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Abstract. We determine the probability that a randomly chosen
elliptic curve E/Fp over a randomly chosen prime field Fp has an
ℓ-primary part E(Fp)[ℓ

∞] isomorphic with a fixed abelian ℓ-group

H
(ℓ)
α,β = Z/ℓα × Z/ℓβ .

Probabilities for “|E(Fp)| divisible by n”, “E(Fp) cyclic” and expec-
tations for the number of elements of precise order n in E(Fp) are
derived, both for unbiased E/Fp and for E/Fp with p ≡ 1 (ℓr).
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1. Introduction

Given an elliptic curve E over the finite field Fq with q elements, the set E(Fq)
of rational points forms an abelian group, which satisfies

(1.1) |E(Fq) − (q + 1)| ≤ 2q1/2 (Hasse)

and

(1.2) E(Fq) ∼= Z/m × Z/n

with well-defined numbers m,n and m|n. Our aim is to study the statistics
of such group structures if E/Fq varies through an infinite family F . In the
present article, we consider

(1.3)
F = {Fp-isomorphism classes of elliptic

curves E/Fp over finite prime fields Fp}
but note that a similar study may be performed for elliptic curves E/Fq over
arbitrary finite fields, or for E/Fq where q runs through the powers of the fixed
prime number p.
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Given any algebraic property (A) of E/Fp (or any subset A of F), we define
its “probability” in F as

(1.4) P (F , A) := lim
x→∞

|{E/Fp ∈ F | p ≤ x, E/Fp has property A}|
|{E/Fp ∈ F | p ≤ x}| ,

provided the limit exists. Then P (F , ·) is a “content” on F , i.e., it satisfies
the usual axioms of a probability measure except that the condition of σ-
additivity (= countable additivity) is relaxed to finite additivity. In a similar
fashion, we may define other notions of probability theory for F , for example
the conditional probability P (F , A|B) for property A under condition B, or
the expectation E(F , f) for a function f on F .

It is obvious from (1.1) that P (F , A) = 0 for any property like

(A) E(Fp) ∼= Z/m × Z/n with m,n fixed ;

i.e., such probabilities are meaningless. Instead, the typical question we will
deal with is:

1.5 Question: Let a prime number ℓ and a finite abelian ℓ-group

H = H
(ℓ)
α,β = Z/ℓα × Z/ℓβ

with 0 ≤ α ≤ β be given. How likely (cf. (1.4)) is it that the ℓ-primary part
E(Fp)[ℓ

∞] of E(Fp) is isomorphic with H, if E/Fp is randomly chosen in F?

(Instead of fixing one prime ℓ and the finite ℓ-group H, we could fix a finite set
L of primes and a finite abelian L-group H of rank less or equal to 2, and ask
for the probability that the L-part of E(Fp) is isomorphic with H.)

In Theorem 3.15, using results of E. Howe [7], we show that the corresponding

P (F , “E(Fp)[ℓ
∞] ∼= H

(ℓ)
α,β”) always exists, and give its value, along with an error

term Oℓ,α,β(x−1/2). As prescribed by Serre’s “Čebotarev theorem” ([8], Theo-

rem 7), that probability agrees with the (non-vanishing) Haar volume g(ℓ)(α, β)
of a certain subset X(ℓ)(α, β) of GL(2, Zℓ). The relevant Haar measures are
provided by Theorem 2.3, the proof of which forms the contents of section 2.

Actually, we will see in section 4 that P (F , ·) defines a probability measure (in
the usual sense, that is, even σ-additive) on the discrete set of isomorphism

classes of abelian groups of shape H
(ℓ)
α,β = Z/ℓα × Z/ℓβ (0 ≤ α ≤ β), and that

these measures for varying primes ℓ are stochastically independent.

We use the preceding to derive (both without restrictions on p, or under con-
gruence conditions for p) the exact values of

(a) the probability P (F , “n| |E(Fp)”) that |E(Fp)| is divisible by the fixed
natural number n (Proposition 5.1, Corollary 5.2);

(b) the expectation E(F , κn) for the number κn(E(Fp)) of elements of
precise order n in E(Fp) (Proposition 5.6);

(c) the probability P (F , “E(Fp) is cyclic”) of cyclicity of E(Fp) (Theorem
5.9).
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Items (a) and (c) are related to results of Howe (Theorem 1.1 of [5]) and S.G.
Vladut (Theorem 6.1 of [7]), the difference being that the cited authors consider
elliptic curves E over one fixed finite field Fq, while (a),(b),(c) are results
averaged over all Fp (or all Fp where p lies in some arithmetic progression).

Given E/Fp and a prime number ℓ different from p, we let Fℓ = Fℓ(E/Fp) be
its Frobenius element, an element of GL(2, Zℓ) well-defined up to conjugation
(Zℓ = ℓ-adic integers). Its characteristic polynomial χFℓ

(X) = X2 − tr(Fℓ)X +
det(Fℓ) satisfies

(1.6) det(Fℓ) = p, tr(Fℓ) = p + 1 − |E(Fp)|;

in particular, it has integral coefficients independent of ℓ. It is related with the
group structure on E(Fp) through

(1.7) E(Fp)[ℓ
∞] ∼= cok(Fℓ − 1),

where “cok” is the cokernel of a matrix regarded as an endomorphism on Zℓ×Zℓ

(see e.g. [3], appendix, Proposition 2).

In order to avoid technical problems irrelevant for our purposes, we exclude
for the moment the primes p = 2 and 3 from our considerations, that is,
F = {E/Fp | p ≥ 5 prime}. Then we define

(1.8) w(E/Fp) = 2|AutFp
(E/Fp)|−1 =











1
3 , p ≡ 1 (3), j(E) = 0
1
2 , p ≡ 1 (4), j(E) = 123

1 , otherwise.

Thus in “most” cases, w(E/Fp) = 1. For well-known philosophical reasons not
addressed here, we will count subsets of F not by ordinary cardinality, but by
cardinality weighted with w. That is, for a finite subset F ′ of F , we define its
weighted cardinality as

(1.9) |F ′|∗ =
∑

E/Fp∈F ′

w(E/Fp).

Then we have for example

(1.10) |{E/Fp}|∗ = 2p

for the number∗ of isomorphism classes of elliptic curves over a fixed prime
field Fp. Accordingly, we redefine probabilities P (F , A) as in (1.4), replacing
ordinary “| |” by weighted cardinalities “| |∗”. Of course, it doesn’t matter
whether or not we include the finite number of E/Fp with p = 2, 3 into F .

With each E/Fp ∈ F , we associate its total Frobenius element

F (E/Fp) = (. . . , Fℓ(E/Fp), . . .) ∈ Πℓ primeGL(2, Zℓ)
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(well-defined up to conjugation, and neglecting for the moment the question of
the p-component of F ). As usual, we let

Ẑ = lim
←

N∈N

Z/N =
∏

ℓ prime

Zℓ

be the profinite completion of Z. Then GL(2, Ẑ) =
∏

GL(2, Zℓ) is a compact
group provided with a canonical projection “(modN)” onto GL(2, Z/N) for
each N ∈ N.

Led by the Čebotarev and other equidistribution theorems or conjectures, in
particular, the “Cohen-Lenstra philosophy” [2], we make the following hypoth-
esis:

(H) The series (F (E/Fp))E/Fp∈F is equidistributed in GL(2, Ẑ).

