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Abstract. Algebras over a field k generalize to categories over k in
order to considers Galois coverings. Two theories presenting analogies,
namely smash extensions and Galois coverings with respect to a finite
group are known to be different. However we prove in this paper
that they are Morita equivalent. For this purpose we need to describe
explicit processes providing Morita equivalences of categories which
we call contraction and expansion. A structure theorem is obtained:
composition of these processes provides any Morita equivalence up to
equivalence, a result which is related with the karoubianisation (or
idempotent completion) and additivisation of a k-category.
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1 Introduction

Let k be a field. The observation that a k-algebra A is a category with one
object and endomorphisms given by A leads to Galois coverings given by cat-
egories with more than one object, see for instance [3]. In this context the
universal cover of the polynomial algebra in one variable is the free category

1This work has been supported by the projects Conicet-Cnrs:”Metodos Ho-
mologicos en Representaciones y Algebra de Hopf”, Pics 1514, Pict
08280 (Anpcyt), Ubacytx169 and Pip-Conicet 02265. The second author
is a research member of Conicet (Argentina) and a Regular Associate of ICTP Asso-
ciate Scheme.
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over k generated by the infinite quiver with integer vertices and one arrow from
i to i + 1 for each integer i.
A category C over a field k has a set of objects C0 and each morphism set yCx

from an object x to an object y is a k-vector space, the composition of maps
of C is k-bilinear. In particular each endomorphism set xCx is an associative
k-algebra. Such categories are called k-categories, they have been considered
extensively and are considered as algebras with several objects, see [13, 14].
This work has a two-fold main purpose.
In one direction we show that there is a coincidence up to Morita equivalence
between Galois coverings of k-categories and smash extensions for a finite group.
More precisely we associate to each Galois covering of a k-category with finite
group G a smash extension with the same group, having the property that the
categories involved are Morita equivalent to the starting ones. In particular
from a full and dense functor we obtain a faithful one. Conversely, a smash
extension of categories gives rise to a Galois covering, with categories actu-
ally equivalent to the original ones. Consequently both procedures are mutual
inverses up to Morita equivalence.
This Theorem explains the analogous spectral sequence arising in cohomology
for both theories, see [5] and the generalisation [16], and [12].
We emphasize that similar results for an arbitrary group G can be obtained
considering coalgebras and comodule categories. This approach will be detailed
in a subsequent paper.
In the other direction, motivated by the above problem, we study the Morita
equivalence of k-categories, obtaining a complete description of these equiva-
lences. In other words, a Morita theorem for linear categories.
We consider modules over a k-category C, that is k-functors from C to the
category of k-vector spaces i.e. collections of vector spaces attached to the
objects with ”actions” of morphisms transforming vectors at the source of the
morphism to vectors at the target. Notice that if C is a finite object set k-
category it is well known and easy to prove that modules over C coincide with
usual modules over the ”matrix algebra” a(C) = ⊕x,y∈CyCx.
We introduce in this paper a general framework for Morita theory for k-
categories. More precisely we establish processes which provide categories
Morita equivalent to a starting one. We prove in the Appendix that up to
equivalence of categories any Morita equivalence of k-categories is a composi-
tion of contractions and expansions of a given k-category, where contraction
and expansion are processes generalizing a construction considered in [5]. More
precisely, given a partition E of the set of objects of a k-category C by means of
finite sets, the contracted category CE along E has set of objects the sets of the
partition while morphisms are provided by the direct sum of all the morphism
spaces involved between two sets of the partition. The reverse construction is
called expansion. Another process is related to the classical Morita theory for
algebras, that is for each vertex we provide an endomorphism algebra Morita
equivalent to the given one together with a corresponding Morita context, which
enables us to modify the morphisms of the original category. In particular the
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matrix category of a given category is obtained in this way. A discussion of this
processes in relation with karoubianisation and additivisation (see for instance
[1, 18]) is also presented in the Appendix. We thank Alain Bruguières and
Mariano Suarez Alvarez for useful conversations concerning this point.
Usually smash extensions are considered for algebras, see for instance [15].
We begin by extending this construction to k-categories, namely given a Hopf
algebra H we consider a Hopf module structure on a k-category C which is
provided by an H-module structure on each morphism space such that the
composition maps of C are H-module maps - in particular the endomorphism
algebra of each object is required to be an usual H-module algebra. Given a
Hopf module k-category C we define the smash category C#H in a coherent
way with the algebra case.
We need this extension of the usual algebra setting to the categorical one in or-
der to relate smash extensions to Galois coverings of k-categories as considered
for instance in [3, 5, 7].
Notice that we can consider, as in the algebra case, a smash extension of a
category as a Hopf Galois extension with the normal basis property and with
trivial map σ, see [15, p. 101] and also [2, 11, 17]. It would be interesting
to relate non trivial maps σ to an extended class of coverings of categories
accordingly, we will not initiate this study in the present paper.
We define a smash extension of an H-module category C to be the natural
functor from C to C#H. An expected compatibility result holds, namely if the
number of objects of C is finite, the corresponding matrix algebra a(C) has an
usual smash extension provided by a(C#H). The later algebra can indeed be
considered since the category C#H has also a finite number of objects, namely
the set of objects of C. Moreover, we have that a(C)#H = a (C#H).
We consider also Galois coverings of k-categories given by a group G, that is a k-
category with a free G-action and the projection functor to the corresponding
quotient category. More precisely, by definition a G-k-category C has a set
action of G on the set of objects, and has linear maps yCx → syCsx for each
element s of G and each couple of objects x and y, verifying the usual axioms
that we recall in the text. In other words we have a group morphism from G to
the autofunctors of C. In case C is object-finite, we infer a usual action of G by
automorphisms of the algebra a(C). A G-k-category is called free in case the
set action on the objects is free, namely sx = x implies s = 1. The quotient
category is well defined only in this case and we recall its construction, see
[3, 9, 7, 5, 4].
The group algebra kG is a Hopf algebra, hence we can consider kG-module
categories. Notice that G-k-categories form a wider class than kG-module
categories. In fact kG-module categories are G-k-categories which have trivial
action of G on the set of objects.
First we establish a comparison between two constructions obtained when start-
ing with a graded category C over a finite group G. From one side the smash
product category C#kG is defined in the present paper, and from the other side
a smash product category C#G has been considered in [4], actually the later
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is the Galois covering of C corresponding to the grading. We show that C#kG

