃α[x]∞ =
∑

[x′]∞∈IX

σ+(x′)=x

α̃[x′]∞ +
∑

z∈X

z[0,∞[ /∈ND∞(X+)
z[1,∞[=x

g̃(z]−∞,−1])

=
∑

[x′]∞∈IX

σ+(x′)=x




∑

i∈L[x′]∞

αi +
∑

z∈B[x′]∞

g̃(σ−(π−(z)))


 +

∑

z∈X

z[0,∞[ /∈ND∞(X+)
z[1,∞[=x

g̃(z]−∞,−1])

=
∑

i∈L[x]∞

αi − α[x]∞ +
∑

z∈B[x]∞

g̃(σ−(π−(z)))

= α̃[x]∞ − α[x]∞ .

So
g̃ − ˜̃g = g̃ − g̃ ◦ σ− = g,

and for i ∈
⋃

j∈JX
Kj,

α̃i − ˜̃αi = α̃i − α̃i + αi = αi,

and for j ∈ JX and n ∈ N

α̃[σn
+(xj)]∞− ˜̃α[σn

+(xj)]∞ = ãj
n − ãj

n−1 = aj
n = α[σn

+(xj)]∞.

Thus

(g, (αi)i∈IX
) = (g̃, (α̃i)i∈IX

) − (˜̃g, ( ˜̃αi)i∈IX
)

= (Id−AX)(g̃, (α̃i)i∈IX
) ∈ (Id−AX)(GX),

which shows that ker(q ◦ ψ1) ⊆ (Id−AX)(GX).

Now let (g, (αi)i∈IX
) ∈ GX . We will find an element (g, (aj

n)j∈JX ,n∈N0
) ∈ ψ1(GX)

such that

ψ1((Id−AX)(g, (αi)i∈IX
)) = (Id−A1)(g, (aj

n)j∈JX ,n∈N0
).

This will show that (Id−AX)(GX) ⊆ ker(ρ ◦ ψ1).

Let for each j ∈ JX and every n ∈ N0, aj
n = α[σn

+(xj)]∞ . It then follows from

Lemma 5.16 and 5.26 that (g, (aj
n)j∈JX ,n∈N0

) ∈ ψ1(GX).
Now,

(Id−A1)(g, (aj
n)j∈JX ,n∈N0

) = (g − g ◦ σ−, (aj
n − ãj

n)j∈JX ,n∈N0
),

where for each j ∈ JX , ãj
0 =

∑
z∈Mj

g(σ−(π−(z))), and ãj
n = aj

n−1 for n ∈ N,
and

ψ1((Id−AX)(g, (αi)i∈IX
)) = (g − g ◦ σ−, (bjn)j∈JX ,n∈N0

),
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where by Lemma 5.9

bjn = α[σn
+(xj)]∞− α[σn−1

+ (xj)]∞
= aj

n − aj
n−1 = aj

n − ãj
n

for each j ∈ JX and every n ∈ N, and

bj0 =
∑

i∈Kj

αi −
∑

[x]∞∈Kj




∑

x′∈ND∞(X+)

σ+(x′)=x

α[x′]∞ +
∑

z∈X

z[0,∞[ /∈ND∞(X+)
z[1,∞[=x

g(π−(z))




=αxj −
∑

z∈Mj

g(σ−(π−(z)))

=aj
0 − ãj

0

for each j ∈ JX . Thus ψ1((Id−AX)(g, (αi)i∈IX
)) = (Id−A1)(g, (aj

n)j∈JX ,n∈N0
).
¤

It follows from the previous lemma, that ψ1 : GX → ψ1(GX) induces an isomor-

phism ψ1 from GX/(Id−AX)(GX) to ψ1(GX)/(Id−A1)(ψ1(GX)) such that the
diagram

GX

ψ1

²²

// // GX/(Id−AX)(GX)

ψ1

²²
ψ1(GX) // // ψ1(GX)/(Id−A1)(ψ1(GX))

commutes.
Let for every (g, (aj

n)j∈JX ,n∈N0
) ∈ ψ1(GX),

ψ2(g, (aj
n)j∈JX ,n∈N0

) = (g, (aj
n − g(zj

]−∞,n[))j∈JX ,n∈N0
).

It follows from Lemma 5.26 that ψ2 is an isomorphism from ψ1(GX) to

C(X−, Z) ⊕
∑

n∈N0
ZJX .

Let A2 : C(X−, Z)⊕
∑

n∈N0
ZJX → C(X−, Z)⊕

∑
n∈N0

ZJX be the map given by

(g, (aj
n)j∈JX ,n∈N0

) 7→ (g ◦ σ−, (âj
n)j∈JX ,n∈N0

),

where for each j ∈ JX ,

âj
0 =

∑

z∈Mj

g(π−(σ−1(z))) − g(π−(σ−1(zj))),

and âj
n = aj

n−1 for n ∈ N.
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Then ψ2 ◦ A1 = A2 ◦ ψ2, so ψ2 induces an isomorphism

ψ2 : ψ1(GX)/(Id−A1)(ψ1(GX)) →
C(X−, Z) ⊕

∑
n∈N0

ZJX

(Id−A2)
(
C(X−, Z) ⊕

∑
n∈N0

ZJX

)

such that the diagram

ψ1(GX)

ψ2

²²

// // ψ1(GX)/(Id−A1)(ψ1(GX))

ψ2

²²

C(X−, Z) ⊕
∑

n∈N0
ZJX // //

C(X−,Z)⊕
∑

n∈N0
Z
J

X

(Id−A2)
(

C(X−,Z)⊕
∑

n∈N0
Z
J

X

)

commutes.
Let ψ3 : C(X−, Z) ⊕

∑
n∈N0

ZJX → GX be the map defined by

(g, (aj
n)j∈JX ,n∈N0

) 7→ (g ◦ π−, (aj
n)j∈JX ,n∈N0

).