In more detailed terms, this means:

(1.11) Given N ∈ N and any conjugacy class C in GL(2, Z/N), the limit

lim
x→∞

|{E/Fp ∈ F | F (E/Fp)(modN) lies in C and p ≤ x}|∗
|{E/Fp ∈ F | p ≤ x}|∗

exists and equals |C|/|GL(2, Z/N)|.
Note that in the form just given, the hypothesis does not require specifying
the p-component of F (E/Fp), since for given N and C we may omit the finite
number of terms indexed by E/Fp with p|N without changing the limit. Note
also that the number of E/Fp with w(E/Fp) 6= 1 over a fixed Fp is uniformly
bounded, and is therefore negligible for large p. That is, though (1.11) appears
to be the “right” formula, the limit (provided it exists) doesn’t change upon
replacing weighted by unweighted cardinalities.

Now (H) may be derived from the general “Čebotarev theorem” (Theorem 7
of [8]) of Serre, applied to the moduli scheme of elliptic curves endowed with
a level-N structure, and also from Theorem 3.1 of [1]. We thus regard (H) as
established, although our proofs are independent of its validity.

In [6], we studied the frequency of E/Fp with a fixed Frobenius trace tr(E/Fp) ∈
Z. The results (loc. cit., Theorems 5.5 and 6.4) turned out to be those ex-
pected by (H) (and other known properties of E/Fp, like the result of [2]).
On the other hand, (H) in the form (1.11) applied to prime powers N = ℓn

along with (1.7) predicts that for each group H
(ℓ)
α,β = Z/ℓα × Z/ℓβ , the prob-

ability P (F , “E(Fp)[ℓ
∞] ∼= H

(ℓ)
α,β”) equals the Haar volume in GL(2, Zℓ) of

{γ ∈ GL(2, Zℓ) | cok(γ − 1) ∼= H
(ℓ)
α,β}. Our Theorem 3.15 states an effec-

tive version of that identity, i.e., including the error term.

Notation. Apart from standard mathematical symbols, we use the following
notation.

N = {1, 2, 3, . . .}, N0 = {0, 1, 2, . . .} and P = {2, 3, 5, . . .} denote the sets of
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natural, of non-negative integral, of prime numbers, respectively, and |X| the
cardinality of the set X. For m,n ∈ N, “m|n” means “m divides n” and “m‖n”
that m is an exact divisor of n, i.e., m|n and m is coprime with n/m.

Z/n is the residue class group Z/nZ, and for each abelian group A and n ∈ N,
A[n] = {x ∈ A | nx = 0}. Further, for ℓ ∈ P, A[ℓ∞] =

⋃

r∈N
A[ℓr].

The symbols p and ℓ always stand for primes, and e.g. “
∑

p≤x · · · ” means the
sum over all primes p ≤ x.

If f and g are functions defined on suitable subsets of R, then

f ∼ g :⇔ lim
x→∞

f(x)/g(x) = 1;

f = O(g) :⇔ there exists a constant C > 0 such that f(x) ≤ Cg(x). We write
f = Oα,β(g) to indicate that C might depend on the parameters α, β, . . .

2. Some Haar measures in GL(2, Zℓ).

In the present section, we calculate the volumes with respect to Haar measure
of certain subsets of GL(2, Zℓ) relevant for our purposes.

(2.1) Fix a prime number ℓ, and let

M = Mat(2, Zℓ) be the ring of 2 × 2-matrices over Zℓ, and

G = GL(2, Zℓ), with normalized Haar measures µ on M and
ν on G, respectively.

For each natural number n, we put

Mn = Mat(2, Z/ℓn) and Gn = GL(2, Z/ℓn).

By abuse of language, and if the context allows for no ambiguity, we often write
“a” for the image of a ∈ Zℓ (or of a ∈ Z/ℓm with m ≥ n) in Z/ℓn, etc. The
reduction mapping a 7−→ a : Zℓ −→ Fℓ = Z/ℓ and everything derived from it
will be denoted by a bar, e.g. γ 7−→ γ : M −→ M1. Finally, vℓ denotes both
the ℓ-adic valuation on Zℓ and the truncated valuation Z/ℓn −→ {0, 1, . . . , n}.

(2.2) The possible ℓ-torsion of an elliptic curve over a finite field is of shape

H = Hα,β = H
(ℓ)
α,β = Z/ℓα × Z/ℓβ ,

where 0 ≤ α ≤ β are well-defined by H. (We omit some ℓ’s in the notation.)
For reasons explained in the introduction, we are interested in the volumes
(with respect to ν) of the subsets

X(α, β) = {γ ∈ G | cok(γ − 1) ∼= Hα,β}
and

Xr(α, β) = {γ ∈ G | cok(γ − 1) ∼= Hα,β , vℓ(det(γ) − 1) = r}
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of G. Here cok(δ) = Z
2
ℓ/δ(Z2

ℓ) is the module determined by the matrix δ ∈ M .
We will show:

2.3 Theorem.

(i) Given α, β ∈ N0 with α ≤ β, we have volν(X(α, β)) = g(α, β) with

g(α, β) = ℓ3−2ℓ2−ℓ+3
(ℓ2−1)(ℓ−1) , 0 = α = β

ℓ2−ℓ−1
(ℓ−1)ℓ ℓ−β , 0 = α < β

ℓ−4α, 0 < α = β

ℓ+1
ℓ ℓ−β−3α, 0 < α < β .

(ii) Given α ≤ β and r ∈ N0, Xr(α, β) is empty if r < α. Otherwise,
volν(Xr(α, β)) is given by the following table.

volν(Xr(α, β)) r = α r > α

0 = α = β ( ℓ−2
ℓ−1 )2 ℓ2−ℓ−1

ℓ2−1 ℓ−r

0 = α < β ℓ−2
ℓ−1ℓ−β ℓ−1

ℓ ℓ−β−r

0 < α = β ℓ2−ℓ−1
ℓ2−1 ℓ−4α ℓ

ℓ+1ℓ−3α−r

0 < α < β ℓ−β−3α ℓ+1
ℓ ℓ−β−2α−r

We need some preparations to prove the theorem. We start with three simple
observations, stated without proof, where we always assume that 0 ≤ α ≤ β.

(2.4) For δ ∈ M we have the equivalence

cok(δ) ∼= Hα,β ⇔ δ ≡ 0 (ℓα), δ 6≡ 0 (ℓα+1) and
vℓ(det δ) = α + β.

(2.5) If δ ∈ M satisfies cok(δ) ∼= Hα,β and δ ≡ δ′(ℓn) with n > β then
cok(δ′) ∼= Hα,β .

As a consequence we get:

(2.6) If n > β then

volµ{δ ∈ M | cok(δ) ∼= Hα,β} = ℓ−4n|{δ ∈ Mn | cok(δ) ∼= Hα,β}|.
That number is easy to determine.

2.7 Proposition.

volµ{δ ∈ M | cok(δ) ∼= Hα,β} = (1 − ℓ−1)(1 − ℓ−2)ℓ−4α, 0 ≤ α = β

(1 − ℓ−2)2ℓ−β−3α, 0 ≤ α < β.

Proof. In view of (2.4) and the bijection δ 7−→ ℓ−αδ of {δ ∈ Mn | cok(δ)
∼= Hα,β} with {ǫ ∈ Mn−α | cok(ǫ) ∼= H0,β−α}, valid for n > β, the proof boils
down to counting of matrices ǫ in Mn−α with ǫ 6= 0 and given value of vℓ(det ǫ).
We omit the details. ¤

Documenta Mathematica 11 (2006) 119–142



The Distribution of Group Structures 125

2.8 Remark. The volume of {δ ∈ Mat(n, Zℓ) | cok(δ) ∼= H} has been
calculated by Friedman and Washington in full generality, i.e., for arbitrary
n and abelian ℓ-groups H (see Proposition 3.1 of [5]). In our special case
however, it is less complicated to apply the simple proof scheme given above
than to extract (2.7) from the general result.