and C#G are not equivalent but Morita equivalent categories.
We note that starting with a Galois covering C of a category B, the covering
category C is B#G (see [4] and the grading of B introduced there, first consid-
ered by E. Green in [10] for presented k-categories by a quiver with relations).
Unfortunately B#G has no natural kG-module category structure. However
B#G and B#kG are Morita equivalent and we perform the substitution. The
later is a kG-module category using the left kG-module structure of kG pro-
vided by tδs = δst−1 . In this way we associate to the starting Galois covering
the smash extension (B#kG)#kG of B#kG.
The important point is that the later is Morita equivalent to C while
(B#kG)#kG is isomorphic to a matrix category that we introduce, which in
turn is Morita equivalent to B. Notice that this result is a categorical version
of the Cohen Montgomery duality Theorem, see [6]. Hence we associate to the
starting Galois covering C → B a smash extension with the same group and
where the categories are replaced by Morita equivalent ones.
Second we focus to the reverse procedure, namely given a smash extension
of categories with finite group G – that is a kG-module category B and the
inclusion B → C = B#kG – we intend to associate a Galois covering to this
data. For this purpose we consider the inflated category IFB of a category B
along a sequence F = {Fx} of sets associated to the vertices of the original
category : each object x of B0 provides | Fx | new objects while the set of
morphisms from (x, i) to (y, j) is precisely the vector space yBx with the obvious
composition. For a finite group G the inflated category of a kG-module category
– using the constant sequence of sets G – has a natural structure of a free G-k-
category. The inflated category IGB is Morita equivalent to the matrix category
M|G|(B) by contraction and in turn the later is Morita equivalent to B.
Moreover the categorical quotient of IGC exists and in this way we obtain
a Galois covering having the required properties with respect to the starting
smash extension.

2 Hopf module categories

In this section we introduce the smash product of a category with a Hopf algebra
and we specify this construction in case the Hopf algebra is the function algebra
of a finite group G. We will obtain that the later is Morita equivalent to the
smash product category defined in [4].
We recall (see for instance [15]) that for a Hopf algebra H over k, an H-module
algebra A is a k-algebra which is simultaneously an H-module in such a way
that the product map of A is a morphism of H-modules, where A ⊗ A is
considered as an H-module through the comultiplication of H. Moreover we
require that h1A = ǫ(h)1A for every h ∈ H.
We provide an analogous definition for a k-category C instead of an algebra.

