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ABSTRACT. We extend the relation between random matrices and
free probability theory from the level of expectations to the level of
all correlation functions (which are classical cumulants of traces of
products of the matrices). We introduce the notion of “higher order
freeness” and develop a theory of corresponding free cumulants. We
show that two independent random matrix ensembles are free of arbi-
trary order if one of them is unitarily invariant. We prove R-transform
formulas for second order freeness. Much of the presented theory relies
on a detailed study of the properties of “partitioned permutations”.

2000 Mathematics Subject Classification: 46L54 (Primary), 15A52,
60F05

Keywords and Phrases: free cumulants, random matrices, planar di-
agrams

1Research supported by JSPS and COE postdoctoral fellowships

2Research supported by Discovery Grants and a Leadership Support Initiative Award
from the Natural Sciences and Engineering Research Council of Canada

3Research supported by MNiSW (project 1 PO3A 013 30), EU Research Training Network
“QP-Applications”, (HPRN-CT-2002-00279) and by European Commission Marie Curie Host
Fellowship for the Transfer of Knowledge “Harmonic Analysis, Nonlinear Analysis and Prob-
ability” (MTKD-CT-2004-013389)

4Research supported by a Premier’s Research Excellence Award from the Province of
Ontario and a Killam Fellowship from the Canada Council for the Arts

DOCUMENTA MATHEMATICA 12 (2007) 1-70



2 CoLLINS, MINGO, S'NIADY7 SPEICHER

1. INTRODUCTION

Random matrix models and their large dimension behavior have been an im-
portant subject of study in Mathematical Physics and Statistics since Wishart
and Wigner. Global fluctuations of the eigenvalues (that is, linear functionals
of the eigenvalues) of random matrices have been widely investigated in the
last decade; see, e.g., [Joh98, Dia03, Rad06, AZ06, MNO04, MSSO?]. Roughly
speaking, the trend of these investigations is that for a wide class of converging
random matrix models, the non-normalized trace asymptotically behaves like
a Gaussian variable whose variance only depends on macroscopic parameters
such as moments. The philosophy of these results, together with the freeness
results of Voiculescu served as a motivation for our series of papers on second
order freeness.

One of the main achievements of the free probability theory of Voiculescu
[Voi91, VDN92] was an abstract description via the notion of “freeness” of
the expectation of these Gaussian variables for a large class of non-commuting
tuples of random matrices.

In the previous articles of this series [MS06, MSS07] we showed that for many in-
teresting ensembles of random matrices an analogue of the results of Voiculescu
for expectations holds also true on the level of variances as well; thus pointing
in the direction that the structure of random matrices and the fine structure of
their eigenvalues can be studied in much more detail by using the new concept
of “second order freeness”. One of the main obstacles for such a detailed study
was the absence of an effective machinery for doing concrete calculations in this
framework. Within free probability theory of first order, such a machinery was
provided by Voiculescu with the concept of the R-transform, and by Speicher
with the concept of free cumulants; see, e.g., [VDN92, NSp06].

One of the main achievements of the present article is to develop a theory
of second order cumulants (and show that the original definition of second
order freeness from Part I of this series [MS06] is equivalent to the vanishing
of mixed second order cumulants) and provide the corresponding R-transform
machinery.

In Section 2 we will give a more detailed (but still quite condensed) survey of
the connection between Voiculescu’s free probability theory and random matrix
theory. We will there also provide the main motivation, notions and concepts
for our extension of this theory to the level of fluctuations (second order), as
well as the statement of our main results concerning second order cumulants
and R-transforms.

Having first and second order freeness it is, of course, a natural question
whether this theory can be generalized to higher orders. It turns out that
this is the case, most of the general theory is the same for all orders. So we
will in this paper consider freeness of all orders from the very beginning and
develop a general theory of higher order freeness and higher order cumulants.
Let us, however, emphasize that first and second order freeness seem to be
more important than the higher order ones. Actually, we can prove some of
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FLucTUuATIONS OF RANDOM MATRICES 3

the most important results (e.g. the R-transform machinery) only for first and
second order, mainly because of the complexity of the underlying combinatorial
objects.

The basic combinatorial notion behind the (usual) free cumulants are non-
crossing partitions. Basically, passage to higher order free cumulants corre-
sponds to a change to multi-annular non-crossing permutations [MNO04], or
more general objects which we call “partitioned permutations”. For much of
the conceptual framework there is no difference between different levels of free-
ness, however for many concrete questions it seems that increasing the order
makes some calculations much harder. This relates to the fact that n-th order
freeness is described in terms of planar permutations which connect points on n
different circles. Whereas enumeration of all non-crossing permutations in the
case of one circle is quite easy, the case of two circles gets more complicated,
but is still feasible; for the case of three or more circles, however, the answer
does not seem to be of a nice compact form.

In the present paper we develop the notion and combinatorial machinery for
freeness of all orders by a careful analysis of the main example: unitarily in-
variant random matrices. We start with the calculation of mixed correlation
functions for random matrices and use the structure which we observe there as
a motivation for our combinatorial setup. In this way the concept of partitioned
permutations and the moment—cumulant relations appear quite canonically.
We want to point out that even though our notion of second and higher order
freeness is modeled on the situation found for correlation functions of random
matrices, this notion and theory also have some far-reaching applications. Let
us mention in this respect two points.

Firstly, recently one of us [SniOG] developed a quite general theory for fluctua-
tions of characters and shapes of random Young diagrams contributing to many
natural representations of symmetric groups. The results presented there are
closely (though, not explicitly) related to combinatorics of higher order cumu-
lants. This connection will be studied in detail in the part IV of this series
where we prove that under some mild technical conditions Jucys-Murphy ele-
ments, which arise naturally in the study of symmetric groups, are examples
of free random variables of higher order.

In another direction, the description of subfactors in von Neumann algebras via
planar algebras [Jon99) relies very much on the notions of annular non-crossing
partitions and thus resembles the combinatorial objects lying at the basis of
our theory of second order freeness. This indicates that our results could have
some relevance for subfactors.

OVERVIEW OF THE ARTICLE. In Section 2 we will give a compact survey of
the connection between Voiculescu’s free probability theory and random matrix
theory, provide the main motivation, notions and concepts for our extension of
this theory to the level of fluctuations (second order), as well as the statement
of our main results concerning second order cumulants and R-transforms. We
will also make a few general remarks about higher order freeness.
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4 CoLLINS, MINGO, S'NIADY7 SPEICHER

In Section 3 we will introduce the basic notions and relevant results on per-
mutations, partitions, classical cumulants, Haar unitary random matrices, and
the Weingarten function.

In Section 4 we study the correlation functions (classical cumulants of traces)
of random matrix models. We will see how those are related to cumulants of
entries of the matrices for unitarily invariant random matrices and we will in
particular look on the correlation functions for products of two independent
ensembles of random matrices, one of which is unitarily invariant. The limit
of those formulas if the size N of the matrices goes to infinity will be the
essence of what we are going to call “higher order freeness”. Also our main
combinatorial objects, “partitioned permutations”, will arise very naturally in
these calculations.

In Section 5 we will forget for a while random variables and just look on the
combinatorial essence of our formulas, thus dealing with multiplicative func-
tions on partitioned permutations and their convolution. The Zeta and Mobius
functions on partitioned permutations will play an important role in these con-
siderations.

In Section 6 we will derive, for the case of second order, the analogue of the
R-transform formulas.

In Section 7 we will finally come back to a (non-commutative) probabilistic
context, give the definition and work out the basic properties of “higher order
freeness”.

In Section 8 we introduce the notion of “asymptotic higher order freeness” and
show the relevance of our work for Itzykson-Zuber integrals.

In an appendix, Section 9, we provide a graphical interpretation of partitioned
permutations as a special case of “surfaced permutations”.

2. MOTIVATION AND STATEMENT OF OUR MAIN RESULTS CONCERNING
SECOND ORDER FREENESS AND CUMULANTS

In this section we will first recall in a quite compact form the main connec-
tion between Voiculescu’s free probability theory and questions about random
matrices. Then we want to motivate our notion of second order freeness by
extending these questions from the level of expectations to the level of fluc-
tuations. We will recall the relevant results from the papers [MS06, MSSO?]
and state the main new results of the present paper. Even though in the later
parts of the paper our treatment will include freeness of arbitrarily high order,
we restrict ourselves in this section mainly to the second order. The reason
for this is that (apart from first order) second order freeness seems to be the
most important order for applications, so that it seems worthwhile to spell out
our general results for this case more explicitly. Furthermore, it is only there
that we have an analogue of R-transform formulas. We will make a few general
remarks about higher order freeness at the end of this section.

2.1. MOMENTS OF RANDOM MATRICES AND ASYMPTOTIC FREENESS. Assume
we know the eigenvalue distribution of two matrices A and B. What can we say
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FLucTUuATIONS OF RANDOM MATRICES 5

about the eigenvalue distribution of the sum A+ B of the matrices? Of course,
the latter is not just determined by the eigenvalues of A and the eigenvalues of
B, but also by the relation between the eigenspaces of A and of B. Actually, it
is quite a hard problem (Horn’s conjecture) — which was only solved recently
— to characterize all possible eigenvalue distributions of A + B. However, if
one is asking this question in the context of N x N-random matrices, then in
many situations the answer becomes deterministic in the limit N — oo.

DEFINITION 2.1. Let A = (An)nen be a sequence of N x N-random matrices.
We say that A has a first order limit distribution if the limit of all moments

ap = Nlim Eltr(A%)] (neN)
exists and for all » > 1 and all ny,...,n,. € N

Nlim kp(tr(AN), tr(AR), ..., tr(A%)) =0,

where E denotes the expectation, tr the normalized trace, and k, the 7" clas-
sical cumulant.

In this language, our question becomes: Given two random matrix ensembles
of N x N-random matrices, A = (An)nen and B = (By)nen, with first order
limit distribution, does also their sum C = (Cn)nen, with Cy = Ay + By,
have a first order limit distribution, and furthermore, can we calculate the
limit moments oz,(f of C out of the limit moments (oz;?)kzl of A and the limit
moments (a);>1 of B in a deterministic way. It turns out that this is the case
if the two ensembles are in generic position, and then the rule for calculating
the limit moments of C' are given by Voiculescu’s concept of “freeness”. Let us
recall this fundamental result of Voiculescu.

THEOREM 2.2 (Voiculescu [Voi9l]). Let A and B be two random matric en-
sembles of N x N-random matrices, A = (An)nen and B = (Bn)nen, each
of them with a first order limit distribution. Assume that A and B are in-
dependent (i.e., for each N € N, all entries of Ax are independent from all
entries of By ), and that at least one of them is unitarily invariant (i.e., for
each N, the joint distribution of the entries does not change if we conjugate
the random matriz with an arbitrary unitary N x N matriz). Then A and B
are asymptotically free in the sense of the following definition.

DEFINITION 2.3 (Voiculescu [Voi85]). Two random matrix ensembles A =
(An)nen and B = (Bn)nen with limit eigenvalue distributions are asymp-
totically free if we have for all p > 1 and all n(1),m(1),...,n(p), m(p) > 1
that

. n(1l m(1
]\}@OOE{U{(AN( P adoy 1) - BYY =l 1)

(AT — o)1) - (B =l 1)} = 0

DOCUMENTA MATHEMATICA 12 (2007) 1-70



6 CoLLINS, MINGO, S'NIADY7 SPEICHER

One should realize that asymptotic freeness is actually a rule which allows to
calculate all mixed moments in A and B, i.e. all expressions

lim E[tr(A"1 B An2) pm2) ... gn(p) pm(p))]
N—)()Q

out of the limit moments of A and the limit moments of B. In particular, this
means that all limit moments of A + B (which are sums of mixed moments)
exist and are actually determined in terms of the limit moments of A and the
limit moments of B. The actual calculation rule is not directly clear from
the above definition but a basic result of Voiculescu shows how this can be
achieved by going over from the moments «;, to new quantities x,,. In [Spe94],
the combinatorial structure behind these k,, was revealed and the name “free
cumulants” was coined for them. Whereas in the later parts of this paper we
will have to rely crucially on the combinatorial description and their extensions
to higher orders, as well as on the definition of more general “mixed” cumulants,
we will here state the results in the simplest possible form in terms of generating
power series, which avoids the use of combinatorial objects.

DEFINITION 2.4 (Voiculescu [Voi86], Speicher [Spe94]). Given the moments
(an)n>1 of some distribution (or limit moments of some random matrix en-
semble), we define the corresponding free cumulants (ky,)n>1 by the following
relation between their generating power series: If we put

M(z) =1+ Z anz" and Clx):=1+ Z Knx™,
n>1 n>1
then we require as a relation between these formal power series that

Voiculescu actually formulated the relation above in a slightly different way
using the so-called R-transform R(z), which is related to C(x) by the relation

C(z) =1+ 2R(x)

and in terms of the Cauchy transform G(z) corresponding to a measure with
moments «,, which is related to M (x) by

G(zr) = ﬂ%)
In these terms the equation C(xM (z)) = M(x) says that
) G HRGE) =

i.e., that G(z) and K (z) := = 4+ R(z) are inverses of each other under compo-
sition.

One should also note that the relation C(xM (x)) = M (x) determines the mo-
ments uniquely in terms of the cumulants and the other way around. The
relevance of the k, and the R-transform for our problem comes from the fol-
lowing result of Voiculescu, which provides, together with (1), a very efficient
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FLucTUuATIONS OF RANDOM MATRICES 7

way for calculating eigenvalue distributions of the sum of asymptotically free
random matrices.

THEOREM 2.5 (Voiculescu [Voi86]). Let A and B be two random matriz ensem-
bles which are asymptotically free. Denote by k2, kB, kA+E the free cumulants

of A, B, A+ B, respectively. Then one has for allmn > 1 that
ﬁﬁ+B = ﬁﬁ + /@S.

Alternatively,
RAYB(z) = RAz) + RE(2).

This theorem is one reason for calling the x, cumulants, but there is also
another justification for this, namely they are also the limit of classical cu-
mulants of the entries of our random matrix, in the case that this is unitarily
invariant. This description will follow from our formulas (28) and (30). We
denote the classical cumulants by k,,, considered as multi-linear functionals in
n arguments.

THEOREM 2.6. Let A = (An)nen be a unitarily invariant random matriz en-
semble of N x N random matrices An whose first order limit distribution exists.
Then the free cumulants of this matriz ensemble can also be expressed as the
limit of special classical cumulants of the entries of the random matrices: If
Ay = (a(N))N then

ij Jig=1-
A_ -1 (N) (N) (N)
K = Jm N kn(@i)i) Gicayics) 0 i) i)

for any choice of distinct i(1),. .., i(n).

2.2. FLUCTUATIONS OF RANDOM MATRICES AND ASYMPTOTIC SECOND OR-
DER FREENESS. There are many more refined questions about the limiting
eigenvalue distribution of random matrices. In particular, questions around
fluctuations have received a lot of interest in the last decade or so. The main
motivation for introducing the concept of “second order freeness” was to un-
derstand the global fluctuations of the eigenvalues, which means that we look
at the probabilistic behavior of traces of powers of our matrices. The limiting
eigenvalue distribution, as considered in the last section, gives us the limit of
the average of this traces. However, one can make more refined statements
about their distributions. Consider a random matrix A = (Anx)nen and look
on the normalized traces tr(A%;). Our assumption of a limit eigenvalue dis-
tribution means that the limits oy 1= limy_ o E[tr(A%;)] exist. It turned out
that in many cases the fluctuation around this limit,

tr(A%) — ax
is asymptotically Gaussian of order 1/Nj; i.e., the random variable
N - (tr(A%) — ag) = Tr(4%) — Nay, = Te(A% — o)

(where Tr denotes the unnormalized trace) converges for N — oo to a normal
variable. Actually, the whole family of centered unnormalized traces (Tr(AX;)—
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8 CoLLINS, MINGO, S'NIADY7 SPEICHER

Nay)k>1 converges to a centered Gaussian family. (One should note that we
restrict all our considerations to complex random matrices; in the case of real
random matrices there are additional complications, which will be addressed in
some future investigations.) Thus the main information about fluctuations of
our considered ensemble is contained in the covariance matrix of the limiting
Gaussian family, i.e., in the quantities

O 1= A}im cov(Tr(AR), Tr(A%)).

de el

Let us emphasize that the o, and the «,,, are actually limits of classical
cumulants of traces; for the first and second order, with expectation as first
and variance as second cumulant, this might not be so visible, but it will become
evident when we go over to higher orders. Nevertheless, the a’s will behave and
will also be treated like moments; accordingly we will call the ay, ,, ‘fluctuation
moments’. We will later define some other quantities «p, », which take the role
of cumulants in this context.

This kind of convergence to a Gaussian family was formalized in [MS06] as
follows. Note that convergence to Gaussian means that all higher order classical
cumulants converge to zero. As before, we denote the classical cumulants by
kn; so ki is just the expectation, and ks the covariance.

DEFINITION 2.7. Let A = (An)nen be an ensemble of N x N random matrices
Apn. We say that it has a second order limit distribution if for all m,n > 1 the
limits

Qy, = ngnoo ki (tr(A%))

and
Am,n = ]\}Hn kQ(TI'(AK[L),TI‘(AR]))

exist and if
lim &, (Tr(ARY),..., Tr(AR7)) =0
N—oco

for all » > 3 and all n(1),...,n(r) > 1.

We can now ask the same kind of question for the limit fluctuations as for the
limit moments; namely, if we have two random matrix ensembles A and B and
we know the second order limit distribution of A and the second order limit
distribution of B, does this imply that we have a second order limit distribution
for A+ B, and, if so, is there an effective way for calculating it. Again, we can
only hope for a positive solution to this if A and B are in a kind of generic
position. As it turned out, the same requirements as before are sufficient for
this. The rule for calculating mixed fluctuations constitutes the essence of the
definition of the concept of second order freeness.

THEOREM 2.8 (Mingo, Sniady, Speicher [MSSO?]). Let A and B be two
random matriz ensembles of N x N-random matrices, A = (An)nen and
B = (By)nen, each of them having a second order limit distribution. As-
sume that A and B are independent and that at least one of them is unitarily
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FLucTUuATIONS OF RANDOM MATRICES 9

iwvariant. Then A and B are asymptotically free of second order in the sense
of the following definition.

DEFINITION 2.9 (Mingo, Speicher [MS06]). Consider two random matrix en-
sembles A = (An)neny and B = (By)nen, each of them with a second order
limit distribution. Denote by

YN (n(l), m(1),...,n(p), m(p))
the random variable

1 1
Tr((ATJt/( ) - af(nl)(Ble( ) 02(1)1) T (A%p) - 047?( )1)(317?@) - 0‘5@)”)'

p

The random matrices A = (An)nen and B = (By)nen are asymptotically free
of second order if for all n,m > 1

Jim ks (Tr(Ay — apl), Te(BR —aB1)) =0

and for all p,g > 1 and n(l),...,n(p),m(1),...,m(p),n(1),...,7(q),
m(1),...,m(q) > 1 we have

dim ko (Y (n(1), m(1)..... n(p).m(p))., Y ((1), 0(2), .., ilq), i(g)) ) = 0

if p # ¢, and otherwise (where we count modulo p for the arguments of the
indices, i.e., n(i + p) = n(i))

Jim ey (Vg (n(1), m(1), ... n(p), m(p)), Vi (2(p), (p), ..., (1), (1)) )
B>

114

P
A A A B B B
(an(i+k)+ﬁ(i) - an(i+k)aﬁ(i)) (am(i+k)+m(i+1) - am(i+k)am(i+1))'
=1
Again, it is crucial to realize that this definition allows one (albeit in a com-
plicated way) to express every second order mixed moment, i.e., a limit of the

form
A}im k/’g (TI‘(AX,(UBK;(I) . AK[(P)B;’;(P)), TI‘(AT;](UBZI(D . A’;}(‘I)BZL(‘I)))
—00

in terms of the second order limits of A and the second order limits of B.
In particular, asymptotic freeness of second order also implies that the sum
A + B of our random matrix ensembles has a second order limit distribution
and allows one to express them in principle in terms of the second order limit
distribution of A and the second order limit distribution of B. As in the case of
first order freeness, it is not clear at all how this calculation of the fluctuations
of A+ B out of the fluctuations of A and the fluctuations of B can be performed
effectively. It is one of the main results of the present paper to achieve such
an effective description. We are able to solve this problem by providing a
second order cumulant machinery, similar to the first order case. Again, the
idea is to go over to quantities which behave like cumulants in this setting. The
actual description of those relies on combinatorial objects (annular non-crossing
permutations), but as before this can be reformulated in terms of formal power
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series. Let us spell out the definition here in this form. (That this is equivalent
to our actual definition of the cumulants will follow from Theorem 6.3.)

DEFINITION 2.10. Let (ap)n>1 and (m,n)m,n>1 describe the first and second
order limit moments of a random matrix ensemble. We define the corresponding
first and second order free cumulants (kp)n>1 and (Km,n)m,n>1 by the following
requirement in terms of the corresponding generating power series. Put

C(x) =1+ Z K™, C(z,y) == Z Emnx y"

n>1 m,n>1
and
M(z) =1+ Z anz™, M(z,y) := Z U, Y"
n>1 m,n>1
Then we require as relations between these formal power series that
(2) C(xM(x)) = M(x)

and for the second order

B M) = HM@).yM ) - O
where
(4) H(xa y) = C(JJ, y) — 2y afay 1Og(xc(yg)c : ZG(’JJ) )7

or equivalently,

d
(5) M(x7y):0(mM(x)’yM(y)),difn(xM(x)) AL (yM(y))

M(x) M)
(%(xM(w)) EWMy) 1 )
(@M(z) —yM(y))*  (z—y)?

From equation (5) one can calculate the second order version of moment-
cumulant relations.

Q11 = K11 + K2
Q21 = K12+ 2K1K1,1 + 2K3 + 2K1K2
Qo2 = Koo +4K1K21 + 4I<&§l€1,1 + 4Ky + 8K1kg + 2K5 + 4Kk
13 = K13+ 3K1kK21 + 3kak11 + 3KK11 + 3k + 6r1k3 + 3K3 + 3Kk
Q23 = K23+ 2K1K1,3 + 3K1K2,2 + 3kaKk1 2 + 9/{?;&1,2 + 6K1K2K1,1 + 6/&113/1171
+ 6k5 4 18k1 k4 + 12k0k3 + 18K2 k3 + 121 K3 + 6K Ko
33 = K33+ 6K1K2 3 + 6KaK1,3 + 6/@%/@1,3 + 9/@%/@2,2 + 18Kk1Kok1,2 + 18/@?/@1,2

+ 9K3k1,1 + 18KTKok11 + 9KTK1 1 + Ok + 36K1Ks + 2TKaky + 5AKT Ky

+ 9K3 + T2k1K2k3 + 36K5 K3 + 1265 + 36KTK3 + Ik

2
K11 =a] — o+ Q11

3
k1,2 = —4dai + 6o — 203 — 20010011 + Q2
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Koo = 18a] — 36a3ay + 602 + 16a1a3 — 4oy +4a2ar ) — 4ajon o + g
K13 = 150/11 — 3004%042 + 6a§ + 12013 — 3y +60¢%a1,1 -3, — 3oy 2+ 3
K2,3 = —720(? + 180 a% g — 72041043 — 84 Oé%Oé3 + 24asa3 + 301y — 6By
— 1206%11,1 + 6o + 120&%%,2 —3asar 2 — 2aqa1,3 — 3aiaz2 + 23
K33 = 30005 — 900 as + 5760503 — 4803 + 43203 a;z — 288ajanas + 1803
— 18Oa%a4 + 45904 + Hdaias — Yo + 360/11041,1 — 36a%a2a171 + 9043041,1

3 2 2
— 36ajar 2 + 18arana 2 + 12a7a 3 — 6o 3 + 9ajae 2 — 6aae 3 + a3 3

As in the first order case, instead of the moment power series M (z,y) one can
consider a kind of second order Cauchy transform, defined by
M(l l)

G(z,y) == 7;1/ .

If we also define a kind of second order R transform R(z,y) by
1
R = —C
(@.9) = --C(r.v)
then the formula (5) takes on a particularly nice form:

- , 1 } 1
6)  Glwy) =G @ O{RGE@. 60D+ Gar—aur) Gy
G(z) is here, as before, the first order Cauchy transform, G(z) = 1M (1/x).
The Ky, defined above deserve the name “cumulants” as they linearize the
problem of adding random matrices which are asymptotically free of second
order. Namely, as will follow from our Theorem 7.15, we have the following
theorem, which provides, together with (6), an effective machinery for calcu-
lating the fluctuations of the sum of asymptotically free random matrices.

THEOREM 2.11. Let A and B be two random matrixz ensembles which are
asymptotically free. Then one has for all m,n > 1 that

_ A, B A+B _ A B
=K;, + K, and Emn = K T Koo

kA
Alternatively,
RATB(2) = RA(x) + RP (x)
and
R4 (2,y) = RA(x,y) + RP (2, ).

Again, one can express the second order cumulants as limits of classical cumu-
lants of entries of a unitarily invariant matrix. In contrast to the first order
case, we have now to run over two disjoint cycles in the indices of the matrix
entries. This theorem will follow from our formulas (28) and (30).
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12 CoLLINS, MINGO, S'NIADY7 SPEICHER

THEOREM 2.12. Let A = (An)nen be a unitarily invariant random matriz
ensemble which has a second order limit distribution. Then the second order
free cumulants of this matrix ensemble can also be expressed as the limit of

classical cumulants of the entries of the random matrices: If Axy = (al(-;v))f\szl,
then
A m+n (N) (N) (N)
B = W oo N K (0501 02)> Ciyica) 2 Gim) 1)
(N) (N) (N)
%)) D233 L)1)

for any choice of distinct i(1),...,i(m),5(1),...,j(n).

This latter theorem makes it quite obvious that the second order cumulants for
Gaussian as well as for Wishart matrices vanish identically, i.e., R(z,y) = 0
and thus we obtain in these cases that the second order Cauchy transform is
totally determined in terms of the first order Cauchy transform (i.e., in terms
of the limiting eigenvalue distribution) via
G'(x)G'(y 1

™ Glay) = DL

(G(z) = G(y)?  (z—vy)
This formula for fluctuations of Wishart matrices was also derived by Bai and
Silverstein in [BS04].

2.3. HIGHER ORDER FREENESS. The idea for higher order freeness is the same
as for second order one. For a random matrix ensemble A = (Ax)nyeny we
define r-th order limit moments as the scaled limit of classical cumulants of r
traces of powers of our matrices,
Qng,..p, = lim N2k, (Tlr(AT]t,(l))7 el Tr(AZ(T))).
N —oc0

(The choice of N"~2 is motivated by the fact that this is the leading order for
many interesting random matrix ensembles, e.g. Gaussian or Wishart. Thus
our theory of higher order freeness captures the features of random matrix en-
sembles whose cumulants of traces decay in the same way as Gaussian random
matrices.) Then we look at two random matrix ensembles A and B which are
independent, and one of them unitarily invariant. The mixed moments in A
and B of order r are, in leading order in the limit N — oo, determined by the
limit moments of A up to order r and the limit moments of B up to order r.
The structure of these formulas motivates directly the definition of cumulants of
the considered order. The definition of those is in terms of a moment-cumulant
formula, which gives a moment in terms of cumulants by summing over spe-
cial combinatorial objects, which we call “partitioned permutations”. Most
of the theory we develop relies on an in depth analysis of properties of these
partitioned permutations and the corresponding convolution of multiplicative
functions on partitioned permutations. Our definition of “higher order free-
ness” is then in terms of the vanishing of mixed cumulants. It follows quite
easily that in the first and second order case this gives the same as the relations
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in Definitions 2.3 and 2.9, respectively. For higher orders, however, we are not
able to find an explicit relation of that type.

This reflects somehow the observation that our general formulas in terms of
sums over partitioned permutations are the same for all orders, but that eval-
uating or simplifying these sums (by doing partial summations) is beyond our
abilities for orders greater than 2. Reformulating the combinatorial relation
between moments and cumulants in terms of generating power series is one
prominent example for this. Whereas this is quite easy for first order, the com-
plexity of the arguments and the solution (given in Definition 2.10) is much
higher for second order, and out of reach for higher order.

One should note that an effective (analytic or symbolic) calculation of higher
order moments of a sum A+ B for A and B free of higher order relies usually on
the presence of such generating power series formulas. In this sense, we have
succeeded in providing an effective machinery for dealing with fluctuations
(second order), but we were not able to do so for higher order.

Our results for higher orders are more of a theoretical nature. One of the main
problems we have to address there is the associativity of the notion of higher
order freeness. Namely, in order to be an interesting concept, our definition
that A and B are free of higher order should of course imply that any function
of A is also free of higher order from any function of B. Whereas for first
and second order this follows quite easily from the equivalent characterization
of freeness in terms of moments as in Definitions 2.3 and 2.9, the absence
of such a characterization for higher orders makes this a more complicated
matter. Namely, what we have to see is that the vanishing of mixed cumulants
in random variables implies also the vanishing of mixed cumulants in elements
from the generated algebras. This is quite a non-trivial fact and requires a
careful analysis, see section 7.

3. PRELIMINARIES

3.1. SOME GENERAL NOTATION. For natural numbers m,n € N with m < n,
we denote by [m,n] the interval of natural numbers between m and n, i.e.,

[m,n]:=={m,m+1,m+2,...,n—1n}.
For a matrix A = (aij)gjzl, we denote by Tr the unnormalized and by tr the
normalized trace,
a 1
Tr(A) := ;aii, tr(A) = NTr(A).

3.2. PERMUTATIONS. We will denote the set of permutations on n elements
by S,. We will quite often use the cycle notation for such permutations, i.e.,
7w = (i1,42,...,%,) is a cycle which sends ix to ixy1 (K = 1,...,7), where
Tpp1 = 11.
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14 CoLLINS, MINGO, S'NIADY7 SPEICHER

3.2.1. Length function. For a permutation m € S,, we denote by #m the number
of cycles of 7 and by |7| the minimal number of transpositions needed to write
7 as a product of transpositions. Note that one has

|| + #7m=n for all m € S,,.

3.2.2. Non-crossing permutations. Let us denote by ~, € S, the cycle
Yo =(1,2,...,n).
For all 7 € S,, one has that
7+ < n -1
If we have equality then we call ™ non-crossing. Note that this is equivalent to

H#m+ #(’Ynﬁil) =n+1

If 7 is non-crossing, then so are v,7~! and 7 !v,; the latter is called the
(Kreweras) complement of 7.

We will denote the set of non-crossing permutations in S, by NC(n). Note
that such a non-crossing permutation can be identified with a non-crossing
partition, by forgetting the order on the cycles. There is exactly one cyclic
order on the blocks of a non-crossing partition which makes it into a non-
crossing permutation.

3.2.3. Annular non-crossing permutations. Fix m,n € N and denote by v, »,
the product of the two cycles

Ymon = (1,2,...,m)(m+1,m+2,....,m+n).

More generally, we shall denote by 7,,,,....m, the product of the corresponding
k cycles.

We call a m € Sy,1p connected if the pair 7 and v,,,, generates a transitive
subgroup in Sy, 4+,. A connected permutation m € Sy, 1, always satisfies

(8) 7|+ 7 < mt .

If 7 is connected and if we have equality in that equation then we call 7 annular
non-crossing. Note that if 7 is annular non-crossing then 7, ,m! is also
annular non-crossing. Again, we call the latter the complement of w. Of course,
all the above notations depend on the pair (m,n); if we want to emphasize
this dependency we will also speak about (m,n)-connected permutations and
(m,n)-annular non-crossing permutations.

We will denote the set of (m,n)-annular non-crossing permutations by
Snc(m,n). A cycle of a m € Syo(m,n) is called a through-cycle if it con-
tains points on both cycles. Each m € Syco(m,n) is connected and must thus
have at least one through-cycle. The subset of Syc(m,n) where all cycles are
through-cycles will be denoted by S¥L(m,n).

Again one can go over from annular non-crossing permutations to annular non-
crossing partitions by forgetting the cyclic orders on cycles; however, in the
annular case, the relation between non-crossing permutation and non-crossing
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FLucTUuATIONS OF RANDOM MATRICES 15

partition is not one-to-one. Since we will not use the language of annular
partitions in the present paper, this is of no relevance here.

Annular non-crossing permutations and partitions were introduced in [MN04];
there, many different characterizations—in particular, the one (8) above in
terms of the length function—were given.

3.3. PARTITIONS. We say that V = {V4,...,Vi} is a partition of a set [1, n] if
the sets V; are disjoint and non-empty and their union is equal to [1,n]. We
call V1,..., Vi the blocks of partition V.

Iy ={V,....,Vip} and W = {Wh,...,W;} are partitions of the same set, we
say that V < W if for every block V; there exists some block W; such that
Vi € W;. For a pair of partitions V, W we denote by V V W the smallest
partition ¢ such that V < U and W < U. We denote by 1,, = {[1,n]} the
biggest partition of the set [1, n].

If # € S, is a permutation, then we can associate to 7 in a natural way a
partition whose blocks consist exactly of the cycles of 7; we will denote this
partition either by 0, € P(n) or, if the context makes the meaning clear, just
by m € P(n).

For a permutation 7 € S,, we say that a partition V is m-invariant if m preserves
each block of V. This means that 0, <V (which we will usually write just as
T <V).

If v ={Vi,...,Vi} is a partition of the set [1,n] and if, for 1 < i < k, 7; is a
permutation of the set V; we denote by m; X --- X m € S,, the concatenation
of these permutations. We say that 7 = m; X --- X 7, is a cycle decomposition
if additionally every factor m; is a cycle.

3.4. CLASSICAL CUMULANTS. Given some classical probability space (2, P)
we denote by E the expectation with respect to the corresponding probability
measure,

E(a) ::/Qa(w)dP(w)

and by L~ (Q, P) the algebra of random variables for which all moments exist.
Let us for the following put A := L~ (Q, P).

We extend the linear functional E : A — C to a corresponding multiplicative
functional on all partitions by (V € P(n), a1,...,a, € A)

9) Evlai,...,an] = H Elai,...,anlv],
Vey
where we use the notation
Ela1,...,an|v] == E(a;, -+ a,) for V=_(i1<-<is) €V.
Then, for V € P(n), we define the classical cumulants ky as multilinear func-

tionals on A by
(10) kylas,....an] = > Ewla,...,an] - M8bp (W, V),

WEP(n)
w<v
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16 CoLLINS, MINGO, S'NIADY7 SPEICHER

where Mobp(,,) denotes the Mobius function on P(n) (see [Rot64]).
The above definition is, by Mo6bius inversion on P(n), equivalent to

E(a---an) = Z krla,...,an).
TEP(n)

The k, are also multiplicative with respect to the blocks of V and thus deter-
mined by the values of

kn(at,...,an) :=ki, [a1,...,anl.
Note that we have in particular
k1(a) = E(a) and ka(a1,a2) = E(a1a2) — E(a1)E(a2).

An important property of classical cumulants is the following formula of Leonov
and Shiryaev [LS59] for cumulants with products as arguments.
Let m,n € Nand 1 <i(1) < i(2) < --- <i(m) =n. Define Y € P(n) by

U={(1,....i(1), (1) +1,...,i(2),..., (i(m = 1)+ 1,...,i(m)) }.
Consider now random variables aq,...,a, € A and define
Ay = a1 Q1)

Ay = Ai(1)41 " " Ay(2)

Am L= ai(m_1)+1 cee al(m)
Then we have
(11) km(Ar, Az, A) = > kylar, .. an).
eEe

The sum on the right-hand side is running over those partitions of n elements
which satisfy VVU = 1,,, which are, informally speaking, those partitions which
connect all the arguments of the cumulant k,,, when written in terms of the
;.

Here is an example for this formula; for ks(ajas, asas). In order to reduce the
number of involved terms we will restrict to the special case where E(a;) =0
(and thus also ki(a;) = 0) for all ¢ = 1,2,3,4. There are three partitions
7 € P(4) without singletons which satisfy

7V {(1,2),(3,4)} = 14,

namely
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and thus formula (11) gives in this case

ka(araz, azas) = ka(ai, a2, a3, aq)

—+ kg(al, a4)k2(a2, a3) —+ kg(al, ag)kg(ag, a4).

As a consequence of (11) one has the following important corollary: If
{a1,...,a,} and {b1,...,b,} are independent then

(12)  kwlarby, .. anba] = > kyla,...,an] - kwbr,. . bal.

v, V' eP(n)
vvv/=w

3.5. HAAR DISTRIBUTED UNITARY RANDOM MATRICES AND THE WEIN-
GARTEN FUNCTION. In the following we will be interested in the asymptotics
of special matrix integrals over the group U (V) of unitary N x N-matrices.
We always equip the compact group U (N) with its Haar probability measure.
A random matrix whose distribution is this measure will be called a Haar dis-
tributed unitary random matriz. Thus the expectation E over this ensemble is
given by integrating with respect to the Haar measure.

The expectation of products of entries of Haar distributed unitary random
matrices can be described in terms of a special function on the permutation
group. Since such considerations go back to Weingarten [Wei78], Collins [Col03]
calls this function the Weingarten function and denotes it by Wg. We will
follow his notation. In the following we just recall the relevant information
about this Weingarten function, for more details we refer to [Col03, CSO6].
We use the following definition of the Weingarten function. For 7 € S,, and
N > n we put

Wg(N7 7T) = E[Ull o UpnUig(1) " 'unw(n)]a

where U = (Uij)ﬁyjd is an N x N Haar distributed unitary random matrix.
Sometimes we will suppress the dependency on N and just write Wg(w). This
Wg(N, ) depends only on the conjugacy class of m. General matrix integrals

over the unitary group can be calculated as follows:

(13)  Elwigy - wig, gy Wirgy -+ Wingn)

— .. DY . . - . PR . . _1
= E Oiy i1y 5%,1;(") 5]1]2,(1) 5JW,J£,(,L)Wg(ﬁO‘ )-
avﬁesn

This formula for the calculation of moments of the entries of a Haar unitary
random matrix bears some resemblance to the Wick formula for the joint mo-
ments of the entries of Gaussian random matrices; thus we will call (13) the
Wick formula for Haar unitary matrices.

The Weingarten function is quite a complicated object, and its full understand-
ing is at the basis of questions around Itzykson-Zuber integrals. One knows
(see, e.g., [Col03, CS06]) that the leading order in 1/N is given by |r| 4+ n and
increases in steps of 2.
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18 CoLLINS, MINGO, S'NIADY7 SPEICHER

3.6. CUMULANTS OF THE WEINGARTEN FUNCTION. We will also need some
(classical) relative cumulants of the Weingarten function, which were intro-
duced in [Col03, §2.3]. As before, let M6bp(,,) be the Mdbius function on the
partially ordered set of partitions of [1,7n] ordered by inclusion.
Let us first extend the Weingarten function by multiplicative extension, for
Y >, by

Wg(V,m) := H We(rlv),

Vevy

where 7|y denotes the restriction of 7 to the block V' € V (which is invariant
under 7 since m < V).
The relative cumulant of the Weingarten function is now, for 0 <V < W,
defined by

(14) Cyw(o)= > MébU,W) WelU,o0).