We then have:

Lemma 5.28. ψ3 ◦ A2 = A ◦ ψ3.

Proof: Let (g, (aj
n)j∈JX ,n∈N0

) ∈ C(X−, Z) ⊕
∑

n∈N0
ZJX . Then

A ◦ ψ3(g, (aj
n)j∈JX ,n∈N0

) = A(g ◦ π−, (aj
n)j∈JX ,n∈N0

)

= (g ◦ π− ◦ σ−1, (ãj
n)j∈JX ,n∈N0

),

where for each j ∈ JX ,

ãj
0 =

∑

z∈Mj

g ◦ π−(σ−1(z)) − g ◦ π−(σ−1(zj)),

and ãj
n = aj

n−1 for n ∈ N, and

ψ3 ◦ A2(g, (aj
n)j∈JX ,n∈N0

) = ψ3(g ◦ σ−, (âj
n)j∈JX ,n∈N0

)

= (g ◦ σ− ◦ π−, (âj
n)j∈JX ,n∈N0

),

where for each j ∈ JX ,

âj
0 =

∑

z∈Mj

g(π−(σ−1(z))) − g(π−(σ−1(zj))) = ãj
0,

and âj
n = aj

n−1 = ãj
n for n ∈ N, and since π− ◦ σ−1 = σ− ◦ π−, we have that

ψ3 ◦ A2(g, (aj
n)j∈JX ,n∈N0

) = A ◦ ψ3(g, (aj
n)j∈JX ,n∈N0

). ¤
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It follows from the previous lemma that ψ3 : C(X−, Z) ⊕
∑

n∈N0
ZJX → GX

induces an injective map

ψ3 :
C(X−, Z) ⊕

∑
n∈N0

ZJX

(Id−A2)
(
C(X−, Z) ⊕

∑
n∈N0

ZJX

) → GX/(Id−AX)
(
GX

)

such that the diagram

C(X−, Z) ⊕
∑

n∈N0
ZJX

ψ3

²²

// //
C(X−,Z)⊕

∑
n∈N0

Z
J

X

(Id−A2)
(

C(X−,Z)⊕
∑

n∈N0
Z
J

X

)

ψ3

²²
GX

// // GX/(Id−AX)
(
GX

)

commutes. We will now show that ψ3 in fact is an isomorphism.

Lemma 5.29. The map ψ3 is surjective.

Proof: In order to prove that ψ3 is surjective, it is enough to show that for every
(f, (aj

n)j∈JX ,n∈N0
) ∈ GX , there is a (g, (ãj

n)j∈JX ,n∈N0
) ∈ C(X−, Z) ⊕

∑
n∈N0

ZJX

such that

(f, (aj
n)j∈JX ,n∈N0

) − ψ3(g, (ãj
n)j∈JX ,n∈N0

) ∈ (Id−AX)
(
GX

)
.

Since f is continuous, there are k,m ∈ N such that z[−k,m] = z′[−k,m] ⇒ f(z) =

f(z′). Thus

z[−k−m−1,−1] = z′[−k−m−1,−1] ⇒ f ◦ σ−(m+1)(z) = f ◦ σ−(m+1)(z′).

Hence there is an g ∈ C(X−, Z) such that g ◦π− = f ◦σ−(m+1). We let for each
j ∈ JX ,

ãj
n =

∑

z∈Mj

f ◦ σn−m−1(z) − f ◦ σn−m−1(zj)

for 0 ≤ n ≤ m, and ãj
n = aj

n−(m+1) for n > m. Since (f, (aj
n)j∈JX ,n∈N0

) ∈ GX ,

(g, (ãj
n)j∈JX ,n∈N0

) ∈ C(X−, Z) ⊕
∑

n∈N0
ZJX , and it is easy to check that

ψ3(g, (ãj
n)j∈JX ,n∈N0

) = Am+1
X

(f, (aj
n)j∈JX ,n∈N0

).

Thus

(f, (aj
n)j∈JX ,n∈N0

) − ψ3(g, (ãj
n)j∈JX ,n∈N0

) =

(f, (aj
n)j∈JX ,n∈N0

) − Am+1
X

(f, (aj
n)j∈JX ,n∈N0

) =

m∑

k=0

(Id−AX)(Ak
X
(f, (aj

n)j∈JX ,n∈N0
)) ∈ (Id−AX)

(
GX

)
.

Documenta Mathematica 9 (2004) 639–671



Matsumoto K-Groups . . . 669

¤

We now have that ψ̄ = ψ3◦ψ2◦ψ1 is an isomorphism and since ψ = ψ3◦ψ2◦ψ1,
the diagram

GX

ψ
//

²²²²

GX

²²²²
GX/(Id−AX)(GX)

ψ̄
// GX/(Id−AX)

(
GX

)

commutes, and we are done with the proof of Proposition 5.19.
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