Definition 2.1 A k-category C is an H-module category if each morphism
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space is an H-module, each endomorphism algebra is an H-module algebra and
composition maps are morphisms of H-modules, where as before the tensor
product of H-modules is considered as an H-module via the comultiplication of
H.

Notice that analogously we may consider the structure of an H-comodule cat-
egory. In case H is a finite dimensional Hopf algebra, we recall from [15]
that there is a bijective vector space preserving correspondence between right
H-modules and left H∗-comodules.

Remark 2.2 Given a finite k-category C, let a(C) be the k-algebra obtained as
the direct sum of all k-module morphisms of C equipped with the usual matrix
product combined with the composition of C. In case C is an H-module category
a(C) is an H-module algebra.

Let C be an H-module category. We define the k-category C#H as follows. The
objets remain the same, while given two objects x and y we put y(C#H)x =

yCx ⊗k H. The composition map for morphisms

z(C#H)y ⊗ y(C#H)x −→ z(C#H)x

is given by

(zϕy ⊗ h) ◦ (yψx ⊗ h′) =
∑

zϕy ◦ (h1 yψx) ⊗ h2h
′,

where the comultiplication ∆ of H is given by ∆(h) =
∑

h1⊗h2 and ◦ denotes
composition in C. As before we have an immediate coherence result:

Proposition 2.3 Let C be a finite object H-module category C. Then the k-
algebras a(C)#H and a(C#H) are canonically isomorphic.

Let now G be a group. A G-graded k-category C (see for instance [4]) is a k-
category C such that each morphism space yCx is the direct sum of sub-vector
spaces yCs

x, indexed by elements s ∈ G such that zCy
t

yCx
s ⊆ yCx

ts for all
x, y ∈ C and for all s, t ∈ G.
Notice that as in the algebra case, gradings of a k-category C by means of a
group G are in one-to-one correspondence with kG-comodule category struc-
tures on C. Let now G be a finite group, C be a G-graded k-category and
consider the function algebra kG = (kG)∗ which is a Hopf algebra. The cate-
gory C is a kG-module category, hence according to our previous definition we
can consider C#kG.
We want to compare this category with another construction of a k-category
denoted C#G which can be performed for an arbitrary group G, see [4] : the
set of objects is C0 × G while the morphisms from (x, s) to (y, t) is the vector

space yCx
(t−1s). The composition of morphisms is well-defined as an immediate

consequence of the definition of a graded category.
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Notice that given a graded algebra A considered as a single object G-graded k-
category, the preceding construction provides a category with as many objects
as elements of G, even if G is infinite. If G is finite, the associated algebra is
known to be the usual smash product algebra A#kG, see [4].
We will recall below the definition of the module category of a k-category in
order to prove that in case of a finite group G the module categories over C#kG

and C#G are equivalent.
First we introduce a general setting which is interesting by itself.

Definition 2.4 Let D be a k-category equipped with a partition E of the set
of objects D0 by means of finite sets {Ei}i∈I . Then DE is a new k-category
obtained by contraction along the partition, more precisely I is the set of objects
of DE and morphisms are given by

j(DE)i =
⊕

y∈Ej x∈Ei

yDx.

Composition is given by matrix product combined with composition of the origi-
nal category. Notice that the identity map of an object i is given by

∑
z∈Ei

z1z,
which makes sense since Ei is finite.

Example 2.5 Let A be an algebra and let F be a complete finite family of or-
thogonal idempotents in A (we don’t require that the idempotents are primitive).
Consider the category D with set of objects F and morphisms yDx = yAx. Then
the contracted category along the trivial partition with only one subset is a single
object category having endomorphism algebra

⊕
x,y∈F yDx =

⊕
x,y∈F yAx = A.

We also observe that for a finite object k-category C, the contracted category
along the trivial partition is a single object category with endomorphism alge-
bra precisely a(C). More generally let E be a partition of C0, then the k-algebras
a(C) and a(CE) are equal.
We will establish now a relation between D and DE at the representation theory
level of these categories. In order to do so we recall the definition of modules
over a k-category.

Definition 2.6 Let C be a k-category. A left C-module M is a collection of
k-modules {xM}x∈C0

provided with a left action of the k-modules of morphisms
of C, given by k-module maps yCx ⊗k xM → yM, where the image of yfx ⊗ xm
is denoted yfx xm, verifying the usual axioms:

• zfy (ygx xm) = (zfy ygx) xm,

• x1x xm = xm.