UEP(n)
V<U<w

Note that, by Md&bius inversion, this is, for any o <V < W, equivalent to

(15) WgW,0) = > Cyulo).

UeP(n)

v<usw
In [Col03, Cor. 2.9] it was shown that the order of Cy (o) is at most
(16) N—2n+#a+2#W—2#V.

4. CORRELATION FUNCTIONS FOR RANDOM MATRICES

4.1. CORRELATION FUNCTIONS AND PARTITIONED PERMUTATIONS. Let us
consider N x N-random matrices By, ..., B, : 2 — My(C). The main infor-
mation we are interested in are the “correlation functions” ¢,, of these matrices,
given by classical cumulants of their traces, i.e.,

©n(B1,...,Bpn) = kn(Tr(By),...,Tr(B,)).

Even though these correlation functions are cumulants, it is more adequate to
consider them as a kind of moments for our random matrices. Thus, we will
also call them sometimes correlation moments.
We will also need to consider traces of products which are best encoded via
permutations. Thus, for 7 € S,, ¢(7)[B1,...,By] shall mean that we take
cumulants of traces of products along the cycles of w. For an n-tuple B =
(B1,...,B,) of random matrices and a cycle ¢ = (i1, 42, ...,i;) with k < n we
denote

B|c = BilBig ---B
(We do not distinguish between products which differ by a cyclic rotation of
the factors; however, in order to make this definition well-defined we could
normalize our cycle ¢ = (i1, iz, ..., i) by the requirement that i; is the smallest
among the appearing numbers.) For any 7 € S(n) and any n-tuple B =
(B1,...,B,) of random matrices we put

o(m)[Bi,- .., Bn] == ¢r(Bley, - - Ble,);

i
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where 7 consists of the cycles cq,...,c,.
Example:
¢((1,3)(2,5,4))[B1, B2, B3, Ba, Bs| = ¢,(B1B3, B2B5Ba)
= ko(Tr(B1Bs3), Tr(B2BsBy))

Furthermore, we also need to consider more general products of such ¢(m)’s.
In order to index such products we will use pairs (V,7) where 7 is, as above,
an element in S,, and V € P(n) is a partition which is compatible with the
cycle structure of 7, i.e., each block of V is fixed under 7, or to put it another
way, V > 7. In the latter inequality we use the convention that we identify a
permutation with the partition corresponding to its cycles if this identification

is obvious from the structure of the formula; we will write this partition 0, or
just 0 if no confusion will result.

NOTATION 4.1. A partitioned permutation is a pair (V, ) consisting of 7 € S,,
and V € P(n) with V > w. We will denote the set of partitioned permutations
of n elements by PS(n). We will also put

PS = | PS(n).

neN
For such a (V,7) € PS we denote finally
@V, m)[Bi, ..., Ba] = [] e(xlv)[Bi, ..., Bulv].
Vev
Example:

¢ ({1,3,4}{2}, (1,3)(2)(4))[B1, B2, B3, Bu]
= @2(3133, B4) Sl (BQ)
= ka(Tr(B1Bs3), Tr(By)) - k1 (Tr(B2))

Let us denote by Tr, as usual a product of traces along the cycles of o. Then
we have the relation

B{Tr,[A1,...., 4]} = D oWV, 0)41,..., 4.

WEeP(n)
W>o

By using the formula (11) of Leonov and Shiryaev one sees that in terms of the
entries of our matrices By, = (bgf))fyjzl our ¢(U, ) can also be written as

N
_ 1) (n)
(1) eUNBr,- - Bal= > > kvl bty

v<u () —
VUAy=U i(1),...,i(n)=1

4.2. MOMENTS OF UNITARILY INVARIANT RANDOM MATRICES. For unitarily
invariant random matrices there exists a definite relation between cumulants
of traces and cumulants of entries. We want to work out this connection in

this section. Related considerations were presented by Capitaine and Casalis
in [CCOG].
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DEFINITION 4.2. Random matrices Ay, ..., A, are called unitarily invariant if
the joint distribution of all their entries does not change by global conjugation
with any unitary matrix, i.e., if, for any unitary matrix U, the matrix-valued
random variables Ay, ..., A, : @ — My(C) have the same joint distribution as
the matrix-valued random variables UA,U*, ..., UA,U* : Q@ — My(C).

Let Aq,..., A, be unitarily invariant random matrices. We will now try ex-
pressing the microscopic quantities “cumulants of entries of the A;” in terms
of the macroscopic quantities “cumulants of traces of products of the A;”.

In order to make this connection we have to use the unitary invariance of our
ensemble. By definition, this means that Ay,..., A, has the same distribution
as Aq,..., A, where A; := UA;U*. Since this holds for any unitary U, the
same is true after averaging over such U, i.e., we can take in the definition
of the A; the U as Haar distributed unitary random matrices, independent
from Aq,...,A,. This reduces calculations for unitarily invariant ensembles
essentially to properties of Haar unitary random matrices; in particular, the
Wick formula for the U’s implies that we have an analogous Wick formula for

joint moments in the entries of the A;. Let us write Ay = (a if))” , and
Ay = (@ Zf))i\szl. Then we can calculate:
E{amm a } E{a(171 ag:b)u,}
j I
= Z E{U’plil a”gl‘;l U7-1j1 e upnin az(':;n U’Tnjn}
4,9

= Z E{U’plil U7~1j1 upnlw U’Tn]w} E{azljl e ’Lnjn}

1
D> > SrponbiiccWelon ! ) E{al) ---ai") }

i,j m,0€Sn
:25@077 g [Alv"'a n]a
TESy
where
(18)  G(m[A1,..., 4] i = Y Walon ™) Z {ai] o rai o}
geSy
= > Wglor ) - E{Trs[4y,..., An]}.
geSy
= > Wgler™)- > oW, 0)4,..., Ay
geSy WEeP(n)

W>o

= Z Wg(on ™) - oW, 0)[A1,..., Al
(W,0)ePS(n)

The important point here is that G(7)[A1, ..., A,] depends only on the macro-
scopic correlation moments of A.
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We can extend the above to products of expectations by

Ev(ap, s tpr] = D Orpor - GV, m)[A1, ..., Ay,

TESn
TV

where G(V, 7) is given by multiplicative extension:

GV m)Ar,. . Al = [ Grlv)[Ar -, Aulv]
Vey
(19) = Y. WgW,om ') oW, 0)[As, ..., Ayl.

(W,o)eEPS(n)
W<V

Now we can look on the cumulants of the entries of our unitarily invariant
matrices A;; they are given by

kv{ap171’ R pn"w} - Z MObP(n)(u V) Eu[ pl)"l’ e a’g:)”w]
UeP(n)
u<v
= > brporn - Mdbp() (U, V) - GU, T)[A1, ..., Ay]
ULY m€Sn
<Uu
=Y brpor D, Mébpy(U,V)-GU,)[As, ..., Ay
TESn UEP(n)
<V v>u>mn

With the definition
(200 KOV, m)[A1,.. An] = > Mébpgy U, V) - GU,)[As, ..., Ay

UEP(n)
V>u>nw
we thereby get
(21) ky{al),, . alD 3 =" Grpor - 6(V,m)[A1, ..., Anl.
TESn
<V

It follows that

_ 1) ()
PUAN AL A= > Z 1ein)itr 1) Gimyica )

v<u
vl uz( cai(n)=1

N
Z Z Z (Siofy,ioﬂ— . H(V, 7T) [Al, ey An]

v<u ] L = ES,
VU (1), i(m)=1 75y

SN wVimA,. . Ag) - NFOTD,

V<uU w€Sp
VWA= w<V

Since V Vv = U is, under the assumption 7 < V, equivalent to V V yr—! =U
we can write this also as

(22) @(U,V)[Ah...,An] = Z K(Vvﬂ)[Al,...,An] .N#(,Wﬂ).

(V,m)ePS(n)
V\/'y‘fr_l:L{
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Remark 4.3. 1) Note that although the quantity & is defined by (20) in terms
of the macroscopic moments of the A;, they have also a very concrete meaning
in terms of cumulants of entries of the A;. Namely, if we choose # € S,

and distinct 1 < i(1),...,i(n) < N then equation (21) becomes, when we set
V=1,

_ 1) (n)
(23) K(1p, m)[A1,..., Ap] = kn (ai(l)i(w(l)), cee ai(n)i(w(n)))

as the the only term in the sum that survives is the one for .

2) Equation (22) should be considered as a kind of moment-cumulant formula in
our context, thus it should contain all information for defining the “cumulants”
k in terms of the moments ¢. Actually, we can solve this linear system of
equations for  in terms of ¢, by using equation (20) to define x and equation
(19) for G.

k(V,m)[A1,..., Ay
= Y Mébpy@.V)- Y Wel,om ) p(W,0)[As,..., Ay

UeP(n) (W,e)ePS(n)

v>u>mn w<u

= Y oWy A Y Mébpgy (U, V) Wel,om ).
(W,0)ePS(n) vgﬁf(ﬂ@w

Thus, by using the relative cumulants of the Weingarten function from (14),
we get finally

(24) kW, M)A A= Y eV, 0)[Ar,. ., Al Covwy(om ).

(W,0)EPS(n)
W<V

3) One should also note that we have defined the Weingarten function only
for N > n; thus in the above formulas we should always consider sufficiently
large N. This is consistent with the observation that the system of equations

(22) might not be invertible for N too small; the matrix (N#(‘”Tfl))gwes is

invertible for N > n, however, in general not for all N < n (e.g, clearly not
for N =1). One can make sense of some formulas involving the Weingarten
function also for N < n (see [CS06]). However, since we are mainly interested
in the asymptotic behavior of our formulas for N — oo, we will not elaborate
on this.

4.3. PRODUCT OF TWO INDEPENDENT ENSEMBLES. Let us now calculate the
correlation functions for a product of two independent ensembles Aq,..., A,
and Bi,..., B, of random matrices, where we assume that one of them, let’s
say the B;’s, is unitarily invariant. We have, by using (17) and the special
version (12) of the formula of Leonov and Shiryaev, the following:
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(ID(Z/{,’)/)[AlBl, ey Aan]

_ (1) (n) (1) (n)
o« >Z< : > Bl O] E i) iGa: Bitmyi)]
i(1),yi(n)  V.VI<u
G(1)eee yi(m) VYV
Z Do D bugen KO mAL o Al B Bl ) V)

v, v/'<u wESn
vV vy=u TV

=3 Y sV mAL..., A

7T€Sn VE’P(n)
(1) (n)
(8 by D))

U>v>n
v/ <u 7
V/vVVvvVy=U

In order to evaluate the second factor we note first that, under the assumption
7 <V, the condition V'V V Vv = U is equivalent to V'V V V7~ 1y =U. Next,
we rewrite the sum over all V' € P(n) with V' < U and V' VYV V71 ly =U
as a double sum over all W € P(n) with VVW = U and all V' € P(n) with
V' < W and V’V?T_I’Y:W

(n)
Z Zkv' 1(1 i(r =ty (1)) "bl(n)l(ﬂ 1v(n))]

V/eP(n)
S o b1 ()
> 2 B yia ) Bimyiceta o))

V! <u,v'vvvy=u
WEP(n) v/<w
VVW=U yiya—1ly—yw

> oW, m 9)[By, ..., Byl

WEP(n)
w>r—ly vvw=u

Thus we finally get
50(1/{, 7)[A1B17 ey Aan]

=> > > kWAL AW, 7)) By, By

TES, VEP(n) WeP(n)
UZV>T W>r—ly vvWw=u

= Z k(V,m)[A1, ..., An) - 0OV, 7 1)[By,. .., Bal.

V,m),(W,0)ePS(n)
VVW=U,ro="~

Let us summarize the result of our calculations in the following theorem. In
order to indicate that our main formulas are valid for any fixed N, we will
decorate the relevant quantities with a superscript ). Note that up to now
we have not made any asymptotic consideration.

THEOREM 4.4. Let My := My ® L>®(Q) be an ensemble of N x N-random

matrices. Define correlation functions @SIN) on My by neN, Dy,...,D,, €
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Mn)
(25) o N(Dy,...,Dy) = ky(Te(Dy),...,Tr(D,))

and corresponding “cumulant functions” k() (forn < N) by
(26)
MWD D= Y ¢ MW, 0) Dy, D) Oy y(on Y,
WEeP(n),c€Sy
W<y

or equivalently by the implicit system of equations

@27 e NMUANDs,...,Da] =Y KNV, m)Dy, ., Dy NFOT,
V,w

where the sum is over all V € P(n) all ® € Sy, such that m <V and VNV~ ! =

Uu.

1) Let Ay be an algebra of unitarily invariant random matrices in My . Then
L . K\ N

we have for all n < N, all distinct i(1),...,i(n), all Ay = (agj))m,:l € An,

and oll T € S, that

N 1) (n)
(28) KN (L, m) AL An] = Fa (05 im (1) Gityicrnn))-

2) Assume that we have two subalgebras An and By of My such that

o AN is a unitarily invariant ensemble,

o Ay and By are independent.
Then we have for all n € N with n < N and all Ay,...,A, € Ay and
Bl,...,Bn S BN.‘

(29) CP(N) (ua 7) [AlBla ) Aan]

- Z K(N)(Va 7r)[Ala ceey An] ' SD(N)(Wa U)[Bla BRE) Bn]a
V,m,W,o

where the sum is over all V,2W € P(n) and all 7,0 € S, such that 1 <V,
o<W, VVW=U, and v = 1o.

4.4. LARGE N ASYMPTOTICS FOR MOMENTS AND CUMULANTS. Our main in-
terest in this paper will be the large N limit of formula (29). This structure
in leading order between independent ensembles of random matrices which are
randomly rotated against each other will be captured in our abstract notion of
higher order freeness.

Of course, now we must make an assumption about the asymptotic behavior
in N of our correlation functions. We will require that the cumulants of traces
of our random matrices decays in N with the same order as in the case of
Gaussian or Wishart random matrices. In these cases one has very detailed
“genus expansions” for those cumulants; see, e.g. [Oko00, MNO4] and one
knows that the n-th cumulant of unnormalized traces in polynomials of those
random matrices decays like N27" (see e.g. [MS06, Thm. 3.1 and Thm. 3.5]).
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DEFINITION 4.5. Let, for each N € N, B ... B™) ¢ My ® L==(Q) be
N x N-random matrices. Suppose that the leading term of the correlation
moments of B§N), . ,BﬁN) are of order 2 — n, i.e., that for all n € N and all
polynomials p1,...,p; in 7 non-commuting variables the limits

Nhinoo (‘DSIN)(pl(BYV)a - "B7('N))a T 7pt(B§N)a T 7B7(“N))) SN2

exist. Then we will say that {B;N), .. ,B,(«N)} has limit distributions of all
orders. Let B be the free algebra generated by generators by,...,b,.. Then we
define the limit correlation functions of B by

on(Pr(br, .. br)y o pe(brs . b))
= lim oM (py (BN B, p(BY) L By . N2
—00
Note that this assumption implies that the leading term for the quantities
M) (V1) is of order 2#(V) — #(n). Indeed, if V has k blocks and the i
block of V contains r; cycles of m then ¢™)(V, 1) = ¢, --- ¢, and each p,,
has order 2 — r;. Then the order of ™) (V,71) is (2 —71) + -+ (2 — 1) =
2k — (11 + -+ + 1) = 2#(V) — #(m). Thus
e(V,m)(p1(b1, -, br), oo pe(brs .o br))
= Jim o™ (BN, BY), (B, BO))
—00
. N2#EW)H#(T)
From formula (27) one can deduce that the leading order of k™) (V, 1) is given
by the term (U,~) = (V, ) and thus must be of order
N —nT2#EV—#T
(Indeed, this also follows from equation (24) and the leading order of the relative
cumulant of the Weingarten function given in equation (16).)

Thus we can define the limiting cumulant functions to be the limit of the
leading order of the cumulants by the equation

R P n—2#V+#n  _(N) (N) (N)
) 1y--+yUn| -— ) 9 ety
(30)  k(V,m)[b by lim N -V, 1) [By BY]

N—oc0
When (V,7) = (1n,v,) and By = By = --- = B,, = B equation (28) becomes
N N
KN (L ) (B, - B = ko (b2 i)

Thus to prove Theorem 2.6 we must show that x¥)(1,,,7,)[B,...,B] - N~}
converges to k% the n'" free cumulant of the limiting eigenvalue distribution of
BW),

When (V,7) = (Lym4n, Ym,n) €quation (28) becomes

N _ (N) (N) (N) (N)
Ii( )(]—erna Vm,n)[Ba ceey B] - karn (bl(l)l(g)a et bz(m)z(l)a bj(l)j(g)a e bj(n)yj(l))
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Thus to prove Theorem 2.12 we must show that &™) (1,4, Ymn)[Bs -, B] -
N™*+" converges to Iifmn the (m,n)" free cumulant of second order of the
limiting second order distribution of BM).

4.5. LENGTH FUNCTIONS. We want to understand the asymptotic behavior of
formula (29). The leading order in N of the right hand side is given by
—n 4 2H#Y — #7 +2#W — #o =n+ (7| — 2|V]) + (Jo| — 2]W)),
whereas the leading order of the left hand side is given by
2#U — #y =2#(V VW) — #(om) =n+ (|ma| — 2]V VIWV)).

This suggests the introducing of the following “length functions” for permuta-
tions, partitions, and partitioned permutations.

NOTATION 4.6.
(1) For V € P(n) and 7 € S,, we put
[V|:=n—#V
|| :==n — #m.
(2) For any (V, ) € PS(n) we put
|V, m)] o= 20V| — || = — 24V — #m).

Let us first observe that these quantities behave actually like a length. It is
clear from the definition that they are always non-negative; that they also obey
a triangle inequality is the content of the next lemma.

LEMMA 4.7.

(1) For all m,0 € S,, we have

[mo| < || + |o.
(2) For all V,WW € P(n) we have
V'V W< [V[+ W]
(3) For all partitioned permutations (V, ), W, o) € PS(n) we have
|V VW, mo)| <[V, m) + [V, 0)|.

Proof. (1) This is well-known, since || is the minimal number of factors needed
to write m as a product of transpositions.
(2) Each block B of W can glue at most #B — 1 many blocks of V together,

i.e., W can glue at most n — #W many blocks of V together, thus the difference
between |V| and |V V W| cannot exceed n — #W and hence

HY — #(V VW) < n— #W.

This is equivalent to our assertion.

(3) We prove this, for fixed 7 and o by induction over |V| 4 |W|. The smallest
possible value of the latter appears for |V| = |r| and |W| = |o]| (i.e.,, V = 0,
and W = 0,). But then we have (since V VW > 7o)

2AV VW] — |ra| < |[VVW| < V]| + W),
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which is exactly our assertion for this case. For the induction step, on the
other side, one only has to observe that if one increases |V| (or |W|) by one
then |V V W] can also increase by at most 1. O

Remark 4.8. 1) Note that the triangle inequality for partitioned permutations
together with (29) implies the following. Given random matrices A = (An)nen
and B = (Bn)nen which have limit distributions of all orders. If A and B are
independent and at least one of them is unitarily invariant, then C' = (Cn)nen
with Cy := Ay By also has limit distributions of all orders.

2) Since we know that Gaussian and Wishart random matrices have limit dis-
tributions of all orders (see e.g. [MS06, Thm. 3.1 and Thm. 3.5]), and since
they are unitarily invariant, it follows by induction from the previous part
that any polynomial in independent Gaussian and Wishart matrices has limit
distributions of all orders.

4.6. MULTIPLICATION OF PARTITIONED PERMUTATIONS. Suppose {BYV)7
...,B,(lN)} has limit distributions of all orders. Then the left hand side of
equation (27) has order N2#@)=#() and the right hand side of equation (27)
has order N~ F2#M)=#(m)+v7 | Thys the only terms of the right hand side
that have order N2#U)~#() are those for which

28(U) — #(y) = —n+ 24 (V) — #(m) + yn |

i.e. for which |(U,v)| = |(V, )| + |ym—!|. Hence

N
oM, BM,...,BM)
= Y ™M, B N

(V,m)ePS(n)
V\/'yﬂ'*lzu
[U) =1V, m) |+ ym =1

+ O(NQ#(U)*#(V)*Q)

Thus after taking limits we have

(31) UL bl = D KV m)[brs b
(V,m)ePS(n)

where the sum is over all (V, 7) in PS(n) such that VVyr~! = U and |(U,7)| =
|V, )] + [ym 1.

A similar analysis of equation (29) gives that for independent {A(IN), ceey A%N)}
and {B;N), cel gN)} with the AEN)’S unitarily invariant and both having limit
distributions of all orders we have
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MU AN B, AN BV
= Z MW, AN AN oMo, o) B, B

(V,m),(W,0)EPS(n)
VVW=

(V) 1OV, ) (< O, o)
+ O(NQ#(U)*#(V)*Q)

and again after taking limits

(32) @U,7y)[aiby,...,anby]
= Z kW, m)[a1,...,an] - oW, 0)[b1,...,by]
(V,m),(W,0)ePS(n)
where the sum is over all (V, ), (W, o) € PS(n) such that
o VVW=U
o o ="

o |V, m)| + W, 0)| = U, )|
In order to write this in a more compact form it is convenient to define a
multiplication for partitioned permutations (in CPS(n)) as follows.

DEFINITION 4.9. For (V,7), (W, o) € PS(n) we define their product as follows.
(33) (V,m) - W,0) =
B {(v VW, ma) if [(V, )]+ [, 0)| = |(V VW, 70)],
0 otherwise.
PROPOSITION 4.10. The multiplication defined in Definition 4.9 is associative.
Proof. We have to check that
(34) (V.m)- W, 0)) - Us) = (V,m) - (W, 0) - (U 7).

Since both sides are equal to (V VW VU, woT) in case they do not vanish, we
have to see that the conditions for non-vanishing are for both sides the same.
The conditions for the left hand side are

[V, m)| + (W, 0)] = [(V VW, 7o)
and
|(VVW, o) + (U, )| = |VVWVU,roT)|.
These imply
|V, m)| + W, o)+ |(U,7)| =|UVWNVU,ToT)]
<|W,m)|+ W VU, oT)],
However, the triangle inequality

WV U, or)| <[(W,0)] +|U,T)]
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yields that we have actually equality in the above inequality, thus leading to
(W, o)+ U, 7)| = (W VU, o)

and
WV, )|+ W VU, o7)| = |VVWVU,70T)|.

These are exactly the two conditions for the vanishing of the right hand side

of (34). The other direction goes analogously. U
Now we can write formulas (31) and (32) in convolution form
(35) (p(u77)[b17abn] = Z K(Vaﬂ-)[blw--abn]

(V,m)ePS(n)

(V,m)- (0 ym—)=U,~)

and
(36) cp(Z/l, ’}/)[albla D) anbn]
= Z kW, m)[a1,...,an] - oW, 0)[b1,...,by].

(V,m),(W,0)€PS(n)
V,m)-(W,o)=(U,~)

Note that both ¢(V,7) and x(V,7) are multiplicative in the sense that they
factor according to the decomposition of V into blocks.

The philosophy for our definition of higher order freeness will be that equation
(35) is the analogue of the moment-cumulant formula and shall be used to define
the quantities «, which will thus take on the role of cumulants in our theory
— whereas the ¢ are the moments (see Definition 7.4). We shall define higher
order freeness by requiring the vanishing of mixed cumulants, see Definition
7.6. On the other hand, equation (36) would be another way of expressing the
fact that the a’s are free from the b’s. Of course, we will have to prove that
those two possibilities are actually equivalent (see Theorem 7.9).

5. MULTIPLICATIVE FUNCTIONS ON PARTITIONED PERMUTATIONS AND
THEIR CONVOLUTION

5.1. CONVOLUTION OF MULTIPLICATIVE FUNCTIONS. Formulas (35) and (36)
above are a generalization of the formulas describing first order freeness in
terms of cumulants and convolution of multiplicative functions on non-crossing
partitions. Since the dependence on the random matrices is irrelevant for this
structure we will free ourselves in this section from the random matrices and
look on the combinatorial heart of the observed formulas. In Section 7, we will
return to the more general situation involving multiplicative functions which
depend also on random matrices or more generally elements from an algebra.

DEFINITION 5.1.

(1) We denote by PS the set of partitioned permutations on an arbitrary
number of elements, i.e.,

PS = PS(n).

neN

DOCUMENTA MATHEMATICA 12 (2007) 1-70



30 CoLLINS, MINGO, SNIADY, SPEICHER

(2) For two functions

frg:PS—C
we define their convolution
fxg:PS—C
by
(fx9)U,7) = > fV,m) gV, 0)

(V,7),(W,0)ePS(n)
V,m)-(W,o)=U,~)

for any (U,v) € PS(n).

DEFINITION 5.2. A function f : PS — C is called multiplicative if f(1,,)
depends only on the conjugacy class of m and we have

fw,m) = [ fav,alv).
vey

Our main interest will be in multiplicative functions. It is easy to see that the
convolution of two multiplicative functions is again multiplicative. It is clear
that a multiplicative function is determined by the values of f(1,,7) for all
neNandall m e S,.

An important example of a multiplicative function is the d-function presented
below.

NOTATION 5.3. The é-function on PS is the multiplicative function determined

by
1 ifn=1
§1p,my =4 "0
0 otherwise.

Thus for (U, ) € PS(n)
S, ) = {1 if (U, 7) = (0n,(1)(2)...(n)) for some n,

0 otherwise.

PROPOSITION 5.4. The convolution of multiplicative functions on PS is com-
mutative and § is the unit element.

Proof. 1t is clear that ¢ is the unit element. For commutativity, we note that
for multiplicative functions we have

f(V,w) = f(va’]ril)a
and thus
(g* U = (gx HUAT) = > gV, m)fW,0).

(V,®),(W,c)ePS(n)
(V,m)-(W,o)=U,y—1)

Since the condition (V,7) - (W, o) = (U, 1) is equivalent to the condition
W,o=1) - (V,771) = (U,~) we can continue with

(g* NU,y) = > FOV, 0™V, m ) = (f * 9) U, 7).

(V,m),(W,c)eEPS(n)
W,o=1).(V,m=1)=U,~)
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O

5.2. FACTORIZATIONS. Let us now try to characterize the non-trivial factor-
izations (U,v) = (V, ) - (W, o) appearing in the definition of our convolution.
Let us first observe some simple general inequalities.

LEMMA 5.5.

(1) For permutations w,c € S(n) we have

|7| + |o| + |7ro| > 2|7 V a.
(2) For partitions Vo < Vi and Wa < W, we have
Wi+ V1| + [Va VIWa| > (Vi V W]+ [(Wa| + Vs
and
(Vi VIWa| + Vo VW] > V1 VWL + [Va V Wa.
Proof. (1) By the triangle inequality for partitioned permutations we have
(0 V 0o, 70)| < |(Ox, m)| + (00, o)l
ie.,
(37) 2|7 Vol —|mo| < |w| + o]
(2) Consider first the special case Wi = W, = W. Then we clearly have
HWVo VW) — #WV1 VW) < #Vo — #V4,
which leads to
Vi VW] = Vo VW < [ Vi| = Vsl

From this the general case follows by

(Vi VWi = Va2V Wa| = Vi VW] = V1V Wa| + V1 VW] — [Va VWS

< Wil = We| + Vi = [Vl
The second inequality follows from this as follows:
Vi VWi — Vi VW = V1V (Va VW) — V1V (Va2 VW)
< V2 VWL = Vo V W

THEOREM 5.6. For (V,m),(W, o) € PS(n) the equation
V,m)-W,0) =(VVW,r0)
1s equivalent to the conjunction of the following four conditions:
Iw| + lo| + |wo| = 2|m v a],
V|+rVao|=|r|+VVoal,
W]+ |nVa|l=|o|+ |V W,
VVo|+|tVW|=|VVW|+|rVal
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Proof. Adding the four inequalities given by Lemma 5.5
|| + |o| + |7o| > 2|7V o,
21V| + 2|7 Vo| > 2|x| 4+ 2|V Vo,
20W| 4+ 2| V o| > 2|o| + 2|7 VWV,
2]V Va|+2imr VW] >2)VVW|+ 27V o]
gives
2\V| = || + 2\W| — |o| > 2|V VW] — |ro],
ie.,
[V, m)|+ (W, 0)] 2 [(VV W, 70).
Since (V,7) - (W, o) = (V VW, o) means that we require equality in the last

inequality, this is equivalent to having equality in all the four inequalities. [J

The conditions describing our factorizations have a quite geometrical meaning.
Let us elaborate on this in the following.
DEFINITION 5.7. Let v € S(n) be a fixed permutation.
(1) A permutation m € S(n) is called y-planar if
ml+ 7=+ = 2lm v ).
(2) A partitioned permutation (V,7) € PS(n) is called y-minimal if
VVAl=Irval =V I|r|.
Remark 5.8. i) It is easy to check (for example, by calculating the Euler char-
acteristic) that y-planarity of 7 corresponds indeed to a planar diagram, i.e.
one can draw a planar graph representing permutations v and 7 without any
crossings. The most important cases are when v consists of a single cycle
[Bia97] and when ~y consists of two cycles [MNO4].
i1) The notion of y-minimality of (V,7) means that V connects only blocks of
7 which are not already connected by ~.
i) If (V, ) satisfies both (1) and (2) of Definition 5.7 then (V,7)(0,7 1v) =
(1,7), by Theorem 5.6.

COROLLARY 5.9. Assume that we have the equation
U,y)=W,m)-W,0).

Then 7 and o must be y-planar and (V, ) and OV, o) must be v-minimal.

5.3. FACTORIZATIONS OF DISC AND TUNNEL PERMUTATIONS.

NotAaTION 5.10. i ) We call (V, 1) € PS,, a disc permutation if V = O; the
latter is equivalent to the condition V| = |o|. For m € S, by (0,7) we will
always mean the disc permutation

(0,7) := (0, m) € PS(n).

it) We call (V, ) € PS,, a tunnel permutation if |V| = |r|+ 1. This means that
V is obtained from 7 by joining a pair of cycles; i.e. one block of ¥V contains
exactly two cycles of 7 and all other blocks contain only one cycle of .
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A motivation for those names comes from the identification between partitioned
permutations and so-called surfaced permutations; see the Appendix for more
information on this.

Our goal is now to understand more explicitly the factorizations of disc and
tunnel permutations. (It will turn out that those are the relevant ones for
first and second order freeness). For this, note that we can rewrite the crucial
condition for our product of partitioned permutations,

2|V| = |n| +2]W| = |o] =2[VVW| — |na],
in the form
(VI =1x[) + (W] =la]) + (VI+ W] = [V VW) = ([VV W] = |ra]).

Since all terms in brackets are non-negative integers this formula can be used
to obtain explicit solutions to our factorization problem for small values of
the right hand side. Essentially, this tells us that factorizations of a disc per-
mutation can only be of the form disc x disc; and factorizations of a tunnel
permutation can only be of the form disc x disc, disc X tunnel, and tunnel x disc.
Of course, one can generalize the following arguments to higher order type per-
mutations, however, the number of possibilities grows quite quickly.
PRrROPOSITION 5.11.

(1) The solutions to the equation

(171;'7%) = (O,Vn) = (Vaﬂ-) ) (W,U)

are exactly of the form

(1n,¥n) = (0,7) - (Oaﬁ_lf)’n)a
for some m € NC(n).
(2) The solutions to the equation
(1m+n7’7m,n) = (V,?T) : (Wa U)
are exactly of the following three forms:
(a)
(Lmtn, Ymn) = (0,7) - (Ovﬂ_I’Ym,n)a
where m € Syo(m,n);
(b)
(1m+n7’7m,n) = (0, 77) ) (W, 77_17m,n)7

where m € NC(m)x NC(n), [W| = |7 Y ym.n|+1, and W connects
a cycle of 7™y 5 in NC(m) with a cycle in NC(n);

(1m+na’7m,n) = (V,?T) : (07W717m,n);
where m € NC(m)x NC(n), |V| = |r|+1, and |W| = |7~ v 0| +
1, and V connects a cycle of m in NC(m) with a cycle in NC(n).
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Proof. (1) The correspondence between non-crossing partitions and permuta-
tions was studied in detail by Biane [Bia97]. In this case we have

(VI =Ixl) + (Wl = lol) + (VI + W] = [V VW) = [1n] = |7a| = 0.

Since all three terms in brackets are greater or equal to zero, all of them must
vanish, i.e.,

V| = |nl, thus V=10,
[W| = |o], thus W =0,
and
7| +lo| = VI+ W[ =YV W[= ]| =n-1
(2) Now we have
(VI=Ixl) + (Wl =lal) + (VI + W] = [V VW) = (V VW] = |ra]) =1,

which means that two of the terms on the left-hand side must be equal to
0, and the other term must be equal to 1. Thus we have the following three
possibilities.

(a)

V| =|~|, thus V=0,
(W] =|a], thus W=0,
and
7|+ o] = |VI+ W] =|VVW|+1=m+n.
Note that

aNVo=VVW=1,4in,

and thus 7 connects the two cycles of +,, . This means that 7 is a
non-crossing (m, n)-permutation.

V| = |x|, thus V =0,

W =lo| +1,
and
Vi+ W= YVVW| =m+n-—1.

This implies

7| 4+ [Ymnm = m+n — 2,

which means that = must be a disconnected non-crossing (m,n)-
annular permutation, i.e.,

T =71 X Ty with m € NC(m),ma € NC(n).
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V[ =[x +1,
(W] = |o| +1,, thus W =0,
and
Vi+Wl=VVW| =m+n-—1.
This implies
|| + |’Ym,n77_1| =m+n—2,

which means that 7 must be a disconnected non-crossing (m,n)-
annular permutation, i.e.,

T =1 X T with m € NC(m),m € NC(n).
]

EXAMPLE 5.12. We can now use the previous description of factorizations of
disc and tunnel permutations to write down explicit first and second order
formulas for our convolution of multiplicative functions.

1) In the first order case we have

(38) (f * g)(lna’yn) - (f * g)(ovfyn) = Z f(oaﬁ)g(oaﬁilf)’n)'

TeNC(n)

This equation is exactly the formula for the convolution of multiplicative func-
tions on non-crossing partitions, which is the cornerstone of the combinatorial
description of first order freeness [NSp97]. (Note that 717, is in this case the
Kreweras complement of 7.)

2) In the second order case we have

(f *g)(1m+n77m,n) = Z f(Oaﬂ)g(Oa7T717m,n)

rTe€Snc(m,n)

+ Z (f(oa'Ym,nﬂ'il)g(Vvﬂ') + f(vaﬂ')g(oaﬂ'ilf)/m,n))-

TENC(m)x NC(n)
IV]=[m|+1

We should expect that this formula is the combinatorial key for the understand-
ing of second order freeness. However, in this form it does not match exactly the

formulas appearing in [MSSO?]. Let us, however, for a multiplicative function
f put, for 7 € NC(n),

(39) film) = f(la,m) (v € NC(n))

and, for m € NC(m) and m2 € NC(n),

(40) f2(7T1,7T2) = Z F(V,m X ma).
M,

VV(m1X72)=Lm4n

Note that in the definition of fg the sum is running over all V which connect
exactly one cycle of m; with one cycle of 5.
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Then, with A = f % g, we have
B2(1m7 1n) = Z fl(ﬂ-)gl (7771’7m,n)

Te€SNnc(m,n)

+ Z (f2(7T177T2)§1(7T1_1 X 772_1’7m.n)
m1,m2ENC(m)x NC(n)

+ fi(m X 72)G2 (77 Y, T3 tm)) -

In this form we recover exactly the structure of the formula (10) from [MSS07],
which describes second order freeness. The descriptions in terms of f and in
terms of fo are equivalent. Whereas f is multiplicative, fo satisfies a kind
of cocycle property. From our present perspective the description of second
(and higher) order freeness in terms of multiplicative functions seems more
natural. In any case, we see that our convolution of multiplicative functions on
partitioned permutations is a generalization of the structure underlying first
and second order freeness.

5.4. ZETA AND MOBIUS FUNCTION. In the definition of our convolution we are
running over factorizations of (U, ) into products (V,7) - (W, o). In the first
order case the second factor is determined if the first factor is given. In the
general case, however, we do not have such a uniqueness of the decomposition;
if we fix (V, w) there might be different choices for (W, o). For example, this
situation was considered in Proposition 5.11 in the case (2b). However, in the
case when (W, 0) is a disc permutation, it must be of the form (0,-1., 7 1y)
and is thus uniquely determined. Note that factorizations of such a special
form appear in our formula (35) and thus deserve special attention.

NoTATION 5.13. Let (U,~) € PS be a fixed partitioned permutation. We say
that (V,m) € PS is (U, y)-non-crossing if

(Vvﬁ) : (Ow_lwﬂilf}/) = (Z/[,"}/)
The set of (U, ~)—non-crossing partitioned permutations will be denoted by
PSnc(U,v), see Remark 5.8.

To justify this notation we point out that (1,,,7,)-non-crossing partitioned
permutations can be identified with non-crossing permutations; to be precise

PSNCGm’Yn) = {(Omﬂ-) | S NC(n)}

Furthermore,

PSNnc(Lman; Ymn) = {(0x, ) | T € Syo(m,n) U
U{(V,m1 X m3) | m1 € NC(m),ma € NC(n),V >7,|V| = 7| +1
and )V connects one cycle of m1 to a cycle of ma}.

We can now also use a special multiplicative function, which we will call Zeta-
function (, to single out such factorizations. It will be useful to be able to invert
formula (35), which means we need also the inverse of ¢ under our convolution.
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This inverse, called the Mdobius-function pu, is a key object in the theory and
contains a lot of important information.
NOTATION 5.14.

(1) The Zeta-function ¢ is the multiplicative function on PS which is de-
termined by

1 if (1,,) is a disc permutation, i.e., if 1, = Oy,
C(lna ) = .
0 otherwise.
(2) The Mdbius function p is the inverse of ¢ under convolution, i.e., it is
determined by
(xp=0=px*(
Note that in general
1, ify=0
V,’/T _ ) ™

¢ ) {O, itV > 0.

It is also quite easy to see that the Mobius function exists and is uniquely
determined as the inverse of the Zeta-function — the determining equations can
be solved recursively. Indeed letting p1n, = p(1n, ¥n) and pmn = (1mtn, Ym,n)
we have

0=p1,1+ p2
0=p12+2p1p01,1 + 203 + 2p1 12
0= poo +4pipio g +4pdpna + g + Sy puz + 205 + 4ud o
0= 1,3 + 3papin + 3popa,1 + 3pa + 6 ps + 3u3 + 3ui e
0= pio3 + 201 fi1,3 + 31 fiz,o + Spiafir o + i pun o + 6 propn 1 + 645 111
+ 65 + 1814 + 120013 + 1832 g + 1201 3 + 63 o
0= 3,3+ 6p1pt2,3 + 6papr,s + 6pip1s + Iuipe 2 + 18u1 oy 2 + 181311 2
+ 9uspn + 1803 papa 1 + Opi i1 + e + 364 a5 + 2Tpapis + 543 1
+ Op3 + T2 proprs + 36765 s + 12413 + 3673 113 + 9y o
This shows how, knowing the first order M6bius function p.,, the second order

Mobius function i, ,, can be calculated recursively.
One should observe that with these notations we have

f*QUmn= > [
V,m)ePSNnc(U,y)
In the following we will use the notation
——
p-times
It is clear, by definition, that {*P counts factorizations into the product of p
disc permutations, thus we have the following result.