Similar to (2.6) we have

(2.9)

volν(X(α, β)) = |Gn|−1|{γ ∈ Gn | cok(γ − 1) ∼= Hα,β}|
and
volν(Xr(α, β)) = |Gn|−1|{γ ∈ Gn | cok(γ − 1) ∼= Hα,β ,

vℓ(det(γ) − 1) = r}|,
where n > β in the first and n > max(β, r) in the second case.

Note that

(2.10) |Gn| = |G1|ℓ4(n−1) = (ℓ2 − 1)(ℓ − 1)ℓ4n−3.

Thus (2.3) will be established as soon as we determine the numerators in (2.9).

Let γ ∈ G with residue class γ ∈ G1 = GL(2, Fℓ) be given, and suppose that
cok(γ − 1) ∼= Hα,β with 0 ≤ α ≤ β.

2.11 Lemma. We have

(I) 0 = α = β ⇔ 1 is not an eigenvalue of γ. There are ℓ(ℓ3 − 2ℓ2 − ℓ+3) such
elements γ ∈ G1, among which there are ℓ(ℓ2 − ℓ − 1) with determinant 1;

(II) 0 = α < β ⇔ γ − 1 has rank 1
⇔ γ is conjugate to

(

1 1
0 1

)

(case IIa) or

γ is conjugate to
(

1 0
0 d

)

with d ∈ Fℓ − {0, 1} (case IIb).

There are ℓ2 − 1 (case IIa) and (ℓ + 1)ℓ(ℓ − 2) (case IIb) such γ ∈ G1;

(III) 0 < α ≤ β ⇔ γ = 1.

Proof. For δ = γ − 1 we have cok(δ)/ℓ cok(δ) = cok(δ), and thus the equiva-
lences are obvious. Now the centralizer of

(

1 1
0 1

)

(resp. of
(

1 0
0 d

)

) in G1 consists

of the matrices of shape
(

a b
0 a

)

(resp. the diagonal matrices) in G1, from which
we find the numbers of γ subject to condition IIa (resp. IIb) and, finally, of
γ subject to I. There are ℓ3 − ℓ elements γ of determinant 1, of which ℓ2 − 1
(resp. 1) are of type II (resp. III), thus ℓ3 − ℓ2 − ℓ of type I. ¤

Next, we need a series of lemmas that count numbers of matrices in Mn with
various properties.

2.12 Lemma. (i) The number of δ ∈ M1 such that det(δ) 6= 0 equals ℓ(ℓ2 −
1)(ℓ − 1). A share of ℓ · (ℓ2 − 1)−1, i.e., precisely ℓ2(ℓ − 1) of them, satisfy
tr(δ) = 0.
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(ii) The number of 0 6= δ ∈ M1 such that det(δ) = 0 equals (ℓ − 1)(ℓ + 1)2. A
share of (ℓ + 1)−1, i.e., precisely ℓ2 − 1 of them, satisfy tr(δ) = 0.

Proof. Omitted. ¤

2.13 Lemma. Let n ∈ N and δn ∈ Mn = Mat(2, Z/ℓn) be given, and suppose
that

tr(δn) + det(δn) ≡ 0 (ℓn).

Then there are precisely ℓ3 elements δn+1 ∈ Mn+1 such that δn+1 ≡ δn(ℓn) and

tr(δn+1) + det(δn+1) ≡ 0 (ℓn+1).

Proof. Writing δn =
(

a b
c d

)

with a, b, c, d ∈ Z/ℓn, we have

(∗) a + d + ad − bc = 0.

If a 6= −1, we write the left hand side as d(1 + a) + a − bc, choose arbitrary

lifts ã, b̃, c̃ of a, b, c in Z/ℓn+1 and solve for d̃ such that (∗) holds for ã, b̃, c̃, d̃.
If a = −1 but d 6= −1, we may exchange the parts of a and d. If both a and
d equal −1 then bc = −1, we may arbitrarily choose lifts ã, b̃, d̃ of a, b, d and

solve for c̃. In any case, we get precisely ℓ3 matrices δn+1 =
(

ã b̃
c̃ d̃

)

∈ Mn+1 as
required. ¤

2.14 Lemma. Let 0 < β < n and d ∈ Fℓ−{0} be fixed. The number of matrices

δ =
(

a b
c d

)

∈ Mn such that δ =
(

0 0
0 d

)

and vℓ(ad − bc) = β is (ℓ − 1)ℓ4n−4−β.

Proof. For each of the (ℓ − 1)ℓn−1−β possible values of “det” in Z/ℓn with
vℓ(det) = β, the quantities b, c and d may be freely chosen subject to b = 0 = c
and d ≡ d(ℓ), and then a = d−1(det +bc). ¤

2.15 Lemma. Let t, u ∈ Z/ℓn be given with t = 0 = u. There are precisely

(ℓ2 −1)ℓ2(n−1) elements ǫ =
(

a b
c d

)

of Mn such that ǫ 6= 0, tr(ǫ) = t and det(ǫ) =
u.

Proof. Choose a ∈ Z/ℓn, which determines d = t− a. If a 6= 0 then d 6= 0, and
we may freely choose b ∈ (Z/ℓn)∗ and solve for c in

(∗) ad − u = bc.

If a = 0 then d = 0, either b or c is invertible, and we may solve for the other
one in (∗). Counting the number of possible choices yields the stated value. ¤

Now we are ready for the

Proof of Theorem 2.3. At several occasions, we will use the trivial identity

(1) det(1 + δ) = 1 + tr(δ) + det(δ)

for 2× 2-matrices δ. Among other things, it implies (together with (2.4)) that
Xr(α, β) is empty for r < α.

Case 0 = α = β From (2.9), putting n = 1, and (2.11), we see after a little
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calculation that the volumes of X(0, 0) and X0(0, 0) are as asserted. Let γ =
1+δ ∈ G1 be such that δ also belongs to G1. By (2.11), there are precisely ℓ(ℓ2−
ℓ − 1) such γ with determinant 1, i.e., using (1), such that tr(δ) + det(δ) = 0.
By induction on n, using (2.13), we see that among the ℓ4(n−1) lifts γn = 1+δn

of γ to Gn, there are precisely ℓ3(n−1) that satisfy det(γn) ≡ 1 (ℓn), if n ≥ 2.
For r ≥ 1 and n := r + 1, (2.9) yields

vol(Xr(0, 0)) =
ℓ(ℓ2 − ℓ − 1)ℓ3(r−1)(ℓ4 − ℓ3)

(ℓ2 − 1)(ℓ − 1)l4r+1
=

ℓ2 − ℓ − 1

ℓ2 − 1
ℓ−r.

Case 0 = α < β According to (2.4) and (2.9), we have for n > β

vol(X(0, β)) = |Gn|−1|{γ ∈ Gn | γ 6= 1, vℓ(det(γ − 1)) = β}|.

Any γ = 1 + δ as above satisfies (see (2.11)):

• γ ∈ G1 is conjugate to
(

1 1
0 1

)

, which happens ℓ2 − 1 times, or

• γ is conjugate to
(

1 0
0 d′

)

, which happens (ℓ + 1)ℓ(ℓ − 2) times.