In other words M is a covariant k-functor from C to the category of k-modules,
the preceding explicit definition is useful for some detailed constructions. We
denote by C−Mod the category of left C-modules. In case of a k-algebra A it is
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clear that A-modules considered as k-vector spaces equipped with an action of
A coincide with Z-modules provided with an A-action. Analogously, C-modules
as defined above are the same structures than Z-functors from C to the category
of Z-modules.

Definition 2.7 Two k-categories are said to be Morita equivalent if their left
module categories are equivalent.

Proposition 2.8 Let D be a k-category and let E be a partition of the objects
of D by means of finite sets. Then D and the contracted category DE are Morita
equivalent.

We notice that this result is an extension of the well known fact that the cate-
gory of modules over an algebra is isomorphic to the category of functors over
the category of projective left modules provided by a direct sum decomposi-
tion of the free rank one left module, obtained for instance through a complete
system of orthogonal idempotents of the algebra.
Proof. Let M be a D-module and let FM be the following DE-module:

iFM =
⊕

x∈Ei

xM for each i ∈ I,

the action of a morphism jfi = (yfx)x∈Ei,y∈Ej
∈ j(DE)i on im = (xm)x∈Ei

∈

iF (M) is obtained as a matrix by a column product, namely:

jfi im = (
∑

x∈Ei

yfx xm)y∈Ej
.

A D − Mod morphism φ : M → M′ is a natural transformation between both
functors, i.e. a collection of k-maps xφ : xM → xM′, satisfying compatibility
conditions. We define Fφ : FM → FM′ by:

i(Fφ) =
⊕

x∈Ei

xφ.

Conversely given a DE-module N , let GN ∈ (D − Mod) be the functor given
by x(GN ) = ex (iN ), where i is unique element in I such that x ∈ Ei, and
where ex is the idempotent |Ei|× |Ei| - matrix with one in the (x, x) entry and
zero elsewhere.
The action of yfx ∈ yDx on x(GN ) is obtained as follows: let i, j ∈ I be such
that x ∈ Ei and y ∈ Ej . Let yfx ∈ j(DE)i be the matrix with yfx in the
(y, x) entry and zero elsewhere. Then, for exn ∈ x(GN ) we put (yfx)(exn) =

j(yfx)i i(exn) ∈ ey (jN ) = y(GN ).
It is easy to verify that both compositions of F and G are the corresponding
identity functors.

We will now apply the preceding result to the situation D = C#G using the
partition provided by the orbits of the free G-action on the objects.
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Theorem 2.9 The k-categories C#G and C#kG are Morita equivalent.

Proof. We consider the contraction of C#G along the partition provided by
the orbits, namely for x ∈ C0 we put Ex = {(x, g) | g ∈ G}. Observe that for
all x ∈ C0 the set Ex is finite since its cardinal is the order of the group G.
Moreover the set of objects ((C#G)E)0 of the contracted category is identified
to C0.

The morphisms from x to y in the contracted category are
⊕

s,t∈G yCx
t−1s. On

the other hand

y(C#kG)x = yCx ⊗ kG =
⊕

v∈G

yCx
v ⊗ kG.

We assert that the contracted category (C#G)E and C#kG are isomorphic. The
sets of objects already coincide. We define the functor L on the morphisms as
follows. Let (y,t)f(x,s) be an elementary matrix morphism of the contracted
category. We put

L
(
(y,t)f(x,s)

)
= f ⊗ δs ∈ yCx

t−1s ⊗ kG.

It is not difficult to check that L is an isomorphism preserving composition.

Remark 2.10 The categories C#G and C#kG are not equivalent in general
as the following simple example already shows : let A be the group algebra
kC2 of the cyclic group of order two C2 and let CA be the single object C2-
graded k-category with A as endomorphism algebra. The category C#C2 has
two objects that we denote (∗, 1) and (∗, t), while C#kC2 has only one object ∗.
If C#G and C#kG were equivalent categories the algebras EndC#C2

((∗, 1)) and
EndC#kC2 (∗)) would be isomorphic. However the former is isomorphic to k
while the latter is the four dimensional algebra EndC#kC2 (∗) = (k

⊕
kt)⊗kC2 .