PROPOSITION 5.15. For (U,~) € PS and p > 1 we have
U, y) = #(m, 7710) | (Us7y) = (0,m1) - (0, 77;0)}"
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Of special interest for us is the case p = 2.

PROPOSITION 5.16. We have for allr > 1 and n(1),...,n(r) € N, n:=n(1)+
-+ n(r) that

(C*C)( ny Tn(1),. n(r)) = #SNC(n(l)v""n(T))'

Proof. As noted above, (¢ * ¢)(1n,Vn(1),-- ,n(r)) counts the number of factor-
izations of (1,,Yn(1),....n(r)) into a product of two disc permutations, i.e., the
number of factorizations of the form

(1n77n(1),...,n(7')) = (077() : (Oaﬁilf)’n(l),...,n('r'))a

with

ml+lm =yl =n—r
and 7w Vv = 1,,. But this describes exactly connected (n(1),...,n(r))-annular
permutations m € Syc(n(l),...,n(r)). O

NoTATION 5.17. We put
Cn(1),...,n(r) * #SNC( ( ) .,7’7/(7")).

Note in particular that ¢, counts the number of non-crossing partitions of n
elements and thus is the Catalan number

1 2n
Cp =
" pn4+1\n )’

and that ¢, ,, counts the number of non-crossing (m, n)-annular permutations,

and thus [MN04]
2mn (Qm — 1) (Qn — 1)
Cmn = .
m-+mn m n

More generally, an explicit formula for the number of factorizations into p
factors was derived by Bousquet-Mélou and Schaeffer [BMS00], namely one
has (with n:=n(1) +--- 4+ n(r))

C*”(ln,%<1>,~mn<r>)=p[([(I;n;iw T [ ( 0 1)]

and thus in particular

Cn(1),...,n(r) = TL —r + 2 l ) .

For our purposes, however, the following recursive formula for the number of
factorizations is more interesting.

In the next theorem we will show how to reduce the problem of counting the
number of disc factorizations on [n] to counting the factorizations on [n — 1].
This will enable of to obtain a recursive formula for ¢, .. n,
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NOTATION 5.18. Let (U, ) be a partitioned permutation of [n] with v(1) # 1.
Let 4y be the restriction of (1,k)vy(1,7 1(k)) to the invariant subset [2,n] :=
{2,3,4,...,n}. Then

v if 1 and k are in different cycles of -,

| = lv| =1 ifk=1or~(1)
el = |v| =2 if 1 and k are in the same cycle of 7,

but k # 1 and k # (1),

Let U = Ul be the restriction of U to [2,n], i.e.if the blocks of U are
Ui,..., U, and 1 € Uy, then the blocks of U are Ui,Us, ..., U, where U; =
Ui N [2,n]. In the theorem below we sum over a set of partitions Py of [2,n]
described as follows.
For k = 1, v(1) or k not in the y-orbit of 1, Py, = {U } i.e. Py consists of the
single partition .
For k in the y-orbit of 1 but k # 1, y(1), Py = {U | % < U, [U| = |U| — 2, and
U=1UV (k,v (k))}. In words this means U is split into two blocks:
o the first containing the cycle of 4) containing v~!(k) and some (possibly
none) of the other cycles of v contained in U;
o the second containing the cycle of 4j containing k& and the remaining (pos-
sibly none) cycles of v contained in U;.
More explicitly, in the case k is in the y-orbit of 1 but k # 1, 7( ), let us write
~ as as a product of cycles dj - - - ds where d; = (1,7v(1) v4(1)) is the cycle
that contains 1. Let dj = (7(1),72(1),...,7’1(16)) and d” = (k,...,7y"(1)).
Then 4, = djd{ds---ds. Py consists of all partitions U of [Q,n] such that
U= {U],U{,Us,...,U.} where Uj UU}J = Uy, U NUJ =0, U] contains dj,
Uy’ contains dY, and each cycle of v that was in Uy is now in either Uy or U7,
ie. 4 <U and U] = [U| — 2.

THEOREM 5.19.

(41) Z > ¢ (U7

k=1ijcp,

Proof. We must show that for each factorization (0, )-(0,0) of (U, ) there are
k:=m(1),U € Py, and permutations of [2, n], # and & such that (0,7)-(0,5) =
(Z/A{ , 7). Conversely we must show that given k, U € Py and a factorization
(0,#) - (0,6) of (U,4x) there are = and o such that (0,7) - (0,0) = (U,~)
and 7(1) = k. Moreover we must show that these two maps are inverses of
each other. The relation between m, o and 7, & is given by & = (1, k)72 1,
6 = o(1,77'(k))|j2,n,)- So on the level of permutations we have a bijection.
The main work of the proof is to show that starting with 7 and ¢ we have
U:=#V6 e Py and 2U| — |5x| = |#| + |6; and then conversely starting with
U € Py and a factorization (0,7) - (0,6) of (U, 4x) then 2| — |y| = |x| + |o]
and Vo =U.
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Note that we have for all k

-1 kA1
7| = _
7] k=1

o] k=~(1)
It is necessary to break the proof into four cases: k is not in the «-orbit of 1;
k is in the y-orbit of 1 but k # 1,v(1); k = 1; and k = ~(1).
Suppose we have a factorization
(Z/f,"}/) - (Oa W) ’ (07 U)a
ie,vy=mo, U =7V o, and

2U| = |yl = Ir[ + o]

|&|{|a|—1 k#A(1)

with k := 7(1) not in the y-orbit of 1. Then|y;| = || and Py contains only the
partition of [2,n] which results from U by removing 1, i.e. U =U. Then we
have U| = [U| — 1. Hence |7| + 6| = 7| +|o] =2 = 2JU| — 7| =2 = [U] — |7| =
| = - R

Also 077|[27n] = 07 and O’y|[2,n] < 04,. Thus U = (mV 'y)|[2,n] < 7V Ag. On the
other hand the difference between 0., |2 ,,; and 05, is that the blocks containing
1 and k have been joined. However these points were already connected by 7.
Thus 7V A < LA{, and so U = # V &, and thus

Conversely, given a factorization (0,%) - (0,8) of (U, 4x), let m = (1,k)7 and
o =06(1,71(k)). Then m V o = U because 1 has been connected to the block
of U containing k. Also #(7) = #(#) and # (o) = #(5); thus |x| = |#| — 1 and
|o| =|6| — 1, and so |«| + |o| = 2|U| — |y|. This establishes the bijection when
k is not in the y-orbit of 1.

Let us now consider the case that 1 and k are in the same cycle of v, but
k # 1,~v(1). Again suppose that (0,7) - (0,0) is a factorization of (U,~y) with
7m(1) = k. In this case we have that |9x| = |y] — 2 and so by the triangle
inequality, Lemma 4.7

2lrv ol —|y|+2=2|7Va|— |5
= (7 V&,75)]
< (0, %)+ 1(0,5)]
= |7+ 5]
= [+ o] -2
=2U| - 7] -2,
and thus
|7Vl <|U|l-2.
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On the other hand, let us compare
TNVG=71VH with U=mVr.

Note that all our changes of the permutations affected only what happens on
the first cycle of «. Since the transition from 7 to 4 consists in removing the
point 1 and splitting the first cycle of v into two cycles, we can lose at most
one block by going over from 7V 4 to 7wV . Thus

TV o= (n—1) = #(FVE) > (n—1)— (FU+1) = U] -2,
so that we necessarily have the equality
|7 Vol =|Ul-2.

Thus i := # V6 € Py, and 2|7 V 6| — |5x| = |#| + |6]. Hence (0,7) - (0,5) is a
factorization of (U, 4y).

Conversely let us suppose that & is in the y-orbit of 1 but k& # 1 or (1) and
U € Py and (0,7) - (0,6) is a factorization of (if,4). We must show that
7V o =U and that |7| + |o| = 2|U| — |7|. 1 and k are in the same orbit of
7 and 1 and vy~ (k) are in the same orbit of o. So the blocks of u containing
d; and dy are joined in m V 0. Thus 7 Vo = U. Also [U| = [U]| — 2, so
|+ lo| = |7+ o] +2 = 2U| — |9 + 2 = [U] — 9] — 2 = 2[U| — |y|. Thus
(0,7) - (0,0) is a factorization of (U,~). This establishes the bijection in the
case k is in the y-orbit of 1 but k # 1 or ~(1).

Next suppose that k¥ = 1 and (0,7) - (0,0) is a factorization of (U,~) with
7(1) = 1. Then |7[+]6] = |7[+]o|—1 = 2|U|—|y|-1 = 2|U|—[y|+1 = 2U|— |-
Let Uy be the block of U containing 1 and U; = Uy N[2,n]. We must show that
U, is a block of # V 4. Since 7 Vv = U we know that if d; and d; are cycles
of 7 contained in U; then 7 must connect them. Since 7|z = 7|z, we see
that % connects the corresponding cycles of 45 (which are unchanged except
for the cycle containing 1). Similarly if f; and fy are cycles of 7 contained in
U; and neither is a singleton then they are connected by v and thus by 4.
Thus (0,7) - (0,6) is a factorization of (4, 4).

Conversely suppose that k = 1, Ue Py, and (0,7) - (0,5) is a factorization of
(U,Ax). We must show that (1) = 1 and (0,7) - (0,0) is a factorization of
(U,~). Since #V4, = U and ~ connects 1 to y(1) € Uy, we have that 7V~ = U.
Also [r| + |o| = |#] +[6] + 1 = 20U| — |9 + 1 = 2JU| — 51| — 1 = 2U| — |7].
Thus (0,7) - (0,0) is a factorization of (U,v). This completes the case when
k = 1. The proof in the case k = (1) is exactly the same except that the roles
of m and o are reversed. U

Let us take a closer look at the meaning of Theorem 5.19 for the case (U, ) =
(1n, Yn(1),...,n(r))- To reduce the depth of subscripts we shall write c(ny, ..., n;)

for ¢u(1y,...n(r)-
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ProprosIiTION 5.20. We have for all r,nq,...,n, € N the recursion

”
(42) c(ny,...,n.) = an ce(ng+np—1ng, .o 1, Mg, o Ny)
1=2

ni
+Z Z clk—1,n4,...,n5,)c(n — k,nj,,...,nj,)
k=1 A={i1,...,is }
B={j1,..-.je}

where the sum is over all pairs of subsets A, B C [2,r] such that ANB =0 and
AU B = [2,r] including the possibility that either A or B could be empty. We

have for all m,n > 1
Cpn = Z Ck—1Cn—k,

1<k<n
and
(43) Cm,n = Z (Ckflcm,nfk + Cm,kflcnfk) + MmcCm4n—1,
1<k<n
where we use the convention that co = 1 but c¢(n1,...,n,.) =0 if r > 1 and for

some i, n; = 0.

Proof. Let n = ny + -+ + n,. By Proposition 5.16 ¢(ny,...,n,) = C*2(1n,
Ynq....n,)- S0 we must give the correspondence between the terms on the right
hand side of (41) and the right hand side of (42). In this case i = 1,, and U =
1p—1 (in the notation of 5.18). Thus Py = {1,_1}. Also for ny +---+mn;_1 <

2 ~
E<ni+---+n;, " (In—1,9%) =c(ni+n—1,n9,...,n-1,041,...,n,). Thus
n n
2~ N 2 N
) D> > U= D (L1 dr)
k:nlJrlZ:{\e’Pk k=ni+1
r nyetn

Z Z c(ny +nyp—1,n9,...,n—1,N041, -, M)

=2 k=ni+-+n;_1+1
T

= E np-c(ny+n;— 1Mo,y Ni—1, Mgy .o ey Nye)
1=2

For k < ny, A = did/ds - - - d,, with d} a cycle of length k —1 and df a cycle of
length n; — k. Py is the set of all partitions of the cycles of 4y, into two blocks
such that d} and df are in different blocks. Hence

2.5 A
Z C* (u”yk): Z C(nl_kanila"'anis)c(k_1,nj1,...,’njt)
UePy, A={i1,....i5}
B:{jlf‘“vjt}

where the sum is over all pairs of subsets A, B C [2,r] such that AN B = {)
and AU B = [2,r] including the possibility that either A or B could be empty.
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Thus
ny
x2 77 2
45) >0 ¢ U
k=1ijep,
ny
= Z c(ni —k,niy s ooyngy ek —1,ng,, ... n )
k=1 A={i1,...,is}
B={j1,....Jt}
Assembling equations (44) and (45) gives the result. O

In [OZ84], O’Brien and Zuber used a similar formula of this kind in order to
compute the asymptotics of, so called, external field matrix integral. See also
[BMS00] and Theorem 5.22.

Clearly, our notions around the convolution of functions on PS are analogous
to (and motivated by) the convolution of functions on posets. Even though we
are not able to put the above theory into the framework of posets, it seems that
this analogy goes quite far. The following description of the Mobius functions
is an instance of this—its poset analogue is due to Hall (see [Rot64]). It is
essentially the simple observation that one can expand the Mobius function in
terms of a geometric series as

p=Ct= (04 (C-0) =D (=D - o,

k=0
PROPOSITION 5.21. We have for any (U,~y) € PS that

k=1 U,7)=(0,71)---(0,m)
TiFe Vi

Proof. As noted above this is just the geometric series for

(5+(C—d) .
(Note that we are working for this in the algebra of functions on PS with the
pointwise sum and the convolution as sum and product—we are not bothering
about multiplicativity.) The only thing to check is that the sum is finite, and

this is the case because the number of factors k is bounded by |(U,~)|, since
[(0,7)] > 1 for any 7 # e.

This description of the Md6bius function allows us now to derive a recursive
formula for p.

THEOREM 5.22. Consider (U,v) € PS such that v(1) # 1. Then we have

(0,(1,k))-(V,m)=(U,v)
k#1

where the sum runs over all decompositions of (U,~y) into a product of a disc
transposition (0, (1,k)) (with k > 2) and a (V,7) € PS.
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The proof of this theorem will rely on the following lemma.

LEMMA 5.23. Let (U,~) € PS such that v(1) # 1. For p € N, we denote by S,
the set consisting of all tuples (m1,...,mp) of permutations such that m; # e for
alli=1,...,p and

(0777-1) e (077Tp) = (ua’Y)
We consider now the two sums

(47) Spe=3 > (=1

p=1(m1,...,mp)ESp

and

(48) =Y Yy

p=1 (71,es Tp)ESP
w1 = (1, k) for k # 1

where the second sum Sy is over all tuples (m1,...,mp) as for the first sum S,
but now with the additional property that m is a transposition interchanging
the element 1 with some other element.

Then the two sums (47) and (48) are equal,

S1=5,.

Proof. Let m = (m1,...,mp) € Sp. Let 1 < ¢ < p denote the smallest index for
which 1 is not a fixed point of 74; note that such a ¢ necessarily exists since
~(1) # 1. We shall group all factorizations into three classes: 1a), 1b) and 2).
Class 1) consists of factorizations for which 7, is a transposition interchanging
1 with some other element. The subclass 1a) consists of factorizations for which
g = 1 and subclass 1b) of those for which ¢ > 2. Class 2) consists of all other
factorizations.

Let IT = (m1,...,mp) be a factorization from the class 1b). We define

= (r,.. .,’/Téfl) = (M1, .., Tq—2, Tg—1Tq, Tgt1,- - -, Tp)-

In the following we shall prove that f : IT — II’ is a bijection between factor-
izations of class 1b) and factorizations of class 2).

Firstly, we prove that II' € S, and is of class 2). Clearly, 7, ; = my_17, is a
permutation which does not fix 1, it is not a transposition interchanging 1 with
some other element, and we have

(OaWQ*l) : (Oaﬁq) - (Oawé—l)'

In order to show that f is a bijection we shall describe its inverse. If II' =

(71 Tp_1) € Sp and is of class 2), we define 1 < ¢ < p —1 to be the
smallest number for which 7r(’171 does not fix 1. There is a unique decomposition
w;_l = my_1mq such that 1 is a fixed point of m,_; and 7, is a transposition

interchanging 1 with some other element. Thus |my—1| + |mg| = [m;_4|. The
assumption that the factorization II’ is of class 2) implies that m4_; # e. For
1<i<g—2wesetm; =, and for ¢+ 1 < i <p we set m; = 7;_;. In this
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way we defined II = (mq,..., 7). Now it is easy to check that g : II' — Il is a
left and right inverse of f.

Since the factorization IT and the corresponding IT" contribute to (47) with the
opposite signs, the contribution of all factorizations of class 1b) cancels with
the contribution of factorizations of class 2). O

Proof of 5.22. In the proof we will consider all factorizations (0,71) -
(0,m2)---(0,7p) = (U,7) with the requirement that m; # e for all 7, i.e.
(m1,...,mp) € Sp, as in the proof of Lemma 5.23. Sometimes we will require
in addition that m = (1,k) with k& # 1. To simplify the notation we will not
explicitly state every time that m; # e. Since y(1) # 1 we have 6(U,v) = 0.
When + is a transposition the right hand side of equation (46) is —1; so we
can assume that « is not a transposition. So by Proposition 5.21 we have

7R I S SN ) -t N N G

p=1(0,m1)+(0,7p) P=1(0,(1,k))-+(0,7p)
=(U7) =(U7)

(o)

>, X >,

=2 ELWm O (0,
0,08 (V=) =(V,m)

(o)
- > X 2
(0,(1,k)),(V,m)  p=2(0,m2)-+(0,7p)
(0,(17’9))'(\},“):(“,7) :(V,ﬂ')

S VD S D

(0,(1,k)),(V,m)  p=2(0,m2)-+(0,7p)
(0,(17’9))'(\},“):(“,7) :(V,ﬂ')

= = Z ,L"(Vvﬁ)

(0,(1,k)),(V,m)
(0,(1,k))-(V,m)=(U )

O

One observes that the recursion formulas for the Mdbius function and for ¢*2
look very similar. However, there are some significant differences. The re-
cursion for ¢*? effectively expresses (*? for n points in terms of ¢*2 for n — 1
points. The recursion for the Mdobius function does not reduce the number of
points. Nevertheless, at least for first and second order one can match the two
recursions and connect the values of the Mdbius function with the values of the
function ¢*? (i.e., with the number of non-crossing partitions and non-crossing
annular permutations). In order to see this let us first specify the meaning of
Theorem 5.22 for first and second order. In first order we get

) == Y (ks 1) (Lo o),
1<k<n—1
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which shows that (—1)"u(1,41, Y1) and ¢*2(1,,,7,) satisfy the same recur-
sion (namely the one for the Catalan numbers). This is, of course, just the
well-known fact [Kre72, Spe94] that the Mobius function on non-crossing par-
titions is given by the signed and shifted Catalan numbers. In second order
our recursion reads

(71)N(]—m+na ’Y’mm) =m:- ,LL(].ern, 7m+n)

+ Z (N(1m+ka'Ym,k),u(ln—kv’yn—k) +N(1m+n—ka'Ym,n—k)ﬂ(lkv’)/k))a
1<k<n-—1

which we recognize — by taking into account the shifted relation between u
and (*? on the first level — as the recursion for (—1)™"(*2 (140, Ym.n). Let
us collect these explicit results about the Mobius function in the following
theorem.

THEOREM 5.24. We have for m,n € N that
(L, ) = ()" #NC(n—1) = (=1)" " ep

and

N(1m+n77m,n) = (71)m+n : #SNC(man) = (71)m+n *Cm,n-

For higher orders we were not able to match the values of p with those of (*2.

6. R-TRANSFORM FORMULAS

Let us consider the situation that two multiplicative functions f and h on PS
are related by h = f x (. We want to understand what this means for the
relations between the numbers sy, := f(1n,7,) and £mn = f(Lmtn, Ym,n) OL
one side and the numbers ay, := h(1,,v,) and o, n = h(Lm4n, Ym,n) on the
other side. In particular, we want to express this in terms of the generating
power series of these numbers,

Cz) =14 Z Knx", C(z,y) := Z EmnZ " y"
n>1 m,n>1

and
M(z) =1+ Z ", M(z,y) = Z Q™ Y".

n>1 m,n>1
(Note that the above summation corresponds to putting formally
f(lo,v) =1 —and  f(lo,70,0):=0

for a multiplicative f. Our notation is motivated by the fact that the most
important realization of the relation h = f * ¢ will be the situation where the
a’s are the correlation moments and the x’s the corresponding cumulants, thus
M is a moment series and C' is a cumulant series.) On the first order level we

have
Qp = Z f(OTra 77);

TeNC(n)
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which is the usual moment-cumulant formula of free probability theory, and it
is well-known [Spe94] that this is equivalent to

Our main goal now is to derive the analogue of this for the second order level.
There we have

= Y. f0m7)+ > FV,m1 X ).

r€Snc(m,n) w1 X7 ENC(m)X NC(n)
[VI=|m1 xma|+1

It turns out that the second term, the sum over disconnected partitions, is
quite easy to deal with. The first term, the sum over connected annular per-
mutations, looks much more involved, however, one can handle this also if one
realizes that one can reduce this first term to the second one. Namely, one
can sum over all connected annular permutations by first bundling all through-
cycles into one through-cycle and secondly decomposing this through-cycle into
sub-cycles all of which are through-cycles. In this way one can reduce the prob-
lem of dealing with all annular non-crossing permutations to the problem of
considering permutations with exactly one through-cycle and the problem of
considering permutations where all cycles are through-cycles. The first prob-
lem corresponds exactly to the above sum over disconnected partitions. So we
can write

> f0rm) = > Fv,m x m),

r€Snc(m,n) 71 X7 ENC(m)Xx NC(n)
[V]=|my xma|+1

where f is now the multiplicative function corresponding to

f(lna'Yn) = "%nv f(lm-l—nv’)/m,n) = Rm,n
with

Rn 1= Kn

and
R, = Z f(Or, 7).
meSYL (m,n)
Thus we can combine this to get finally

Am,n = Z (f(va ™ X 7T2) + f(va ™ X 7T2))

1 X7 ENC(m)X NC(n)
[V]=|m1 xma|+1

= Z g(V,m1 x ma),

T X7 ENC(m)X NC(n)
[VI=|m1 xma|+1

where g is the multiplicative function corresponding to
g(l'ru ’Yn) = Qp, g(1m+na 'Ym,n) = dm,n
with
On = Rp = K,
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and
Omon = Kmn + Km,n-

So we have to translate the relation between &, , and f and the relation
between o, , and g into relations between the corresponding formal power
series.

PROPOSITION 6.1. Let f be a multiplicative function on PS with

(L, vn) =: kn and Cz):=1+ Z Knx".

n>1
Put
Rm,n = Z f(OTHTr))

m€SYL (m,n)
where Sj‘(,”c(m,n) denotes the permutations in Syc(m,n) for which all cycles
are through-cycles. Consider the corresponding generating power series

é(l‘,y) = Z km,nxmyn

m,n>1

Then we have

0xdy T—y )

or equivalently

o) — —py((C@) —2C (@) (Cly) —yC'y) 1
Clo) = y( (zC(y) — yC(x))2 (z — y)2)

Proof. Note that we can parameterize an element 7 € Sj‘{}lc (m,n) in a bijective

way by specifying the number of cycles, the number of elements on each circle
for all cycles, the position of a fixed element (let’s say 1) in its cycle and the
first element on the other circle of this cycle. Let us denote the number of
cycles by r, the number of elements of the cycles on the first circle by i1, ..., 4,
and the number of elements of those cycles on the other circle by ji,...,j-.
Thus the [-th cycle contains i; + j; elements and makes the contribution x;, 4,
in the calculation of &,, ,. We normalize things so that the first cycle contains
the element 1. Fixing i1, ...,4%, and ji,...,j, we thus have i1 possibilities for
where 1 sits in the first cycle and n possibilities for the first element of this
cycle on the other circle. This means we have

’%m,n = § E ilnﬂiﬂr]'l © Ritgi

r>1 i1, ir=l 1., Jr=1
i1t tir=m ji 4t =n
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and thus

C’(g;’y) = Z Z Z il(jl + - 'jT)HilJr]j . HirJrjrmil A £L'i7'yj1 .. .y]}

r>1ig,ein > g1, >1

) L
S Y X (e )

P11 i > 1 1 >1
— 2 R STV b L 2,2 R S
- ya ( URi+51 T Y )( Rig+j2 T Y )( K+ T Y )
S A i j21 igr>1
Let us now use the notation
N - i
C(x,y) = E Kitj @'y’
4,521

Then we can continue with

r>1
0 /10 4 -
;xya—y(;%(C(m,y) ))
o 0 1. ,
= o e (2 7 Clan)’)

The assertions follow now by noting that
zC(y) —yC(x)
r—y
and by working out the partial derivatives. O

PROPOSITION 6.2. Let g be a multiplicative function on PS. Put
A, 1= g(1m+n;7m,n)
and denote its generating power series of second order by

H(I’,y) = Z &m,nxmyn

mn>1
Put
ap = (g% C)(1n, 1)
and

Qo 1= Z g(V,m)

(V7 xm2)
[VI=lm1 7o) +1

and denote the corresponding generating functions by

M(x):=1+ Z apa” and  M(x,y) = Z Q™ Y".

n>1 m,n>1
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Then we have the relation

M'(x) M'(y)

M(z,y) = H(eM(),yM(y)) - (1+2 e ) (1+y i ).
Proof. Let us do the summation in the definition of , ,, in the way that we
first fix the two cycles V1 € m; and Vo € mo which are connected by V and sum
over all possibilities for fixed Vi, V5. If V7 has k elements and V5 has [ elements
then this contributes the factor dy ;. Furthermore, m;\Vi decomposes into k
independent non-crossing partitions and the summations over them (for fixed
V1) gives the «; for the intervals between consecutive elements from V. (Of
course, we are counting here modulo m.) For the final summation over V; we
have to notice that there are two different possibilities: either a fixed number
(let’s say 1) is an element of V4 - in which case we can specify the situation
by prescribing the number & of elements of Vi and the differences i1, ...,
between consecutive elements in Vj - or 1 is not an element of Vi, — in which
case we need an extra factor i1, because we have now i different possibilities
how 1 can lie between two consecutive elements of V7. Since we have the same
situation for Vo we can thus write o, , in the form

Qmon = Z Z Z dk,lail O Oyttt Oy (1+’Ll —|—]1 +’L1]1>

EJd>1 1,0 >0 G1seesd1 >0
k+iq+-Fig=m l4+j1+---+i;=n

Translating this into generating power series gives the assertion. O

The combination of the previous two propositions, with
H(z,y) = C(z,y) + C(,y),
gives now our main result.

THEOREM 6.3. Let f and h be multiplicative functions on PS which are related
by
h=f=x*(.

Denote

Kin = f(1n,n)s Kmn = f(Lmtns Ym,n)
and

ap, = h(1n,vn), Amon = B(Lmtn, Ym.n)
and define the corresponding generating power series

Clx):=1+ Z Kna™, C(x,y) == Z Emnx " y"
n>1 m,n>1

and
M(z):=1+ Z anx”™, M(x,y) := Z A" yY".

n>1 m,n>1
Then we have as formal power series the first order relation

(49) C(zM(x)) = M(x)
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and for the second order

o M(a,y) = H(eM (), yM(y)) - < prm M(y)
where

or equivalently,

A(xM(z)) 45uM(y))

(52) M(x,y) = C(xM(z),yM(y)) -

M) — M(y)
ae (@M (2)) - 2 (yM(y)) 1
+o (B et~ o)

Proof. The formulation (50) and (51) follows directly from a combination
of Propositions 6.1 and 6.2. In order to reformulate this to (52) one uses
the equivalence of the two formulas in Proposition 6.1 and the fact that
C(xM(x)) = M(x) yields

M ()

i (@M (x))

1—2C'(zM(z)) =

O

If we go over from the moment generating series M to a kind of Cauchy trans-
form like quantity G, then these formulas take on a particularly nice form.

COROLLARY 6.4. Consider the same situation and notations as in Theorem
6.3. In terms of

1 1 1
= —M(1 = —M(1 1 = —
Gla) =2 M{1/2), Glay) = M(1/z,1/y), Rizy) = —C@y)
the Equation (52) can be written as

! ! 1 —_ 1
(53) G(z,y) =G (2)G (y){R(G(x)v G(y)) + (G(z) — G(y))? } (z — y)Q'

R(x,y) is the second order R-transform. Note that Voiculescu’s first order

R-transform R is defined by the relation C(z) = 1+ 2R (x), and equation (49)
says for this

1
—— +R(G(x)) =
G+ RIGE) =
i.e., that G(z) and K (z) := 2 4+ R(z) are inverses of each other under compo-
sition.

EXAMPLE 6.5. Let us apply our formulas to some examples.

1) If we put f to be the multiplicative function with ko = 1 and all other
kn and all Ky, , vanishing, then h = f * { counts the non-crossing pairings,
i.e., in this case M(z) is the generating function of the number of non-crossing
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pairings (on one circle) and M(x,y) is the generating function of the number
of non-crossing annular pairings (on two circles). Let us calculate it by using
the above theorem.
We have

C(z) =1+ 22, C(z,y) =0

and we know that M is the generating function of number of non-crossing
pairings on a circle. In this case

C(x,y) = wy,

and thus
2

0zxdy

H(z,y) = —ay log(1 —zy) = ( w

1—ay)?’
which yields the result

ds (@M (@) - 55 (M (y))
(1 - 2yM(z)M(y))*

Related formulas are known in the physical literature, see, e.g, [FMP78|,
[ATM90], [ACKM93] and also [BZ93], [KKP95].

2) If we put f = ¢ then h = { *{ counts the non-crossing permutations, i.e., in
this case M (z) is the generating function of the number of non-crossing permu-
tations (which is the same as non-crossing partition) on one circle and M (z,y)
is the generating function of the number of annular non-crossing permutations
(on two circles).

M(z,y) = zy

‘We have
1
Clw)=1—,  Cla,y)=0,
In this case
A 1l—z—y
C 1’5 = 75
Y= aa-y
and thus
02 Ty
H(z,y) = _xyc?:cay log(1 —ay) = m,
which yields
L (eM(z)) - L(yM
M(z.y) = oy iz (@M (2)) - 5-(yM(y))

(1—aM(z) —yM(y))*

3) Let us finally see whether we can extract the value of the Mobius function
from our formula. Since we have § = u * (, our formula with

M(z)=1+z, M(z,y) =0

should allow to solve for C(z,y) which is then the generating function for the
annular Mdobius function. Note that we already know M (x) in this case to be
the generating function of the disc M6bius function.
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If M(x,y) vanishes identically this implies that H(x,y) vanishes identically,
leading to the identity

0 2C(y) — yC(x)

C(z,y) = Y guay log(—= — ” )
:xy((c(x) —2C'(z)) (Cly) —yC'(y)) 1 )
(2C(y) —yC(z))? (x —y)?

7. HIGHER ORDER FREENESS AND CORRESPONDING CUMULANTS
7.1. ABSTRACT FRAMEWORK.

DEFINITION 7.1. A higher-order (non-commutative) probability space, or briefly
HOPS, (A, ¢) consists of a unital algebra A and a collection ¢ = (¢, )nen of
maps (n € N)
On i AX--x A—C,
—_———
n times

which are linear and tracial in each of its n arguments and which are symmetric
under exchange of its n arguments and which satisfy

p1(1) =1
and
on(l,ag,...,a,) =0
for all n > 2 and all as,...,a, € A.

Of course, we can include the usual (first order) non-commutative probability
space (A, 1) into this framework by putting all higher ¢,, equal to zero. In
the same way we recover a second order non-commutative probability space
(A, p1,p2) by putting ¢, = 0 for all n > 3.

DEFINITION 7.2. 1) We denote by PS(A) the set of partitioned permutations
decorated with elements from A, i.e.,

PS = (PS(n) x A").

neN

2) For a function
f:PSA) —C
V,m) x (a1,...,ap) — fOV,m)]a1, ..., an]

and a function

g:PS—C
we define their convolution

fxg:PS(A) —C
by
(fxg)U, a1, .., an] = Z fV,ma1,...,an] - gW,0)

V,m),(W,0)EPS(n)
(V,7)-(W,o)=(U,~)

DOCUMENTA MATHEMATICA 12 (2007) 1-70



54 CoLLINS, MINGO, S'NIADY7 SPEICHER

for all (U,~v) € PS(n) and all ay,...,a, € A.

DEFINITION 7.3. A function f : PS(A) — C is called multiplicative if we have
Voo = T FUsls) (@, an)s)

Bevy
and
f(1,, 0'717'(0')[(10(1), s bey] = f(Ln,m)a, .. ., an]
for all ay,...,a, € A and all m,0 € S(n).

Note that this extension of our formalism on multiplicative functions on PS and
their convolution from the last section is not changing the results from the last
section. The structure of all formulas remains the same; one just has to insert
the ai,...,a, as dummy variables at the right positions. Thus, in particular,
¢ is still the unit for this extended convolution and f = ¢ * ( is equivalent to
g = f * p for multiplicative f,g on PS(A). And again, the convolution of a
multiplicative function on PS(A) with a multiplicative function on PS gives a
multiplicative function on PS(A).

It is clear that a multiplicative function f on PS(.A) is uniquely determined by
the values of f(1n, Vn(1),....n(r)[01,- -, an] (Where we put n := n(1)+---+n(r))
for all r € N, all n(1),...,n(r) € Nand all ay,...,a, € A.

7.2. MOMENT AND CUMULANT FUNCTIONS. Let us now apply this formalism
to get moment and cumulant functions for higher order probability spaces. So
let a HOPS (A, ¢) be given. We will use the ¢,, to produce a multiplicative
“moment” function on PS(A), which we will also denote by . Namely, we
put

(p(ln, Tn(1),..., n(r))[ala s aan]
= @r(@1 - p1); - (1) eem(r—1)+1 " Gn)

and extend this by multiplicativity. (Note that we need the ¢,, to be tracial in
their arguments for this extension.)
Here is an example for our function ¢.

90({17 3, 4}{2}’7 (L 3)(2)(4))[@1, az, as, a4] = 902(a1a37 a4) TPl (a2)

DEFINITION 7.4. For a given HOPS (A, ¢) we define the corresponding (higher
order) free cumulants as a function on PS(A) by

K =@x*H,

or more explicitly

H(u77)[a1;-..’an] = Z (p(v,ﬂ-)[al,._.)an] ,U/(W,O‘),
(V,7),(W,0)ePS(n)
WV, m)-(W,e)=U,v)

for all n e N, (U,~) € PS(n), a1,...,a, € A.
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As we noted before the definition above is equivalent to the statement ¢ = k*(,
ie.,
@(Uﬁ)[ah---,an]Z Z /@(V,ﬂ')[al,...,an]
V,m)eEPSNnc(U,y)
for all (U,v)[a1,...,an] € PS(A).
Furthermore, as with ¢, & is also a multiplicative function on PS(A). Thus in
the same way as all (U, ) are determined by the knowledge of all

(p(ln, Tn(1),..., n(r))[ala s 7an]
= @r(a1 - Ap(1); - An() g (r—1) 41 " O (1)4rtn(r))

the free cumulants x(U, ) are determined by the values of

K(lfu ’Yn(l),m,n(r))[ala ceey an]
=1 KRn1),...,n(r) (ala s Au(1)y -3 ()4 An(r—1)+1s - - - 7an(1)+~~~+n(r))-
Remark 7.5. Note that whereas on the level of ¢ we also know (by definition)
that we can multiply elements along the cycles of 7 (and thus we do not need

a comma as separator for those elements along a cycle), this is not true for k.
Thus we have, e.g.,

©(13,(1,2)(3))[a1, az, az] = pa(araz; az) = p(1z, (1), (2))[a1az; as],

but no clear relation exists among

K(lg, (1, 2)(3))[@1, as, ag] = I€271(a1, ao; a3)
and
K(lg, (1), (2))[@1&2; a3] = ml,l[alag; ag].

Note also that since our convolution on PS coincides on the first level with
the usual convolution of multiplicative functions on non-crossing partitions,
the above definition of cumulants reduces on the first level to the usual free
cumulants.

7.3. HIGHER ORDER FREENESS. Equipped with the notion of cumulants we
can now define “freeness” by the requirement of vanishing of mixed cumulants.

DEFINITION 7.6. We say that a family (X;);e; of subsets of A is free (of all
orders) if we have the following vanishing of mixed cumulants: For all n > 2
and all ax € Xy (1 <k < n) such that i(p) # i(q) for some 1 < p,q < n we
have

K(Ly,m)[a1,...,an] =0
for all m € S(n).

EXAMPLE 7.7. Let us see that this definition includes the definition of
Voiculescu [VDN92] for (first order) freeness and the definition of Mingo and
Speicher [MS06] for second order freeness.

1) On the first level this follows from the fact that our cumulants reduce then
to the usual free cumulants and it is well-known that freeness is equivalent to
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the vanishing of mixed cumulants. One can see it directly as follows: Let us
consider ay € Xy with i(k) # i(k + 1) and ¢i(ax) = 0 for all k = 1,...,n.
Then we have

v1(a1---an) = e(Ln,W)la1, ..., an] = Z KO, m)[a1, ..., an].
TeNC(n)

However the vanishing of mixed moments means now that the only m which
contribute are those which do not connect elements from different sets. Fur-
thermore, the fact that all our variables are centered excludes singletons. But
then it is easy to see that there are no such 7 at all, so the sum is zero.

2) Now we have to consider two cyclically alternating and centered tuples
a1,--.,0m, and by,...,b,. Then we have

()02(0/1 e am;bl o bn) = 90(1m+na7m,n)[a1a DR 7amab17 .. 7bn]

= Z kW, m)[a1, .. Qm, b1, ..., by
(V,TF)G'PSNc(m,n)

Again, the vanishing of mixed moments requires that (V, ) connects only ele-
ments from the same set and the centeredness of the elements excludes single-
tons. It is then easy to see that, for n > 2, the only possibilities for such (V, )
arise for m = n and they have to be disc permutations (0, 7) which are pairings
(a1,b1+5) (a2, bays) -+ (an, bnts) for some s. The factors k(1a, (...))[ak, br+s] are
just @1 (agbays), so that one finally gets, for n > 2, the formula

n

902((11 cc Qg bl Tt bn) = 5mn Z 901((11b1+s) 1 (ananrs)-
k=1

For n = m =1 one gets with

wa2(ar;b1) = ka(ar,a2) + ki,1(a1;b1)

the conclusion that s (a1;b1) has to vanish if a; and by are from different sets.
Nothing is required if both are from the same set. We see that we get exactly
the defining properties for second order freeness from [MS06].

3) It would be nice to be able to reformulate in a similar way the definition of
higher order freeness in terms of the ¢ instead of the cumulants. However, the
situation with more than two circles is getting much more involved and we are
not aware of such a reformulation for third and higher order freeness.

As in the case of the first order freeness, one sees immediately that constants
are free from everything.

PROPOSITION 7.8. Let (A, ) be a HOPS. Then {1} is free of all orders from
every subset X C A.