Thus we have to count the number of lifts γ ∈ Gn of γ such that vℓ(det(γ−1)) =
β, i.e., of lifts δ of δ with vℓ(det δ) = β. Clearly, that number is invariant under
conjugation, so we may assume that

• γ =
(

1 1
0 1

)

, i.e., δ =
(

0 1
0 0

)

, or

• γ =
(

1 0
0 d′

)

, i.e., δ =
(

0 0
0 d

)

with d = d′ − 1 ∈ Fℓ − {0,−1}.
In both cases, Lemma 2.14 (after possibly permuting the rows of δ) yields the
same number (ℓ − 1)ℓ4n−4−β of lifts of the wanted type. Therefore,

vol(X(0, β)) = |Gn|−1[ℓ2 − 1 + (ℓ + 1)ℓ(ℓ − 2)](ℓ − 1)ℓ4n−4−β

= ℓ2−ℓ−1
(ℓ−1)ℓ ℓ−β .

In order to find vol(Xr(0, β)), we must determine the number of lifts γ as above
that moreover satisfy

det γ ≡ 1 (ℓr), 6≡ 1 (ℓr+1), where r < n, i.e., n > max(β, r).

Suppose r > 0 and γ conjugate to
(

1 1
0 1

)

, without restriction, γ =
(

1 1
0 1

)

, δ =
(

0 1
0 0

)

. The number of lifts is the number of δ =
(

a b
c d

)

∈ Mn such that

(2) a ≡ c ≡ d ≡ 0, b ≡ 1 (ℓ)
(3) a + d + ad − bc = tr(δ) + det(δ) ≡ 0 (ℓr), 6≡ 0 (ℓr+1)
(4) vℓ(det δ) = β

hold. Now there are

• (ℓ − 1)ℓn−β−1 choices of det(δ) subject to (4);
• ℓn−1 free choices for a and b each subject to (2);
• (ℓ − 1)ℓn−r−1 choices for d compatible with (2), (3) and the choices

made of det(δ) and a,
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which together determine c = b−1(ad − det(δ)). Therefore, γ has
(ℓ−1)2ℓ4(n−1)−r−β lifts of the wanted type. If, on the other hand, γ is conjugate
to

(

1 0
0 d′

)

with d′ 6= 0, 1, then any lift γ satisfies det(γ) 6≡ 1 (ℓr). Hence

vol(Xr(0, β)) = |Gn|−1(ℓ2 − 1)(ℓ − 1)2ℓ4(n−1)−r−β = ℓ−1
ℓ ℓ−β−r.

Suppose r = 0 . If γ is unipotent, no lifts of the wanted type exist. Thus let

γ =
(

1 0
0 d′

)

with d′ ∈ Fℓ − {0, 1}. Any lift γ ∈ Gn of γ satisfies det(γ) 6≡ 1 (ℓ),
so we have for n > β

vol(X0(0, β)) = |Gn|−1(ℓ + 1)ℓ(ℓ − 2)(ℓ − 1)ℓ4n−4−β = ℓ−2
ℓ−1ℓ−β .

It remains to treat the

Case 0 < α ≤ β . Here, for n > β,

vol(X(α, β)) = |Gn|−1|{γ ∈ Mn | γ = 1, cok(γ − 1) ∼= Hα,β}|.

The condition on γ = 1 + δ is equivalent with δ = 0, cok(δ) ∼= Hα,β , i.e., with
cok(δ′) ∼= Hα−1,β−1 for δ′ := ℓ−1δ ∈ Mn−1. The number of such δ′ is given by
(2.6) and (2.7), and yields the stated result for vol(X(α, β)).

Now to find vol(Xr(α, β)), where r ≥ α, we need to analyze the condition

(5) cok(δ) ∼= Hα,β , det(1 + δ) ≡ 1 (ℓr), 6≡ 1 (ℓr+1) for δ ∈ Mn and
n > max(β, r). Note that cok(δ) ∼= Hα,β implies δ ≡ 0 (ℓα),
6≡ 0 (ℓα+1). Thus, letting ǫ := ℓ−αδ ∈ Mn−α, (5) is equivalent with

(6) ǫ 6= 0, vℓ(det ǫ) = β − α, tr(ǫ) + ℓα det(ǫ) ≡ 0 (ℓr−α),
6≡ 0 (ℓr−α+1).

Suppose α = β . If r = α then (6) is equivalent with ǫ ∈ Gn−α, tr(ǫ) 6= 0, and

the volume of Xα(α, α) comes out by (2.9) along with (2.12), putting n = α+1.

Each of the ℓ2(ℓ − 1) elements δ = δα+1 ∈ Mα+1 subject to

cok(δ) ∼= Hα,α, tr(δ) ≡ 0 (ℓα+1)

has precisely ℓ3(n−α−1) lifts δn to Mn (n ≥ α + 1) such that

tr(δn) + det(δn) ≡ 0 (ℓn),

by (2.13). Therefore, for r > α ,

|{δ ∈ Mr+1 | cok(δ) ∼= Hα,α, tr(δ) + det(δ) ≡ 0 (ℓr), 6≡ 0 (ℓr+1)}|
= ℓ2(ℓ − 1)ℓ3(r−α−1)(ℓ4 − ℓ3),

which together with (2.9) yields the stated result for vol(Xr(α, α)).

Suppose α < β . By virtue of Lemma 2.15, we have for r > α and n >
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max(β, r):

|{ǫ ∈ Mn−α | ǫ 6= 0, vℓ(det ǫ) = β − α, tr(ǫ) + ℓα det(ǫ) ≡ 0 (ℓr−α),

6≡ 0 (ℓr−α+1)}|
= (ℓ2 − 1)ℓ2(n−α−1) | {(t, u) ∈ Z/ℓn × Z/ℓn | (t, u) subject to (7)}|

with the condition

(7) t = 0 = u, vℓ(u) = β − α, t + ℓαu ≡ 0 (ℓr−α), 6≡ 0 (ℓr−α+1).

For the number of these pairs (t, u), we find (ℓ − 1)2ℓ2n−β−r−2, which yields
vol(Xr(α, β)) for r > α. Finally,

vol(Xα(α, β)) = vol(X(α, β)) −
∑

r>α

vol(Xr(α, β)),

which allows to fill in the last missing entry in the statement of Theorem 2.3.
¤

(2.16) Put Xr := {γ ∈ G | vℓ(det(γ) − 1) = r}. We have the obvious formula

volν(Xr) = ℓ−2
ℓ−1 , r = 0

ℓ−r, r > 0.

Then we may interpret Theorem 2.3 as follows. Define for 0 ≤ α ≤ β, r ≥ 0
and (r, ℓ) 6= (0, 2):

(2.17) gr(α, β) :=
volν(Xr(α, β))

volν(Xr)
,

and recall that g(α, β) = volν(X(α, β)). Then

g(α, β) = probability of γ ∈ G to satisfy cok(γ − 1) ∼= Z/ℓα × Z/ℓβ

and
gr(α, β) = probability for the same event under the

assumption vℓ(det(γ) − 1) = r.

2.18 Corollary. The conditional probability gr(α, β) is zero if r < α, and
otherwise is given by the table below, where the two entries marked with “∗”
are undefined for ℓ = 2.

gr(α, β) r = α r > α

0 = α = β ℓ−2
ℓ−1 ∗ ℓ2−ℓ−1

ℓ2−1

0 = α < β ℓ−β ∗ ℓ−1
ℓ ℓ−β

0 < α = β ℓ2−ℓ−1
ℓ2−1 ℓ−3α ℓ

ℓ+1ℓ−3α

0 < α < β ℓ−β−2α ℓ−1
ℓ ℓ−β−2α

That is, we have gr(α, β) = πr(α, β)ℓ−β−2α with some factor πr(α, β) ∈
{0, ℓ−2

ℓ−1 , ℓ2−ℓ−1
ℓ2−1 , ℓ−1

ℓ , ℓ
ℓ+1 , 1}. Note that

(2.19) πr(α, α) increases if r = α is replaced with r > α. On the other hand, if
α is less than β then πr(α, β) decreases upon enlarging r from α to r > α. In
any case, gr(α, β) is independent of r as long as r > α.
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3. Probabilities of group structures.