3 kG-module categories

Let G be a group and let C be a kG-module category. Using the Hopf algebra
structure of kG and the preceding definitions we are able to construct the
smash category C#kG. We have already noticed that if C is an object finite
k-category then the algebra a(C#kG) is the classical smash product algebra
a(C)#kG.
According to [4] a G-k-category D is a k-category with an action of G on the
set of objects and, for each s ∈ G, a k-linear map s : yDx → syDsx such that
s(gf) = s(g)s(f) and t(sf) = (ts)f for any composable couple of morphisms
g, f and any elements s, t of G. Such a category is called a free G-k-category
in case the action of G on the objects is a free action, namely the only group
element acting trivially on the category is the trivial element of G.

Remark 3.1 Notice that kG-module categories are G-k-categories verifying
that the action of G on the set of objects is trivial.
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We need to associate a free G-k-category to a kG-module category C, in order
to perform the quotient category as considered in [4]. For this purpose we
consider inflated categories as follows.

Definition 3.2 Let C be a k-category and let F = (Fx)x∈C0
be a sequence of

sets associated to the objects of C. The set of objects of the inflated category
IFC is

{(x, i) | x ∈ C0 and i ∈ Fx}

while (y,j)(IFC)(x,i) = yCx with the obvious composition provided by the com-
position of C. Alternatively, consider F as a map ϕ from a set to C0 such that
the fiber over each object x is Fx. The set of objects of the inflated category is
the fiber product of C0 with this set over ϕ.

Remark 3.3 Clearly an inflated category is equivalent to the original category
since all the objects with the same first coordinate are isomorphic. Hence a
choice of one object in each set {(x, i) | i ∈ Fx} provides a full sub-category of
IFC which is isomorphic to C.

In case C is a kG-module category we use the constant sequence of sets provided
by the underlying set of G. We obtain a free action of G on the objects of the
inflated category IGC by translation on the second coordinate. Moreover the
original action of G on each morphism set of C provides a free G-k-category
structure on the inflated category. More precisely the G-action on the category
IGC is obtained through maps for each u ∈ G as follows:

u : (y,t)IGC(x,s) → (y,ut)IGC(x,us)

u
(
(y,t)f(x,s)

)
= (y,ut)(u (yfx)) (x,us).

As a next step we notice that the free G-k-category IGC has a skew category
(IGC)[G] associated to it. In fact any G-k-category has a related skew category
defined in [4]. We recall that (IGC)[G]0 = (IGC)0 = C0 × G. For x, y ∈ C0

t, s ∈ G we have

(y,t)(IGC)[G](x,s) =
⊕

u∈G

(y,ut)(IGC)(x,s) =
⊕

u∈G

yCx = yCx × G.

We are going to compare the categories C#kG and (IGC)[G]. In order to do
so we consider the intermediate quotient category (IGC)/G (see [4, Definition
2.1]). We recall the definition of D/G, where D is a free G-k-category: the
set of objects is the set of G-orbits of D0, while the k-module of morphisms in
D/G from the orbit α to the orbit β is

β(D/G)α =




⊕

b∈β,a∈α

bDa



 /G.
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Recall that X/G denotes the module of coinvariants of a kG-module X, namely
the quotient of X by (Ker ǫ)X where ǫ : kG → k the augmentation map.
Composition is well defined precisely because the action of G is free on the
objects, more explicitly, for g ∈ dDc and f ∈ bDa where b and c are objects
in the same G-orbit, let s be the unique element of G such that sb = c. Then
[g][f ] = [g (sf)] = [(s−1g) f ].

Lemma 3.4 The k-categories C#kG and (IGC)/G are isomorphic.

Proof. Clearly the set of objects can be identified. Given a morphism
(yfx ⊗ u) ∈ y(C#kG)x we associate to it the class [f ] of the morphism
f ∈ (y,1)(IGC)(x,u). Notice that in the smash category we have

(zgy ⊗ v)(yfx ⊗ u) = zgy v(yfx) ⊗ vu

which has image [zgy v(yfx)]. The composition in the quotient provides pre-
cisely [g][f ] = [g vf ]. The inverse functor is also clear.

Since (IGC)/G and (IGC)[G] are equivalent (see [4]), we obtain the following:

Proposition 3.5 The categories C#kG and (IGC)[G] are equivalent.

4 From Galois coverings to smash extensions and vice versa

Our aim is to relate kG-smash extensions and Galois coverings for a finite
group G. Recall that it has been proved in [4] that any Galois covering with
group G of a k-category B is obtained via a G-grading of B, we have that
C = B#G is the corresponding Galois covering of B. We have already noticed
that for a finite group G a G-grading of a k-category B is the same thing than
a kG-module category structure on B.
However neither B nor B#G have a natural kG-module category structure
which could provide a smash extension. We have proven before that B#kG is
Morita equivalent to the category B#G. The advantage of B#kG is that it
has a natural kG-module category structure provided by the left kG-module
structure of kG given by tδs = δst−1 .
In this way we associate to the starting Galois covering B#G of B the smash
extension (B#kG) → (B#kG)#kG. In [17] the authors describe when a given
Hopf-Galois extension is of this type (in the case of algebras). We will prove
that the later is isomorphic to an ad-hoc category M|G|(B) which happens to
be Morita equivalent to B.