Proof. We have to prove that

KL, V(1)) [1s G2, -y an] = 0,
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unless n = 1. We will do this by induction on n. The case n = 2 is clear
because

K(12, (12))[1, a2] = 1(1 - a2) — ¢1(1) - ¢1(az) = 0

and

k12, (1)(2))[1, az] = ¢2(15a2) = 0.
In general, one has

cp(]-na 7n(1),...,n(7‘))[17 az,..., an]
= Z k(V,m)[1, a2, ...,a,]
(V,m)ePSnc(n(l),....,n(r))
= /@(1",’)/”(1)"“7”(7“))[1, as, ... ,an]

+ Z k(V,m)[1,a2,...,a,)

[V <I(n Y1), n ()]
By induction hypothesis, in the later sum exactly terms of the form ({1} U
V, (1) U7) with
(V,7) € PSne(n(1) —1,n(2),...,n(r))
contribute. In the case n(1) > 1 the sum over those yields
O(Ln—1,Yn)=1,n(2),....n(r)[G2, - - - , Qn].
In this case, also
(p(lfu ’Yn(l),m,n(r))[L az,... 7an] = (P(ln_l, ’Yn(l)fl,n(2),m,n(7")[a27 SRR an]a
and thus &(1n, Yn),... n()[1, a2, . .., an] = 0. If, on the other side, n(1) = 1
(i.e., 1 is the only element on its circle), then we have to set
PSNc(O, n(2), ce ,n(r)) = (Z),
because then the first circle cannot be connected to the others if we ask 1 to
be a cycle of its own. But this means that in this case
K(lna ’Yn(l),...,n(r))[L az, ..., an] = (10(171) ’Yn(l),...,n(r))[L az, ..., an]

However, for n(1) =1 and n > 1 we have

()0(1n7 71,...,77,(7“))[17 0/27 ) an] = O
g

Note that our definition of freeness behaves clearly very nicely with respect to
decompositions of our sets. For example, we have that X}, X5, X3 are free if
and only if X} and X5 UAX;5 are free and X5 and X3 are free. Thus we can reduce
the investigation of freeness to the understanding of freeness for the case of two
sets. A characterization for this is given in the next theorem.

THEOREM 7.9. Let (A, ) be a higher order probability space and consider two
subsets of X1, Xo C A. Then the following are equivalent.

(1) The sets X1, Xo are free of all orders.
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(2) The sets Xy U {1}, Xy U {1} are free of all orders.
(3) We have

@(U, 7)[@11)1, . ,anbn]

= > (V. m)[a1, ... an] - @OV, )b, . .., by]
V,m)-(W,o)=U,7)

for all m € N, all (U,v) € PS(n) and all a,...,a, € X1 U {1},
bl,...,bnGXgU{l}.
(4) We have

(U, v)[arb1, ..., anby)

= > eV, m)[ai, ... an] - KOV, 0) by, ..., by
(V,m)-(W,0)=(U,)

for all m € N, all (U,v) € PS(n) and all ay,...,a, € X1 U {1},
bi,..., by € Xy U {1}
(5) We have

KU, ¥)[a1b1, ..., anby]

= Z kW, m)[a1, ... an] - kW, 0)[b1, ..., by)
V,m)-(W,o)=U,7)

for all m € N, all (U,v) € PS(n) and all a,...,a, € X1 U {1},
bi,... by € Xy U {1}

In order to prove this we would like to write (U, v)[a1b1, .. ., anby,] in the form
go(?],ﬁ)[al,bl, ...y p,by]. Let us introduce the following formalism for this.
Let (U,~) € PS(n) be a partitioned permutation of the numbers 1,2,3,...,n.
Double now this set of numbers by introducing a copy 1,2, 3,...,7 and inter-

leave the new and old numbers as follows:
1,1,2,2,3,3,...,n,n.
¥)

If we induce now (U,7v) on 1,2,...,n to (U,4) on 1,1,...,n,7 by putting

k) =k and  4(k) =~(k),

then this has exactly the desired property. The vanishing of mixed cumulants
means that in the factorizations of (4,4) in (V, ) times a disc permutation
we are only interested in (V,m) which have the property that each block of
V contains either only unbarred numbers or only barred numbers, i.e., (V, )

must be of the form (V, UV, 7, Ump) with
(Va,ma) € PS(1,...,n)  and Vo, m) € PS(1,..., 7).

Let us first observe some simple relations between the quantities on 1,...,n

and their relatives on 1,1,...,n,n.
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LEMMA 7.10. 1) We have

Fl=n+hl,  U=n+ul,
and thus
@A) = n+|U,7)|-
2) We have
|Te Umy| = |mal + |l Vo UWVb| = [Val| + Vbl
and thus

|(Va UV, e U 7rb)| = |(Vaa7ra)| + |(Vba7rb)|~
3) We have that (ma U mp)y maps unbarred to barred and barred to unbarred
elements and, for all k =1,...,n,

[(ma Um,)31% (k) = mmay(k),
thus
|(ma Um)Y| = n + [mpmay|
Proof. Only the third part is non-trivial. To see this observe

(7ra U '/Tb);}/(k) = ﬂa(V(k))
and thus
[(ma Um)A)% (k) = myma (v(K)),
which is our first equation, with the identification of 7, € S(1,...,1) with the
corresponding permutation in S(1,...,n). Since the mapping between barred
and unbarred elements is clear, this yields that (m, Ump)% and mpm,y have the
same number of orbits which gives the last equation. O

This lemma allows us to characterize the contributing factorizations in (Z;{ )
in terms of special factorizations of (U, 7).

PROPOSITION 7.11. The statement

(Va UV, ma Umy) € PSnc(U,#)
s equivalent to the statement
(Va; 7Ta) : (Vbaﬂb) S PSNC(Z/[a

where in the last product we identify (Vp,m) € PS(
sponding element in PS(1,...,n).

)
1,...,n) with the corre-

Proof. Note that (V, UVy, ma Um) € PSne(U, %) is equivalent to

(54) |(Va U Vi, ma Ums)| + (0 Ums) ™| = |(U, 5)]
and
(55) U=V, UV, VA

On the other hand, (V,, 7,) - Wy, ) € PSne(U,7), means
(Va, Ta) + Vo, m) - (071—;171—;1777((;_1”(;1’7) = U,),
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which is equivalent to

(56) |(Va, Ta)l + |V, )| + |y gty = U, 7))

and

(57) U=V VIV V7.

Equations (54) and (56) are, by Lemma 7.10, equivalent.

The equivalence between (55) and (57) is also easily checked. O

Equipped with these tools we can now prove our main Theorem 7.9.

Proof. The equivalences between (3), (4), and (5) follow by convolving with
the ¢ or the p function. That (2) is actually the same as (1) follows from Prop.
7.8.

(1) = (3): We have

@(u77)[a’1b17 ceey anbn] = (p(z;{aﬁ/)[ah b17 ceey A, bn]

= Z k(V,m)[a1,b1, .., an,byn] - CW, )
(V,m)-(W,0)=(U,A)

= Z k(V,m)[a1,b1,...,an, by)
(V,m)ePSNcU,7)
By our assumption on the vanishing of mixed cumulants, only (V, ) of the
form (V1 U Vo, m, U ) with
(Va,ma) € PS(1,...,n) and Vo, m) € PS(1,...,0)
contribute and, by the above Proposition 7.11,

(Va U Vb; Tq U 7Tb) € PSNC(Z/{;;}/)

is equivalent to
(Va,ﬁa) . (Vb,ﬂb) c PSNc(u,’y).

Thus we can continue with
@(U, 7)[@11)1, e ,anbn]

= > K(Va, Ta)ar, az, .. ., an] - £€(Vo, m)[b1, b2, . . ., by
(VaUVt,maUmy) EPS ne (UA)
= Z K(Va,Ta)[a1, az, ... an] - K(Vo, mp)[b1,ba, ..., by]

(Va,ma) (Vo,mp)EPSNe(U,7y)
= Z k(Va, Ta)[a1,as, . .., anl-
(Va,ma) (V,mp)-(W,0)=(U,7Y)
«&(Vp, mp)[b1, b2, ..., bn] - COW, )
= Z EVasTa)[a1, ... an] -V, m)[b1, ..., byl
Va,ma)-(V,m)=U,7)

(3) = (1): Note that (3) allows us to calculate all moments of elements from
X1 U Xy out of the moments of elements from X; and the moments of elements
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from AXs. (In order to do so, we also have to allow some of the a’s or b’s to be
equal to the unit 1.) Since this calculation rule is the same as for free sets, this
shows that the sets X; and X5 must be free. O

This theorem is now the key ingredient to transfer freeness from sets to their
generated algebras.

THEOREM 7.12. Let (A, ) be a HOPS and consider subsets (X;)icr. For each
i € 1, let A; be the unital algebra generated by elements from X;. Then the
following are equivalent.

(1) The subsets (X;)icr are free of all orders.

(2) The subalgebras (A;)icr are free of all orders.

Proof. Since the cumulant «(V, 7)[aq,. .., a,] is a multi-linear functional in the
n variables aq, . .., an,, it is clear that taking sums of elements within the sets X;
preserves freeness. What we have to see is that also taking products preserves
freeness. Since we can iterate our arguments, it suffices to see the following: if
X; and Xs are free, then also X1 U{aga; | ap,a; € X1} and X are free. Adding
one product after the other to AX; and by Theorem 7.9 it is enough to show
that

@(U, 7)[a0a1b1, agbg ey anbn]
- > oV, m)agay, as ..., an] - 5(W,0)[b1, ..., ba
V,m)-(W,0)=(U,)
for all n € N, all (U,~) € PS(n) and all ag,a1,...,a, € X1 U{1l}, b1,...,b, €
X, U{1}. Let us induce (U,7) € PS(1,...,n) to (U,7) € PS(0,1,...,n) by
requiring that W and # restricted to 1,...,n agree with W and 7, respectively,

and that 0 and 1 are in the same block of W and #(0) = 1. Then we can
calculate

QD(U, 7)[a0a1b17 ashy ... ) anbn] = @(aa 7})[0’017 albla a2b27 s 7anbn]
= > oV, m)[ag,a1,as ..., an] - kKW, 0)[1,b1,. .., by).
(V.m)-(W,0)=U4)
By Proposition 7.8 we know that x(W,o)[1,b1,...,b,] is only different from
zero if W has 0 as a singleton, i.e., (W, o) has to be of the form
w={0}uW, o=(0),
with .
W,s) € PS(1,...,n).
But then we must have that 7(0) = 1 and 0 and 1 must be in the same block
of V. Thus there is a unique (V',7’) so that (V,7) = (V',#) and
(V,m)- (W, o) = U,A)
is equivalent to

(Vlaﬂ-l) ’ (Wa&) = (U,v).

DOCUMENTA MATHEMATICA 12 (2007) 1-70



62 CoLLINS, MINGO, S'NIADY7 SPEICHER

Note also that in this situation
kW, 0)lag,a1,,...,an] = K(W, a)[b1, b2, ..., byl
and
SD(V/77?I)[G/05 A1y y .- 7an] = ()O(Vla W/)[aoah az, ... ;an]-

So we can continue the above calculation as follows
Qﬁ(u, 7) [aoalbla a2b2 ceey anbn]

= > oV, 7')aoar, az . .., an] - kKON, )by, ..., bn),
V', 7)-(W,&)=(U,7)

which is exactly what we had to show. O

7.4. DISTRIBUTION OF ONE RANDOM VARIABLE. For the case where we restrict
our attention to just one random variable a € A we introduce the following
notation.

NOTATION 7.13. Let (A, ¢) be a HOPS and let a € A.
1) For, (V,7) € PS(n), we will write

(pa(v, W) = @(Vv 7T) [av cee aa]

n-times
and

KV, m):=k(V,7)la,...,a].
—_——

n-times

2) A Young diagram is a A = (A1,...,N\) for some ! € Nand A\q,..., N € N
with Ay > A2 > -+ > X, We put |A] := Ay + -+ + A, (the total number of
boxes of the Young diagram A). The set of all Young diagrams will be denoted
by Y.

3) The information about the higher order moments of a can also be parame-
terized by Young diagrams as follows: for A = (A1,...,A;) we put

©*(A) == o(lz,m) [a,...,a] = wi(a™, ... a™)

n-times

where 7 is any permutation whose conjugacy class corresponds to A (i.e., 7 €
S|a| has cycles of length A1,...,\;. The collection of all higher order moments
(9*(N) yey is called the (higher order) distribution of a.

4) Similarly as for moments, we put

’ia(A) = H(]-M\aﬂ) [a7 ceey a]a
———
n-times
where 7 is any permutation whose conjugacy class corresponds to A.

Remark 7.14. For first and second order moments and cumulants, we used in
Section 2 also the following notations:

a

Qp 1= @a(lnﬁn) Oém,n = (pa(lm+n,7m,n);
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and
fiz = "‘@a(lmf)/n) Rmn = "‘@a(lm-‘rm’)/m,n)a

where v,, and ,,,, are permutations with one cycle and two cycles, respectively.

The vanishing of mixed cumulants translates in this framework into the addi-
tivity of the cumulants for sums of free variables.

THEOREM 7.15. Let (A, ) be a HOPS and a,b € A free of all orders. Then
we have

KN = k(N) + kP ()
forallAeY.

Proof. By the multilinearity of the cumulants and the vanishing of mixed cu-
mulants for free variable, we have for any n € N and 7w € S,:
K (1, 7)) = k(1p, m)a+b,...,a+b]
= k(ln,ma,...,a] + &(1,,7)[b,...,b
= kY1, ) + K (1, 7).
O

8. RANDOM MATRICES, ITZYKSON-ZUBER INTEGRALS AND HIGHER ORDER
FREENESS

8.1. ASYMPTOTIC HIGHER ORDER FREENESS OF RANDOM MATRICES. Let us
now come back to our original motivation for our theory — the asymptotic
behavior of random matrices. In order to reformulate our calculations from
Section 4 in our language of higher order freeness we still need to define the
notion of “asymptotic freeness”.

DEFINITION 8.1. 1) Let (A, ) and, for each N € N, (Ay, ™)) be HOPSs.
Let I be an index set and for each i € I, a; € A and aEN) € Ay (N € N).
We say that the family (aEN) | i € I) converges, for N — o0, to (a; | i € I),
denoted by

(e™)ier = (@ier,
if we have for all n € N and all polynomials pi,...,p, in |I|-many non-
commuting indeterminates that

(58) limy oo gl (pl((az('N))ieI); . apn((az('N))iEI)>
= ¢n (p1((ai)icr)s-- - pn((ai)icr)) -

2) Let, for each N € N, (An, ™)) be HOPSs. Let I be an index set and,

for each i € I and N € N, az(-N) € Axn. We say that the sequence of families

(a(N))iEI has a limit distribution of all orders if there exists a HOPS (A, ¢)

K3

such that
(@™ Vier — (ai)ier,

for some a; € A (i € I)
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3) Let, for each N € N, (An, ™)) be HOPSs. Let I be an index set and, for
eachi e I and N € N, aEN) € Ay. Let I = [;U---UIj be a decomposition of I
into k disjoint subsets. We say that the sets {agN) liei},..., {agN) | i€ It}
are asymptotically free of all orders if there exists a HOPS (A, ¢) such that

@™ ier = (aiier,

for some a; € A (i € I) and such that the sets {a; | i € I1},...,{a; | i € I}
are free of all orders in (A, ¢).

With this notation and by invoking Theorem 7.9 we can reformulate our main
result on random matrices, Theorem 4.4, in the following form.

THEOREM 8.2. Let My := My ® L>®~(Q2) be an ensemble of N x N-random

matrices. Define rescaled correlation functions p(N) = (@%N))neN on My by
(meN, Dy,...,D, € My)

(59) SZ(N)(DM . aDn) = kn(Tr(Dl)a . . aTr(Dn)) : N27n'

Assume that we have, for each N € N, subalgebras An, By € My such that

(1) An is a unitarily invariant ensemble,
(2) An and By are independent.

Let (AZ(-N))iEI be a family of elements in (Ax,@™N)) which has a higher or-
der limit distribution and let (B](-N))jej (N € N) be a family of elements
m (BN,gb(N)) which has a higher order limit distribution. Then the families
{AEN) |iel} and {B§N) | 7 € J} are asymptotically free of all orders.

8.2. ITZYKSON-ZUBER INTEGRALS.

DEFINITION 8.3. For N x N matrices Ay, By their Itzykson-Zuber integral is
defined as the following function in z € C:

1Z(z, Ay, By) := N~ 2log E(e*N T ANUBNUT)y
where U denotes a Haar unitary N x N-random matrix.

Consider now a sequence of such matrices Ay and By. Note that Ay and By
are non-random, thus all distributions of order higher than 1 vanish identically.
If we assume that Ay and By have a first order (eigenvalue) limit distribution
for N — oo, then it is known (see [Col03]) that each Taylor coefficient about
zero of z — IZ(z, AN, By) admits a limit as N — co. Note that the effect
of the Haar unitary random matrix in the above Itzykson-Zuber integral was
to make Ay and UBnU* asymptotically free of all orders. We show now that
this kind of result extends also to the case of random matrices Ay and By,
and that our theory allows to identify the limit of the Taylor coefficients very
precisely.

THEOREM 8.4. Let A = (An)nen and B = (By)nen be two ensembles of
N x N-random matrices which are asymptotically free of all orders with respect
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to the rescaled correlation functions N). Denote the corresponding limit-
ing distribution of (An)nen by ¢® and the corresponding limit distribution of
(BN)nen by ¢°. Then, as formal power series in z, we have
(60)
: —2 zNTr(AnBn) — 2" a b
Jim N”?logEle ]_;H > KAV, ) - " (W, 0).

(V,m),(W,0)€PS(n)
(V,m)-(W,0)=(1n e)

Proof. Recall that the logarithm of the exponential generating series of the mo-
ments of a random variable is the exponential generating series of the classical
cumulants of that variable. Thus we have

N2 . logE[e*NANBN]

e n
= N2 ko(NTr(AyBy), ..., NTe(AxBy)) - —
= n!
o0 Zn
= Z NP2, (p(N)(ln, e)[ANBN, e ,ANBN] - —.
n!
n=1
By our assumption that Ay and By are asymptotically free with respect to
>N) _ =2 ,N
On @ = ¢, , this converges to
n!

> z
Z 50(17176)[0’(); . '7ab] R
n=1

where a and b are free of all orders with respect to . Theorem 7.9 yields then
the assertion. g

In a forthcoming work we will investigate the relevance of higher order freeness
for Itzykson-Zuber integrals more detailed, in particular, in comparison with
and extension of results of Zinn-Justin [ZJ99], Collins [Col03], and Guionnet
and Maida [GMO05].

9. APPENDIX: SURFACED PERMUTATIONS

In this appendix we will present a more geometrical view on partitioned per-
mutations. As we shall see in the following, partitioned permutations are just
special cases of “surfaced permutations”; in particular the results of this article
can be equivalently formulated in the language of surfaced permutations. On
the other hand, for the purpose of this article we do not need anything more
than just partitioned permutations and the Reader not interested in surfaced
permutations may skip this Section without much harm.

9.1. MOTIVATIONS. Our goal is to study factorizations of permutations, i.e.
solutions (71, ..., ) of the equation

"}/:ﬂ'l...ﬂ'k’

where v € S, is some fixed permutation and my,...,m € S, are subject to
some additional constraints, depending on a particular context. Typically, one
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2

FIGURE 1. Example of a surfaced permutation. Its support is
equal to (1,3)(2)(4) € Sy. This surfaced permutation corre-
sponds to a partitioned permutation ({1,3,4}{2}, (1,3)(2)(4))

of these constrains concerns |m1| + - - - + |mg|, the other one concerns the orbits
of the action of 7, ..., 7.

It would be very useful to equip permutations 71, ..., T, with some additional
structure in such a way that the product 7y - - - 7 of the resulting enriched
permutations 71, ..., 7T, would carry both the information about the product
m - - -7 of permutations and the information about |mq| + -« + |7g|. As we
shall see in the following, surfaced permutations provide an appropriate tool.

9.2. DEFINITION. We say that o = (S,j) is a surfaced permutation of some
finite set A if S is a two—dimensional surface with a fixed orientation and with
a boundary 0S and if j : A — 95 is a injection. We can think about the
information carried by j as follows: some of the points on the boundary 05 are
distinguished and carry different labels from the set A. We also require that
every connected component of S carries at least one distinguished point. An
example of a surfaced permutation is presented on Figure 1.

We identify surfaced permutations (S1,j1), (S2,j2) of the same set A if there
exists a orientation preserving homeomorphism f : S; — Ss such that foj; =
J2. The set of surfaced permutations of set {1,...,n} will be denoted by S§S,.

9.3. SURFACED PERMUTATIONS AND THE USUAL PERMUTATIONS. Let (S, j) €
SS.,; the boundary 0SS with the inherited orientation from S is just a collection
of oriented circles with some distinguished points labeled 1,...,n marked on
them. In this way we can define a permutation o € S,,, called the support of
(S, 7), the cycles of which correspond to connected components of 9.9, as it can
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4/

5/

Fi1GURE 2. Convention for splitting labels.

be seen on Figure 1. It is therefore a good idea to think that a surfaced per-
mutation is just a (usual) permutation o € S,, equipped with some additional
information carried by the surface S.

A surfaced permutation (S,j) € SS, can be uniquely specified (up to the
equivalence relation) by its support o € S, and by specifying the shape of the
connected components of S. The latter information is given by an equivalence
relation on cycles of o (each class corresponds to a connected component of S)
and furthermore for each class of this relation we should specify the genus of
the corresponding connected component of S. Above it should be understood
that the genus of a surface S with a boundary is by definition equal to the genus
of a surface S’ without boundary obtained from S by gluing a disc to every
connected component of 95; for example both a disc and the lateral surface of
a cylinder have genus zero.

9.4. SURFACED PERMUTATIONS AND PARTITIONED PERMUTATIONS.

Among surfaced permutations a special class will be very important for our
purposes, namely surfaced permutations (.5, j) such that each connected com-
ponent of S has genus zero. It is easy to see that there is a bijection between
such surfaced permutations (S, j) and partitioned permutations (V, o) given as
follows: o is the support of (S,7) and V is the partition given by connected
components of S.

9.5. PRODUCTS OF SURFACED PERMUTATIONS. Let surfaced permutations
(S1,71), (S2,72) € 88, be given. On the boundary of Sy there are marked
points labeled by numbers 1,...,n; let us split every marked point %k into a
consecutive pair of points k& and k', as it is presented on the example from
Figure 2. In the second step, for each k € {1,...,n} we glue a small neighbor-
hood of the vertex k € 957 to a small neighborhood of the vertex k' € 955 in
such a way that the orientations of S; and S5 coincide. In this way we obtain
a new surface S which has marked points on its boundary 0.5 and these are
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exactly the vertices from 0S5 labeled 1, ..., n; we denote the resulting surfaced
permutation by (.5,;) and we call it a product (S1,j1)(Se,j2) of the original
surfaced permutations. This choice of gluing surfaces S7 and S5 implies that
the support of (S1,71)(Sa2, j2) is equal to the product of the support of (S, j1)
and the support of (Sa, j2).

It is not difficult to explain now the definition of the product of partitioned
permutations (Definition 4.9): we treat partitioned permutations as surfaced
permutations and compute their product; if the genus of the resulting surface
is zero we can identify it with another partitioned permutation, otherwise we
set the product to be zero.

It is not difficult to show that for surfaced permutations the product is asso-
ciative and the associativity of the product of partitioned permutations is a
simple corollary.
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1. INTRODUCTION

Let i : A — B be a closed embedding of finite CW complexes. One useful
fact is that A admits a cofinal system of neighborhoods T in B with A — T a
deformation retract. This is often used in the case where B is a differentiable
manifold, showing for example that A has the homotopy type of the differen-
tiable manifold 7. This situation occurs in algebraic geometry, for instance
in the case of the inclusion of the special fiber in a degeneration of smooth
varieties X — C over the complex numbers.

To some extent, one has been able to mimic this construction in purely algebraic
terms. The rigidity theorems of Gillet-Thomason [14], extended by Gabber
(details appearing a paper of Fujiwara [13]) indicated that, at least through
the eyes of torsion étale sheaves, the topological tubular neighborhood can be
replaced by the Hensel neighborhood. However, basic examples of non-torsion
phenomena, even in the étale topology, show that the Hensel neighborhood
cannot always be thought of as a tubular neighborhood, perhaps the simplest
example being the sheaf G,,.!

Our object in this paper is to construct an algebraic version of the tubular
neighborhood which has the basic properties of the topological construction,
at least for a reasonably large class of cohomology theories. It turns out that

f © is a local ring with residue field k¥ and maximal ideal m, the surjection G, (0O) —
Gm (k) has kernel (1 + m)*, which is in general non-zero, even for O Hensel
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a “homotopy invariant” version of the Hensel neighborhood does the job, at
least for theories which are themselves homotopy invariant. If one requires in
addition that the given cohomology theory has a Mayer-Vietoris property for
the Nisnevich topology, then one also has an algebraic version of the punctured
tubular neighborhood. We extend these constructions to the case of a (reduced)
strict normal crossing subscheme by a Mayer-Vietoris procedure, giving us
the tubular neighborhood and punctured tubular neighborhood of a normal
crossing subscheme of a smooth k-scheme.

Morel and Voevodsky have constructed an algebro-geometric version of homo-
topy theory, in the setting of presheaves of spaces or spectra on the category
of smooth varieties over a reasonable base scheme B; we concentrate on the
Al-homotopy category of spectra, SHy1(B). For a map f : X — Y, they
construct a pair of adjoint functors

Rf* : SHAl (X) — SHAl (Y)
Lf* : SHAl (Y) — SHAl (X)

If we have a closed immersion ¢ : W — X with open complement j : U — X,
then one has the functor

LZ*RJ* : SHAl (U) - SHAl (W)

One of our main results is that, in case W is a strict normal crossing subscheme
of a smooth X, the restriction of Lit*Rj.F to a Zariski presheaf on W can be
viewed as the evaluation of F on the punctured tubular neighborhood of W in
X.

Consider a morphism p : X — A! and take i : W — X to be the inclusion
of p~1(0). Following earlier constructions of Spitzweck [43], Ayoub has con-
structed a “unipotent specialization functor” in the motivic setting, essentially
(in the case of a semi-stable degeneration) by evaluating Li*Rj.F on a cosim-
plicial version of the appropriate path space on G, with base-point 1. Applying
the same idea to our tubular neighborhood construction gives a model for this
specialization functor, again only as a Zariski presheaf on p=1(0).

Ayoub has also defined a motivic monodromy operator and monodromy se-
quence involving the unipotent specialization functor and the functor Li*Rj.,
for theories with Q-coefficients that satisfy a certain additional condition (see
definition 9.2.2). We give a model for this construction by combining our
punctured tubular neighborhood with a Q-linear version of the G,,-path space
mentioned above. We conclude with an application of our constructions to the
moduli spaces of smooth curves and a construction of a specialization func-
tor for category of mixed Tate motives, which in some cases yields a purely
algebraic construction of tangential base-points. Of course, the construction
of Ayoub, when restricted to the triangulated category of Tate motives, also
gives such a specialization functor, but we hope that the explicit nature of our
construction will be useful for applications.

We have left to another paper the task of checking the compatibilities of our
constructions with others via the appropriate realization functor. As we have
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already mentioned, our punctured tubular neighborhood construction is com-
parable with the motivic version of the functor Li*Rj, for the situation of a
normal crossing scheme i : D — X with open complement j : X \ D — X;
this should imply that it is a model for the analogous functor after realization.
Similarly, our limit cohomology construction should transform after realization
to the appropriate version of the sheaf of vanishing cycles, at least in the case of
a semi-stable degeneration, and should be comparable with the constructions
of Rappaport-Zink [37] as well as the limit mixed Hodge structure of Katz [22]
and Steenbrink [44]. Our specialization functor for Tate motives should be
compatible with the Betti, étale and Hodge realizations; similarly, realization
functors applied to our limit motive should yield for example the limit mixed
Hodge structure. We hope that our rather explicit construction of the limiting
motive will be useful in giving a geometric view to the limit mixed Hodge struc-
ture of a semi-stable degeneration but we have not attempted an investigation
of these issues in this paper.

My interest in this topic began as a result of several discussions on limit mo-
tives with Spencer Bloch and Hélene Esnault, whom I would like to thank for
their encouragement and advice. I would also like to thank Hélene Esnault for
clarifying the role of the weight filtration leading to the exactness of Clemens-
Schmidt monodromy sequence (see Remark 9.3.6). An earlier version of our
constructions used an analytic (i.e. formal power series) neighborhood instead
of the Hensel version now employed; I am grateful to Fabien Morel for suggest-
ing this improvement. Finally, I want to thank Joseph Ayoub for explaining
his construction of the nearby cycles functor; his comments suggested to us
the use of the cosimplicial path space in our construction of limit cohomology.
In addition, Ayoub noticed a serious error in our first attempt at construct-
ing the monodromy sequence; the method used in this version is following his
suggestions and comments. Finally, we would like to thank the referee for giv-
ing unusually thorough and detailed comments and suggestions, which have
substantially improved this paper. In particular, the material in sections 7
comparing our construction with the categorical ones of Morel-Voevodsky, as
well as the comparison with Ayoub’s specialization functor and monodromy
sequence in section 8.3 and section 9 was added following the suggestion of the
referee, who also supplied the main ideas for the proofs.

2. MODEL STRUCTURES AND OTHER PRELIMINARIES

2.1. PRESHEAVES OF SIMPLICIAL SETS. We recall some facts on the model
structures in categories of simplicial sets, spectra, associated presheaf categories
and certain localizations. For details, we refer the reader to [17] and[19].

For a small category I and category C, we will denote the category of functors
from I to C by C.

We let Ord denote the category with objects the finite ordered sets [n] :=
{0,...,n} (with the standard ordering) and morphisms the order-preserving
maps of sets. For a category C, the functor categories CO*d, COrd™ are the
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categories of cosimplicial objects of C, resp. simplicial objects of C. For C =
Sets, we have the category of simplicial sets, Spc := Setsordop, and similarly
for C the category of pointed sets, Sets,, the category of pointed simplicial sets
Spc, = Sets9r4”.

We give Spc and Spc, the standard model structures: cofibrations are
(pointed) monomorphisms, weak equivalences are weak homotopy equivalences
on the geometric realization, and fibrations are detemined by the right lift-
ing property (RLP) with respect to trivial cofibrations; the fibrations are then
exactly the Kan fibrations. We let |A| denote the geometric realization, and
[A, B] the homotopy classes of (pointed) maps |A| — |B.

For an essentially small category C, we let Spc(C) be the category of presheaves
of simplicial sets on C. We give Spc(C) the so-called injective model structure,
that is, the cofibrations and weak equivalences are the pointwise ones, and the
fibrations are determined by the RLP with respect to trivial cofibrations. We
let HSpc(C) denote the associated homotopy category (see [17] for details on
these model structures for Spc and Spc(C)).

2.2. PRESHEAVES OF SPECTRA. Let Spt denote the category of spectra. To
fix ideas, a spectrum will be a sequence of pointed simplicial sets Fg, E1, ...
together with maps of pointed simplicial sets ¢, : S' A E,, — E,.1. Maps of
spectra are maps of the underlying simplicial sets which are compatible with
the attaching maps €,. The stable homotopy groups 7 (E) are defined by

72 (E) := lim [S™" E,.].

m—00

The category Spt has the following model structure: Cofibrations are maps
f: E — F such that Ey — Fj is a cofibration, and for each n > 0, the map

EnJrl H Sl/\Fn*)FnJrl

SINE,

is a cofibration. Weak equivalences are the stable weak equivalences, i.e., maps
f + E — F which induce an isomorphism on m, for all n. Fibrations are
characterized by having the RLP with respect to trivial cofibrations. We write
S'H for the homotopy category of Spt.

For X € Spc,, we have the suspension spectrum Y*°X := (X, XX, 32X, ...)
with the identity bonding maps. Dually, for a spectrum E := (Ey, F1,...) we
have the 0-space Q°F := lim,, Q" FE,. These operations form a Quillen pair
of adjoint functors (X°°, Q%) between Spc, and Spt, and thus induce adjoint
functors on the homotopy categories.

Let C be a category. A functor E : C°? — Spt is called a presheaf of spectra on
C.

We use the following model structure on the category of presheaves of spec-
tra (see [19]): Cofibrations and weak equivalences are given pointwise, and
fibrations are characterized by having the RLP with respect to trivial cofibra-
tions. We denote this model category by Spt(C), and the associated homotopy
category by HSpt(C).
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As a particular example, we have the model category of simplicial spectra
SptOrd” = Spt(Ord). We have the total spectrum functor

Tot : Spt(Ord) — Spt

which preserves weak equivalences. The adjoint pair (X, %) extend point-
wise to define a Quillen pair on the presheaf categories and an adjoint pair on
the homotopy categories.

Let B be a noetherian separated scheme of finite Krull dimension. We let
Sm/B denote the category of smooth B-schemes of finite type over B. We
often write Spc(B) and HSpc(B) for Spc(Sm/B) and HSpc(Sm/B), and
write Spt(B) and HSpt(B) for Spt(Sm/B) and HSpt(Sm/B).

For Y € Sm/B, a subscheme U C Y of the form Y \ Uy,F,, with {F,} a
possibly infinite set of closed subsets of Y, is called essentially smooth over B;
the category of essentially smooth B-schemes is denoted Sm®*®.

2.3. LOCAL MODEL STRUCTURE. If the category C has a topology, there is often
another model structure on Spc(C) or Spt(C) which takes this into account. We
consider the case of the small Nisnevich site Xyjs on a scheme X (assumed to
be noetherian, separated and of finite Krull dimension), and the big Nisnevich
sites Sm/Byis or Sch/Bnis, as well as the Zariski versions Xz, Sm/Bzar,
etc. We describe the Nisnevich version for spectra below; the definitions and
results for the Zariski topology and for spaces are exactly parallel.

DEFINITION 2.3.1. A map f : E — F of presheaves of spectra on Xyjs is a local
weak equivalence if the induced map on the Nisnevich sheaf of stable homotopy
groups f« : w2 (E)Nis — 72, (F)nis is an isomorphism of sheaves for all m. A
map f : E — F of presheaves of spectra on Sm/By;s or Sch/Byjs is a local
weak equivalence if the restriction of f to Xnjs is a local weak equivalence for
all X € Sm/B or X € Sch/B. O

The Nisnevich local model structure on the category of presheaves of spectra
on Xnjs has cofibrations given pointwise, weak equivalences the local weak
equivalences and fibrations are characterized by having the RLP with re-
spect to trivial cofibrations. We write Spt(Xnis) for this model category, and
HSpt(Xnis) for the associated homotopy category. The Nisnevich local model
categories Spt(Sm/Byis) and Spt(Sch/Bnis), with homotopy categories
HSpt(Sm/Bxis) and HSpt(Sch/Byis), are defined similarly. A similar local-
ization gives model categories of presheaves of spaces Spc(Xnis), Spc(Xzar),
Spc(Sm/Byis), etc., and homotopy categories HSpc(Xnis), HSpc(Xzar),
HSpc(Sm/Byis), etc. We also have the adjoint pair (X°°,02°) in this set-
ting. For details, we refer the reader to [19].

DOCUMENTA MATHEMATICA 12 (2007) 71-146



76 MARC LEVINE
Remark 2.3.2. Let E be in Spt(Sm/Bhnis), and let

Wy

Ll

be an elementary Nisnevich square, i.e., f is étale, i : W — X is a closed
immersion, the square is cartesian, and W’ — W is an isomorphism, with X
and X’ in Sm/B (see [34, Definition 1.3, pg. 96]) .

If E is fibrant in Spt(Sm/By;s) then E transforms each elementary Nisnevich
square to a homotopy cartesian square in Spt. Conversely, suppose that E
transforms each elementary Nisnevich square to a homotopy cartesian square
in Spt. Then FE is quasi-fibrant, i.e., for all Y € Sm/B, the canonical map
E(Y) — Eip(Y), where Eyy, is the fibrant model of E, is a weak equivalence.
See [19] for details.

If we define an elementary Zariski square as above, with X’ — X an open
immersion, the same holds in the model category Spt(Sm/Bz.,). More pre-
cisely, one can show (see e.g. [45]) that, if E transforms each elementary Zarisk
square to a homotopy cartesian square in Spt, then E satisfies Mayer- Vietoris
for the Zariski topology: if X € Sm/B is a union of Zariski open subschemes
U and V', then the evident sequence

EX)—-EU)®EV)—EUNYV)
is a homotopy fiber sequence in SH. d

Remark 2.3.3. Let C be a small category with an initial object () and admiting
finite coproducts over (), denoted X ITY. A functor F : C°? — Spt is called
additive if for each X,Y in C, the canonical map

E(XIIY) — E(X)& E(Y)

in SH is an isomorphism. It is easy to show that if £ € Spt(Sm/B) satisfies
Mayer-Vietoris for the Zariski topology, and F(0) & 0 in SH, then FE is additive.
From now on, we will assume that all our presheaves of spectra E satisfy
E(0) =0 in SH. O

2.4. A'-LOCAL STRUCTURE. One can perform a Bousfield localization on
Spc(Sm/Byis) or Spt(Sm/Byis) so that the maps X*°X x Al — XX,
induced by the projections X x A! — X become weak equivalences. We call
the resulting model structure the Nisnevich-local A'-model structure, denoted
Spc,: (Sm/Byis) or Spty:(Sm/Byis). One has the Zariski-local versions as
well. We denote the homotopy categories for the Nisnevich version by H 1 (B)
(for spaces) and SHy1(B) (for spectra). For the Zariski versions, we indicate
the topology in the notation. We also have the adjoint pair (X°°,Q°°) in this
setting. For details, see [30, 31, 34].

DOCUMENTA MATHEMATICA 12 (2007) 71-146



MoTivic TUBULAR NEIGHBORHOODS it

2.5. ADDITIONAL NOTATION. Given W € Sm/S, we have restriction functors
Spc(S) — Spc(Wzar)
Spt(S) - Spt(WZar)§
we write the restriction of some E € Spc(S) to Spc(Wzar) as E(Wza,). We
use a similar notation for the restriction of E to Spt(Wza,), or for restrictions
to Wnis. More generally, if p : Y — W is a morphism in Sm/S, we write
E(Y/Wgzay) for the presheaf U — E(Y xw U) on Wzay.

For Z C Y a closed subset, Y € Sm/S and for E € Spc(S) or E € Spt(S5),
we write £%(Y') for the homotopy fiber of the restriction map

E(Y) — E(Y \ 2).

We define the presheaf EZz(Y') by setting, for U C Z a Zariski open sub-
scheme with closed complement F',

EZ%z:(Y)(U) := EY(Y \ F).
A co-presheaf on a category C with values in A is just an A-valued preheaf on
C°P.
As usual, we let A™ denote the algebraic n-simplex

A" := Spec Zlto, . . ~atn]/zti -1,

and A* the cosimplicial scheme n — A". For a scheme X, we have A% :=
X x A™ and the cosimplicial scheme A%.