We first summarize some results of E. Howe from [7], which will play a crucial
role.

(3.1) Define the multiplicative arithmetic functions ϕ and ψ through their val-
ues on prime powers ℓα, α ≥ 1:

ϕ(ℓα) = ℓα−1(ℓ − 1), ψ(ℓα) = ℓα−1(ℓ + 1),

i.e., ϕ is the Euler function. Further, given a prime number p ≥ 5 and m,n ∈ N

with m|n, put

wp(m,n) =
1

2

∑

E(Fp)[n]∼=Z/m×Z/n

w(E/Fp),

where E runs through the Fp-isomorphism classes of elliptic curves over Fp

with the property that E(Fp)[n] ∼= Z/m×Z/n. Up to the factor 1
2 (introduced

to be in keeping with [7]), wp(m,n) is a weighted cardinality | |∗ in the sense
of (1.9). Howe defines the approximation

(3.2) ŵp(m,n) = p
ψ(n/m)

mϕ(n)ψ(n)

∏

ℓ|gcd(n,p−1)/m

(1 − ℓ−1),

where ℓ runs through the prime divisors of gcd(n, p − 1)/m, if m|p − 1, and
ŵp(m,n) = 0 otherwise. Note that

(3.3) p−1wp(1, 1) = p−1ŵp(1, 1) = 1.

On p. 245 of [7], he obtains the inequality

(3.4) |wp(m,n) − ŵp(m,n)| ≤ C(m,n)p1/2

with the constant

C(m,n) = (1/12 + 5/6
√

2)ψ(n/m)2ω(n)

independent of p. Here ω(n) := number of different prime divisors of n. Briefly,

wp(m,n) = ŵp(m,n) + Om,n(p1/2).

It is obvious that the 2-variable function p−1ŵp(m,n) localizes, that is

(3.5) p−1ŵp(m,n) =
∏

ℓ

p−1ŵp(ℓ
αℓ , ℓβℓ)

if m =
∏

ℓ ℓαℓ , n =
∏

ℓ ℓβℓ , 0 ≤ αℓ ≤ βℓ with pairwise different prime numbers
ℓ. The factors on the right hand side are simple functions of ℓ, αℓ, βℓ and

r(p, ℓ) := r ∈ N0 such that ℓr‖p − 1,

i.e., the dependence on p is via r(p, ℓ) only. We therefore define for 0 ≤ α ≤ β:

(3.6) h(ℓ)
r (α, β) := p−1ŵp(ℓ

α, ℓβ),

where r = r(p, ℓ). It vanishes for r < α; otherwise, its values are given by the
following table.
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3.7 Table for h
(ℓ)
r (α, β).

r = α r > α
0 = α = β 1 1

0 = α < β ℓ
ℓ−1ℓ−β ℓ−β

0 < α = β ℓ2

ℓ2−1ℓ−3α ℓ
ℓ+1ℓ−3α

0 < α < β ℓ
ℓ−1ℓ−β−2α ℓ−β−2α

Fix ℓ, α and β for the moment, and let

H = H
(ℓ)
α,β = Z/ℓα × Z/ℓβ .

From the above, replacing wp by its approximation ŵp, and taking (1.9) into
account, we may regard

h(ℓ)
r (α, β) ≈ |{E/Fp | E(Fp)[ℓ

β ] ∼= H}|∗
|{E/Fp}|∗

as the probability that a randomly chosen E/Fp (with our fixed p subject
to r(p, ℓ) = r) satisfies “E(Fp)[ℓ

β ] ∼= H”. The associated probability of
“E(Fp)[ℓ

∞] ∼= H” is

(3.8)

g
(ℓ)
r (α, β) := h

(ℓ)
r (α, β) − h

(ℓ)
r (α, β + 1),

r = 0 or r > 0, α < β

= h
(ℓ)
r (α, α) − h

(ℓ)
r (α, α + 1) − h

(ℓ)
r (α + 1, α + 1),

r > 0, α = β

since, e.g., the event “E(Fp)[ℓ
∞] ∼= Z/ℓα × Z/ℓβ” for α < β is equivalent with:

“E(Fp)[ℓ
β ] ∼= Z/ℓα × Z/ℓβ” but not “E(Fp)[ℓ

β+1] ∼= Z/ℓα × Z/ℓβ+1”.

More precisely, we get from (3.4) that

(3.9)
|{E/Fp | E(Fp)[ℓ

∞] ∼= H}|∗
|{E/Fp}|∗

= g(ℓ)
r (α, β) + Oℓ,α,β(p−1/2),

where the constant implied by the O-symbol depends only on ℓ, α, β (and may
easily be determined). Evaluating (3.8) by means of (3.7), which requires a
number of case distinctions, we find:

(3.10) The present g
(ℓ)
r (α, β) agrees with the conditional probability (where

ℓ, α, β are fixed) gr(α, β) defined in (2.17) and described by the table in (2.18).

So far, p has been fixed. Letting p vary subject to r(p, ℓ) = r with some fixed
r and taking (1.10) into account yields for p ≤ x ∈ R:

(3.11)
|{E/Fp ∈ F | p ≤ x, r(p, ℓ) = r, E(Fp)[ℓ

∞] ∼= H}|∗
= 2g

(ℓ)
r (α, β)

∑

p + Oℓ,α,β(
∑

p1/2),

where the sum in both cases ranges through

{p ∈ P | p ≤ x, r(p, ℓ) = r} = {p ≤ x | ℓr‖p − 1}.
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(Strictly speaking, we had to assume that p ≥ 5, but including p = 2, 3 doesn’t
change the asymptotic behavior. Thus we will neglect from now on the restric-
tion of p ≥ 5.)

We need a well-known fact from analytic number theory, an explicit reference
of which is nonetheless difficult to find.

3.12 Proposition. Let γ > −1 be a real number and a,m coprime natural
numbers. Then

∑

p≤x prime
p≡a (m)

pγ ∼ 1

ϕ(m)

1

1 + γ

x1+γ

log x
,

where “∼” denotes asymptotic equivalence.

Proof (sketch). Note that the assertion includes the prime number theorem
(γ = 0, m = 1) and Dirichlet’s theorem on primes in arithmetic progressions
(γ = 0). The general case (γ > −1 arbitrary) results from the case γ = 0 by
Abel summation (see the instructions and notation given in [9] pp. 3,4) of the
series

∑

n≤x anb(n) with

an =

{

1, n ≡ a(m), n prime
0, otherwise,

and the C1-function b with b(x) = xγ . ¤

In particular,
∑

p≤x
r(p,ℓ)=r

p1/2 ∼ 2

3
(

1

ϕ(ℓr)
− 1

ϕ(ℓr+1)
)
x3/2

log x
,

so the expression in (3.11) becomes

2g(ℓ)
r (α, β)

∑

p + (
1

ϕ(ℓr)
− 1

ϕ(ℓr+1)
)Oℓ,α,β(

x3/2

log x
).

Applying (3.12) also to the first sum
∑

p in (3.11) yields

(3.13)

|{E/Fp | p ≤ x, r(p, ℓ) = r, E(Fp)[ℓ
∞] ∼= H}|∗

|{E/Fp | p ≤ x, r(p, ℓ) = r}|∗

= g
(ℓ)
r (α, β) + Oℓ,α,β(x−1/2),

where the implied constant depends only on ℓ, α, β but not on r. Apart from

the condition “r(p, ℓ) = r”, this expresses g
(ℓ)
r (α, β) as a probability in the

sense of (1.4). It remains to evaluate

P{F , “E(Fp)[ℓ
∞] ∼= H”) = lim

x→∞

|{E/Fp | p ≤ x, E(Fp)[ℓ
∞] ∼= H}|∗

|{E/Fp | p ≤ x}|∗ .