Definition 4.1 Let B be a k-category and let n be a sequence of positive in-
tegers (nx)x∈B0

. The objects of the matrix category Mn(B) remain the same
objects of B. The set of morphisms from x to y is the vector space of nx-
columns and ny-rows rectangular matrices with entries in yBx. Composition of
morphisms is given by the matrix product combined with the composition in B.
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Remark 4.2 In case the starting category B is a single object category provided
by an algebra B, the matrix category has one object with endomorphism algebra
precisely the usual algebra of matrices Mn(B).
Notice that the matrix category that we consider is not the category Mat(C)
defined by Mitchell in [13]. In fact Mat(C) corresponds to the additivisation of
C (see the Appendix).

We need the next result in order to have that the smash extension associated to
a Galois covering has categories Morita equivalent to the original ones. In fact
this result is also a categorical generalization of Cohen Montgomery duality
Theorem [6].

Lemma 4.3 Let B be a G-graded category and let n be the order of G. Then
the categories (B#kG)#kG and Mn(B) are isomorphic.

Proof. Both sets of objects coincide. Given two objects x and y we define
two linear maps:

φ : yBx ⊗ kG ⊗ kG → y(Mn(B))x ,

ψ : y(Mn(B))x → yBx ⊗ kG ⊗ kG.

Given an homogeneous element

(f ⊗ δg ⊗ h) ∈ yBx ⊗ kG ⊗ kG,

where f has degree r and g, h ∈ G we put

φ(f ⊗ δg ⊗ h) = f rgEgh,

where rgEgh is the elementary matrix with 1 in the (rg, gh)-spot and 0 else-
where. It is straightforward to verify that φ is well-behaved with respect to
compositions.
We also define ψ on elementary morphisms as follows:

ψ(f gEh) = f ⊗ δr−1g ⊗ g−1rh,

where r is the degree of f .

Next we have to prove that Mn(B) is Morita equivalent to B. In order to do so
we develop some Morita theory for k-categories which is interesting by itself.
When we restrict the following theory to a particular object, it will coincide
with the classical theory, see for instance [19, p.326]. Moreover, in case of a
finite object set k-categories both Morita theories coincide using the associated
algebras that we have previously described.
Let C be a k-category. For simplicity for a given object x we denote by Ax the
k-algebra xCx. For each x, let Bx be a k-algebra such that there is a (Bx, Ax)-
bimodule Px and a (Ax, Bx)-bimodule Qx verifying that Px ⊗Ax

Qx
∼= Bx as

Bx-bimodules and Qx ⊗Bx
Px

∼= Ax as Ax-bimodules. In other words for each
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object we assume that we have a Morita context providing that Ax and Bx

are Morita equivalent. Note that it follows from the assumptions that Px is
projective and finitely generated on both sides, see for instance [19].
Using the preceding data we modify the morphisms in order to define a new
k-category D which will be Morita equivalent to C. In particular the endomor-
phism algebra of each object x will turn out to be Bx.
More precisely the set of objects of D remains the set of objects of C while for
morphisms we put

yDx = Py ⊗Ay yCx ⊗Ax
Qx.

Notice that for x = y we have xDx
∼= Bx. In order to define composition in D

we need to provide a map

(Pz ⊗Az zCy ⊗Ay
Qy) ⊗k (Py ⊗Ay yCy ⊗Ax

Qx) −→ Pz ⊗Az zCx ⊗Ax
Qx,

For this purpose let ϕx be a fixed Ax-bimodule isomorphism from Qx ⊗Bx
Px

to Ax and consider φx the composition the projection Qx ⊗k Px → Qx ⊗Bx
Px

followed by ϕx. Then composition is defined as follows

(pz ⊗ g ⊗ qy)(py ⊗ f ⊗ qx) = pz ⊗ g [φy(qy ⊗ py)] f ⊗ qx.

This composition is associative since the use of the morphisms φ do not interfere
in case of composition of three maps.