Let B be a scheme as above. For E € Spc(B) or in Spt(B), we say that E is
homotopy invariant if for all X € Sm/B, the pull-back map E(X) — E(X xAl)
is a weak equivalence (resp., stable weak equivalence). We say that E satisfies
Nisnevich excision if E transforms elementary Nisnevich squares to homotopy
cartesian squares.

3. TUBULAR NEIGHBORHOODS FOR SMOOTH PAIRS

Leti: W — X be a closed immersion in Sm/k. In this section, we construct the
tubular neighborhood 7.X (W) of W in X as a functor from Wz,, to cosimplicial

pro-k-schemes. Given E € Spc(k), we can evaluate £ on 7.5 (W), yielding the
presheaf of spaces E(7X (W)) on Wz,,, which is our main object of study.

3.1. THE COSIMPLICIAL PRO-SCHEME 7% (W). For a closed immersion W — T
in Sm/k, let T¥ be the category of Nisnevich neighborhoods of W in T, i.e.,
objects are étale maps p : T — T of finite type, together with a section
s: W — T’ to p over W. Morphisms are morphisms over T which respect the
sections. Note that Tﬂﬁ’s is a left-filtering essentially small category.

Sending (p: T' — T,s: W — T’) to T' € Sm/k defines the pro-object Té{, of
Sm/k; the sections s : W — T’ give rise to a map of the constant pro-scheme
W to Tﬁ,, denoted
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Given a k-morphism f : .S — T, and closed immersions iy : V. — S, iw : W —
T such that f o iy factors through iy (by f:V — W), we have the pull-back
functor

f* : TI\I?I/S - Sl‘\f/isﬂ

(T —=T,s: W —=T):= (T x5, (s0 f,iv)).

This gives us the map of pro-objects f" : 5’{} — T‘?V, so that sending W — T
to TAéLV and f to f* becomes a pseudo-functor.

We let f": S‘{} — T&V denote the induced map on pro-schemes. If f happens
to be a Nisnevich neighborhood of W — X (so f : V — W is an isomorphism)
then f : S’(} — T&V is clearly an isomorphism.

Remark 3.1.1. The pseudo-functor (W — T) TAéLV can be rectified to an
honest functor by first replacing Ty, with the cofinal subcategory Tl\%70 of
neighborhoods 77" — T, s : W — T’ such that each connected component of T’
has non-empty intersection with s(W). One notes that Tl\I?i/s,O has only identity
automorphisms, so we replace TKS’O with a choice of a full subcategory TI\‘?{&OO
giving a set of representatives of the isomorphism classes in T; I\I?i/s,O' Given a
map of pairs of closed immersions f : (V 25 §) — (W 5 T) as above,
we modify the pull-back functor f* defined above by passing to the connected
component of (so f,iy)(V) in T" x7 S. We thus have the honest functor
(W—>T)— TllT/[i/s,OO which yields an equivalent pro-object T‘?V

As pointed out by the referee, one can also achieve strict functoriality by rec-

tifying the fiber product; in any case, we will use a strictly functorial version
from now on without comment. g

For a closed immersion i : W — X in Sm/k, set A%y, := (A})Z% The
cosimplicial scheme
A% : Ord — Sm/k
[n] — A%
thus gives rise to the cosimplicial pro-scheme
A% w : Ord — Pro-Sm/k
[n] — A?{,W
The maps %A% AL — (@)ZW give the closed immersion of cosimplicial
pro-schemes
iW : A;V — Aﬁ(,W

Also, the canonical maps 7, : A% y, — A% define the map
Txw Ay — Ak
Let (p: X' — X,s: W — X’) be a Nisnevich neighborhood of (W, X). The

map
AT AT
p: AX’,W - AX,W
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is an isomorphism respecting the closed immersions iy. Thus, sending a Zariski

open subscheme U C W with complement FF C W C X to A}\FU defines a
co-presheaf A’;( W, on Wzar with values in pro-objects of Sm/k; we write
) Zar

TeX (W) for the cosimplicial object

AN
— A .
= AR

We use the X in the notation because the co-presheaf A’)’( W is depends only

on the Nisnevich neighborhood of W in X. o
Let Ay, —denote the co-presheaf on Wz, defined by U — Ap;. The closed

immersions ¢y define the natural transformation

iw Ay, — X (W).
The maps 7x\ g\ for F¥ C W a Zariski closed subset define the map
TX,W TEX(W) — A%WZM
where X|Wz,, is the co-presheaf W\ F +— X \ F on Wz,,. We let
(3.1.1) Fxw i T (W) = X|[Woar

denote the composition of mx y with the projection A;(‘WZar — X |Wgar.

3.2. EVALUATION ON SPACES. Let i : W — T be a closed immersion in Sm/k.
For E € Spc(T), we have the space E(T}V), defined by

B(TV) = colim B(T").
(p:T'—T,s:W—T")eT¥

Given a Nisnevich neighborhood (p : 79 — T,s : W — T'), we have the
isomorphism
. . . h
p*: E(Tly) — E(T' )

Thus, for each open subscheme j : U — W, we may evaluate E on the

cosimplicial pro-scheme 7% (W)(U), giving us the presheaf of simplicial spectra
E(rX(W)) on Wz,

€

E@XW)(U) = E(X (W)(U)).

€

Now suppose that E is in Spc(k). The map iy : Ay, — Tf (W)) gives us
the map of presheaves on Wz,

iy BT (W) — E(Ayy,,,)-
Similarly, the map mx w gives the map of presheaves on Wyz,,
F;(,W D E( §(|WZM) - E(TCX(W))

The main result of this section is
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THEOREM 3.2.1. Let E be in Spc(k). Then the map ily @ E(rX(W)) —
E(AT/VZM) is a weak equivalence for the Zariski-local model structure, i.e., for
each point w € W, the map iy, on the stalks at w is a weak equivalence of
the associated total space.

3.3. PROOF OF THEOREM 3.2.1. The proof relies on two lemmas.

LEMMA 3.3.1. Leti: W — X be a closed immersion in Sm/k, giving the closed
immersion A}, — Ak. For t € Al(k), we have the section iy : W — Ajy,
it(w) = (w,t). Then for each E € Spc(k), the maps

it B(AL ) — EQkw)
are homotopic.

Proof. This is just an adaptation of the standard triangulation argument. For
each order-preserving map g = (g1, g2) : [m] — [1] x [n], let

Tg:AmHAIXA",
be the affine-linear extension of the map on the vertices
Vi = (Vgy(3) Vg (3))-

idx x Ty induces the map

Tg : Agf,w — (Al x A?{)Zl X AL,
We note that the isomorphism (tg, 1) +— tg of (A, v1,v0) with (Al,0, 1) induces
an isomorphism of cosimplicial schemes

Z%(A%v = (Al x A&)leA;V-
The maps
Ty B(AY ) — E(A%)
induce a simplicial homotopy 1" between ¢ and ¢7. Indeed, we have the simpli-
cial sets A[n] : Homora(—, [1]). Let (A x A*)A[ be the cosimplicial scheme
n (A x AMANMD =TT Al x A”
seA[1]([n])

where the product is xz. The inclusions dg, 07 : [0] — [1] thus induce the maps
of cosimplicial schemes

55, 0% 1 (AY xp AR 5 AL e AF
The maps T, satisfy the identities necessary to define a map of cosimplicial
schemes
T: A" — (A' x A*)ANL
with 85 o T =ig, 6] o T = i;. Applying the functor ", we see that the maps Tg
define the map of cosimplicial schemes

T:Axw — (B )2,

with 0 o T = io, 07 o T= i1; we then apply FE. O
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LEMMA 3.3.2. Take W € Smy. Let X = A}, and let i : W — X be the

O-section. Then iy, : E(A% y) — E(A}y,) is a homotopy equivalence.
Proof. Let p: X — W be the projection, giving the map
P A;(,W - A%,W = Ay
and p* : E(A}y,) — E(A}W) Clearly i3, o p* = id, so it suffices to show that
p*o ia, is homotopic to the identity.
For this, we use the multiplication map p: A' x A" — A",
w(t;xr, ., xp) = (e, . .. tay).

The map p x ida+ induces the map
i (Al X A% X A*)glxowa* - (ATVIV X A*)SWXA*

with & o io = iw o p and Lo i1 = id. Since %8 and 2*{ are homotopic by
Lemma 3.3.1, the proof is complete. ]

To complete the proof of Theorem 3.2.1, take a point w € W. Then replacing
X with a Zariski open neighborhood of w, we may assume there is a Nisnevich
neighorhood X’ — X, s : W — X’ of W in X such that W — X’ is in
turn a Nisnevich neighborhood of the zero-section W — A}, n = codimx W.
Since E(A}W) is thus weakly equivalent to E(AKW Oy )» the result follows
from Lemma 3.3.2.

COROLLARY 3.3.3. Suppose that E € Spc(Sm/k), resp. E € Spt(Sm/k) is
homotopy invariant. Then for i : W — X a closed immersion, there is a
natural isomorphism in HSpc(Wzay), resp. HSpt(Wzay)

E(rX(W)) 2 B(7) (0w))

€

Here N; is the normal bundle of the immersion i, and Oy C N; is the 0-section.

Proof. This follows directly from Theorem 3.2.1: Since F is homotopy invari-
ant, the canonical map

E(T) — E(A7)
is a weak equivalence for each T € Sm/k. The desired isomorphism in the
respective homotopy category is constructed by composing the isomorphisms

E(X (W) 2 B(AY,.) — BE(Waa)

€

-

) 2 BN (0w)).

O

*
= E(OWZM) - E(AOWZar
4. PUNCTURED TUBULAR NEIGHBORHOODS

Our real interest is not in the tubular neighborhood rf (W), but in the punc-

tured tubular neighborhood TEX (W)0. In this section, we define this object and
discuss its basic properties.
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4.1. DEFINITION OF THE PUNCTURED NEIGHBORHOOD. Let i : W — X be
a closed immersion in Sm/k. We have the closed immersion of cosimplicial
pro-schemes
it Ay — Ak w
giving for each n the open complement A’;(\W = A}W \ A},. We may pass
to the cofinal subcategory of Nisnevich neighborhoods of Afj, in A%,
p:T— A%,s: Ay —T)
for which the diagram
T\s(A}) ——T

|

A%\ Af —— AL
is cartesian, giving us the cosimplicial proscheme n +— A}\W and the map
J A — Akw,
which defines the “open complement” A}\W of Ay, in A}W Extending this
construction to all open subschemes of X, we have the co-presheaf on Wz,,,
U=W\F A?X\F)\U’

which we denote by 7% (W)°.
Let AFX\W)ZM be the constant co-presheaf on Wy, with value A}\W, giving
the cosimplicial co-presheaf A?X\W)zm' The maps

Ju s Ao = Ao

define the map j : 7X (W)° — 72X (W). The maps A*U\WOU — A%y give us
the map )
w7 X (W) = Ay

where we view A}\W as the constant co-sheaf on Wy,,.
To give a really useful result on the presheaf E(TSX (W)?), we will need to
impose additional conditions on F. These are

(1) E is homotopy invariant

(2) E satisfies Nisnevich. excision

One important consequence of these properties is the purity theorem of Morel-
Voevodsky:

THEOREM 4.1.1 (Purity [34, theorem 2.23]). Suppose E € Spt(k) is homotopy
invariant and satisfies Nisnevich excision. Let i : W — X be a closed immer-
sion in Sm/k and s : W — N; the 0-section of the normal bundle. Then there
is an isomorphism in HSpt(Wzar)

EWZ-M (X) N EWZar (Nz)
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Let E(X|Wgzar) be the presheaf on Wy,,
W\ F — E(X\F)
and E(X \ W) the constant presheaf.
Let
res : B(X|Wgay) — E(TEX(W))
res’ : B(X \ W) — E(rX (W)")
be the pull-back by the natural maps TeX W)Y WN\F)— X\F, TEX(W)O —

X\W. Let EAw (1X(W)) € Spt(Wza,) be the homotopy fiber of the restriction
map

J B W) = BrEw)°).
The commutative diagram in Spt(Wz,,)

*

E(X|Waar) ——s B(X \ W)

resJ Jreso

B(rX (W) — B (W)°)

induces the map of homotopy fiber sequences

EWonr (X) ——— B(X|Waar) ——s E(X \ W)

B&w (rX (W) — B (W) — E(X (W)°)

We can now state the main result for E(TEX(W)O).

THEOREM 4.1.2. Suppose that E € Spt(k) is homotopy invariant and satisfies
Nisnevich excision. Let i : W — X be a closed immersion in Sm/k. Then the
map Y is a Zariski local weak equivalence.

Proof. Let in+ : AY, — A% be the immersion id x ¢. For U =W\ F C W,
X (W)°(U) is the cosimplicial pro-scheme with n-cosimplices
X WPU)" = My \ A
so by Nisnevich excision we have the natural isomorphism
o BNV (A, ) — B4 (7 (W),
where E*Wzar (A}‘WZM)(W\F) is the total spectrum of the simplicial spectrum

n— B \F)-
The homotopy invariance of E implies that the pull-back

EW\I(X\ F) — ¥ (A% p)
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is a weak equivalence for all n, so we have the weak equivalence
B: BV (X) — E®Waar (A pa,)-
It follows from the construction that ¢ = a3, completing the proof. O
COROLLARY 4.1.3. There is a distinguished triangle in HSpt(Wzar)
BYer (X) = E(Wzar) — E(rX (W)°)
Proof. By Theorem 3.2.1, the map * : E(TX(W)) — E(A}y, ) is a weak

€
equivalence; using homotopy invariance again, the map

EWzar) — E(Ayy,,,)
is a weak equivalence. Combining this with Theorem 4.1.2 yields the result. [
For homotopy invariant E € Spt(k), we let
o (7Y (Ow)) — E(rX (W)).
be the isomorphism in HSpt(Wz,,) given by corollary 3.3.3.

COROLLARY 4.1.4. Suppose that E € Spt(k) is homotopy invariant and satis-

fies Nisnevich excision. Let i : W — X be a closed immersion in Sm/k and
let N? = N; \ Ow.

(1) The restriction maps

res : BE(N;/Waar) — E(rN (0w))
res’ : E(NY /Wyay) — E(TEN’ (0w)?)
are weak equivalences in Spt(Wgay).
(2) There is a canonical isomorphism in HSpt(Wzar)
o B (0w)®) — B(X(W)°)
(8) Consider the diagram (in HSpt(Wza,)):
Ewzar (N;) —— E(N; /Wzar) —— E(N?/Wgar)

resp resy

EOwzar (N;) — E(TSNL (Ow)) L E(TEN7' (0w )?)

Wl o8 %

EWzar (X) —— BE(rX (W) f’ E(rX(W)°)

resp resy

EWZar (X) R — E(X|WZar) T) E(X \ W)

The first and last rows are the homotopy fiber sequences defining the presheaves
E%wzar (N;) and EWzax (X), respectively, the second row and third rows are the
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distinguished triangles of Theorem 4.1.2, and 7 is the Morel-Voevodsky purity
isomorphism. Then this diagram commutes and each triple of vertical maps
defines a map of distinguished triangles.

Proof. Tt follows directly from the weak equivalence (in Theorem 4.1.2) of the
homotopy fiber of

7 BEEW) — BEEwW)°)

with EWzer (X)) that the triple (id,resg,res%) defines a map of distinguished
triangles. The same holds for the map of the first row to the second row; we
now verify that this latter map is an isomorphism of distinguished triangles.
For this, let s : W — N; be the zero-section. We have the isomorphism
ity E(tNi(0w)) — E(Wgza,) defined as the diagram of weak equivalences

’L
"~
Wzar

E(TeNl (OW)) E(A%Zar) <L0_* E(WZar)

From this, it is easy to check that the diagram

(N /WZar) —>E( (OW))

T

E(WZar)

commutes in HSpt(Wza.;). As E is homotopy invariant, s* is an isomorphism,
hence resg is an isomorphism as well. This completes the proof of (1).

The proof of (2) and (3) uses the standard deformation diagram. Let ji:Y —
X x A! be the blow-up of X x Al along W, let i~1[X x 0] denote the proper
transform, and let p : Y — X x Al be the open subscheme Y \ g~1[X x 0].
Let p: Y — Al be pgopu. Then p~1(0) = Ny, p7 (1) = X x1 =X, and Y
contains the proper transform ji~1[W x A!], which is mapped isomorphically
by pto W x Al € X x A, Welet 7 : W x Al — Y be the resulting closed
immersion. The restriction of 7 to W x 0 is the zero-section s : W — N; and
the restriction of 7 to W x 1 is i : W — X. The resulting diagram is

(4.1.1) W—"s W x Al 22— W
N, — 2 Ly X
Pol Pl J
0 - Al 1
0 71
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Together with Theorem 4.1.2; diagram (4.1.1) gives us two maps of distin-
guished triangles:

|[EOw stz (V) = B(r¥ (W x A1) = B(zF (W x A1)

e
1
—

|[EWe (X) = B(r (W) - BE (w)°)]

and
|[EOw stz (V) = B(r¥ (W x A1) = B(zF (W x A1)

%
)
—

|:EOWZar (Nz) N E(7—6N1 (OW)) — E(TeNl (OW)O)i|

As above, we have the commutative diagram

E(r¥ (W x AL) ~— B (0))

i o«
W x Al w

E(W x AY) ——— B(W).

As E is homotopy invariant, the maps i}y, i}, .1 and i : E(W x A') — E(W)
are isomorphisms, hence

i 2 B(rY (W x A1) — BN (0w)
is an isomorphism. Similarly,
i B(rY (W x AY) = EGE (W)

is an isomorphism. The proof of the Morel-Voevodsky purity theorem [34,
Theorem 2.23] shows that

Z; - EOwxalzar V) — EOwzar (N;)

it s BOwxatzar (V) — EWzar (X))
are weak equivalences; the purity isomorphism 7 is by definition i} o (i) ~?.
Thus, both 4§ and 7 define isomorphisms of distinguished triangles, and

i 0 (i5) " : BN (0w)) — EGX (W)
is the map ¢p. Defining ¢% to be the isomorphism
io (ig) "t B(r (0w)") — B(rX(W)°)
proves both (2) and (3). O
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Remarks 4.1.5. (1) It follows from the construction of ¢ and ¢%, that both of
these maps are natural in F.

(2) The maps ¢% are natural in the closed immersion i : W — X in the
following sense: Suppose we have closed immersions i; : W; — X;, j = 1,2
and a morphism f : (W7, X;) — (Wa, Xo) of pairs of immersions such that f
restricts to a morphism X; \ W7 — X5 \ Wa. Fix E and let d)?E be the map
corresponding to the immersions i; We have the evident maps

LT (W) = e (W) e (W)0 =l (Wa)°
Then the diagram

E(r (W)0) 5 BX(W)°)

commutes. Indeed, the map f induces a map of deformation diagrams.
a

5. THE EXPONENTIAL MAP

If ¢ : M’ — M is a submanifold of a differentiable manifold M, there is a
diffeomorphism exp of the normal bundle Ny /5 of M” in M with the tubular
neighborhood TEA/I (M"). In addition, exp restricts to a diffeomorphism exp? of
the punctured normal bundle Nz /s \ 0ps+ with the punctured tubular neigh-
borhood 7M (M')\ M’. Classically, this has been used to define the bound-
ary map in the Gysin sequence for M’ — M, by using the restriction map
exp”™ : H*(M \ M') — H*(Nyp/ar \ Opr) followed by the Thom isomorphism
H*(NM//M \ OM/) = H*fd(M/).

In this section, we use our punctured tubular neighborhood to construct a
purely algebraic version of the classical exponential map, at least for the as-
sociated suspension spectra. We will use this in section 11 to define a purely
algebraic version of the gluing of Riemann surfaces along boundary compo-
nents.

5.1. Let i : W — X be a closed immersion in Sm/k with normal bundle
p: N; — W. We have the map

exp: N; - X

in Spc(k), defined as the composition N; — W — X. We also have the
Morel-Voevodsky purity isomorphism

7w : Th(V;) = X/(X \ W)
in H(k). In fact:
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LEMMA 5.1.1. The diagram

(5.1.1) N; —— Th(N;)

X —— X/(X\ W)
commutes in H(k).

Proof. As we have already seen, the construction of the purity isomorphism w
relies on the deformation to the normal bundle; we retain the notation from the
proof of corollary 4.1.4. We have the total space Y — A! of the deformation.
The fiber Yy over 0 € A! is canonically isomorphic to IV; and the fiber Y; over
1 is canonically isomorphic to X; the inclusions W x 0 — Yy, W x1 —- Y
are isomorphic to the zero-section s : W — N,; and the original inclusion
i : W — X, respectively. The proper transform p~![W x A!] is isomorphic
to W x A, giving the closed immersion ¢ : W x A — Y. The diagram thus
induces maps in Spe(k):

io : Th(N;) — Y/(Y \ W x A')
i X/X\W = Y/(Y\W x Al
which are isomorphisms in H(k) (see [34, Thm. 2.23]); the purity isomorphism

is by definition 7 := i; * o 7.
We have the commutative diagram in Spc(k):

id

e

W s Wx Al T W
Y X
q/ J |

N.
Th(N;) —— V/(Y \ W x Al) ¢—— X/X\ W

—

S

from which the result follows directly. g
Remark 5.1.2. Since we have the homotopy cofiber sequences:
N; \ O — N; — Th(N;) — Z(N; \ Ow) +
X\W = X = X/(X\ W) = S(X \ W),
the diagram (5.1.1) induces a map
SN\ Ow) s — S(X\ W),

in H(k), however, this map is not uniquely determined, hence is not canonical.
O
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5.2. THE CONSTRUCTION. In this section we define a canonical map
exp’ : Z(N; \ Ow )+ — EX(X \ W),
in SH a1 (k) which yields the map of distinguished triangles in SH 1 (k):
YO(N; \ O )4 —— XN, ——— ¥°Th(N,)
N
TR(X\W)y — X, — S Y°X/(X\W)

To define exp®, we apply Corollary 4.1.4 with E a fibrant model of X°° (X \ W)
Denote the composition

E(X\W) 5 BX (w)0)w)

(¢m)"" N; 0 (resfy) ™" 0
—— B (0w)") (W) ——— E(N;)

by exp%. Since E is fibrant, we have canonical isomorphisms

moE(NY) = Homgsy,, (1) (SN, , E)
= Homgy,, (k) (S° N7y, S°(X \W)y)

T B(X \ W) = Homgy , (5 (5 (X \ W), E)
= HomS'HA1 (k) (EOO (X \ W)+, EOO(X \ W)+)

so exp¥ induces the map

Homgp,, (1) (E7 (X \ W)y, B(X\ W)4)

“2E Homgyy,, k) (SN2, (X \ W)4).
We set

exp? := exp¥ (id).

To finish the construction, we show

89

JF'

PROPOSITION 5.2.1. The diagram, with rows the evident homotopy cofiber se-

quences,

$%0(N; \ O )4 — B°N;; — N°Th(N;) —2— SE°(N; \ O )+

expol eXPJ{ JW b)) expoJ

S X\ W)y — DX — TXX/ (X \ W) — S=(X \ W),
commutes in SHp1 (k).
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Proof. 1t suffices to show that, for all fibrant E € Spt(k), the diagram formed
by applying Homszy, , (k) (—, E) to our diagram commutes. This latter diagram
is the same as applying 7y to the diagram

(5.2.1)  E(N;\Ow) E(N;) E (N;) «2— QE(N; \ 0w))
Texpo* Texp* W*T TQ exp”*
E(X\W) E(X) EW(X)TQE(X\W)

where the rows are the evident homotopy fiber sequences. It follows by the
definition of exp® and exp that this diagram is just the “outside” of the diagram
in Corollary 4.1.4(3), extended to make the distinguished triangles explicit.
Thus the diagram (5.2.1) commutes, which finishes the proof. O

Remark 5.2.2. The exponential maps exp and exp® are natural with respect

to maps of closed immersions f : (W’ LN X"y — (W & X) satisfying the
cartesian condition of remark 4.1.5(2). This follows from the naturality of the
isomorphisms ¢g, ¢% described in Remark 4.1.5, and the functoriality of the
(punctured) tubular neighborhood construction. g

6. NEIGHBORHOODS OF NORMAL CROSSING SCHEMES

We extend our results to the case of a strict normal crossing divisor W C X
by using a Mayer-Vietoris construction.

6.1. NORMAL CROSSING SCHEMES. Let D be a reduced effective Cartier di-
visor on a smooth k-scheme X with irreducible components Dy,..., D,,. For
each I C {1,...,m}, we set

Dy = NierD;

We let ¢ : D — X the inclusion. For each I # 0, we let ¢y : Dy — D,
iy : Dy — X be the inclusions; for I € J C {1,...,m} we have as well the
inclusion ¢r y: Dy — Dr.

Recall that D is a strict normal crossing divisor if for each I, Dy is smooth
over k and codimy Dy = |I].

We extend this notion a bit: We call a closed subscheme D C X a strict normal
crossing subscheme if X is in Sm/k and, locally on X, there is a smooth locally
closed subscheme Y C X containing D such that D is a strict normal crossing
divisor on Y

6.2. THE TUBULAR NEIGHBORHOOD. Let D C X be a strict normal crossing
subscheme with irreducible components D1, ..., D,,. For each I C {1,...,m},

I # 0, we have the tubular neighborhood co-presheaf 7X(D;) on D;. The
various inclusions ¢y, give us the maps of co-presheaves

i1, 1 11,0+(7X(Dy)) = 725 (Dy);
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pushing forward by the maps ¢; yields the diagram of co-presheaves on Dz,
(with values in cosimplicial pro-objects of Sm/k)

(6.2.1) I u.(7X(Dy))

indexed by the non-empty I C {1,...,m}. We have as well the diagram of
identity co-presheaves

(622) I— LI*(DIZar)
as well as the diagram

(6.2.3) I . (A, )

We denote these diagrams by TEX (D), De and A}, , respectively. The projec-
tions p; : A}, — Dizay and the closed immersions ip, : AL, — 7X(Dy)
yield the natural transformations

D. &= A3, 227X (D).

€

Now take F € Spt(k). Applying E to the diagram (6.2.1) yields the diagram
of presheaves on Dz,

I — . (E(X(Dr))

Similarly, applying F to (6.2.2) and (6.2.3) yields the diagrams of presheaves
on DZar

I— 11.(E(Drzar))
and
I— L]*(E(AEIZM)).

DEFINITION 6.2.1. For D C X a strict normal crossing subscheme and E €
Spt(k), set

B(r (D)) = holim.r. (E(rX (D1)))
Similarly, set

E(D,) := h?j&iqr)n t1«(E(Dy))
B(Ap,) = holimr. (B(AD,)
O
The natural transformations ip and pe yield the maps of presheaves on Dy,
E(D.) % B(Ap,) <2 E(rX(D)).

PROPOSITION 6.2.2. Suppose E € Spt(Sm/k) is homotopy invariant and sat-
isfies Nisnevich excision. Then the maps i, and p; are Zariski-local weak
equivalences.
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Proof. The maps p} are pointwise weak equivalences by homotopy invariance.
By Theorem 3.2.1, the maps ip, are Zariski-local weak equivalences. Since
the homotopy limits are finite, the stalk of each homotopy limit is weakly
equivalence to the homotopy limit of the stalks. By [8] this suffices to conclude
that the map on the homotopy limits is a Zariski-local weak equivalence. [

Remark 6.2.3. One could also attempt a more direct definition of rf (D) by
just using our definition in the smooth case ¢ : W — X and replacing the
smooth W with the normal crossing scheme D, in other words, the co-presheaf
on DZar .

D\ F — Ax\p p\p-

Labeling this choice rf (D)naive, and considering TEX (D)naive as a constant di-
agram, we have the evident map of diagrams
¢ TeX (D) — TeX (D)naive

We were unable to determine if ¢ induces a weak equivalence after evaulation
on E € Spt(k), even assuming that F is homotopy invariant and satisfies
Nisnevich excision. We were also unable to construct such an E for which ¢
fails to be a weak equivalence. ]
6.3. THE PUNCTURED TUBULAR NEIGHBORHOOD. To define the punctured

tubular neighborhood 7'32 (D), we proceed as follows: Fix a subset I C
{1,...,m}, I #0. Let p: X’ - X, s: Dy — X' be a Nisnevich neighborhood
of Dy in X, and let Dx: = p~!(D). Sending X’ — X to A%X, gives us the
pro-scheme A%c x.p,» and the closed immersion A%C X.D; — A’}( p,- Varying
n, we have the cosimplicial pro-scheme ABC x,p,;» and the closed immersion
AECX,DI - Afx,D,-

Take a closed subset F' C Dy, and let U := Dy \ F. As in the definition of the
punctured tubular neighborhood of a smooth closed subscheme in section 4.1,
we pass to the appropriate cofinal subcategory of Nisnevich neighborhoods to
show that the open complements A’}(\ U \ A%\ FCX\F,U for varying n form a
cosimplicial pro-scheme

ne AT)L(\F,U \ ATIL)\FCX\F,U'

Similarly, we set
TeX(Da DI)O(U) = A;(\F,U \ A*D\FCX\F,U'
This forms the co-presheaf Tf (D, D[)O on Djyz.,. The open immersions
FrO) : A% \ Abypexvr — Ary
define the map A )
J1(U) : 7X(D, D)°(U) — 75 (Dr)(U),
giving the map of co-presheaves

5’1 : TEX(D,DI)O — TCX(D]).
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For J C I, we have the map i : A},DI — A}DJ and

A—1 7 A % _AK
LJ,I(ADCX,DJ) = ADcX,DI'

Thus we have the map 9 ; : rf (D,D;)° — rf (D,D,)? and the diagram of
co-presheaves on Dza,

(6.3.1) I . (7X(D, D;)°)
which we denote by TEX (D)°. The maps j; define the map
j:7 (D)’ = X (D).

The projection maps 7y : TEX (Dy) — X (where we consider X as the constant
co-presheaf on Djz,,) restrict to maps 7% : 7% (D, D;)® — X\ D, which in turn
induce the map

7 7X(D)° - X\ D,

where we consider X \ D the constant diagram of constant co-presheaves on
DZar-

DEFINITION 6.3.1. For E € Spt(k), let E(T€X (D)) be the presheaf on Dz,
E(rX(D)°) = holim }LI*E(T{( (D, D;)°).

The map j defines the map of presheaves

i E(rX (D)) — E(rX(D)").

€

We let EDzar (T€X (D)) denote the homotopy fiber of j*. Via the commutative
diagram

E(X\F)— 2 L E(X\D)

fJ JW

B(r(D)(D\ F) = B(r(D))*(D\ F)

€
we have the canonical map

7%« BPze(X) — EPze (£X (D).

€

We want to show that the map 77, is a weak equivalence, assuming that F is
homotopy invariant and satisfies Nisnevich excision. We first consider a simpler
situation. We begin by noting the following

LEMMA 6.3.2. Let Of denote the category of non-empty subsets of {1,...,n}
with maps the inclusions, let C be a small category and let F : C x O —
Spt° ™ be a functor. Let holimg, F @ C — Spt°™ ™ be the functor with
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value the simplicial spectrum m + holimgy F(i X [m]) at i € C. There is a
isomorphism
Tot(holim F') — holim Tot(F).
O Or

in HSpt(C°P).

Proof. Letting O™ be the category of all subsets of {1,...,n} (including the
empty set), we may extend F to Fx : 0" — Spt(Ord°®) by F * () = 0.
Similarly, given a functor G : 0" — Spt, we may extend G to Gy, : Dg“ — Spt
by Gy(I) =0, Gy(IU{n+1}) = G(I) for I C {1,...,n}. We define the iterated
homotopy fiber of G, fib,,G € Spt, by
hofib,, (G) := holim Gj.
op+1

One easily checks that for a map g : A — B of spectra, considered in the
evident manner as a functor g; : [J' — Spt, we have hofibg = hofib;g;. More
generally, if we let ¢_,i, : 0"~! — [0 be the inclusions

i (I):=1, iy(I):=1U{n}

we have the evident natural transformation w : ¢+~ — 74 and for G : 0" — Spt
a functor, we have a natural isomorphism

hofib,, -1 G(w)
—_—

hofib(hofib,,_1G o i_ hofib,,_1G o i) 2 hofib, G,

hence the name iterated homotopy fiber. Finally, one has the natural isomor-
phism
hofib, Gx = Q hoDIim G
0

for G : Oy — Spt.
Since Tot is compatible with suspension we may replace our original functor
F with XF = Q~!F; using induction on n, it suffices to show that there is a
natural isomorphism in HSpt(C°P)

Tot(hofibF) — hofibTot(F')
for F: A — B a map in Spt©*©rd”™.
For this, note that for f : X — Y a map of spectra, there is a natural weak
equivalence

a(f) : Zhofibf — hocofibf

Since Tot commutes with suspension and preserves weak equivalences, it suffices
to define a natural weak equivalence

Tot(hocofibf) — hocofib(Tot f).

In fact, since Tot preserves cofiber squares and is compatible with the wedge
action of pointed simplicial sets on Sptord " and Spt, there is a natural iso-
morphism Tot(hocofibf) — hocofib(Tot f), completing the proof. O
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This lemma allows us to define a simplicial model for FDPzar (T€X (D)), induced

by the cosimplicial structure on the co-presheaves TeX (D) and TeX (D7)°. In
fact, let

X L . AN
E(r2 (D)) = h?;%n LI*E(AX,DIZar)

BE(rX(D)Y), = h?jéién e EAY 5 \Abex.pig)

and set
EPz (7X(D)),, = hofib(j; : E(rX (D)), — E(rX(D)%)n).

€

It follows from lemma 6.3.2 that E(TEX(D)), E(Tex (D)°) and EPzx (T€X (D))
are isomorphic in the homotopy category to the total presheaves of spectra
associated to the simplical presheaves

n— B(rX (D)),
n i E(rX(D)"),
n— EPz (:X (D)),

respectively. The map 7}, is defined by considering EPZ (X) as a constant
simplicial object. Let

Tho: EP?(X) — EP2r (7X(D))g

be the map of EP%(X) to the 0-simplices of EPza (7')2 (D)).

€

PROPOSITION 6.3.3. Suppose that E satisfies Nisnevich excision and D is a
strict normal crossing subscheme of X. Then wp, o is a weak equivalence.

Before we give the proof of this result, we prove two preliminary lemmas.

LEMMA 6.3.4. Let x be a point on a finite type k-scheme X, let Y = Spec Ox ,
and Z and W be closed subschemes of Y. Then YZh Xy W = ngw.

Proof. Since Y and W are local, the pro-schemes EA/Zh and WZQW are represented
by local Y-schemes. If Y/ — Y,s : Z — Y’ is a Nisnevich neighborhood
of ZinY,and i : ZNW — W is the inclusion, then Y’ xy W — W,
(81zrw 1) : ZNW — Y’ xy W is a Nisnevich neighborhood of Z N W in W,
giving us the W-morphism
fVAngWHYZh XyW

As W is local, we have a co-final family in the category of all finite type étale
morphisms W' — W of the form W’ = Spec (Ow [T}/ F)g, i.e., the localization
of Ow [T/ F with respect to some G € O[T, where (OF/JT, F) is the unit ideal
in Ow[T]e. Those W/ — W of this form which give a Nisnevich neighborhood

of ZNW are those for which F' contains a linear fac‘Eorl modulo the ideal Iz~w
of ZNW. Each such pair (F,G) lifts to a pair (F,G) of elements in Oy [T]

DOCUMENTA MATHEMATICA 12 (2007) 71-146



96 MARC LEVINE

such that Spec (Oy [T]/F)g — Y is étale, and such that the linear factor in F
mod IzAw lifts to a linear factor of F mod I 7. This easily implies that f is an
isomorphism. O

Let i : W — Y be a closed immersion of finite type k-schemes, E € Spt(Yzar).
Define the functor

it Spt(Yzar) — Spt(Wzar)
by
(i'E)(W \ F) :=hofib(BE(Y \ F) — E(Y \ W))
for each F' C W closed.

For each I C {1,...,m}, let ¢y : Dy — D be the inclusion. For J C I, and
F C D closed, the diagram of restriction maps

E(D\ (DN F)) —— E(D\ Dr)

| |

E(D\(D;NF)) —— E(D\Dy)
gives the map
L[*L!IE — L]*L!JE

LEMMA 6.3.5. Suppose E € Spt(Dyay) is satisfies Zariski excision. Then the
evident map

hocolim L]*L!IE — F

ey

s a pointwise weak equivalence.

Proof. Suppose temporarily that D is an arbitrary finite type k-scheme, written
as a union of two closed subschemes: D = D'UD?, and take an E € Spt(Dza,)
which is additive. Let D'2 := D'ND?2, with inclusions ¢/ : DI — D, (1?2 : D12 —
D, /12 : D12 — DJ. We have the natural map

1,12

WL
! * 1
L12*L‘12E E— LlLl‘E

*

hocolim L2,12l N )
1
22E

We first show that « is a pointwise weak equivalence. It suffices to show that
« is a weak equivalence on global sections, equivalently, that the diagram

EP? (D) —— EP' (D)

|

EP*(D)— E(D)

is homotopy cocartesian.
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The homotopy cofiber of EP' (D) — E(D) is homotopy equivalence to E(D \
D') and the homotopy cofiber of EP"* (D) — EP*(D) is homotopy equivalent
to EP*\P**(D\ D'2). Since

D\D12:D1\D12HD2\D12

and F is additive, the map on the homotopy cofibers is a weak equivalence, as
desired.

The proof of the lemma now follows easily by induction on the number m of
irreducible components of D = U™ D;. Indeed, write D = D'UD?, with D! =
D, and D? = Ui, D;. Note that the Zariski excision property is preserved by
the functor i' and that a presheaf that satisfies Zariski excision is additive. By
induction the maps

. 1 1
hocolim tr.7 B — LELQ'E
0#IC{2,....,m}

. 1 !
hocolim  tut7E — L12L12'E
{13GIc{1,....m}
are pointwise weak equivalences. Thus the map

1,12

g
! * !
1ot PE —— LU E

*

. 1 .
hocolim ¢y.t7E — hocolim | 2,12
reqper -

!
22E

is a pointwise weak equivalence; combined with our previous computation, this
proves the lemma. O

Proof of proposition 6.3.3. Write D as a sum, D = Z:Zl D, with each D,
smooth (but not necessarily irreducible), and with m minimal. We proceed by
induction on m.

For m = 1, Nisnevich excision implies that the natural map

EDzar (X) — EDzar (Xg)

is a weak equivalence in Spt(Dza,). Since D is smooth, the map EDzer (X'g) —
EDzar (T€X (D))o is an isomorphism, which proves the result in this case.
By lemma 6.3.5 it suffices to show that L!I(ﬂio) is a weak equivalence for all I.
More generally, let ¢ ; : D — D be the inclusion for I C J. If E satisfies
Zariski excision on Dz, the same holds for L!IE on Dy 7., and there is a natural
weak equivalence

i E) — 4 E

Thus it suffices to show that ¢} (7o) is a weak equivalence for all i € {1,...,m},

e.g., for i = m. In what follows, we will only apply L!I to presheaves F which
satisfy Zariski excision, which suffices for the proof.
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We use the following notation: for W C Dy a closed subset, we let EWzar (X))
denote the presheaf on Dy

EWzr (X)(Dy \ F) := EY\F(X \ F).
We use the same notation for the presheaf
D\ F— EW\F(X\ F)

on Dy, relying on the context to make the meaning clear.