It is tempting to calculate it via the conditional probabilities g
(ℓ)
r (α, β) simply

as
∑

r≥0

(
1

ϕ(ℓr)
− 1

ϕ(ℓr+1)
)g(ℓ)

r (α, β),
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where 1
ϕ(ℓr) − 1

ϕ(ℓr+1) = volν(Xr) (see (2.16)) is the probability of p to satisfy

r(p, ℓ) = r. This will turn out to be true, but requires reversing the order in
which we evaluate a double limit, and needs to be justified.

We have

|{E/Fp | p ≤ x, E(Fp)[ℓ
∞] ∼= H}|∗

=
∑

r≥0[2g
(ℓ)
r (α, β)

∑

p≤x
r(p,ℓ)=r

p + ( 1
ϕ(ℓr+1) − 1

ϕ(ℓr+1) )Oℓ,α,β( x3/2

log x )].

Now g
(ℓ)
r (α, β) = 0 if r < α and g

(ℓ)
r (α, β) = g

(ℓ)
α+1(α, β) for r > α. Therefore,

the above is

2g(ℓ)
α (α, β)

∑

p≤x
r(p,ℓ)=α

p + 2g
(ℓ)
α+1(α, β)

∑

p≤x
r(p,ℓ)>α

p + Oℓ,α,β(x3/2/ log x).

From (3.12) and (2.17) we find that

2g
(ℓ)
α (α, β)

∑

p≤x
r(p,ℓ)=α

p ∼ volν(Xα(α, β))x2/ log x,

2g
(ℓ)
α+1(α, β)

∑

p≤x
r(p,ℓ)>α

p ∼ ℓ
ℓ−1volν(Xα+1(α, β))x2/ log x.

Comparing with (2.3) yields in all the four cases

volν(Xα(α, β)) + ℓ
ℓ−1volν(Xα+1(α, β)) = g(ℓ)(α, β).

Thus, dividing by |{E/Fp | p ≤ x}|∗ = 2
∑

p≤x p ∼ x2/ log x, we finally get

(3.14)
|{E/Fp | p ≤ x, E(Fp)[ℓ

∞] ∼= H}|∗
|{E/Fp | p ≤ x}|∗ = g(ℓ)(α, β) + Oℓ,α,β(x− 1

2 ).

Hence, in fact

P (F , “E(Fp)[ℓ
∞] ∼= H”) = g(ℓ)(α, β) = volν(X(α, β)),

where X(α, β) = X(ℓ)(α, β) is the ℓ-adic set defined in (2.2).

We may summarize our results (3.13) and (3.14) as follows.

3.15 Theorem. Let a prime number ℓ and 0 ≤ α ≤ β be given.

(i) The probability P (F , “E(Fp)[ℓ
∞] ∼= Z/ℓα × Z/ℓβ”) in the sense of (1.4)

exists and equals the value g(ℓ)(α, β) given in (2.3).
(ii) Fix moreover a non-negative integer r. The conditional probability

P (F , “E(Fp)[ℓ
∞] ∼= Z/ℓα × Z/ℓβ” | “ℓr‖p − 1”) for

“E(Fp)[ℓ
∞] ∼= Z/ℓα × Z/ℓβ” under the assumption “ℓr‖p − 1” exists

and equals the value of g
(ℓ)
r (α, β) given in (2.18).

In both cases the error terms are Oℓ,α,β(x−1/2).

Note that the probabilities thus found are those predicted by the hypothesis
(H) formulated in the introduction.
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3.16 Example. We consider the probability that the 2-part of E(Fp) is iso-
morphic with H = Z/4×Z/4 under congruence conditions for p. According to
(3.15), it is

1/3 · 2−6 for p ≡ 5 (8)

and increases to

2/3 · 2−6 for p ≡ 1 (8).

If we replace H by H ′ = Z/4 × Z/8, the probability is

2−7 for p ≡ 5 (8)

and decreases to

2−8 for p ≡ 1 (8).

4. The probability spaces.

Theorem 3.15 has the drawback that it relies on the ad hoc notion (1.4) of
probability and does not involve probability spaces in the ordinary sense. Here
we will remedy this defect and put (3.15) in the framework of “ordinary” prob-
ability theory.

(4.1) For what follows, we fix a prime ℓ and put X(ℓ) for the set of all pairs (H, r),
where H is a group of shape Z/ℓα × Z/ℓβ with 0 ≤ α ≤ β and α ≤ r ∈ N0.
Hence elements of X(ℓ) correspond bijectively to triples (α, β, r) ∈ N

3
0 with

α ≤ min(β, r), which we often use as an identification. By (2.3), the function

P (ℓ) : (α, β, r) 7−→ volν(X(ℓ)
r (α, β))

turns X(ℓ) into a discrete probability space (d.p.s.). (By a d.p.s. we understand
a countable set provided with a probability measure in which each non-empty
subset is measurable with positive volume.)

Given (H
(ℓ)
α,β , r) = (α, β, r) ∈ X(ℓ), we define

Aα,β,r := {E/Fp ∈ F | E(Fp)[ℓ
∞] ∼= H

(ℓ)
α,β , r(p, ℓ) = r}.

We further let A(ℓ) be the σ-algebra of subsets of F generated by all the sets
Aα,β,r. Hence the elements of A(ℓ) are the subsets AY of F , where Y is an

arbitrary (finite or countably infinite) subset of X(ℓ) and

AY =
⋃

(α,β,r)∈Y

Aα,β,r (disjoint union).

4.2 Proposition. For each subset Y of X(ℓ), the limit P (F , AY) as in (1.4)
exists, and is given as

∑

(α,β,r)∈Y P (F , Aα,β,r).
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Here P (F , Aα,β,r) = P (F , “E(Fp)[ℓ
∞] ∼= H

(ℓ)
α,β , r(p, ℓ) = r”) =

volν(X
(ℓ)
r (α, β)) by (3.15).

Proof. We must check the identity

(?)
limx→∞

|{E/Fp∈F | p≤x, (E(Fp)[ℓ∞], r(p,ℓ))∈Y}|∗

|{E/Fp∈F | p≤x}|∗

=
∑

(α,β,r)∈Y P (F , Aα,β,r),

which is obvious from (3.15) if Y is finite. Let fY(x) be the argument of the
limit in the left hand side of (?). Then for each finite subset Y0 of Y,

lim inf
x→∞

fY(x) ≥
∑

(α,β,r)∈Y0

P (F , Aα,β,r),

thus
lim inf
x→∞

fY(x) ≥
∑

(α,β,r)∈Y

P (F , Aα,β,r).

If Yc denotes the complement X(ℓ) − Y of Y, we have AYc = F − AY and
fYc(x) = 1 − fY(x). Thus reversing the parts of Y and Yc yields

lim sup
x→∞

fY(x) ≤
∑

(α,β,r)∈Y

P (F , Aα,β,r).

¤

As a consequence of (4.2), the function P (F , ·) is countably additive on A(ℓ)

and therefore a probability measure. The following is then obvious.

4.3 Corollary. The σ-algebra A(ℓ) provided with its probability measure
P (F , ·) is canonically isomorphic with the discrete probability space (X(ℓ), P (ℓ)).