Proposition 4.4 Let C and D be k-categories as above. Then C and D are
Morita equivalent.

Proof. For a C-module M we define the D-module FM as follows:

x(FM) = Px ⊗Ax xM, which is already a left Bx-module.

The left action yDx ⊗ x(FM) → y(FM) is obtained using the following mor-
phism induced by φx

(
Py ⊗Ay yCx ⊗Ax

Qx

)
⊗k (Px ⊗Ax xM) −→ Py ⊗Ay yCx ⊗k Ax ⊗k xM

and the actions of Ax and of yCx on xM. We then obtain a map with target

y(FM). This defines clearly a D-module structure.
Similarly we obtain a functor G in the reverse direction which is already an
equivalent inverse for F .

We apply now this Proposition to a k-category C and the category obtained
from C by replacing each endomorphism algebra by matrix algebras over it.
For each object x in C0 consider the k-algebra Bx = Mn(Ax). The bimodule

Mn(Ax)(Px)Ax
is the left ideal of Mn(Ax) given by the first column and zero

elsewhere, while Ax
(Qx)Mn(Ax) is given by the analogous right ideal provided

by the first row. Then the category D defined above is precisely Mn(C).
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Corollary 4.5 C and Mn(C) are Morita equivalent.

Remark 4.6 An analogous Morita equivalence still hold when the integer n is
replaced by a sequence of positive integers (nx)x∈C0

.

The applications of Morita theory for categories developed above covers a larger
spectra than the one considered in this paper. We have produced several sorts
of Morita equivalences for categories, namely expansion, contraction and the
Morita context for categories described above. We will prove the next result in
the Appendix.

Theorem 4.7 Let C and D be Morita equivalent k-categories. Up to equiva-
lence of categories, D is obtained from C by contractions and expansions.

Example 4.8 Let A be a k-algebra and CA the corresponding single object cat-
egory. It is well known that the following k-category MCA is Morita equivalent
to CA: objects are all the positive integers [n] and the morphisms from [n] to
[m] are the matrices with n columns, m rows, and with A entries.

At each object [n] choose the system of n idempotents provided by the elementary
matrices which are zero except in a diagonal spot where the value is the unit of
the algebra. The expansion process through this choice provides a category with
numerable set of objects, morphisms are A between any couple of objects, they
are all isomorphic, consequently this category is equivalent to CA. This way a
Morita equivalence (up to equivalence) between CA and MCA is obtained using
the expansion process.

Conversely, in order to obtain MCA from CA, first inflate CA using the set of
positive integers. Then consider the partition by means of the finite sets having
all the positive integers cardinality, namely {1}, {2, 3}, {4, 5, 6}, . . .. Finally the
contraction along this partition provides precisely MCA.

We provide now an alternative proof of the fact that a matrix category is
Morita equivalent to the original one. It provides also evidence for Theorem
4.7 concerning the structure of the Morita equivalence functors. First consider
the inflated category using the sequence of positive integers defining the matrix
category. We have shown before that this category is equivalent to the origi-
nal one. Secondly perform the contraction of this inflated category along the
finite sets partition provided by couples having the same first coordinate. This
category is the matrix category. Since we know that a contracted category
is Morita equivalent to the original one, this provides a proof that a matrix
category is Morita equivalent to the the starting category, avoiding the use of
Morita contexts. The alternative proof we have presented indicate how classical
Morita equivalence between algebras can be obtained by means of contractions,
expansions and equivalences of categories. More precisely Theorem 4.7 states
that classical Morita theory can be replaced by those processes.

The results that we have obtained provide the following
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Theorem 4.9 Let C −→ B be a Galois covering of categories with finite group
G. The associated smash extension B#kG −→ (B#kG)#kG verifies that
B#kG is Morita equivalent to C and (B#kG)#kG is Morita equivalent to B.

Finally notice that the proof of a converse for this result is a direct consequence
of the discussion we have made in the previous section:

Theorem 4.10 Let C −→ B be a smash extension with finite group G. The
corresponding Galois covering IGC −→ (IGC) /G verifies that IGC is equivalent
to C and that (IGC) /G is equivalent to B.

Proof. Indeed an inflated category is isomorphic to the original one; moreover
B = C#kG and by Lemma 3.4 this category is isomorphic to (IGC)/G.