Clearly !, tmsEPmzr(X) — EPmzar(X) is a weak equivalence and the
map EPmzar(X) — EDPzar(X) induces a weak equivalence i) EPmzar(X) —
1}, EPz (X)), so we need to show that

B (X) — 1, BP2 (X (D))o = i3, (holim BX2rxPess (X, )

is a weak equivalence.
For this, we decompose the set of non-empty I C {1,...,m} into three sets:

1. I ={m},
2. I withm &1,
3. I with {m} G I.

Let
By = L!mEf(gmxXDzar(Xgm)
By = hgggn%EXgIXXDZ”(X?)I)
Es5 := holim LinEX’gI X Diar (ng)

{m}GI

We thus have the isomorphism

Ey
h A~
i holim Xy > x Prar (X},) ) = holim
140
FEy —— E3
For I of type 2, lemma 6.3.4 says that the natural map
th)lu{m} Xx Dm — th)l Xx Dm
is an isomorphism. Since the restriction map
“h N xh Daar 4
A BB Pr () B P PR
identifies itself with the pull-back
X5 Dmzar ( Y h Xp X x Dmzar , -1
BB xxDuae (R ) g¥broon (XB,0)
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the Nisnevich excision property of F implies that Fo — FEj3 is a weak equiva-
lence. Thus

Ey
FE; — holim l

FEy —— Ej3
is a weak equivalence, and
FDmzar (X) N L!mEDzar (TEX (D))O — L!m (holién EXBI X x Dzar (Xgl))
I#
is identified with
EDmza (X)) L!mEXg’" xxDzar (X ) = F XD X X Dmzar (X,

which is a weak equivalence by Nisnevich excision. O

PROPOSITION 6.3.6. Suppose that E is homotopy invariant and satisfies Nis-
nevich excision, and D is a strict normal crossing subscheme of X. Then

w5« EP7r (X)) — EPzr (72X (D))

€

is a weak equivalence in Spt(Dzar).
Proof. Let p,, : A, — D be the projection. Applying Proposition 6.3.3 to the
strict normal crossing subscheme A%, of A%, the map
n n EF
Tap0 ¢ Ps B P2ar (A% ) = P B Pz (12X (A))o
is a weak equivalence for each n. Thus
Tay, 1 pa B P (M%) — B2 (7X(D))

is a weak equivalence. Indeed, EPzar(7X

(D) is a simplicial object with n-
simplices pn*ENfL’Zar (TEA X (A”%))o. Since E is homotopy invariant, the map

P BP7(X) = p ESPza (AY)
is a weak equivalence, whence the result. ]
We can now state and prove the main result for strict normal crossing schemes.

THEOREM 6.3.7. Let D be a strict normal crossing scheme on some X € Sm/k
and take E € Spt(k) which is homotopy invariant and satisfies Nisnevich ex-
cision. Then there is a natural distinguished triangle in HSpt(Dzar)

EP7(X) 22 B(D,) 22 E(+X(D)°)

Proof. By proposition 6.3.6, we have the weak equivalence
75« BP7r(X) — EPzr (72X (D).
By Proposition 6.2.2, we have the isomorphism

(p5) "'y : B(rX (D)) — E(D.).

€
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in HSpt(Dzar). Since EP (TEX(D)) is by definition the homotopy fiber of the
restriction map E(7X (D)) — E(rX(D)°), the result is proved. O

7. COMPARISON ISOMORPHISMS

We give a comparison of our tubular neighborhood construction with the cat-
egorical version Li* Rj, of Morel-Voevodsky.

7.1. MODEL STRUCTURE AND CROSS FUNCTORS. Fix a noetherian separated
scheme S of finite Krull dimension, and let Schg denote the category of finite
type S-schemes (for our application, we will take S = Speck for a field k).
Morel-Voevodsky show how to make the catgory SH 1 (X) functorial in X €
Schg, defining an adjoint pair of exact functors Lf*, Rf, for each morphism
f:Y — X in Schg. Roendigs shows in [39] how to achieve this on the model
category level and in addition that this structure extends to give cross functors
(fe, f*, f', 1) as defined by Voevodsky and investigated in detail by Ayoub
[3]. We begin by describing the model structure used by Roendigs, which is
different from the one we have used up to now, and recalling his main results.
For B € Schg, we denote by Spc,,,.(Sm/B) the model structure on
Spc,(Sm/B) described by Roendigs in [39]. To describe this model structure,
we first recall the projective model structure Spe(Sm/B)pr0j on Spe(Sm/B).
Here the weak equivalences and fibrations are the pointwise ones and the cofi-
brations are generated by the maps

Z x OA" — Z x A",

with Z € Sm/B. This induces a model structure Spc,(Sm/B)p0; on
Spc,(Sm/B) by forgetting/adjoing a base-point. One has a functorial cofi-
brant replacement E¢ — E defined as in [34, Lemma 1.16].

The model structure Spc,,,..(Sm/B) is defined by Bousfield localization: the
cofibrations are the same as in Spc, (Sm/B)pw0j. E is fibrant if E(() is con-
tractible, E is a fibrant in Spc, (Sm/B)py.;, E transforms elementary Nisnevich
squares to homotopy fiber squares and transforms Z x A’ — Z to a weak equiv-
alence. A map A — B is a weak equivalence if Hom(B¢, E) — Hom(A¢, E) is
a weak equivalence for each fibrant E. The fibrations in Spc,,,..(Sm/B) are
determined by having the right lifting property with respect to trivial cofibra-
tions.

Let f: X — Y be a morphism in Schg. We have the functor

f«:Spc,(Sm/X) — Spc, (Sm/Y)
defined by pre-composition with the pull-back functor — xy X, i.e.
HEY' —=Y):=EY xy X — X).

f+« has the left adjoint f* defined as the Kan extension, and characterized by
[F(Y]) =Y xy Xy for Y - Y € Sm/Y. In case f is a smooth morphism,
f* is given by precomposition with the functor

fo—:Sm/X — Sm/Y,
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and thus has the left adjoint fy characterized by

Rz x) =22y
on the representable presheaves. We have

PROPOSITION 7.1.1 (proposition 2.18 of [39]). Let f : X — Y be a mor-
phism in Schg. Then (f*, fi) is a Quillen adjoint pair SpcC, .. (Sm/X) —
SPC ot (SmM/Y). If f is smooth, then (fy, f*) is a Quillen adjoint pair
Spc*mot(sm/y) - Spc*mot(sm/X)'

For spectra, the projective model structure Spt, . (Sm/B)pre; on Spt(Sm/B)
is defined as follows: For ¢ : E — F a morphism in Spt(Sm/B), ¢ : E — F
is a cofibration if ¢g : Ey — Fy is a cofibration in Spc Sm/B) and if for
each n > 1, the map

¢n ) E¢n—1 B, UsE,_1 YF,_1— F,

is a cofibration in Spc,(Sm/B)y.0j. Weak equivalences (resp. fibrations) are
maps ¢ such that ¢,, is a weak equivalence (resp. fibration) in Spc,,,.(Sm/B)
for all n. There is a functorial cofibrant replacement E¢ — FE.

Now for the motivic model structure Spt, ..(Sm/B): The cofibrations are
the same as in Spt,,(Sm/B),w0j. ¢ is a fibration if ¢, is a fibration in
Spc Sm/B) for all n and the diagram

*mot(

*mot(

E, —— QFE, 1

¢nJ Jﬂ¢n+1

Fy, —— QFp1

is homotopy cartesian in Spc,,,..(Sm/B) for all n. There is a fibrant replace-
ment functor E — E7; ¢ : E — F is a weak equivalence if ¢/ : Ef — F/ is a
weak equivalence in Spt, . (Sm/B)pro;.

Given f : X — Y in Schg, define the functors f, : Spt(Sm/X) — Spt(Sm/Y)
and f* : Spt(Sm/Y) — Spt(Sm/X) by fo(E)y = f2(En), f*(F) = f*(Fa).
If f is smooth, we have f; : Spt(Sm/X) — Spt(Sm/Y’) defined similarly by
Js(E)n = f3(En).

We have the following result from [39]:

PROPOSITION 7.1.2 (proposition 2.23 of [39]). Let f : X — Y be a morphism in
Schg. Then (f«, [*) is a Quillen adjoint pair Spt,,,(Sm/X) < Spt(Sm/Y).
If f is smooth, then (fy, f*) is a Quillen adjoint pair Spt,..(Sm/Y) <
Spt,o:(Sm/X). In particular:
(1) f* preserves cofibrations and trivial cofibration and f. preserves fibra-
tions and trivial fibrations.
(2) if f is smooth, then f* preserves fibrations and fy preserves cofibrations

It is clear that a cofibration in Spt,,,(Sm/X) is pointwise a cofibration in Spt,
hence a cofibration in Spt: (Sm/Xn;s). As mentioned in [39] a fibrant object
in Spt,,..(Sm/X) satisfies both Nisnevich excision and is Al-local, hence the
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weak equivalences between fibrant objects in Spt,, .. (Sm/X) are weak equiv-
alences in Spt,:(Sm/Xnis) and are in fact pointwise weak equivalences in
Spt(Sm/X); similarly one shows that each fibration in Spt,: (Sm/Xn;s) is a
fibration in Spt,,.. (Sm/X) and each (trivial) cofibration in Spt,, ,(Sm/X) is
a (trivial) cofibration in Spt,: (Sm/Xyis). Thus the identity on Spt(Sm/X)
defines a (left) Quillen equivalence Spt, ..(Sm/X) — Spt,: (Sm/Xnis). In
particular, we have the equivalence of the homotopy categories

HSptAl (Sm/XNiS) = Hsptmot(sm/X)

We write SHu1(X) for either HSpt, .. (Sm/X) or HSpt,:(Sm/Xnis), de-
pending on the context.
One main result of [39] is

THEOREM 7.1.3 ([39, corollary 3.17]). Sending f : Y — X in Schg to
Lf* : SHu(X) — SHp(X) satisfies the conditions of [3, definition 1.4.1].
In particular, the properties of a “2-foncteur homotopique stable” described in
[3] are satisfied for X — SHy1(X).

Remark 7.1.4. Let © : D — X be a closed immersion in Schg with open
complement j : U — X. We have the functor

Li*Rj. : SHp1 (X \ D) — SHu1 (D),

We would like to view our construction F (TgX (D)%) as a weak version of Li* Rj,,
in case D is a normal crossing divisor on a smooth k scheme X, the in-
put E is the pull-back from Spt(Sm/k), and the output E(Tf(D)O) is in
HSpt(Dzar). In particular, E(Tex (D)?) is only defined on Zariski open subsets
of D, rather than on all of Sm/D. In this section, we make this statement pre-
cise, defining an isomorphism of E(TEX(D)O) with the restriction of Li*Rj.(FE)
to HSpt(Dzay). O

7.2. THE SMOOTH CASE. Let 7: W — X be a closed immersion in Schg with
open complement j : U — X. Let

O: Sptmot(sm/U) - Sptmot(sm/W)
be the functor representing Li* Rj,, i.e.
O(E) =" (4. (B1)").

Remark 7.2.1. Even for E € Spt,,..(Sm/U) bifibrant, one cannot simplify this
expression for Li*Rj,E beyond replacing Ef with E. The inexplicit nature of
the cofibrant and fibrant replacement functors make a concrete determination of
Li*Rj, FE difficult, which is one advantage of our approach using the punctured
tubular neighborhood. O

LEMMA 7.22. Let i : W — X be a closed immersion in Schg with open
complement j: U — X.
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(1) For fibrant E € Spt,..(Sm/U) all the maps in the square
J«(E)* —— Rj.(E)°

L

J«(E) —— Rj.(E)

are pointwise weak equivalences
(2) Let X! — X be in Sm/X, let W := W xx X'. There is a canonical
map
Ve i Ri(E)(X') — OE(W)
natural in X'.

Proof. (1) Since E is fibrant, the canonical map E — EYf is a trivial cofi-
bration of fibrant objects in Spt,,.(Sm/U), hence a homotopy equivalence.
Thus j.E — Rj.E := j.(Ef) is a homotopy equivalence of fibrant objects in
Spt,,.:(Sm/X), hence a pointwise weak equivalence. Applying the cofibrant
replacement functor, we see that (j.E)¢ — (Rj.F)° is also a homotopy equiv-
alance and a pointwise weak equivalence. Also the cofibrant replacement maps
(j+E)¢ — j«E, (Rj.E)¢ — Rj.E are trivial fibrations between fibrant objects
of Spt, .. (Sm/X), hence are both pointwise weak equivalences.
For (2), the unit id — é.¢* for the adjunction applied to (Rj.E)¢ gives us the
map

Vi (RjE)(X') — ixi* (Rj B)*(X)
natural in X'. As i.*(Rj.E)(X') = i*(Rj.E)*(W'), we have the natural
transformation

Vot (RjE)(X') — i* (Rj B) (W)
Composing with the canonical map i*(Rj.E)¢ — (i*(Rj.E)¢), = O(F) gives
us the map we want. O
For E € Spt(Sm/B) or in Spt(Bxis), we let Ez,, denote the restriction to
Spt(Bzar). Identifying SHy1(B) with the homotopy category of bifibrant
objects in Spt,,..(Sm/B), we have the similarly defined restriction functor
SHp1(B) — HSpt(Bzar) sending E to Ey,,.
Let i : W — X be a closed immersion in Sm/k with open complement j : U —
X. We note that the “evaluation” maps

B E(GX (W), B B (W)°)
are in fact defined for £ € Spt(Sm/X). Similarly, the evaluation map E +—
E(rX(W)?) is defined for E € Spt(Sm/U). In addition, for E € Spt(Sm/U)

€
we have a canonical isomorphism

(7.2.1) E(rX(W)°) = (. B)(rX (W)
since A’}(W \ A, = A}W xx U (as a pro-scheme).

LEMMA 7.23. Let i : W — X be a closed immersion in Sm/k with open
complement j : U — X, and let E € Spt_,.(Sm/U) be fibrant.
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(1) There is a map
N (RjE) (X (W) — O(E)zar
in HSpt(Wzar), natural in E.

(2) Let
J J

E(rX(W)0) — = . (B)(7X (W) — Rju(B)(rX (W)

€ €

be the diagram in Spt(Wgza,) formed by evaluating the diagram of

lemma 7.2.2(1) at 7X(W), and adding the isomorphism (7.2.1). Then
all the maps in this diagram are pointwise weak equivalences.

Proof. By lemma 7.2.2, we have maps

Mt (RiE)(X') — O(E) (X' xx W)
natural in X’ € Sm/X. For each open subscheme U = D\ F C W, the maps
n Aty define the map

X\F, U
- (U) : (RiE) (75 (W)(U)) — O(E)(Ap).
Since O(E) is A'-local, the canonical map O(E)(U) — O(E)(A},) is a weak
equivalence. This gives us the natural map in HSpt(Wza,)
1°: (RjB)°(rX (W) = O(E)zar,

proving (1).
(2) follows immediately from lemma 7.2.2(1). O

Combining the morphism (1) with the diagram (2) gives us the canonical mor-
phism in HSpt(Wy.,)

My« B (W)°) — O(E)zar.
Let i : D — X be a closed immersion in Schg. We have the exact functor
it SHp1(X) — SHpi (D) which is characterized by the identity for fibrant
E € Spt,,(Sm/X):
ii' E(X" — X) := hofib(E(X') — E(X' xx (X \ D)).
In fact, this operation gives the distinguished triangle, natural in fibrant E €
Sptmot(sm/X):
Rii'E — E — Rj.j*FE — i, E[1].
Applying Li* (and noting that the counit Li*Ri. — id is an isomorphism [3,
definition 1.4.1]) gives the distinguished triangle in SH 1 (D)

(7.2.2) i'E — Li*E — O(j*E) — i'E[1]
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We refer the reader to [3, proposition 1.4.9] for the construction of this triangle
in the abstract setting.

PROPOSITION 7.2.4. Let E € Spt,,..(Sm/k) be fibrant, let f : X — Speck
be in Sm/k and let i : W — X be a closed immersion in Sm/k with open
complement j : U — X. Then

7710E : E(TEX(W)O) — O " E)zar
is an isomorphism in HSpt(Wza,).

Proof. Let fyyr : W — Speck be the structure morphism. Since f and fi = fu
are smooth, we have Lf* = f* fy, = L(fi)* = Li*f*, so Li* f* is isomorphic
to the restriction functor for fyro— : Sm/W — Sm/k. The definition of i* gives
the commutative diagram for each X’ — X in Sm/X (with W' := X' xx W)

EW'(X')—— E(X)
Sl
PfFEW) — Li* f*E(W') = E(W')
where nx- is just the restriction map E(X’) — E(W’) and ¢x- is the canonical
isomorphism given by the definition of i'. Using lemma 7.2.3, this gives us the
map of distinguished triangles in SH
EW(X) —— B(X') ——— B(X' \ W") ——— %' (x")1
d)Xl lnx/ Jn;,
i'f*EW') —— E(W') —— Li*Rj.j* f*E(W') —— ' f*E(W")[1]
Just as for %, these give rise to the natural map in HSpt(Sm/Wz,,)
ne 2 B(rX (W) = Li* [ Bar

and the commutative diagram in HSpt(Wzar)

BV (X) = E(rX (W) — B (W)°) — B (X)[1]

| ] 4 J

i f* Bgar — Li* f* Ezay — Li*Rjj* f* Ezar — @' [* Egar [1]

The bottom row is the distinguished triangle (7.2.2) for f*E, restricted to Wzay,
and the top row is the distinguished triangle of corollary 4.1.3, after applying
theorem 3.2.1. Similarly, theorem 3.2.1 shows that 7 is an isomorphism in
HSpt(Wzar). Since ¢ is an isomorphism in HSpt(Wza,) n° is an isomorphism
as well. O
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7.3. THE NORMAL CROSSING CASE. We fix a reduced strict normal crossing di-
visor i : D — X on some X € Sm/k. Write D = 3" | D; with the D; smooth.
For X’ — X in Sm/X, we write D’ for X’ xx D and D} for X' xx Dy and
for I  {1,...,m}. As in the previous section, we note that our definition
of BE(tX(D)) extends without change to E € Spt(Sm/X), and similarly, the
construction of E(7X (D)%) extends without change to £ € Spt(Sm/X \ D).
The extension of proposition 7.2.4 to the normal crossing case follows essen-
tially the same outline as before, with some additional patching results for the
operation Li*Rj, that allow us give a description of Li*Rj. as a homotopy

limit, matching our definition of E(7.X(W)?).
LEMMA 7.3.1. Suppose that F € Spt(Sm/D) satisfies Nisnevich excision. For
Ic{l1,....,m}, I#0, let Fr be the presheaf on Sm/X
Fi(X'):= F(X{, xx D).
Then the canonical map
i+ " — holim Fy
120
is a weak equivalence in Spt(Sm/X).
Proof. Let {U; — D' | j € M} be a Nisnevich cover of D, with M a finite set.

For J € M, set Uy := Hje.l U;, where the product is x p,. Since F satisfies
Nisnevich excision, the canonical map

F(D') — holim F(U
(D) — olim (Us)

is a weak equivalence. An argument similar to that of lemma 6.3.2 shows
that one can replace the U; with a pro-system of Nisnevich covers (with M
fixed). Similarly, the Zariski stalk of holim; F; at x € X' € Sm/X is weakly

equivalent to holimy_g F(X;,hD/ x x D), where X/ = Spec Ox/ 5. Thus we need
W

only show that for X’ — X smooth, with X’ local, the schemes U; := )A(bh,_ xxD

form a pro-Nisnevich cover of D', and that

HUnggl} Xx D

iel
for each non-empty I C {1,...,m}.
In fact the pro-schemes th,_ xx D, i = 1,...,m, obvioiusly form a pro-
Nisnevich cover of D’; it follows from lemma 6.3.4 that for each I C {1,...,m},

I # (), we have natural isomorphisms (where [] is X x/)
Ch o~ h
1155, = x5,
i€l
Thus (with the product over D’)
]:[Xglq/ XngXgL} xx D.
i€l
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LEMMA 7.3.2. Leti : D — X be a strict normal crossing divisor on some
f X — Speck in Sm/k, and let E € Spt,,..(Sm/U) be fibrant. Then there
is a canonical map in HSpt(Dzay),

N 2 BE(rX(W)°) — O(E)zar,
natural in E.

Proof. As in the smooth case, we construct n% using lemmas 7.2.2 and 7.3.1.
Indeed, let j : X\ D — X be the inclusion. Let O(E) zar denote the pull-back
of ©(E) to Spt(XgI X x Dzar). Let ©(E)},., be the presheaf

O(E)1zar(U) := O(E) 1zar (A7)
Similarly, let ©(E)3,,, denote the presheaf on Dzax
O(E)z.:(U) := O(E)(Ap)
and let ©(F)za, denote the restriction of O(FE) to Dza,.
The construction of lemma 7.2.3 gives us the diagram of maps
.1+ (RjE) (7 (Dr)) — O(E) 0

and thus the map

i : (Rj.E)* (75 (D)) — holim(I' = O(F)za:)

€

By lemma 7.3.1 we have the canonical isomorphism in HSpt(Dz,;)

holim(I — O(E)} = O(E) 7,
?;é%n( — ( )IZar) ( )Zar

Since O(F) is A'-homotopy invariant, the canonical map O(E)za, — O(E),,
is a pointwise weak equivalence, giving us the map in HSpt(Dz.,)

7% : (Rj.E)*(rX (D)) — O(E)zar

Using the diagram of lemma 7.2.3, with W = Dy, and then taking the appro-
priate homotopy limit, we arrive at a canonical isomorphism in HSpt(Dza,)

(Rj.E)*(rX (D)) 2 BE(rX(D)").

€ €

Combining 7% with this isomorphism gives us the desired map 1%. O

LEMMA 7.3.3. Let ¢« : W — X be a closed immersion in Schg. Suppose
W is a union of closed subschemes, W = Wy U Wy. Let Wis := Wy N W,y
and let i; : W; — X, j = 1,2, 412 : Wiz — X be the inclusions. Then
for E € SH1(Sm/X) there is a canonical homotopy cartesian diagram in
SHu1(Sm/X)

Ri,Li*E —— Ri1. LiE

J |

Rig LiE —— Riyo, Ly E
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Proof. Throughout the proof we use the canonical lifting of Li*, Ri,, etc.,
to functors on Spt,,..(Sm/—) by taking the appropriate cofibrant/fibrant re-
placement, but we use the same notation to denote these liftings.
Let ¢ : W1 — W be the inclusion. The unit id — Re.Lt* gives the map

Li*E — Ru. L Li*E = R, LilE

in SH A1 (Sm/W); applying Ri, gives the map Ri,.Li*E — Riy,.LijE. The
other maps in the square are defined similarly; as the two compositions
Ri,Li*E — Rijo.LioFE are likewise defined by the adjoint property, these
agree and the diagram commutes.
To show that the diagram is homotopy cartesian, let 5 : U — X be the
complement of W, j; : Uy — X the complement of W7 and j' : U — Uy,
% : Dy N Uy — Uy the inclusions.
We have the distinguished triangles (see [3, Lemme 1.4.6])

Ljj*E — E — Ri,Li*E — Ljj*E1]

LjnjiE — E — Ri1.Li{E — LjnjiE[1]

Ljjj*E — jiE — Riy, Liy j{ E — Lj/j"E[1]
Applying Lji to the last line gives us the distinguished triangle

Ljij*E — LjujiE — LjnRiy, Ly j{E — Ljij*E[1]
Thus we have the distinguished triangle
LjnRiby, LibjTE — Ri.Li*E — Riy.Li{E — LjyRib, Lib 57 E[1]
The same argument applied to the complement js : Us — X of Ws, the map
j" Uy - U" :=U\ Wha, j; : U” — X and the inclusion ¢ : DoNU; — U”
gives the distinguished triangle
Lj1Riy, Liy* j1*E — Ris LisE — Rii.Lij,E — Lji Rib, Liy* j1" E[1]
Since Dy N U is closed in Uy and in U”, the natural map
LjuRiy, Liy ji E — Ljj Riy, Liy" ji" E
is an isomorphism. This shows that the diagram is homotopy cartesian. U
Given a strict normal crossing divisor i : D — X, D = Y>." | D;, we have
the inclusions ¢y : Dy — D, v1y : Dy — Dy for I C J and iy : D — X.
For E € Spt(Sm/X) we thus have the presheaves i{E € Spt(Sm/D;). The
isomorphism 7 ;i7E = ¢5E gives us the canonical maps i7E — i1 j4i5E;
applying ¢7. to this map gives us the natural maps oy : tri7E — vy 05 E.
For E € Spt,,,(Sm/X), using the cofibrant replacement of E, we see that the
same procedure gives us the functor
I 11, (i3E°) € Spt(Sm/D)

together with the natural map

- i*(E°)Y — holim vr, (i E)7.
i’ ( )*)?;é%n”(zf )
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LEMMA 7.3.4. The map « is an isomorphism in SHu1 (D).

Proof. As the co-unit Li*Ri, — id is an isomorphism, Ri, is faithful, so it
suffices to show that Ri.(«a) is an isomorphism in SH 41 (X). This follows from
lemma 7.3.3 and induction on m. O

Recall that for E € Spt(Sm/k) and i : D — X a strict normal crossing divisor,
D= Z:L D;, we have the presheaf F(Dz,;) on Dz, defined by

E(DZar)(U) = hIO;EénE(DI N U)

PROPOSITION 7.3.5. Let E € Spt, ..(Sm/k) be fibrant, i : D — X a strict
normal crossing divisor on X € Sm/k, f : X — Speck the structure morphism.
Then we have a natural isomorphism in HSpt(Dzar)

E(DZar) = Li*(f*E)Zar

Proof. Let i : Dy — X be the inclusion, f; : Dy — Speck the structure
morphism. By theorem 3.2.1, the canonical map

e« E(rX(Dr)) = (1 E)zar = Lif(f*E)zar
is an isomorphism in HSpt(Djza:). By lemma 7.3.4 the induced map on the
holim gives the desired isomorphism. O

THEOREM 7.3.6. Leti: D — X be a strict normal crossing divisor on f : X —
Speck in Sm/k, and let E be a fibrant object in Spty: (Sm/knis). Then the
map A

0y« B(rX (D)) = O(f* E)zar = [Li* Rju (f* )] zar

is an isomorphism in HSpt(Dzar).

Proof. The proof is the same as the proof of proposition 7.2.4, using the dis-
tinguished triangle of theorem 6.3.7 together with the isomorphism of proposi-
tion 7.3.5 instead of the triangle of corollary 4.1.3. O

Remark 7.3.7. Fix a fibrant E € Spt,,,..(Sm/k). Let D’ — D be in Sm/D and
suppose we have an X’ — X in Sm/X and a D-isomorphism D’ = X' x x D.
Then we can replace i : D — X with 7' : D’ — X’ and use theorem 7.3.6 to
show that our tubular neighborhood construction gives the model E(7.X'(D’)?)
for the restriction of Li*Rj.(f*E) to Sm/Dy,, .

If D and D’ are affine, then the theorem of [2] gives the existence of an X’ as
above, so our result gives at least a “local” description of the entire presheaf

Li*Rj.(f*E). O
8. LIMIT OBJECTS

Let p : X — C be a morphism in Sm/k, with C' a smooth curve. Fix a k-point
0 € C(k) and a parameter t € Ocyp. Ayoub combines the functor Li*Rj,
with a cosimplicial version of the classical path space (i.e., the universal cover)
construction to define the unipotent specialization functor

sp: SH(X \ p~1(0)) — SH(p~(0))
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Replacing Li*Rj, with the punctured tubular neighborhood, the same con-
struction gives a model of this construction as a Zariski presheaf on Xy. In
particular, we give a description of the “limiting values” lim;_,o E(X;) for a
semi-stable degeneration X — (C,0). As we mentioned in the introduction,
we expect that this construction, applied to a suitable version of the de Rham
complex (with weight and Hodge filtrations) as in [4] would yield the classical
limit mixed Hodge structure of a semi-stable degeneration.

Remark 8.0.8. In [3, chapter 3] Ayoub describes a general theory of special-
ization structures; we concentrate on the unipotent structure, which Ayoub
denotes T, and describes in [3, §3.4]. O

8.1. PATH SPACES. Before defining the cosimplicial models for various path
spaces and homotopy fibers, we recall some basic operations of simplicial sets
on schemes. We let Spc, denote the full subcategory of Spc consisting of
simplicial sets S with S([n]) finite for each n.

Let Y be a k-scheme. For a finite set S, let Y := [I,cs Y, with the product
being over Spec k. This defines the contravariant functor S +— Y from finite
sets to k-schemes. In particular, for S € Spc; we have the cosimplicial scheme

Y3 with Y5([n]) := Y3(") | giving the functor

Y7 : Spcf — Schpr.
Similarly, if T' is a simplicial set, we have the cosimplicial-simplicial set (cosim-
plicial space) 7% and the functor

T’ : Spc® — Spc©rd.

Setting Y x S := l3cgY, we have the functor S — Y x S from finite sets to
k-schemes; if S is a simplicial set as above, we thus have the simplicial scheme
Y x S, giving the functor

Y'x?:Spe; — Sch”.
The adjunction
Homgen, (X x S,Y) 2 Homgen, (X, Y?)
for S a finite set extends to S a simplicial set as above, giving the adjunction
Homg gporar (X % S,Y) = Homgepora (X, Y?)

where on the left, we consider Y as a constant simplicial scheme and on the
right, X as a constant cosimplicial scheme. This is an analog of the adjunction
for spaces

Homspc(A X S, T) = HOmSpCOrdUP (A X S, T) = Homspcom (A, TS)

where the first isomorphism is the well-known identity relating maps of bi-
simplicial sets with maps of the corresponding diagonal simplicial sets.

For E € Spc(k) and Y a simplicial object in Sm/k, we have the cosimplicial
space E(Y) with n cosimplices E(Y ([n])). For s an element of a finite set S,
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and a scheme Y € Sm/k, we have the inclusion is : Y =Y x s - Y x S; the
inclusions i : Y — Y x S, s € S induce the canonical natural map
E(Y x S) — E(Y)*®

which is an isomorphism if E is additive: E(YIIY') = E(Y) x E(Y”). This iso-
morphsim extends immediately to finite simplicial sets S € Spcy and additive
E.

Ezamples 8.1.1. (1) For a k-scheme Y, the free path space Py onY is ylo.1
where [0,1] is just the 1-simplex A[l] := Homora(—, [1]). Explicitly, Py has
n-cosimplices Y12, with structure maps as follows: Label the factors in Y12
from 0 to n 4+ 1. Send 7 : [n] — [n + 1] to the diagonal

(Y05 -+ s Yn+1) = (Y05 - -+ Yim15 Yis Yis Yit 15 - - -, Ynt1)
and send s : [n] — [n — 1] to the projection

(yO; .. 7yn+1) = (yO; e Yi—1, Y1, - 7y7‘b+1)'
The inclusion {0,1} — [0,1] gives rise to the projection Y01 — y10.1} e,
m: Py — Y X Y; we thus have two structures of a cosimplicial Y-scheme on
Py: m : Py —» Y and mp : Py — Y, with m; := p; o .

(2) For a pointed k-scheme (Y,y : Speck — Y), we have the pointed
path space

Py (y) := Py X (ry,y) SPECK.
(3) Now let p: Y — Y be a Y-scheme,, y : Speck — Y a point. We have the
cosimplicial homotopy fiber of p over y:

Pyy (@) =Y Xpx) Py (v)

We extend this definition to cosimplicial Y-schemes in the evident manner:
if Y* — Y is a cosimplicial Y-scheme, we have the bi-cosimplicial Y-scheme
Pye v (y); the extension to functors from some small category to cosimplicial
Y -schemes is done in the same way. O

Denoting the pointed k-scheme (Y, y) by Yi, we sometimes write Py, for Py (y)
and Pye )y, for Pye,y(y). For E € Spt(k), we have the simplicial spectrum
E(Py)y.)-

The pointed path space Py (y) is contractible in the following sense:

LEMMA 8.1.2. Let (Y,y) be a pointed smooth k-scheme, U a smooth k-scheme.
Then for E € Spt(k), the projection U x Py (y) — U induces a weak equivalence

E(U)— E(U x Py(y)).

Proof. To prove the lemma, it suffices to show that, for E € Spc(k), the
projection U X Py (y) — U induces a homotopy equivalence

E(U) — E(U x Py (y)).

We first show that U x Py (y) — U induces a homotopy equivalance of cosim-
plicial schemes.
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The projection [0, 1] — pt gives the map of cosimplicial schemes s : Y = Y?P! —
ylo.1, composing with the k-point y — Y gives the point s, : Speck — ylo.1
and thus the section (y,sy) : Speck — Py(y) to the projection Py(y) —
Spec k. This induces the section sy : U — U x Py (y) to the projection py :
UxPy(y) —U.

We proceed to construct a homotopy between py o sy and the identity on
U x Py (y); it suffices to construct the homotopy for U = Spec k.

For this, let o : Y01 — Y01 be the map induced by the map of simplicial
sets [0,1] — [0, 1] sending [0, 1] to 1. Then pspeck © Sspeck : Py (y) — Py (y) is
the map (idspeck,)-

Let po, py : YIOUX01 — y01] he the maps induced by the inclusions g, 1 :
[0,1] — [0,1] % [0,1], i0(z) = 2 x0, i1(z) = zx 1, and let 7 : Y — Y0U*[0:1 pe
the map induced by [0, 1]x[0, 1] — pt. Let h : ([0, 1]x[0, 1], 1x[0,1]) — ([0, 1], 1)
be any map of pairs of simplicial sets which is the identity on [0, 1] x 0 and the
map to 1 € [0,1] on [0,1] x 1. Then h defines a map

H Y1 _, yl0.1]x[0.1]
with

po o H = idy 0.1
pioH =0

Hos=m.
From these identities, it follows that (H,id,) induces a co-homotopy
Hy, : Py (y) — Py (y) !

with poo Hy = id, p1 0 Hy = Pspeck © Sspec k- Taking the adjoint of H,, we have
the homotopy

hy : PY(y) X [Oa 1] - PY(y), h’y 0l = ld; hy 011 = PSpeck © SSpeck;

where Py (y) x [0, 1] and Py (y) are to be considered as cosimplicial-simplicial
schemes, with Py (y) constant in the simplicial direction.
Applying E to idy x hy and composing with the canonical map

E(U x Py(y) x [0,1]) — E(U x py(y))[o,l]
gives us the co-homotopy
E(idy x hy) : E(U x Py (y)) — E(U x Py(y))[O,l]

between the identity and E(py o sy). Thus E(U) — E(U x Py (y)) is a homo-
topy equivalence, as desired. ]

8.2. LIMIT STRUCTURES. For our purposes, a semi-stable degeneration need

not be proper, so even if this is somewhat non-standard terminology, we use
the following definition:
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DEFINITION 8.2.1. A semi-stable degeneration is a flat morphism p : X —
(C,0), where (C,0) is a smooth pointed local curve over k, C' = Spec O¢,, X
is a smooth irreducible k-scheme, p is smooth over C'\ 0 and Xg := p~1(0) is
a reduced strict normal crossing divisor on X. O

For the rest of this section, we fix a semi-stable degeneration X — (C,0). We
denote the open complement of Xy in X by X°. We write G,,, for the pointed
k-scheme (A} \ {0},1).

Fix a uniformizing parameter ¢ € Oc¢,, giving the morphism ¢ : (C,0) —
(A},0), which restricts to ¢ : C\0 — G,;,. Let p[t] : ¥ — Al be the composition
top, and let p[t]® : X° — G,, be the restriction of p[t]. Composing p[t] with
the canonical morphism 7:¥ (X()? — X° yields the map

A0 ¥ (X0)° = G-
Let X}, ..., X" be the irreducible components of Xy. Recalling the construc-
tion of 7% (X()? as a diagram (see (6.3.1)), let us denote, for I C {1,...,m},
the co-presheaf ¢7. (7 (Xor)?) by 7% (X0)?. The map p[t]® makes 7% (Xo)? into
a diagram of co-presheaves (on Xozar) of cosimplicial pro-schemes over G,,.
We thus have the diagram of cosimplicial co-presheaves on Xgza;:

I — PTEX(XO)?/Gm .

We denote this diagram by
(8.2.1) lim X

Now let E be in Spt(k). For each I C {1,...,m}, we have the presheaf of
bisimplicial spectra on Xozar, E(P_ ®(X0)9/G ), giving us the functor
€ I m

I'e E(PTfe(Xo)(}/Gm)'

where ~ means fibrant model. Taking the homotopy limit over I of the asso-
ciated diagram of presheaves of total spectra gives us the fibrant presheaf of
spectra

E(tlg% Xt) = hloilén TOtE(,PT?(XU)?/Gm)'

Taking the global sections gives us the spectrum F(lim¢_,0 X;)(Xo), which we
denote by lim;_.g E(X%).

Remark 8.2.2. Suppose E € Spt(k) is homotopy invariant and satisfies Nis-
nevich excision. We can form the homotopy limit E(lim;_,o X;) of the diagram
of presheaves

).

Since E is quasi-fibrant (see remark 2.3.2) the map

m

E(P.x(x0)9/6.,.) = EPrx(xop/c,.)

is a pointwise weak equivalence, hence the map E(limtio X;) — E(limy—o X)
is a pointwise weak equivalence. In particular, E(lim;—oX:)(X)o) —
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lim; o E(X:) is a weak equivalence. In short, if E is homotopy invariant and
satisfies Nisnevich excision, then it is not necessary to take the fibrant model
E in the construction of E(lim;,q X;) or lims—,o E(X¢). |

We remind the reader of the presheaves E(Xpe) and E(Ax,e) on Xozar de-
scribed in definition 6.2.1.

PROPOSITION 8.2.3. Suppose E is homotopy invariant and satisfies Nisnevich
excision. Then
(1) There is a canonical map in HSpt(Xozar):

E(Xpe) X5 E(lim X;).
(2) If Xy is smooth, then E(Xpe) = E(Xozar) and yx is an isomorphism.

Proof. We have the maps

B(Xoa) 2 B(AY,.) <= E(rY(X0)).

which by proposition 6.2.2 are Zariski-local weak equivalences. Similarly, we
have the diagram of open immersions

j ¥ (X0)" — ¥ (Xo)

inducing

7 B(r¥ (Xo)) — E(r*(X0)?).

Thus we have the map

P+ E(Xoa) — E(7 (X0)°);
P =3 () Pl
Similarly, we have the projection

Pox(xo0/e, — T (X0)’,
giving the map
q* : E(TEX(XO)O) — E(/P-rf(Xo)O/Gm);

we set vx = q* o p*.
For (2), the diagram X, is just the identity copresheaf Xoza,, hence E(Xge) =
E(Xozar).- To show ~vx is an isomorphism, fix a point © € Xy. There is a
Zariski neighborhood U of x in X and a Nisnevich neighborhood X’ — X of
U in X which is isomorphic to a Nisnevich neighborhood of U in U x A'. Thus
it suffices to prove the result in the case X = Xy x Al, (C,0) = (A',0) and
p=py: X — Al
For each smooth k-scheme T, it follows from homotopy invariance and theo-

rem 3.2.1 that the canonical map p : 7X0*4" (X x 0) — Xy x Al induces a
weak equivalence

p*: B(T xg Xogar X AY) — BE(T x5 7504 (X x 0))
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The Morel-Voevodsky purity theorem [34, theorem 2.23] plus Nisnevich excision
and the homotopy property for E implies that p induces a weak equivalence

p* s ETXX0mxO(T sy Xogar x AY) — BT A%o0zaxo (T 75094 (X % 0)).