It is easy to generalize the preceding to cover the case of events that involve
a finite number of primes ℓ. Thus let L ⊂ P be a finite set of primes. The
cartesian product

X(L) =
∏

ℓ∈L

X(ℓ)

provided with the product measure P (L) is itself a d.p.s. On the other hand,
given x = (αℓ, βℓ, rℓ)ℓ∈L ∈ X(L), we define

Ax := {E/Fp ∈ F | ∀ℓ ∈ L : E(Fp)[ℓ
∞] ∼= H

(ℓ)
αℓ,βℓ

, r(p, ℓ) = rℓ}
and let A(L) be the σ-algebra in F generated by all the Ax, x ∈ X(L). Then
A(L) = {AY | Y ⊂ X(L)} with the obvious definition AY :=

⋃

x∈Y Ax.

4.4 Proposition.

(i) For x = (αℓ, βℓ, rℓ)ℓ∈L ∈ X(L),

P (F , Ax) =
∏

ℓ∈L

P (F , Aαℓ,βℓ,rℓ
)

holds.
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(ii) For each subset Y of X(L), the limit P (F , AY) exists, and is given as
∑

x∈Y P (F , Ax).

Proof. (i) is a formal consequence of (3.4), (3.5) and (3.15). We omit the
details. The proof of (ii) is then identical to that of (4.2). ¤

As in the case of one single prime, (4.4)(ii) implies that P (F , ·) is a probability
measure on A(L). In view of (4.4)(i) we get:

4.5 Corollary. The σ-algebra A(L) provided with its probability measure
P (F , ·) is canonically isomorphic with the d.p.s. (X(L), P (L)). In particular,
the restrictions of P (F , ·) to the various A(ℓ) (ℓ ∈ L) are stochastically inde-
pendent on A(L).

4.6 Remark. For a number of reasons, no simple generalizations of (4.4)
and (4.5) to infinite subsets L ⊂ P are in sight. For example, the union
⋃

L0∈L finite A(L0) is not a σ-algebra,
∏

ℓ∈L X(ℓ) is uncountable, and problems
on the convergence of infinite products and their commutation with limits arise.
Therefore, events in F that involve an infinite number of primes ℓ are a priori
not covered by the above, and are more difficult to study. In (5.9), we investi-
gate a significant instance of such an event, namely the property of cyclicity of
E(Fp).

5. Some applications.

We use the preceding results to derive probabilities/expectations associated
with some elementary properties of E/Fp ∈ F .

We start with divisibility by a fixed n ∈ N.

5.1 Proposition. Let a prime power ℓa and r ∈ N0 be given.

(i) The probability that ℓa divides |E(Fp)| equals

P (F , “ℓa | |E(Fp)|”) = ℓ−a ℓ3 − ℓ − ℓ2−a

(ℓ2 − 1)(ℓ − 1)
.

(ii) The conditional probability for the same event under the assumption
ℓr‖p − 1 equals

P (F , “ℓa | |E(Fp)|” | “ℓr‖p − 1”) =

ℓ−a ℓ
ℓ−1 , r < a/2

ℓ−a ℓ2+ℓ−ℓ1−(a−1)/2

ℓ2−1 , r > a/2, a odd

ℓ−a ℓ2+ℓ−ℓ1−a/2

ℓ2−1 , r ≥ a/2, a even.

Proof. By virtue of (4.2), P (F , “ℓa | |E(Fp)|”) exists and is given by
∑

g(ℓ)(α, β), where 0 ≤ α ≤ β and α + β ≥ a. The conditional probabil-

ity in (ii) is given by the same expression, but g(ℓ)(α, β) replaced by g
(ℓ)
r (α, β).
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The stated formulae result from a lengthy but elementary calculation using
(2.3) and (2.18), which will be omitted. ¤

5.2 Corollary. For arbitrary n ∈ N with factorization n =
∏

ℓaℓ into primes
ℓ, P (F , “n | |E(Fp)|”) is given by

n−1
∏

ℓ|n

ℓ3 − ℓ − ℓ2−aℓ

(ℓ2 − 1)(ℓ − 1)
.

Note that all the probabilities figuring in (5.1) and (5.2) are slightly larger than
n−1, the value naively expected. The probability of “n | |E(Fq)|” over a fixed
field Fq (i.e., the share of those E/Fq with the divisibility property) has been
determined by Howe in [7].

(5.3) For any function f : F −→ R, we define the expectation E(F , f) (provided
the limit exists) as

E(F , f) = lim
x→∞

∑

f(E/Fp)w(E/Fp)

|{E/Fp ∈ F | p ≤ x}|∗ ,

where the sum in the numerator is over all objects E/Fp ∈ F with p ≤ x.
Restricting the domain F (for example by requiring congruence conditions on
p), we may also define the expectation of f on subsets F ′ of F . Given a prime
number ℓ, we call f

• of type ℓ, if f(E/Fp) depends only on E(Fp)[ℓ
∞];

• weakly of type ℓ, if f(E/Fp) depends only on E(Fp)[ℓ
∞] and r(p, ℓ).

If these conditions hold, we regard f as a function on the set of groups of shape

H
(ℓ)
α,β (or on the set X(ℓ), respectively), see (4.1). More concretely, ℓ being fixed,

f is a function on pairs (α, β) with 0 ≤ α ≤ β if it is of type ℓ, and is a function
on triples (α, β, r) with 0 ≤ α ≤ min(β, r) if it is weakly of type ℓ.

5.4 Lemma.

(i) Suppose that f is bounded and of type ℓ. Then E(F , f) is defined and
agrees with the sum

∑

α,β∈N0
α≤β

f(α, β)g(ℓ)(α, β).

(ii) Suppose that f is bounded and weakly of type ℓ, and let r ∈ N0 be given.
Then the expectation E(F , f, “ℓr‖p − 1”) of f on {E/Fp | ℓr‖p− 1} is
defined and agrees with

∑

α,β∈N0
α≤min(β,r)

f(α, β, r)g(ℓ)
r (α, β).

Proof. We restrict to showing (i); the proof of (ii) is similar. Let E be the
value of the absolutely convergent sum

∑

0≤α≤β

f(α, β)g(ℓ)(α, β),
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and let ǫ > 0 be given. In view of the absolute convergence, there exists a finite
subset Y ⊂ {(α, β) ∈ N0 × N0 | α ≤ β} such that

∑

(α,β) 6∈Y

|f(α, β)|g(ℓ)(α, β) <
ǫ

3
.

Let n = |Y| and let x0 be chosen sufficiently large such that for each (α, β) ∈ Y

and each x ≥ x0, we have

|f(α, β)| | g(ℓ)(α, β) −
|{E/Fp ∈ F | p ≤ x, E(Fp)[ℓ

∞] ∼= H
(ℓ)
α,β}|∗

|{E/Fp ∈ F | p ≤ x}|∗ | ≤ ǫ/3n.

Then for x ≥ x0,

|
∑

(α,β)∈Y

f(α, β)
|{E/Fp | p ≤ x, E(Fp)[ℓ

∞] ∼= H
(ℓ)
α,β}|∗

|{E/Fp | p ≤ x}|∗ − E| < 2ǫ/3

holds. According to (4.2), and since f(α, β) is bounded, we find x1 such that
for x ≥ x1, we have

∑

(α,β) 6∈Y

|f(α, β)|
|{E/Fp | p ≤ x, E(Fp)[ℓ

∞] ∼= H
(ℓ)
α,β}|∗

|{E/Fp | p ≤ x}|∗ < ǫ/3.

Thus for x ≥ max(x0, x1),
∑

p≤x f(E/Fp)w(E/Fp)

|{E/Fp | p ≤ x}|∗
differs by less than ǫ from E. ¤

We apply (5.4) to the function κn : F −→ R defined by

(5.5) κn(E/Fp) = number of points of precise order n in E(Fp) for n ∈ N.