5 Appendix: Morita equivalence of categories over a field

We have considered in this paper several procedures that we can apply to a
k-category. We briefly recall and relate them with the karoubianisation (also
called idempotent completion) and the additivisation (or additive completion),
see for instance the appendix of [18].
The inflation procedure clearly provides an equivalent category : given a set Fx

over each object x of the k-category C, the objects of the inflated category IFC
are the couples (x, i) with i ∈ Fx. Morphisms from (x, i) to (y, j) remain the
morphisms from x to y. Consequently objects with the same first coordinate
are isomorphic in the inflated category. Choosing one of them above each object
of the original category C provides a full subcategory of the inflated one, which
is isomorphic to C.
The skeletonisation procedure consists in choosing precisely one object in each
isomorphism set of objects and considering the corresponding full subcategory.
Clearly any category is isomorphic to an inflation of its skeleton. Skeletons of
the same category are isomorphic, as well as skeletons of equivalent categories.
Those remarks show that up to isomorphism of categories, any equivalence of
categories is the composition of a skeletonisation and an inflation procedure.
Concerning Morita equivalence, we have used contraction and expansion. In or-
der to contract we need a partition of the objects of the k-category C by means
of finite sets. The sets of the partition become the objects of the contracted cat-
egory, and morphisms are provided by matrices of morphisms of C. Conversely,
in order to expand we choose a complete system of orthogonal idempotents for
each endomorphism algebra at each object of the k-category (the trivial choice
is given by just the identity morphism at each object). The set of objects of the
expanded category is the disjoint union of all those finite sets of idempotents.
Morphisms from e to f are fyCxe, assuming e is an idempotent at x and f is
an idempotent at y. Composition is given by the composition of C.
We assert that the karoubianisation and the additivisation (see for instance
[1, 18]) can be obtained through the previous procedures.
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Recall that the karoubianisation of C replaces each object of C by all the idem-
potents of its endomorphism algebra, while the morphisms are defined as for
the expansion process above.

Consider now the partition of the objects of the karoubianisation of C given
by an idempotent and its complement, namely the sets {e, 1 − e} for each
idempotent at each object of C. The contraction along this partition provides
a category equivalent to C, since all the objects over a given object of C are
isomorphic in the contraction of the karoubianisation. Concerning the additivi-
sation, notice first that two constructions are in force which provide equivalent
categories as follows.

The larger category is obtained from C by considering all the finite sequences
of objects, and morphisms given through matrix morphisms of C. Observe
that two objects (i.e. two finite sequences) which differ by a transposition are
isomorphic in this category, using the evident matrix morphism between them.

Consequently the objects of the smaller construction are the objects of the
previous one modulo permutation, namely the set of objects are finite sets of
objects of C with positive integers coefficients attached. In other words objects
are maps from C0 to N with finite support. Morphisms are once again matrix
morphisms.

The observation above concerning finite sequences differing by a transposition
shows that the larger additivisation completion is equivalent to the smaller one.

Finally the smaller additivisation of C can be expanded: choose the canonical
complete orthogonal idempotent system at each object provided by the matrix
endomorphism algebra. Of course the expanded category have several evident
isomorphic objects which keeps trace of the original objects. A choice provides
a full subcategory equivalent to C.

It follows from this discussion that karoubianisation and additivisation pro-
vide Morita equivalent categories to a given category, using contraction and
expansion processes, up to isomorphism of categories.

We denote Ĉ the completion of C, namely the additivisation of the karoubian-
isation (or vice-versa since those procedures commute). We notice that two
categories are Morita equivalent if and only if their completions are Morita
equivalent.

Recall that a k-category is called amenable if it has finite coproducts and if
idempotents split, see for instance [8]. It is well known and easy to prove that

the completion Ĉ is amenable.

We provide now a proof of Theorem 4.7. We have shown that the completion
of a k-category is obtained (up to equivalence) by expansions and contractions

of the original one. Notice that Ĉ and D̂ are Morita equivalent amenable
categories. We recall now the proof that this implies that the categories Ĉ
and D̂ are already equivalent (a result known as ”Freyd’s version of Morita

equivalence”, see [13, p.18]): consider the full subcategory of representable Ĉ-

modules, namely modules of the form −Ĉx. This category is isomorphic to the
opposite of the original one (this is well known and immediate to prove using
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Yoneda’s Lemma). Since Ĉ is amenable, representable Ĉ-modules are precisely
the small (or finitely generated) projective ones, see for instance [8, p. 119].
Finally the small projective modules are easily seen to be preserved by any
equivalence of categories; consequently the opposite categories of Ĉ and D̂ are
equivalent, hence the categories themselves are also equivalent.
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