This gives us the map of homotopy fiber sequences

*
*

BT X0z X0(T 5 Xogar X AY) — ET*Mxog00x0 (T ¢, 7505B (X, % 0))

J | |

E(T Xk XOZar X Al) —P> E(T Xk 7’EXT-X\Al (XO X O))

. Sk
J J J]
(eF%

E(T Xk XOZar X Gm) —p> E(T Xk ’I'EXT;<\Al (XO X 0)0)
with p°* induced by the restriction of p,
P’ 7'€X"XAI (X0 x 0)° = Xo x Gyp,.

Thus p°* is a weak equivalence.
Applying these term-by-term with respect to the cosimplicial schemes defining
the respective path spaces, we have the weak equivalence (assuming X = Xy X
Al)

E(U X PGm) - E(,P'rf(XO)O/Gm )(U)
Thus we need only show that the projection U x Pg,, — U induces a weak
equivalence

EU) — EU x Pg,,)

for all smooth k-schemes U. This is lemma 8.1.2 O

8.3. COMPARISON. We conclude this section by connecting our construction
with the specialization functor sp for the specialization structure YT defined by
Ayoub [3, chapter 3].

Let E € Spt,..(Sm/k) be fibrant, let p: X — (C,0) be a semi-stable degen-
eration and choose a parameter t € O¢ . In this setting, Ayoub’s functor sp
applied to some E € Spt(Sm/X?) is defined as follows: First form the presheaf
E(P_,g,,) on Sm/X° by taking the total spectrum

E(’P,/G"L)(X' — XO) = TOt(E(PX//G7,L)).

where we use the composition X’ — Xx° SN G, as structure morphism. Then
sp(E) € SHx1(Sm/ X)) is represented by the presheaf

[ - c
sp(E) =i (j* (E(’P,/Gm)f) ) .
Similarly, we have the simplicial presheaf on Sm/X, with n-simplices

(B =1 (4o (B(P_ e, [n)7)°)
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Let Tot(sp(E).) denote the presheaf formed by taking the total spectrum of
n v sp(E),.

LEMMA 8.3.1. Suppose E is fibrant. Then there is a natural isomorphism in
SHa1(Xo)
Tot(sp(£)+) = sp(E)

Proof. Since E(P_ g, [n])? is fibrant, the presheaf E(P_ g, [n])7 on X0 satis-
fies Nisnevich excision and is A' homotopy invariant. Thus the same holds for
the total spectrum of the simplicial spectrum n — E(P_ /g [n])7, hence

m

Tot(n — E(P_/g,, [n])f) — (Tot(n — E(P_jg,, [n])f)f

is a pointwise weak equivalence in Spt,:(Sm/X?), and thus we still have a
pointwise weak equivalence after applying j.. Similarly, the evident map

(Tot(n — E(P_/g,, [n]))f — (Tot(n — E(P_g,, [n])f)f

is a pointwise weak equivalence. Taking cofibrant models and applying i* gives
the isomorphism in SH1(Xp)

sp(E) = i* ((Tot(n — BE(P_ g, [n]) )C) :

On the other hand, taking the total complex commutes with taking the
cofibrant model, and with the functor i*, so we have the isomorphism in
Spt 0 (Sm/ Xo)

sp(E) = i* ((Tot(n > E(P_sc,, [1])))°)
=~ Tot (n — ((E(”P,/Gm [n])f)c)) = Tot(sp, (£)).
0

Using the diagram of lemma 7.2.3 for the n-cosimplices Tje(Xo)O x G}, of

P 2 (X0)0 /G ? and taking the total spectrum, we arrive at a natural map
E(}E% X¢) — Tot(sp(E)«)zar
in HSpt(Xozar); combining this with lemma 8.3.1 gives us the comparison map
Op : E(}Lr% X:) — sp(E)zar
in HSpt(Xozar)-

PROPOSITION 8.3.2. The map 0g : E(limi—o X¢) — sp(E)zar i an isomor-
phism in HSpt(Xozar)-

Proof. By theorem 7.3.6, the map
0(n) : B(P,x (x0y06,, () = sp, (E)
is an isomorphism in HSpt(Xoza.) for each n, thus the map 6 on the total

spectra is also an isomorphism in HSpt(Xozar)- O
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9. THE MONODROMY SEQUENCE

In this section, we construct the monodromy sequence for the limit object
E(lim;—o X¢) (see corollary 9.3.5). As pointed out to us by Ayoub, one needs
to restrict E quite a bit. We give here a theory valid for presheaves of complexes
of Q-vector space on Sm/k which are homotopy invariant and satisfy Nisnevich
excision, and satisfy an additional “alternating” property (definition 9.2.2).
Ayoub [3, Chap. 3| constructs the monodromy sequence in a more general
setting; our construction is based on his ideas applied to our tubular neigh-
borhood construction. In particular, our mondromy sequence agrees with the
monodromy sequence of loc. cite.

9.1. PRESHEAVES OF COMPLEXES. For a noetherian ring R, we let C'r de-
note the category of (unbounded) homological complexes of R-modules, Cr>o
the full subcategory of C'r consisting of complexes which are zero in strictly
negative degrees.

By the Dold-Kan equivalence, we may identify Cr>o with the category of
simplicial R-modules Spcy. The forgetful functor Spcy — Spc, allows us
to use the standard model structure on Spc, to induce a model structure on
Spcp, i.e., cofibrations are degreewise monomorphisms, weak equivalences are
homotopy equivalences on the geometric realization and fibrations are maps
with the RLP for trivial cofibrations. This induces a model structure on Cr>q
with weak equivalence the quasi-isomorphisms; the suspension functor is the
usual (homological) shift operator: XC := C[1], C[l], = Cn_1, dep)n =
—dcn—1. This model structure is extended to Cgr by identifying C'r with
the category of “spectra in Cr>o”, i.e., sequences (CY C',...) with bonding
maps €, : C"[1] — C"*1. Following Hovey [17], the model structure on Spt
induces a model structure on spectra of simplicial R-modules, and thus a model
structure on Cr, with weak equivalences the quasi-isomorphisms. In particular,
the homotopy category HC'g is just the unbounded derived category Dg.
Similarly, for a category C, the model structure for the presheaf category Spt(C)
gives a model structure for presheaves of complexes on C, Cg(C) with weak
equivalences the pointwise quasi-isomorphisms, and homotopy category the
derived category Dg(C). We may introduce a topology (e.g., the Zariski or
Nisnevich topology), giving the model categories Cr(Xzar), Cr(Sm/Bz,,),
Cr(Xnis), Cr(Sm/Buyis). These have homotopy categories equivalent to
the derived categories (on the small or big sites) Dgr(Xzar), Dr(Sm/Szar),
Dgr(Xnis), Dr(Sm/Syis), respectively. Finally, we may consider the Al-
localization, giving the Nisnevich-local A'-model structure Cr 1 (Sm/Byis)
with homotopy category Dpa:(B).

Let I be a small category, F' : I — Cg a functor. Since we can consider F as a
spectrum-valued functor by the various equivalences described above, we may
form the complex holim; F'. Explicitly, this is the following complex: One first
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forms the cosimplicial complex holim; F' with n-cosimplices

holim,; F" := H F(on).
o-:(o-o—>...—>0'n)EN(I)n

For g : [m] — [n], with g(m) = m’ < n, the o-component of the map
holim; F"(g) sends [[z; to F(opm — 04)(2g+(s)). The complex holimy F' is
then the total complex of the double complex n +— holim;F"™, with second
differential the alternating sum of the coface maps. This construction being
functorial and preserving quasi-isomorphisms, it passes to the derived category
Dpg(C). If I is a finite category, the construction commutes with filtered colim-
its, hence passes to the Zariski- and Nisnevich-local derived categories, as well
as the A'-local versions.

Remarks 9.1.1. (1) For a set S, let RS denote the free R-module on S. Send-
ing a pointed space (S,*) to the simplicial R-module RS, with RS(n) :=
RS, /R{+} defines the R-localization functor Spc, — Spcp. This extends
to the spectrum categories, and gives us the exact R-localization functor on
homotopy category ® R : SH — Dpg. The R-localization functor ® R extends
to all the model categories we have been considering, in particular, we have the
R-localization
QR : SH: (B) — Dp a1 (B)7

For R = Q, we can also take the Q-localization of SH by performing a Bous-
field localization, i.e., define Z € Spt to be Q-local if 7, (Z) is a Q-vector space
for all n, and E — F a Q weak equivalence if Homgp¢(F, Z) — Homgpt(E, Z)
is an isomorphism for all Q-local Z. Inverting the Q-weak equivalences defines
the Q-local homotopy category SHg, and ®Q : SH — Dg identifies SHg
with Dg. This passes to the other homotopy categories we have defined, in
particular, ®Q : SHz1(B) — Dg a1 (B) identifies SHy1(B)g with Dg a1 (B).

(2) Dg.a1(k) is not the same as the (Q-localized) big category of motives
over k, DM (k)g; the Q-localization does not give rise to transfers. O

9.2. THE LOG COMPLEX. Let sgn : S,, — {£1} be the sign representation of
the symmetric group S,,. Consider a presheaf of Q-vector spaces E on Sm/k.
For XY € Sm/k, let alt,, : E(Y x X™) — E(Y x X™) be the alternating
projector

1 . N
alt,, = o zs: sgn(o)(idy X o)*,
oESy

with o operating on X" by permuting the factors. Let E(Y x X™)t C
E(Y x X™) be the image of alt,, and E(Y, X™)3!* the kernel. We extend these
constructions to presheaves of complexes E by operating degreewise.

If (X, x) is a pointed k-scheme, we have the inclusions i; : ¥ x X" 1 - YV x X"
inserting the point * in the jth factor. For E a presheaf of Q-vector spaces, we
let E(Y A X"™) be the intersection of the kernels of the restriction maps

(idy xi;)* : BE(Y x X™) — E(Y x X" 1).
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Letting p; : X™ — X" ! be the projection omitting the jth factor, the com-
position (id — pXif) o...o (id — pji}) gives a splitting

T BE(Y x X™) — E(Y A X")

to the inclusion E(Y A X)) — E(Y x X™).

Clearly S,, acts on E(Y A X™) through its action on X™; we let E(Y, X/ \")alt
and E(Y A X"")3!* be the image and kernel of alt,, on E(Y A X/\™).

Let f : X — G;, be a morphism, E a presheaf of Q-vector spaces on Sm/k.
Let fn: X x G, — X x G be the morphism

fa(x ty, .o tn) = (x, f(x),t1, ..., tn).

Denote the map alt,, o 7, o f; : BE(X A GArMH1)alt — B(X A GA™) by
Uf: B(X AGHH™M — E(X AGHM)™

One checks that

LEMMA 9.2.1. (Uf)? =0.

Proof. We work in the Q-linear category QSm/k, with the same ob-
jects as Sm/k, disjoint union being direct sum, and, for X, Y con-
nected, Homggm/x(X,Y) is the Q-vector space freely generated by the set
Homgp, /1(X,Y). Product over & makes QSm/k a tensor category. The map
Uf is gotten by applying E to the map UfY : X x G, — X x G in QSm/k:

(X, t1, ..y tpo1) — alt[((z, f(2) — (2,1) @t1 —1® ... & t, — 1)]
and restricting to E(X A GA™)*t. But (UfV)? is
(xatla' "atn) =
alt[((:c, f(x)v f(’JJ)) - (:Ca L, f(ﬂf)) - (:Ca f(:c)a 1) + (:Ca 1, 1)) @...0t — 1)

which is evidently the zero map. O
Form the complex E(log;) by

E(logs)n == E(X A GAm))2It
with differential Uf. Since E(log;)o = E(X), we have the canonical map
tx : B(X) — E(logy).
We extend this definition to an I-diagram of schemes over G,,,, f®: X®* — G,
(with the X™ € Sm/k) by

E(logye) := h?éllm E(log i );
similarly, we extend to E a presheaf of complexes on Sm/k by taking the total
complex of the double complex n — E, (log f.). The map ¢x extends to

Lxe E(X.) — E(logf.),

where

E(X*®) := holim E(XY).
1€
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We consider as well a truncation of E(logy). Recall that the stupid truncation
0>, C of a homological complex C' is the quotient complex of C' with

C,, form>n
U>nCm =
- 0 for m < n.

For E a presheaf of abelian groups and f : X — G,, a morphism in Sm/k, set
E(0o>1logy) := o>1E(logy).

We have the quotient map N : E(log;) — E(0>1log;), natural in f and E.
We extend to I-diagrams f°® : X* — G,, and to presheaves of complexes as for
E(log f). The quotient map N defined above extends to the natural map

N : E(logyse) — E(o>1logye).

for f*: X* — G, an I-diagram of morphisms in Sm/k, and E € Co(Sm/k).
Finally, for E € Cg(Sm/k), define E(—1) to be the presheaf of complexes

E(—1)(X) := E(X A Gy)[1] := ker <E(X x ) s E(X)) ).

DEFINITION 9.2.2. Let E be be in Cg(Sm/k). Call E alternating if for every
X € Sm/k and every n > 0, the alternating projection

alt, : E(X AGA™) — E(X AGH™M)™
is a quasi-isomorphism. ]

Remarks 9.2.3. (1) Clearly, E is alternating if and only if S,, acts via the sign
representation on H, E(X A GJ") for all X, n and p.

(2) Fix integers 1 < ¢ < n. We have the split injection ¢; ;41 : E(X AG)*) —
E((X x G2) AG)2?) by shuffling the i,i + 1 coordinates to position n — 1,n.
In particular, we have the injection

Hy(tiiv1) s HOE(X NGO — HyE((X x Gl 2) AGLY).

Since S, is generated by simple transpositions, this shows that E is alter-
nating if and only if the exchange of factors in G,, A G,, acts by -1 on
H,E(X NGy, AGy,) for all X and p.

(3) Suppose that E € Cg(Sm/k) is homotopy invariant and satisfies Nisnevich
excision. Consider P! as pointed by co. Then E(X A P!) is quasi-isomorphic
to the suspension E(X A G,,)[—1], hence E is alternating if and only if the
exchange of factors in P! A P! induces the identity on H,E(X A P! AP) for
all X and p.

The homotopy invariance and Nisnevich excision properties of E give a nat-
ural quasi-isomorphism of E(X A P! AP) with E(X A (A2/A%\ {0})), with
the exchange of factors in P' A P! going over to the linear transformation
(z,y) — (y,z). If the characterstic of k is different from 2, this transformation
is conjugate to (z,y) — (—z,y). Thus E is alternating if and only if the map
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(1] : P! = P!, [-1](wo,21) = (%0, —71), acts by the identity on H,E(X AP!)
for all X and p.

(4) Call E oriented if E is an associative graded-commutative ring:
p:E®@olE — FE

and (roughly speaking) F admits a natural Chern class transformation
¢, : Pic — H?E

satisfying the projective bundle formula: For & — X a rank r vector bundle
with associated projective space bundle P(£) — X and tautological line bun-
dle O(1), H*E(P(£)) is a free H* E(X )-module with basis 1,¢,...,£ 71, where
¢ =c1(0(1)) € H?E(P(E)). We do not assume that ¢; is a group homomor-
phism. The projective bundle formula and the fact that [—1]*Op1 (1) = Op:1(1)
implies that an oriented F is alternating. In particular, rational motivic co-
homology, Qg (*) étale cohomlogy, Q-singular cohomology (with respect to a
chosen embedding & — C) and rational algebraic cobordism MGLg" are all
alternating.

On the other hand, rational motivic co-homotopy is alternating if —1 is a square
in k, but is not alternating for £ = R. This is pointed out in [31]: if —1 = 42,
[—1] is represented by the 2 x 2 matrix with diagonal entries ¢ and —i. As
this is a product of elementary matrices, one has an Al-homotopy connecting
[-1] and id. To see the non-triviality of [—1] for ¥ = R, let [X,Y] denote
the set of morphisms X — Y in H1Spc, (k). Morel defines a map (of sets)
[PL,PY] — ¢(k), where ¢(k) is the set of isomorphism classes of quadratic forms
over k, and notes that the map [u],

[u](x0,x1) := (mg, uxy),
goes to the class of the form wxz?. This map extends to a ring homomorphism
HomSHS1(k) (]Plapl) - GW(IC),

where GW (k) is the Grothendieck-Witt ring (see also [32, Lemma 3.2.4] for
details). Identifying GW(R) with Z x Z by rank and signature, we see that
[—1] goes to the non-torsion element (1, —1).

The example of motivic (co)homotopy is in fact universal for this phenomenon,
so if [—1] vanishes in [P!,P!], then every E € Co(Sm/k) satisfying homotopy
invariance and Nisnevich excision is alternating.

We are grateful to F. Morel for explaining the computation of the transposition
action on P! AP! in terms of quadratic forms and the Grothendieck-Witt group.
(4) Looking at the Al-stable homotopy category of T-spectra over k, SH(k),
one can decompose the Q-linearization SH(k)g into the symmetric part
SH(k)+ and alternating part SH(k)_ with respect to the exchange of fac-
tors on Gy, A Gy, Morel [33] has announced a result stating that SH(k)_ is
in general equivalent to Voevodsky’s big motivic category DM (k)g, and that
SH(k)4 is zero if -1 is a sum of squares. This suggests that the alternating part
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SHg1 (k) of the category of rational S'-spectra SHg:(k)g is closely related to
the big category of effective motives (with Q-coefficients) DM (k)q. O

PROPOSITION 9.2.4. Let E be in Co(Sm/k), f : X — G,, an I-diagram of
morphisms in Sm/k.

(1) The sequence
E(X) %5 E(log;) % E(0s1 logy)

identifies E(o>1logy) with the quotient complexr E(log;)/E(X).
(2) Suppose E is alternating. Then there is a natural quasi-isomorphism
alt : E(—1)(logy) — E(o>1logy).

Proof. Tt suffices to prove (1) for E a presheaf of Q-vector spaces, and f : X —
Gy, a morphism in Sm/k, where the assertion is obvious. Similarly, it suffices
to construct a natural map 0 x : E(—1)(log;) — E(0>1log;) for E a presheaf
of Q-vector spaces, extend as above to a map in general, and show that 0g x
is a quasi-isomorphism for E € Cp(Sm/k) alternating and f : X — G,, a
morphism in Sm/k.

In fact, for E a presheaf of Q-vector spaces and n > 1,

E(—1)(logs)n = ker[(idx x i)* : E(X x G, G )™ — E(X, G )™

so E(—1)(logs)n is a subspace of E(X,G"); thus alt, defines a map
E(~1)(log¢)n — E(logs)n. One easily checks that this defines a map of com-
plexes

alt. : E(—1)(log;) — E(0>1logy),

as desired.
Now suppose that F is alternating, i.e., that
(a) E(X AGY™M™ — B(X AGA™)

is a quasi-isomorphism for all n and X. This implies that the maps
E(X X G, G 1™ — E(X X G, G )
E(X NG ™M — B(X AGH)
are quasi-isomorphisms, hence
(b)  idxag,, X alty_1 : B(X AGp) AGA"™Y) — BE((X AG,y,) AGAM 12

is a quasi-isomorphism. Since E((X A Gp,) AG)* 1) = E(X AG)™), (a) and
(b) imply that

idy x alt, : E((X AG,,) AGAM1)alt  B(X A GAm)alt

is a quasi-isomorphism. As alt, : E(—1)(log;) — E(0>1log;) is the map on
the total complex of the double complexes

n i idx x alty : E((X AGp) AGAP 12— B(X A GA™)2l

we see that alt, is a quasi-isomorphism. O
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9.3. THE LOG COMPLEX AND PATH SPACES. Let f: X — G,, be a morphism
in Sm/k arising from a semi-stable degeneration X — (C,0) and choice of
parameter in Oc. The monodromy sequence for E(lim;_oX;) arises from
the sequence of Proposition 9.2.4 by comparing the path space E(Px/g,,) with

E(log).

We uge the Dold-Kan correspondence to rewrite E(Px/g,,) as a complex,
namely: take for each p the associated complex E,(P% /Gm) of the simplicial
abelian group n — E,(P% /Gm)’ with differential the alternating sum of the
face maps, and then take the total complex of the double complex

p— Ep (7))*(/@," ).

We write this complex as E(Px/g,,)-

We also have the normalized subcomplex NE(Px/g,,) of E(Px/g,,), quasi-
isomorphic to E(Px/g,,) via the inclusion. Recall that, for a simplicial abelian
group n — Ay, the normalized complex N A, has

NA, =N kerd; : A, — Ap_1

with differential do : NA,, — NA,_1. We define NE(PX/GW) by first taking
the normalized subcomplex NE,(Px/g,,) of Ep(Py/g, ) for each p, and then
forming the total complex of the double complex p — N E,(Px/g,,)-
In particular, we have the inclusion of double complexes

NE*(P;(/GM) C E. (Pj(/@m);
which gives for each n the inclusion of single complexes

NE.(Px/g,) C E«(Pk/g,,);
Recalling that P% G = X x GP

»., we thus have for each n the inclusion of

complexes

NE.(P}s,) C Eo(X x GL,),

We may therefore apply the projections m, : E.(X x G?) — E.(X AG)") and
alt,,, giving the map

alty o : NEL(P¥ g, ) — Eu(X AGH)M.
LEMMA 9.3.1. Suppose that E is alternating. Then

alt, omn : NEL(Py g, ) — Ex(X A GAm)alt
18 a quasi-isomorphism.

Proof. The map p} : E(X) — E(X x Gy,) splits i} : E(X x G,,) — E(X), so
we have the natural splitting

E(X x Gp) = E(X)® E(X AGy,).
Extending this to E(X x G?,) by using the maps i; and p}, we have the natural
splitting
(9.3.1) E(X xGp) =& @rcq1,..ny E(X AG)).

[I|l=m
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To explain the notation: For I C {1,...,n}, E(X AG)) = E(X A G,Anlll),
included in F(X x GI,) by the composition

E(X AGAT ¢ B(X x Gl P07 oy o gn)
where pr @ G}, — G%l is the projection on the factors i1,...,4, if I =
{i1y. . yim ) With 43 < ... <ip.
The action of S, on E(X x GI') preserves this decomposition, with o € S,

—1
mapping E(X AGA!) to B(X AGH D) in the evident manner.
Now, for a simplicial abelian group A, the inclusion N A,, — A, is split by uni-
versal expressions in the face and degeneracy maps. If n — C,,, is a simplicial
complex, we can form the complex of normalized subgroups (with respect to the
simplicial variable) Ny, (Cy, +,) and take the homology H,(N.,(Cy, «,),d1), or
we can form the simplicial abelian group n — H,(C.y,) and take the normal-
ized subgroup N, H,(Cy, «,,d1) C Hp(Cy, n,d1). Using the universal spitting
mentioned above, we see that the two are the same:
HZD(N*2 (C*l,*2)a dl) = N*2H;D(C*1,*27 dl)
Since S, acts by the sign representation on H,E(X AGJ™), it follows that, for
1 < j < n, the diagonal map
5 Gt — G
(tl, N atn—l) — (tl, .. -tj7tj7tj+17 N tn—l)
induces the zero map on H,E(X A GJ"). Similarly, the inclusion
in: Gl G
(tl, e ;tn—l) — (tl, .. -tn—I; 1)

is the zero map on H,E(X AGL) ifn € I.
From this, it is not hard to see that

NH,E (NE,(P% e, ) = HyE(X NG,

with respect to the decomposition of E.(Py g ) = E.(X x G7,) given by
(9.3.1). Indeed,
ker(H,(dy,)) = ker(i¥ : HyE.(X x GI) — H,FE.(X x G"™1)
= @IC{I,...,TL}HZ)E* (X A G;\/L])
nel
It is then easy to show by descending induction on 7 that
NP ker Hy(dj) = ©rcqr,. .y Hp B (X AGPT)
{i,...,n}CI
from which our claim follows taking ¢ = 1. Thus the projection

put NE.(Plg, ) — B(X AG))

is a quasi-isomorphism for each n. As F is alternating, the alternating projec-
tion
alt,, : E.(X AGA™) — E.(X AGA™)2
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is a quasi-isomorphism as well, completing the proof. O

LEMMA 9.3.2. Let E be in Co(Sm/k). Let 6y : E(X x G?) — E(X x G1)
be the map [(idx, f),idgn-1]*. Then the diagram

B(X x G2) —2 5 B(X x G 1)

altnownJ laltn107rn1

E(X /\G"Ann)alt Uf} E(X /\G"Annfl)alt
commutes.

Proof. This follows directly from the definition of Uf and the fact that alt, o,
is the identity on E(X A GA™)2t. O

PROPOSITION 9.3.3. Let E € Cp(Sm/k) be alternating. Then the maps alty,, o
T ¢ NE(Pyg, ) — Eu(X x GHNM™ define a quasi-isomorphism of total
complezes

altorm: NE(Px/g,,) — E(logy)

Proof. That the maps alt,, o, : NE*(’P;L(/GM) — E.(X AG)\™M)™* define a
map of total complex NE(Px/g, ) — E(log;) follows from Lemma 9.3.2 and
the fact that, for each n, the differential dy on NE(PY ¢ ) is the restriction

of 6o : E(X x G") — E(X x G!). Lemma 9.3.1 implies that alt o 7 is a
quasi-isomorphism. O

We collect our results in

THEOREM 9.3.4. Let E € Cop(Sm/k) be alternating, f* : X* — G,, an I-
diagram of morphisms in Sm/k. Consider the diagram

E(Px/6,,.) E(-1)(Px/z,.)
E(X*) — NE(Px/s,,) NE(-1)(Px/e,.)
altom
altom E(fl)(logf.)
alt

0—— BE(X*) ——— E(log.) — E(o>1logpe) —— 0

Here the maps i are the canonical inclusions and the maps txe are the canonical
maps given by the identities E,(Pxig,,)o = En(logsi)o = En(X*). Then

(1) The diagram commutes and is natural in E and f°.

(2) All the maps in the diagram are maps of complexes.
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(3) All the vertical maps are quasi-isomorphisms
(4) The bottom sequence is termwise exact.

Proof. The first point follows by construction, the remaining assertions follow
from the Dold-Kan correspondence, Proposition 9.3.3 and Proposition 9.2.4.
a

COROLLARY 9.3.5 (Monodromy sequence). Let W € Co(Sm/k) be alternating,
p: X — (C,0) a semi-stable degeneration, t € Oc,o a uniformizing parameter.
Then there is a distinguished triangle in D(Xozar)

E(r7 (X0)°) = B(lim X;) < B(=1)(lim X¢) — E(r (X0)*)[1]
natural in (p,t) and in E.

Proof. The commutative diagram of Theorem 9.3.4 being natural in the choice
of I-diagram and in E, one can extend the diagram directly to the case of a
co-presheaf of cosimplicial I-diagrams

U f2(U) : X*(U) = Gy

If we take I to be finite, we can extend further to a co-presheaf of cosimplicial
I-diagrams f*®: X* — G,,, with X*(U) a pro-scheme smooth over k, and still
preserve the quasi-isomorphisms and exactness. Feeding the I-diagram

top:TSX(XO)OHGm

to this machine and taking the distinguished triangle induced by the exact
sequence of log complexes at the bottom of the diagram completes the proof.

O

Remark 9.3.6. If we splice together the long exact homotopy sequence for the
monodromy distinguished triangle

E(r (X0)°) = B(lim X;) < B(=1)(lim X¢)
with the localization distinguished triangle of Theorem 6.3.7
EP# (X) 22 B(Dga) 225 B(rX(D)Y)
(both evaluated on D = Xj), we have the complex
(93.2) ... — EY%(X) — En(Xozar) = En(lim X,) N,
E(=1)n(lim X,) — EX%(X) — En—2(Xozar) = - -
If k = C and F represents singular cohomology (for the classical topology)
E,(Y)=H"(Y(C),Q)

then Steenbrink’s theorem [44] states that the above sequence is exact. The
argument uses the mixed Hodge structure on all the terms together with a
weight argument.
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One should be able to define a natural geometric “weight filtration” on
E(lim;—,o X;) by using the stratification of Xy by faces. However, for gen-
eral F, this additional structure might not suffice to force the exactness of the
above sequence. It would be interesting to give a general additional structure
on F that would imply this exactness. (]

9.4. AYOUB’S MONODROMY SEQUENCE. The monodromy sequence of corol-
lary 9.3.5 agrees with the monodromy sequence constructed by Ayoub in [3,
section 3.6] after making the identification described in proposition 8.3.2 and
working throughout in the category of rational motives DM (k)qg. Indeed, it is
easy to check that our complex F(log f.) agrees with the contruction E® f Log"
of [3, section 3.6.3], and that our isomorphism E(Px/g, ) = E(logs.) agrees
with the map F ® fgﬁogv — E ® fyU induced by the map £ : Log" — U of
[3, definition 3.6.42]. From there, one can easily compare with Ayoub’s mon-
odromy sequence [3, definition 3.6.37]. We give a sketch of these comparisons.

Ayoub’s construction begins with the Kummer motive K. We denote the
object in DM (S)q represented by a smooth S-scheme X as mg(X) and write
1s for mg(S), the unit for the tensor structure in DM (S)g; we delete the
subscript S from the notation for S = Speck. The 1-section i1 : S — G5
induces the splitting

ms(Gms) =1s® 15(1)[1]
and thus the projection 7 : mg(G,,s) — 1s(1)[1]
We take S = G,,. The diagonal A : G,, — G, X G,, = G5 induces
mg(A) : 1s — mg(Gy,s); composing with 7 and twisting and shifting gives
the map

Uty : 1g,, (=1)[-1] — 1¢

The Kummer motive K € DM (G,,)q is defined as the “cone” of Ut,: Ayoub
shows there is a canonial distinguished triangle in DM (Gy,)g

m

lg, (-1)[-1] L5 15, > K — 1g,, (=1)

Next, Ayoub defines the object Log" of DM (G,,)q. Viewing K as the two-

term complex [mg(Gms)(—1)[~1] 25 mg(Gms)] with mg(Gpms) in degree

zero, one sees that the nth symmetric product Sym” K is the complex

Uty Ut
—

lg,, (—n+1)[-n+1] — ...

Ut Ut

— lg, (=D[-1] = Ig,.,

lg,, (=n)[=n]

where we write the map Ut,(—i)[—i] as Ut, for short. The map 1lg, — K
gives rise to the map Sym"K — Sym™ ™K. We can take the limit Log" in
DM(Gm)Q

Log" := lim Sym"C
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As a complex, Log" is just

=5 16, (—n)[-n] =2 16, (—n+ 1)[-n + 1] =5 L.

= g, (F1)[-1]
Now suppose we have a semi-stable degeneration f : X — A'! and an object
E € DM(X%gq. Let f°: X% — G,, be the restriction of f; since f° is smooth,
we have Lf% = f*. Leti: Xg — X, j : X — X be the inclusions. The
logarithmic specialization functor log; is defined by

log;(E) := Li*Rj.(E ® f**Log")

lg,.

Remark 9.4.1. If we replace X with X' x 1 Spec Oa1 9, we have the canonical
identification of XY with the generic fiber &, and fO with fn.- We avoid doing
this to keep with the notation of our earlier sections. ]

The first step in our comparison is

LEMMA 9.4.2. Take E € DM(X)q, represented by a fibrant object E €
Co(Sm/X°). Then E® f°*Log" is represented by E(logy.).

Proof. Note that we may assume that F is alternating, since E is a motive.
Letting Hom denote the internal Hom in DM (X%)g. We have the distinguished
triangle

E(-1)[~1] — Hom(Gmxy, E) -5 Hom(1, E) = E — E(—1)
Thus E(—1)[—1] is represented by the presheaf

. -
idxi]

X' fib[E(X x Gp) —2 E(X')]

Similarly, for n > 1, E(—n)[—n] is represented by the presheaf
X'+ E(X'AGM).

SInce E is alternating, this latter presheaf is equivalent to
X' E(XI G/\n)alt.

Finally, the map Uf : E(Xjr A Gp,) — E(X') is just the map induced by the
pull-back by f and f x id of the diagonal map G,,, — G,, X G;,, hence Uf
represents the map f%*(Ut,). The comparison follows easily from this. O

Next, Ayoub considers the object U of DM (G,,)q. Interpreting his general
construction in the case of DM (Gy,)q, U is the motive associated to the sim-
plicial object
n = Hompar(G,,)e (PE,, s 16, )

i.e., the homological complex which is Hompas(c,,),(Pg, > 1c,) in degree n,
and with differential the alternating sum of the maps induced by the coface
maps in Pg,, . Naturally, to make sense of this, we need to lift this construction
to the appropriate category of complexes. In any case, the same proof as for
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lemma 9.4.2 gives us a canonical isomorphism of F ® f%*If with E(Pxog,,)-
Similarly, the uni-potent specialization functor Y is given by

Y(F) = Li*Rj.(E @ fU).
Finally, we have

Hompr (G, (PE,,» 16,) = (16, (-1)[-1] & 1g,, )"
and the first differential Uy — Uy is

le, (D[] @1g, =% 1,
Thus we have the evident map X — /. The diagonal map on Pg,, dualizes to
make U a commutive ring object in DM (G,,,)g. Ayoub notes that X — Log"
is universal for maps of K to a commutative ring in DM (G,,)q, hence there is
a unique ring map ¢ : Log¥ — U making

K —— LogV

N

U

commute. It is not hard to see that our map alt o 7 is induced by a map of
complexes in QSm/G,,, which commutes with the co-multiplications dual to
the ring multiplications for ¢/ and Log". Since both

E®f0*£09v id®? E®f0*u

and
altorm

E(PXO/GM) e E(logf.)

are isomorphisms in DM (X?)g, it follows that these maps are inverse to each
other.

Once we have the pair of compatible isomorphisms E ® f%* Log" = E(log f.)
and E®U = E(Pyo/g,,), it is easy to see that Ayoub’s construction of the
monodromy sequence and ours are compatible: Ayoub’s construction follows
from the obvious identification of Log¥(—1) with o<_1Log" (cohomological
notation) giving the distinguished triangle

lg,, — Log” o, Log" (—1) — 1g,,[1]
which clearly passes over to our identification E(0>1logs.) = E(—1) and the
monodromy distinguished triangle of corollary 9.3.5.

10. LIMIT MOTIVES

We use our construction of limit cohomology, slightly modified, to give a con-
struction of the limit motive of a semi-stable degeneration, as an object in the
big category of motives DM (k).
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10.1. THE BIG CATEGORY OF MOTIVES. Voevodsky has defined the category
of effective motives as the full subcategory DM % (k) of the derived category
of Nisnevich sheaves with transfer D_(INST(k)) consisting of those complexes
with strictly homotopy invariant cohomology sheaves.

In his thesis, Spitzweck [43] defines a “big” category of motives over a field k.
Other constructions of a big category of motives over a noetherian base scheme
S have been given by Ostvar-Rondigs [40] and also by Cisinski-Deglise [9]. To
give the reader the main idea of all these constructions, we quote from a recent
letter from Rondigs [41]:

“One may construct a model category of simplicial presheaves with transfers
on Sm/k, in which the weak equivalences and fibrations are defined via the
functor forgetting transfers. Via the Dold-Kan correspondence, there is an
induced model structure on nonnegative chain complexes of presheaves with
transfers. Both may be stabilized with respect to T or P!, in the sense of [18].
The Dold-Kan correspondence extends accordingly. Since T is a suspension
already, one can then pass to a model category of G,,-spectra of integer-indexed
chain complexes as well. For k a perfect field, results from [46] show that the
homotopy category of the latter model category contains Voevodsky’s DMy,
as a full subcategory. ”

We will use the P!-spectrum model. For details, we refer the reader to [40] and
[35].

10.2. THE COHOMOLOGICAL MOTIVE. We start with the category of pre-
sheaves with transfer PST(k) on Sm/k, which is defined as in [46] as the
category of presheaves on the correspondence category Cor(k). We let
C>o(PST(k)) denote the model category of non-negative chain complexes in
PST(k), with model structure induced from simplicial presheaves on Sm/k,
as described above. For P € C5o(PST(k)), let P(—1) denote the presheaf

Y e ker[P(Y x P1) 2= P(Y x o0)][2].

where “ker” means the termwise kernel of the termwise split surjection ¢7_.
Let Z% denote the presheaf on Cor(k) represented by X € Sm/k, and let

oo

Zf{l = coker(ZtSTpeCk o ZHD.
One has the adjoint isomorphism
Homczo(pST(k))(C & prﬁ s C/) = Homczo(pST(k)) (C, Cl(fl)[fﬂ)

so the bonding maps for P!-spectra in C>o(PST(k)) can be just as well defined
via maps

Cn = Crpa(=1)[-2].

We will use this normalization of the bonding morphisms from now on.

For an integer ¢ > 0, we have the (homological) Friedlander-Suslin presheaf
Zrs(q). To define this, one starts with the presheaf with transfers of quasi-
finite cycles zq. rin (A7), with value on Y € Sm/k the cycles on Y x A? which

DOCUMENTA MATHEMATICA 12 (2007) 71-146



MoTivic TUBULAR NEIGHBORHOODS 131

are quasi-finite over Y. One then forms the Suslin complex Cy(2q. fin(A?)) and
reindexes:

Zrs(@)(Y)n 1= Cn2q(2q.£in (A1) (Y) 1= 2g.pin (AT) (Y x A"729).
(see [26, §2.4] for a precise definition). This represents motivic cohomology
Zariski-locally:
HP(X’ Z(Q)) = HP(XZara ZFS(Q))
More generally, for X € Sm/k, define ZXs(q) by

Zyps(@)(Y) = Zps(q)(X x Y).
We define
On 2 Zipg(n) = Zipg(n + 1)(=1)
by sending a cycle W on X x Y x A™ x A™ to W x A, where A C Al x P! is

the graph of the inclusion A! C P!, and then reordering the factors to yield a
cycleon X x Y x P! x A™ x Ant1,

DEFINITION 10.2.1. Let X be in Sm/k. The cohomological motive of X is the
sequence B

h(X) = (Z35(0), ZEs (V2] ., Zxs(n)[2n],..)
with the bonding morphisms §,,[2n]. O

Remark 10.2.2. One can also define the cohomological motive h(X) €
DMy, (k) as the dual of the usual (homological) motive m(X) := CSU(Z%).
For X of dimension d, h(X)(n) is actually in DM (k) for all n > d, and is
represented by ZX¢(n). From this, one sees that the image of (X) in DM (k)
is canonically isomorphic to h(X).