5.6 Proposition. Let a prime power n = ℓa and a non-negative integer r be
given. The expectation E(F , κn, “ℓr‖p − 1”) for κn on {E/Fp | ℓr‖p−1} exists
and equals 1 independently of r. Thus the total expectation E(F , κn) exists on
F and equals 1.

Proof. κn is bounded by n2 = ℓ2a and of type ℓ, thus by (5.4),

E(F , κn, “ℓr‖p − 1”) =
∑

α,β∈N0
α≤min(β,r)

κn(α, β)g(ℓ)
r (α, β).

Now κn(α, β) = number of elements of precise order ℓa in Z/ℓα ×Z/ℓβ is easily
determined; we refrain from writing down the result. Evaluating after that
the right hand side above is an elementary but - due to the numerous cases -
laborious exercise in summing multiple geometric series. In each of the cases,
the result turns out to 1. ¤

5.7 Corollary. For each natural number n, the expectation E(F , κn) exists
and equals 1.
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Proof. Since only the finitely many prime divisors ℓ of n are involved and κn

is multiplicative in n, (4.4) allows to reduce the general case to (5.6). We omit
the details. ¤

5.8 Remark. The just established results on E(F , κ) are “formal facts” that
can be seen by “pure thought”, and avoiding the extended calculations with

the values of g
(ℓ)
r (α, β). Namely, taking into account that κn(E/Fp) equals the

number of fixed points of Frobenius on the points of precise order n of E(Fp),
(5.7) is almost immediate from (H) and Burnside’s lemma. I owe that hint to
Bas Edixhoven [4].

We conclude with determining the asymptotic probability of the property
“E(Fp) is a cyclic group”. Since it cannot be studied entirely in the framework

of the probability spaces A(L) or X(L) of section 4 with finite sets of primes,
some more preparations are needed. We will finally prove the following.

5.9 Theorem. The probability P (F , “E(Fp) is cyclic”) exists and is given by
∏

ℓ prime

(1 − 1
(ℓ2−1)ℓ(ℓ−1) ) ≈ 0.81377.

5.10 Remark. Vladut in [10] described the share of the cyclic ones among
all the E/Fq over the fixed finite field Fq. It depends strongly on the prime
decomposition of q − 1. In contrast, (5.9) is an average over all primes p = q,
which balances local fluctuations.

We first determine the probability of local cyclicity.

5.11 Lemma. Fix a prime number ℓ and r ≥ 0.

(i) The probability P (F , “E(Fp)[L
∞] is cyclic”) equals

τℓ := 1 − 1
(ℓ2−1)ℓ(ℓ−1) .

(ii) The conditional probability under the assumption r(p, ℓ) = r for
E(Fp)[ℓ

∞] to be cyclic equals 1 if r = 0 and

σℓ := 1 − 1
(ℓ2−1)ℓ

if r > 0.

Proof. By (4.2), the first value is given by
∑

β≥0 g(ℓ)(α, β), the second one by
∑

β≥0 g
(ℓ)
r (0, β). ¤

For any λ ∈ R, we call E(Fp) λ-cyclic if its ℓ-parts are cyclic for each prime
ℓ ≤ λ. From the lemma and (4.4) we get:

5.12 Corollary. P (F , “E(Fp) is λ-cyclic”) =
∏

ℓ≤λ τℓ.

Hence (5.9) is established as soon as we have ensured that the limit for λ −→ ∞
commutes with the limit underlying the definition (1.4) of P (F , ·).
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Since cyclicity implies λ-cyclicity, at least

lim sup
x→∞

|{E/Fp ∈ F | p ≤ x, E(Fp) cyclic}|∗
|{E/Fp ∈ F | p ≤ x}|∗ ≤

∏

ℓ prime

τℓ

holds. Thus we must find lower estimates for the left hand side. Put for each
prime p

(5.13) c(p) :=
∏

ℓ|p−1

σℓ.

Then it is an easy consequence of (3.4) and the inclusion/exclusion principle
(see Theorem 6.1 of [10]) that for each ǫ > 0 and each fixed prime p, we have

|{E/Fp | E(Fp) cyclic}|∗ = 2pc(p) + Oǫ(p
1/2+ǫ).

Hence

(5.14) |{E/Fp ∈ F | p ≤ x,E(Fp) cyclic}|∗ = 2
∑

p≤x

pc(p) + Oǫ(
∑

p≤x

p1/2+ǫ).

5.15 Lemma. Suppose that the average

C := lim
x→∞

π(x)−1
∑

p≤x

c(p)

exists, where π(x) ∼ x/ log x is the prime number function. Then

2
∑

p≤x

pc(p) ∼ Cx2/ log x

and therefore P (F , “E(Fp) is cyclic”) = C.

Proof. Let (an)n∈N be the series defined by an = c(p) if n = p ∈ P and an = 0
otherwise, and A(x) =

∑

n≤x an =
∑

p≤x c(p). Abel summation with b(x) = x
yields

∑

p≤x

pc(p) = xA(x) −
∫ x

1

A(s)ds ∼ 1/2 Cx2/ log x,

since by assumption, A(x) ∼ Cx/ log x and any primitive F of x/ log x satisfies
F ∼ 1/2 x2/ log x. The last assertion follows from (5.14) and

∑

p≤x

p1/2+ǫ ∼ 1

3/2 + ǫ
x3/2+ǫ/ log x.

¤

We are left to verifying the hypothesis of (5.15), which no longer involves elliptic
curves. Put

(5.16)

cλ(p) =
∏

ℓ|p−1, ℓ≤λ σℓ

Cλ(x) = π(x)−1
∑

p≤x cλ(p)

C(x) = π(x)−1
∑

p≤x c(p),
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the quantity whose limit we need to find. Now, since cλ(p) depends only on
the class of p modulo n :=

∏

ℓ≤λ ℓ, Dirichlet’s theorem implies that for λ fixed,

(5.17)
Cλ := limx→∞ Cλ(x) = average of cλ over (Z/n)∗

=
∏

ℓ≤λ (average of σ̃ℓ over (Z/ℓ)∗) =
∏

ℓ≤λ τℓ.

Here σ̃ℓ(x) = σℓ, (σ̃ℓ(x) = 1) if x ≡ 1, (x 6≡ 1) modulo ℓ, respectively (see
Lemma 5.11(ii)).

In view of c(p) ≤ cλ(p), we have for each λ

lim sup
x→∞

C(x) ≤ Cλ,

hence

lim supC(x) ≤
∏

ℓ prime

τℓ.

5.18 Claim. We have in fact

C := lim
x→∞

C(x) =
∏

ℓ prime

τℓ.

Proof of claim. Let λ0 ∈ R and ǫ > 0 be given. Choose x0 large enough such
that for x ≥ x0

|Cλ0
(x) − Cλ0

| < ǫ

holds. For such x and λ ≥ λ0, we have

Cλ(x) ≥ (
∏

λ0<ℓ≤λ

σℓ)Cλ0
(x) > (

∏

λ0<ℓ≤λ

σℓ)(Cλ0
− ǫ).

Letting λ −→ ∞, we find

C(x) ≥ (
∏

ℓ>λ0

σℓ)(Cλ0
− ǫ)

for each x ≥ x0, and therefore

lim inf
x→∞

C(x) ≥ (
∏

ℓ>λ0

σℓ)Cλ0
=

∏

ℓ≤λ0

τℓ

∏

ℓ>λ0

σℓ.

Since this holds for any λ0, and σℓ ≤ τℓ for each ℓ, we finally get

lim inf
x→∞

C(x) ≥
∏

ℓ prime

τℓ,

i.e., the claim. Together with (5.15), this also concludes the proof of Theorem
5.9. ¤
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