Also, one can work in DM (k) if one wants to define the cohomological motive
of a diagram in Sm/k if the varieties involved have uniformly bounded dimen-
sion. Since our construction of limit cohomology uses varieties of arbitrarily
large dimension, we need to work in DM (k). O

10.3. THE LIMIT MOTIVE. It is now an easy matter to define the limit motive
for a semi-stable degeneration. Let X — (C,0) be a semi-stable degeneration
with parameter ¢ at 0; suppose the special fiber X has irreducible components
Xt ..., X5, We have the diagram (8.2.1) of cosheaves on Xozar, lims_o X¢,
indexed by the non-empty subsets I C {1,...,m}, which we write as

I— [tlg% Xi]r-
Taking global sections on X yields the diagram of cosimplicial schemes
I~ [th_l,%Xt]I(Xo)'
Applying h gives us the diagram of Pl-spectra in C>o(PST(k))
I h([lim X,]1(Xo)).
We then take the homotopy limit over this diagram forming the complex

lim h(X;) == holim{7 — B([}E% Xi]1(Xo0))}-
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DEFINITION 10.3.1. Let X — (C,0) be a semi-stable degeneration with pa-
rameter~ t at 0. The limit cohomological motive lim;_,q h(X}) is the image of
lim; o h(X:) in DM (k). O

Using the same procedure, we have, for D C X a normal crossing scheme, the
motive of the tubular neighborhood h(7X (D)) and the motive of the punc-
tured tubular neighborhood h(TeX (D)?). All the general results now apply for
these cohomological motives. In particular, from corollary 9.3.5 we have the
monodromy distinguished triangle (for the Q-motive)

h(r¥ (Xo))g — lim h(Xi)g — lim h(X:)o(~1)
and theorem 6.3.7 gives the localization distinguished triangle
WX (X) — h(Xo) — h(¥ (X0)°),
where h*0(X) is represented by

Cone(h(X) 25 R(X\ Xo))[-1].

From this latter triangle, we see that h(7 (X0)?) is in DMy, (k).

11. GLUING SMOOTH CURVES

We use the exponential map defined in §5 to define an algebraic version of
gluing smooth curves along boundary components. We begin by recalling the
construction of the moduli space of smooth curves with boundary components;
for details we refer the reader to the article by Hain [15].

11.1. CURVES WITH BOUNDARY COMPONENTS. For a k-scheme Y, a smooth
curve over Y is a smooth proper morphism of finite type p : C — Y with
geometrically irreducible fibers of dimension one. We say that C has genus g
if all the geometric fibers of p are curves of genus g. A boundary component
of C — Y consists of a section x : Y — C together with an isomorphism v :
Oy — 2*T¢,y, where T¢/y is the relative tangent bundle on C. Equivalently,
v is a nowhere vanishing section of T¢,y along x. A smooth curve with n
boundary components is (C — Y, (x1,v1),. .., (Zn, vy)) with all the x; disjoint.
One has the evident notion of isomorphism of such tuples, so we can consider
the functor My on Schy:

Mg (Y)
:= {smooth genus g curves over Y with n boundary components}/ =

For n = 0, this is just the well-know functor of moduli of smooth curves, which
admits the coarse moduli space My. For n > 1 and g > 1, it is easy to show that
a smooth curve over Y with n boundary components admits no non-identity
automorphisms (over Y'), from which it follows that M is representable; we
denote the representing scheme by M as well. The same holds for genus 0 if
n > 2; in fact the data of a genus zero curve C' with two points 0, oo together
with a tangent vector v # 0 in Tp(C') has no non-identity automorphisms.
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One can form a partial compactification of My by allowing stable curves with
boundary components. As we will not require the full extent of this theory, we
restrict ourselves to connected curves C' with a single singularity, this being an
ordinary double point p. We require that the boundary components are in the
smooth locus of C. If C is reducible, then C has two irreducible components
C1, Cy; we also require that both € and C5 have at least one boundary
component. As above, such data has no non-trivial automorphisms, which
leads to the existence of a fine moduli space /\;lg. We let Cj — My be the
universal curve with universal boundary components (z1,v1), ..., (Zn, vn), and
C_g — ]\_4; the extended universal curve.

The boundary 8MZ = MZ \ M7 is a disjoint union of divisors

OM; =Dy [T Digiga).tniima)s

(91,92),(n1,m2)

where Dy, g.),(n1,n,) cOnsists of the curves Cy U Co with g(C;) = g;, and with
C; having n; boundary components (we specify which component is C; by
requiring C; to contain the boundary component (z1,v1)) and D(g,) is the
locus of irreducible singular curves.

Let (C,(x1,v1),...) be a curve in 3/\;12 with singular point p. By stan-
dard deformation theory, it follows that 8/\;12 is a smooth divisor in /\;lg;
let N(g, gs),(n1,ns) denote the normal bundle of D4, 4. (ny,ns). Deformation
theory gives a canonical identification of the fiber of the punctured normal
bundle N? = Nig1.g2),(n1,m) \ 0 at (C, (x1,v1),...) with G,-torsor of

. 91,92,11,12
isomorphisms

A2chp = k(p)'

11.2. ALGEBRAIC GLUING. We can now describe our algebraic construction of
gluing curves. Fix integers g1, g2, n1,n2 > 1. We define the morphism

[ Mglgnl X M927n2 - Dgl7927n1715n271'

by ghﬁng (Cla (Ila Ul)a BRE) (:L'n1 ) Unl)) and (027 (yla wl)a R} (yn27 wnz)) along

Zpn, and yi, forming the curve C' := C; U Cy with boundary components
(1,01)y oy (Bny—1,Vny-1), (Y2,w2),. .., (Yny, Wn,) and singular point p. We
lift & to

) 0
pr Mgy ng X Mg,y — N,

g1,92,n1,N2

using the isomorphism AQTC,p — k(p) which sends v,—1 A w; to 1 and the
identification of (N, .. 1\ 1,)C1UCs.... described above.

We now pass to the category SHui (k). Taking the infinite suspension, the map
1 defines the map
Eoolu : EOOMQIJHJF A EOOM927"2+ - 200N311927n1,712+'

Composing with our exponential map defined in §5 gives us our gluing map

. o0 o0 o0
®: X Mgl,n1+ AN Mgz,n2+ - X M91+gz,n1+n2—2+-
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Remarks 11.2.1. (1) If one fixes a curve £ := (E, (x1,v1), (z2,v2)) € M1 ,2, one
can form the tower under £&

Lo XMy = XMy —

and form the homotopy colimit ¥*° My ,. If E is an object of SHa1(k),
one thus has the E-cohomology E*(M ). For intance, this gives a possible
definition of stable motivic cohomology or algebraic K-theory of smooth curves.
However, it is not at all clear if this limit is independent of the choice of £.
In the topological setting, one notes that the space M; o(C) is connected, so
the limit cohomology, for example, is independent of the choice of £. On the
contrary, M 2(R) is not connected (the number of connected components in
the real points of the curve corresponding to a real point of M 2 splits M 2(R)
into disconnected pieces), so even there, the choice of £ plays a role. It is also
not clear if M, is independent of n (up to isomorphism in SHy: (k)).

(2) In the topological setting, the map @ is the infinite suspension of a map

¢ : Mgl,nl ((C) X M92,n2 ((C) - M91+927n1+n2*2(c)7

making IT; , M, ,4+2(C) into a topological monoid; the group completion is
homotopy equivalent to the plus construction on the stable moduli space
limg 0o My 1(C) formed as in (1). Letting Moo (C)™ denote this group com-
pletion, the group structure induces on £° M, (C)* the structure of a Hopf
algebra (this was pointed out to me by Fabian Morel), the co-algebra structure
being the canonical one on a suspension spectrum. The functoriality of the ex-
ponential map exp? as described in Remark 5.2.2 shows that the maps @ make
Vg 2°Mgnio into a biaglebra object in SHy1 (k). It is not clear if there is
an analogous “Hopf algebra completion” of \/g,n EO°Mg g2 in SHpi (k). O

12. TANGENTIAL BASE-POINTS

Since, by work of @Dstvar-Rondigs [35], motivic cohomology is represented in
SH a1 (), our methods are applicable to this theory. However, one can simplify
the construction somewhat, since we are dealing with complexes of abelian
groups rather than spectra. One can also achieve a refinement incorporating
the multiplicative structure; this allows for a motivic definition of tangential
base-points for the category of mixed Tate motives from the point of view
of cycle algebras. Of course, the unipotent specialization functor of Ayoub
[3], when restricted to the triangulated category of Tate motives in DM (—)
also gives tangential base-points for mixed Tate motives, but we hope our
construction will be useful for applications of this operation.

12.1. CUBICAL COMPLEXES. If we work with presheaves of complexes rather
than presheaves of spectra, we can replace all our simplicial constructions with
cubical versions. This enables an easy extension to the setting of differential
graded algebras (d.g.a’s), or even graded-commutative d.g.a’s (c.d.g.a’s) if we
work with complexes of Q-vector spaces. We list the main results without proof
here; the methods discussed in [26, §2.5] carry over without difficulty.
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For a commutative ring R, we denote the model category of complexes of R-
modules on the big Nisnevich site, Cr(Sm/Snis) by Cr nis(S) and the derived
category by Dg nis(S).
The cubical category Cube has objects n, n = 0,1,.... Cube is a subcategory
of the category of finite sets, with n standing for the set {0, 1}", with morphisms
making Cube the smallest subcategory of finite sets containing the following
maps:
(1) all inclusions s; ¢ : {0,1}" — {0,1}" "1 e € {0,1},i=1,..., n+1,
where s; 5, ¢ is the inclusion inserting e in the ith factor.
(2) all projections p; , : {0,1}" — {0,1}"~ 1, i =1,...,n, where p; ,, is the
projection deleting the ith factor.
(3) all maps ¢, : {0,1}" — {0,1}"" 1, i=1,....,n— 1, n > 2, defined by

Gin(€1, .- 6n) = (€1, .., €-1,0,€i12,...,€)
with

1 else.

5= {0 if (€i, €i41) = (0,0)

A cubical object in a category C is a functor Cube — C.

The basic cubical object in Sch is the sequence of n-cubes 0* : Cube — Sm/k.
The operations of the projections p; ,, and inclusions s; , are the evident ones;
Gi,n acts by

qim(xl, . ,J)n) = (xl, ey Li—1, 1 — (Ii — 1)($i+1 — 1),$i+2, . ,J)n).

Now let P : Cube — Modpg be a cubical R-module. We have the cubical
realization |P|¢ € Cg with

P, = P(ﬂ)/zpin(}’(n_*l)l

dc

= Z(_l)isf,l - Z(—l)"s;o-

| — |¢ is clearly a functor from the R-linear category of cubical R-modules to
C(R); in particular, if we apply | — |¢ to a complex of R-modules, we end up
with a double complex. For a complex C, also write |C|¢ for the total complex
of this double complex, letting the context make the meaning clear.

Ezample 12.1.1. For a presheaf of abelian groups P on Sm/k, we have cubical
presheaf C¢(P) with

C¢(P)Y):=P(Y xO).
Taking the cubical realization yields the cubical Suslin complex C.(P)¢ with

Cu(P)(Y) = [C(P)(Y)["
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The symmetric group S, acts on C,(P)°, we let C,(P)¢), denote the sub-
presheaf of alternating sections. If P is a presheaf of Q-vector spaces, C,,(P)S5y,
is a canonical summand of C,,(P)¢, with projection given by the idempotent
Alt, = & >_,581(g)g; one checks that the Cy(P)g), form a subcomplex of
C.(P)-.

The main result on these constructions is

PROPOSITION 12.1.2. (1) There is a canonical homotopy equivalence of functors
C. — C{: C(k) — C(k)
(2) If P is a complex of presheaves of Q-vector spaces, the inclusion
C.(P)sy, — Cu(P)°
s a quasi-isomorphism
Sketch of proof; see [27, §5] for details. For (1), one uses the algebraic maps
o — A"

which collapse the faces x; = 1 to the vertex (0,...,0,1) to get a map C, — C¢.
The homotopy inverse is given by triangulating the (™. For (2) one checks that
Sy, acts by the sign representation on the homology sheaves of C.(P)°. The
projections Alt,, define a map of complexes Alt, : Cy(P)® — C,(P)¢), which
thus gives the inverse in homology. O

12.2. CUBICAL TUBULAR NEIGHTBORHOODS. For a closed immersion ¢ : W —
X in Sm/k, set U% y := (D})%,VLV, giving us the cubical pro-scheme

O%.w : Cube — Pro-Sm/k

We use the same notation for morphisms in the cubical setting as in the sim-
plicial version, e.g., iw : U, — U y;,. We have as well the co-presheaf on
WZar

- },WZ.M(W \F):= le)L(\,W\F
and the cubical co-presheaf

TXW)° = Ok i,

€

Now let P be in C(k). We define P(TEX(W)C)* to be the complex of presheaves
P(rX (W) := [P(rX (W)O)°.

€

We also have the alternating subcomplex P(Tg( (W)e)att ¢ P(TEX(W)C)
We have as well the punctured tubular neighborhood in cubical form

X W) = 7 X (W) N\ Dy,

€

on which we can evaluate P:
P(rE(W)"). 1= | P(rX (W)*9) e,

€

Let P(Tg( (W)0e)alt ¢ P(Tg( (W)%) be the alternating subcomplex.
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We let EM : C — Spt be a choice of the Eilenberg-Maclane spectrum functor.
Our main comparison result is

THEOREM 12.2.1. (1) Let i : W — X be a closed immersion in Sm/k. For
P € C(k), there are natural isomorphisms in SH(Wza;)

EM(P(r5(W)°)) 2 EM(P)(rX (W)
EM(P(rX(W)*)) = EM(P)(r (W)°)
(2) If P is a presheaf of complexes of Q-vector spaces, then the inclusion
PrX(W)e)™ — P(rX (W)

€

s a quasi-isomorphism.

Proof. Define P(TEX (W)) to be the total complex of the double complex asso-
ciated to the simplicial complex n — P(7X (W)"). The homotopy equivalence
used in Proposition 12.1.2(1) extends, by the functoriality of the Nisnevich
neighborhood, to a homotopy equivalence

Pz (W) ~ P(rX (W)

€

This yields a weak equivalence on the associated Eilenberg-Maclane spectra.
Since the functor EM passes to the homotopy category, we have a canonical
isomorphism

EM(P)(*(W))) = EM(P (7. (W)
Putting these isomorphisms together completes the proof of the first assertion
for the tubular neighborhood. The proof for the punctured tubular neigh-

borhood is essentially the same. The second assertion follows from Proposi-
tion 12.1.2(2). O

12.3. THE MOTIVIC c.d.g.a. There are a number of different complexes which
represent motivic cohomology; we will use the strictly functorial one of
Friedlander-Suslin, Zrs(q) (see the description in §10.2) reindexed as a co-
homological complex:

Zrs(qQ)" == Zrs(q)—n-
We will use the cubical version Zpg(q):
Zrs(q)""(Y) := Caq—n(2q.pin(A?))°(Y).
By Proposition 12.1.2; Zps(q)€ is quasi-isomorphic to Zgs(q).
Passing to Q-coefficients, we have the quasi-isomorphic alternating subcomplex
Qrs(9)S: € Qrs(g)°. We may also symmetrize with respect to the coordinates
in the A7 in zg 7 (A9); it is shown in [26] that the inclusion
QFS (q)glt,sym C QFS(q)glt

is also a quasi-isomorphism.
The product map

Zq.fin(AT) (@™ X Y) ® z4.5in (A ) (@™ X Y) = z4.5in (AT )@ x Y)
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makes the graded complex
Nz = ®>0Zrs(q)°

into a presheaf of Adams-graded d.g.a’s on Sm/k (with Adams grading q).
Passing to Q-coefficients, and following the product with the alternating and
symmetric projections makes

N = @qZO@FS(q);lt,sym

a presheaf of Adams-graded c.d.g.a’s, the motivic c.d.g.a.on Sm/k.

We let N/ — NP denote a fibrant model of A in the model category of (Adams-
graded) c.d.g.a’s on Sm/k, where the weak equivalences are Adams-graded
quasi-isomorphisms of c.d.g.a’s for the Zariski topology.

Remarks 12.3.1. (1) Since N is strictly homotopy invariant [46, Theorem 4.2],
NP is homotopy invariant.

(2) In case k admits resolution of singularities (i.e., chark = 0) the canonical
map Zrs(q) — Zrs(q)fi® is a pointwise weak equivalence [46, Theorem 7.4].
Thus, in this case, we can use N instead of NP, O

12.4. THE SPECIALIZATION MAP. We consider the situation of a smooth curve
C over our base-field k£ with a k-point x. We let O denote the local ring of =
in C, K the quotient field of O and choose a uniformizing parameter ¢, which
we view as giving a map

t:SpecO — Al

sending x to 0.
Letting i, : © — Spec O be the inclusion, we have the restriction map

it N(O) — N(k(z)),

x

which is a morphism of Adams-graded c.d.g.a’s. In this section, we extend ¢}
to a map

spe s N(K) — N(k(z))
in the homotopy category of Adams-graded c.d.g.a’s over Q (denoted
H(c.d.g.ag)). This is essentially our construction of the tubular neighborhood,
where we use cubical constructions throughout to keep track of the multiplica-
tion.
First, if we apply A to J* x Y and take the alternating projection again, we
have the presheaf of c.d.g.a’s N (0%, ) and the quasi-isomorphism of presheaves
of c.d.g.a’s

L N — N(Oj)-

Next, write @’C’Lg for ﬂ’cnl \ O, and consider the cubical punctured tubular
neighborhood Zps(q)c(’l'é(l')oc). The product map

2.in (D) (0" x TES) ® 20,7 (A7) (O x OE)))

— 2q.pin (AT ) (@O x OZ ™))
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makes @QZOZFS(q)C(TEPéCO(z)OC) into an Adams-graded d.g.a; taking the al-
ternating projection in both the 0" and @g% variables, and the symmetric
projection in A? and applying the fibrant model gives a presheaf of Adams-
graded c.d.g.a’s, denoted Nﬁb(TfpéCO(z)gﬁ).

Similarly, we perform this construction using the full tubular neighborhood,
giving the presheaf A ﬁb(TEO (x)¢,), and the commutative diagram of Adams-
graded c.d.g.a’s:

N k(@) — N(O) —, N(K)

N

N (O50) (k(2)) 57— N2 (7€ (2)5),) —5e= NOP(7E ()05
Replacing (C,z) with (A!,0) and using A’ and G,, instead of SpecO and
Spec K yields the commutative diagram of Adams-graded c.d.g.a’s

-

N(k(0)) ——2—— NAb(AT) — 4 Nib(G,)

“ X
L Tyl TGm

N (O (K@) 4= N (0)5) —rer? NP (72 (0)25):
By Corollary 3.3.3 and Corollary 4.1.4, the maps 7, and 7~ are quasi-
isomorphisms of complexes, hence quasi-isomorphisms of Adams-graded
c.d.g.a’s. Since NP is homotopy invariant, the maps ¢ are quasi-isomorphisms
of Adams-graded c.d.g.a’s.
Finally, the map ¢ induces the commutative diagram of Adams-graded c.d.g.a’s

N k() = N (7€ (2)5y) —2 AP (1€ (2)7%,)

alt
t*w t*T Tt*

N (k(0) = NT(72 ()) =5 N (' (2)3%5).
Since t : (C,xz) — (A!,0) is a Nisnevich neighborhood of 0 in A!, all three
maps t* are isomorphisms. Putting these diagrams together and inverting
the quasi-isomorphisms ¢, t*, 75, and 75~ yields the commutative diagram in

H(c.d.g.ag):

(12.4.1) N(k(z)) 2 N(O) —= s N(K)

N (5(0)) ¢ N (A1)~ N(G,)
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DEFINITION 12.4.1. Let ¢; : Speck — G,, be the inclusion. The map sp; :
N(K) — N(k(z)) in H(c.d.g.ag) is defined to be the composition

N(K) 255 NG ) 2 N2 (R) 22 N () = N (R(0)) S N (k(2).

PROPOSITION 12.4.2. The diagram in H(c.d.g.ag)
N(0) "= N(K)

commutes.
Proof. Since Nfi* is homotopy invariant, the maps
i it NAP(AY) — N (K)
are equal in H(c.d.g.ag). The proposition follows directly from this and a chase
of the commutative diagrams defined above. O

Remark 12.4.3. In the situation we are considering, we already have the fol-
lowing diagram:

N(K) — N(}i_r%SpecK) =~ N(k(0)).

However, the above diagram is only a diagram in the homotopy category of
complexes of Q-vector spaces, which is thus equivalent to the same diagram
for cohomology of the complexes involved. We have gone to the trouble of
redoing our theory using cubes throughout because we need to keep track of
the multiplication, i.e. our construction lifts the above diagram in D®(Q) to
one in H(c.d.g.ag). O

12.5. THE SPECIALIZATION FUNCTOR. For a field k, we have the triangulated
category DMT(k) of mized Tate motives over k, this being the full triangu-
lated subcategory of Voevodsky’s triangulated category of motives (with Q-
coefficients), DM, (k)qg, generated by the Tate objects Q(n), n € Z.

We will also use in this section the derived category of finite cell modules over
an Adams-graded c.d.g.a. A, DCM(A). This construction was introduced in
[23]; we refer the reader to the discussion in [26, §5] for the properties of DCM
we will be using below.

Let O be as in the previous section the local ring of a k-point = on a smooth
curve C over k, with quotient field K. The map sp; : N(K) — N (k(z)) yields

an exact tensor functor

spt : DMT(K) — DMT(k(z))
Indeed, as discussed in [26, §5.5], Spitzweck’s representation theorem gives a
natural equivalence of DMT (k) with the derived category DCM (N (k)) of finite

cell modules over the Adams-graded c.d.g.a. N'(k), as triangulated tensor Q-
tensor categories.
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The functor DCM associating to an Adams-graded Q-c.d.g.a. A the triangu-
lated tensor category DCM(A) takes quasi-isomorphisms to triangulated ten-
sor equivalences, hence DCM descends to a well-defined pseudo-functor on
H(c.d.g.ag). Thus, we may make the following

DEFINITION 12.5.1. Let O be the local ring of a k-point  on a smooth
curve C over k, with quotient field K and uniformizing parameter ¢. Let
spt : DMT(K) — DMT(k(x)) be the exact tensor functor induced by
DCM(sp;) : DCM(WNV(K)) — DCM(N (k(x)), using Spitzweck’s representation
theorem to identify the derived categories of cell modules with the appropriate
category of mixed Tate motives. O

Remark 12.5.2. (1) The discussion in [26, §5.5], in particular, the statement
and proof of Spitzweck’s representation theorem, is in the setting of motives
over a field. However, we now have available a reasonable triangulated category
DM(S) of motives over an arbitrary base-scheme S (see [48]), and we can thus
define the triangulated category of mixed Tate motives over S, DMT(S), as in
the case of a field.

Furthermore, if S is in Sm/k for k a field of characteristic zero, then N'(S) has
the correct cohomology, i.e.

H"(N(S)) = ®4>0H"(S,Q(q)),
and one has the isomorphism
H"(S,Z(q)) = Hompr(s)(Z, Z(q))-

This is all that is required for the argument in [26, §5.5] to go through,
yielding the equivalence of the triangulated tensor category of cell modules
DCM(N(S)) with DMT(S).

(2) Joshua [20] has defined the triangulated category of @Q mixed Tate
motives over S as DCM(N(S)); the discussion in (1) shows that this agrees
with the definition as a subcategory of DM (S)q. O

With these remarks, we can now state the main compatibility property of the
functor sp; : DMT(K) — DMT(k(z)).

ProrosiTIiON 12.5.3. Let O be the local ring of a k-point x on a smooth
curve C' over k, with quotient field K and uniformizing parameter t. Let
ix : DMT(O) — DMT(k) and j* : DMT(O) — DMT(K) be the functors
induced by the inclusions i, : Speck — SpecO and j : Spec K — SpecO,
respectively. Then the diagram

DMT(0) —~— DMT(K)

J{Spt
-
Yz

DMT(k(z))

commutes up to natural isomorphism.
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Proof. This follows from Proposition 12.4.2 and the functoriality (up to natural
isomorphism) of the equivalence DCM(N(S)) ~ DMT(S). O

12.6. COMPATIBILITY WITH SPECIALIZATION ON MOTIVIC COHOMOLOGY. As
above, let O be the local ring of a closed point  on a smooth curve C' over k,
with quotient field K and uniformizing parameter t. We have the localization
sequence for motivic cohomology
= H"(0,2Z(q) © B (K, Z(q)) % H" " (k(x), Z(q ~ 1) == ...
In addition, the parameter ¢ determines the element [t] € H'(K,Z(1)). One
defines the specialization homomorphism
sp; « H"(K, Z(q)) — H" (k(x), Z(q))
by the formula
spy(a) == O([t] U a).
On the other hand, if k(x) = k, we have the specialization functor
spt : DMT(K) — DMT(k(z))

and the natural identifications

H™(K,Q(g)) = Hompyr(x) (Q, Q(g)[n])

H"(k,Q(q)) = Hompyra (Q, Q(q)[n]).

Thus the functor sp; induces the homomorphism
spt » Hompnr ) (Q, Q(g)[n]) — Hompnrr) (Q, Q(g)[n])
and hence a new homomorphism
spy : H"(K,Q(q)) — H"(k, Q(q))-
PROPOSITION 12.6.1. sp; agrees with the Q-extension of Sp;.

Proof. Using the equivalence DMT(K) ~ DCM(N(K)) and the canonical iden-
tifications

Hompewm i) (Q, Q(g)[n]) = H"(N(K)) = @>0H" (K, Q(q))

(and similarly for k) we need to show that the Q-linear extension of sp, agrees
with the map

H"(spe) : H"(N(K)) — H"(N(k))

induced by sp; : N(K) — N (k).
For this, take an element o € H"(K,Z(q)) and set

B :=0a € H Yk, Z(q—1)).

Since i : @ — Spec O is split by the structure morphism 7 : Spec O — Spec &,
we can lift 3 to 3:7*(8) € H* (0, Z(g — 1)). Then

o([t)u B) = o([t]) v iy =B,
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the first identity following from the Leibniz rule and the second from the fact
that 9([t]) = 1 € H(k,Z(0)). Thus

da—[tJup) =0,
hence there is a class v € H"(O, Z(q)) with
Jy=a-[lup.

We consider « as an element of H*(N(O)).
By Proposition 12.4.2, we have

H"(iz)(v) = H" (spi)(a = [t] U B).
By the functoriality of the identification
H"(N(=)) = &¢zoHompon (N (—))(Q, Q(g))
and Proposition 12.4.2 it follows that
sp,(77v) = H" (i) (7) = H" (sp) (™)
so we reduce to showing
spy([f] U B) = 0 = H" (sp)([t] U ).

The first identity follows from [t] U [t] = 0 in H?*(K,Q(2)). For the second,
because sp; is a morphism in H(c.d.g.a,), the map H*(sp;) is multiplicative,
hence it suffices to show that H!(sp;)([t]) = 0.

For this, it follows from the constuction of the map sp; : N(K) — N (k(z))
in H(c.d.g.ag) that sp; is natural with respect to Nisnevich neighborhoods
f:(C2) — (C,x) of z, ie.,

spy(y © [ = spr.

Now, the map ¢ : (C,z) — (Al,0) is clearly a Nisnevich neighborhood of 0
(after shrinking C' if necessary) and

where A! = Speck[T]. Thus, we may assume that C = Al and t = T. But
then [T] is a well-defined element of H'(N(G,,)) hence

H' (sp)([T)) = i1([T]) = [1] = 0
by definition of sp; : N'(Oa1 ¢) — N (k). This completes the proof. O

Remark 12.6.2. Since sp} is multiplicative, as we have already remarked, Propo-
sition 12.6.1 gives a rather long-winded re-proof of the multiplicativity of the
specialization homomorphism sp, |
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12.7. TANGENTIAL BASE-POINTS. As shown in [29], the category DMT(k) car-
ries a canonical exact weight filtration. For an Adams-graded c.d.g.a. A, the
derived category of cell modules DCM(A) carries a natural weight filtration as
well; the equivalence DCM (N (k)) ~ DMT(k) given by Spitzweck’s representa-
tion theorem is compatible with the weight filtrations [26, Theorem 5.24].

If A is cohomologically connected (H"(A) = 0 for n < 0 and H°(A) = Q - id),
then DCM(A) carries a t-structure, natural among cohomologically connected
A. Finally, if Ais I-minimal then DCM(.A) is equivalent to the derived category
of the heart of this t-structure (see [26, §5]).

Thus, if N(F') is cohomologically connected, then DMT(F) has a t-structure;
the heart is called the category of mixed Tate motives over F', denoted MT(F).
In fact, MT(F') is a Tannakian category , with natural fiber functor given by
the weight filtration; let Gal,(F) denote the pro-algebraic group scheme over
Q associated to MT(F') by the Tannakian formalism. If AV(F) is 1-minimal,
then DMT(F) is equivalent to D*(MT(F)), but we won’t be using this.

Now let o be a k-point on a smooth curve C' over k, and ¢ a parameter in O¢ .
The specialization functor

spt : DMT(k(C)) — DMT(k(z))

arises from the map sp; : N(k(C)) — N(k(z)) in H(c.d.g.ag), hence sp; is
compatible with the weight filtrations. When N (k(C)) and N (k(x)) are coho-
mologically connected, sp; is compatible with the t-structures, hence induces
an exact functor of Tannakian categories

spt : MT(k(C)) — MT(k(x))

compatible with the fiber functors gr'V'. By Tannakian duality, sp; is equivalent
to a homomorphism

0

Erik Gal,(k(z)) — Gal,(k(C)),
which is the tangential base-point associated to the parameter t. This gives
a purely “motivic” construction of the tangential base-point construction of
Deligne-Goncharov [10]; the construction in [10] relies on realization functors.
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ABSTRACT. Displays were introduced to classify formal p-divisible
groups over an arbitrary ring R where p is nilpotent. We define a more
general notion of display and obtain an exact tensor category. In many
examples the crystalline cohomology of a smooth and proper scheme
X over R carries a natural display structure. It is constructed from
the relative de Rham-Witt complex. For this we refine the comparison
between crystalline cohomology and de Rham-Witt cohomology of
[LZ]. In the case where R is reduced the display structure is related
to the strong divisibility condition of Fontaine [Fo).
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1 INTRODUCTION

Displays of formal p-divisible groups were introduced in [Z2]. They are one
possible extension of classical Dieudonné theory to more general ground rings.
In [LZ] we gave a direct construction of a display for an abelian scheme by the
relative de Rham-Witt complex. In the case where the p-divisible group of the
abelian scheme is local the construction leads to the display of [Z2].

We define here a more general notion of display over a ring R, where a given
prime number p is nilpotent. If R is a perfect field a display is just a finitely
generated free W(R)-module M endowed with an injective Frobenius linear
map F : M — M, while a display of [Z2] is a Dieudonné module, where V acts
topologically nilpotent. Our category of displays is an exact tensor category
which contains the displays of [Z2] as a full subcategory. There is also a good
notion of base change for displays with respect to arbitrary ring morphisms
R — R’. Neither the construction of the tensor product nor the construction
of base change is straightforward. Special types of tensor products are related
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148 ANDREAS LANGER AND THOMAS ZINK

in [Z2] to biextensions of formal groups. Other operations of linear algebra as
exterior products and duals up to Tate twist may be performed but we don’t
discuss them here, since we don’t use them essentially and their construction
requires just the same ideas. We add that the exact category of displays is
Karoubian [T] and has a derived category.

In many examples we have a display structure on the cohomology of a projective
and smooth scheme which arises as follows: Let p be a fixed prime number and
let R be a ring such that p is nilpotent in R. We denote by W (R) the ring
of Witt vectors and we set Ip = VIWW(R). Let X be a projective and smooth
scheme over R. Let W2y /R be the de Rham-Witt complex. We define for

m > 0 the Nygaard complex N""W Q' /i of sheaves of W (R)-modules:

d d m— dv m d m d
(W p)ir) = - = (WO )i = WR = W 5

Here F' indicates restriction of scalars with respect to the Frobenius F' :
W(R) — W(R). We remark that ./\/'OWQ'X/R = WYy . These complexes
were considered by Nygaard, Illusie and Raynaud [I-R], and Kato [K] if R is a
perfect field.

Let m be a nonnegative integer and consider the hypercohomology groups

Py =H"(X,N'WQx/g)

for ¢ > 0. The structure of the de Rham-Witt complex gives naturally three
sets of maps (compare: Definition 2.2):

1) A chain of morphisms of W (R)-modules
=P 5 P—... PSP
2) For each ¢ > 0 a W(R)-linear map
a; : Ir @w(r) Pi — Piy1.
3) For each ¢ > 0 a Frobenius linear map
F;,: P, — P,.

The composition of ¢ and « is the multiplication Iz ® P; — P;. Moreover we
have the equation:

Fi(ai( Vn®a)) =nFa, nelgr, z€ P (1)

We will call a set of data P = (P;, ;, v, F;) with the properties above a pre-
display. The predisplays form an abelian category. The equation (1) implies:

Fi(ti(y)) = pFiya(y)

i.e. the Frobenius Fj becomes more and more divisible by p if it is restricted
to the Nygaard complexes.

We are interested in predisplays, which are obtained by the following construc-
tion. We start with a set of data which are called standard:
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A sequence Ly, ..., Ly of finitely generated projective W (R)-modules.

A sequence of Frobenius linear maps for ¢ = 0,...d:

b, : L, > Log®...0 Ly

We require that the map &;®; is a Frobenius linear automorphism of Ly &®...®
Lg.
From these data one defines a predisplay P = (P}, 4, «;, F;), with

Pi=(Ipr®@Lo)®...8Ir®Li1)®Li&...® Lqg

for i € Z,i > 0. The definition of the maps ¢;, a;, F; (compare Definition 2.2)
is not obvious, but we skip it for the moment. We should warn the reader
that the P; for ¢ > d are obviously isomorphic, but these isomorphisms are not
canonical, i.e. they depend on our construction and not only on the predisplay

P.

DEFINITION: A predisplay is called a display if it is isomorphic to a predisplay
associated to standard data.

A decomposition Py = Lo @® L1 @ ... P Lg which is given by standard data is
called a normal decomposition.

If we start with standard data for d = 1 we obtain exactly the 3n-displays of
[22], which are called displays in [Me]. In this work we call them 1-displays.
If we assume that the L; are free the map ®®; is represented by a block matrix
(A;;), where A;; is the matrix of the Frobenius linear map L; — L; induced by
®®;, where 0 < 4,5 < d. Conversely any block matrix (4;;) from GL(W (R))
defines standard data for a display. Over a local ring R it would be possible to
define the category of displays in terms of matrices.

We note that the maps ¢; for a display P are generally not injective unless the
ring R is reduced. In this case the whole display is uniquely determined by the
Frobenius module (P, Fp). Indeed the display property implies that:

P, = {’JJ IS | Fo(:L') S piPo} (2)

One has F; = (1/p")Fy. This makes sense because p is not a zero divisor in
W(R) if R is reduced. Therefore over a reduced ring a display is a special kind
of Frobenius module.
If R = k is a perfect field a display is just the same as a Frobenius module
(Po, Fp). Indeed, consider the map Fy : Py®@Q — Py®Q. We obtain inclusions
of W (k)-modules:

Py C Fo_lpo C Ph®Q.

By the theory of elementary divisors we find a decomposition by W (R)-modules
Po=Lo® L1 ®...d Ly, such that

Fyi'Ph=Lo®p 'Li®... &p L.
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Therefore the restriction of p~%Fy to L; defines a map ®; : L; — Py, for
t = 0,...,d. These are the standard data for the display associated to the
Frobenius module (P, Fp).
If pR = 0 Moonen and Wedhorn [MW] introduced the structure of an F-zip.
It is defined in terms of the de Rham cohomology of the scheme X/R. As one
should expect any display gives rise to an F-zip (compare the remark after
Definition 2.6.).
For an arbitrary projective and smooth variety X/R we can’t expect that the
crystalline cohomology H(7, ((X/W (R)) has a display structure. Therefore we
consider the following assumptions: There is a compatible system of smooth
liftings X,,/W,(R) for n € N of X/R such that the following properties hold:
(*) The cohomology groups H7(X,,, Q}n Wl R)) are for each n, 7 and j locally
free W, (R)-modules of finite type.

(**) The de Rham spectral sequence degenerates at F1

EY = H (X, Q;?n/Wn(R)) = H'" (X, Q.f(n/wn(R))'
THEOREM: Let X be smooth and projective over a reduced ring R, such that
the assumptions (*) and (**) are satisfied. Let d be an integer 0 < m < p.
Consider the Frobenius module Py = H., (X/W(R)) and define P; by the
formula (2).

Then the P; form a display and P; coincides with the hypercohomology of the
Nygaard complex NiWQ'X/R.

It would follow from the general conjecture made below that this theorem holds
without the restriction m < p.

Finally we indicate how to proceed if the ring R is not reduced. In order to
overcome the problem with the p-torsion in W (R) we use frames [Z1]. A frame
for R is a triple (4, o, ), where A is a p-adic ring without p-torsion, o : A — A
is an endomorphism which lifts the Frobenius on A/pA, and o : A — R is a
surjective ring homomorphism whose kernel has divided powers. Let us assume
that X admits a lifting to a smooth formal scheme ) over Spf A, which satisfies
assumptions analogous to (*) and (**). We define “displays” relative to A which
we call windows (see [Z1]). Theorem 5.5 says that under the conditions made
H (X/A,Ox/4) has a window structure for m < p . There is a morphism
A — W(A) — W(R) which allows to pass from windows to displays. We
remark that because of this morphism the assumptions (*) and (**) for A are
stronger than the original assumption for W(R). In equal characteristic we
obtain e.g. the following:

THEOREM Let X be smooth and projective over a ring R, such that pR = 0. Let
us assume that there is a frame A — R and a smooth p-adic lifting )/ Spf A
of X, which satisfies the conditions analogous to (*) and (**).

Then there is a canonical display structure on Hp:, (X/W(R)) for m < p,

which does not depend on the lifting Y nor on the frame A.
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We discuss three examples where the assumptions (*) and (xx) hold. In these
examples the assumptions made on X in the two preceding theorems are full-
filled.

Let X be a K3-surface over R. We assume without restriction of generality that
R is noetherian. We denote by 7x, g the tangent bundle of X. The cohomology
group H?(X, Tyx/r) commutes with base change by [M] §5 Cor.3. From the case
where R is an algebraically closed field, we deduce that this cohomology group
vanishes. It follows that X has a formal lifting over Spf W (R) resp. Spf A.
From the Hodge numbers of a K3-surface over an algebraically closed field
[Del] one deduces that H'(X,Ox) = 0, H(X, Qﬁ(/R) =0, H*(X, Qﬁ(/R) =
0, H'(X,9%,z) = 0. It follows that the cohomology of X commutes with
arbitrary base change and is therefore locally free [M] loc.cit.. The degeneration
of the de Rham spectral sequence follows now because the Hodge numbers
above are zero, because there is no room for non-zero differentials.

Let X be an abelian variety over R. In this case the assumptions (%) and (xx)
are fullfilled by [BBM] 2.5.2.

Finally let X be a smooth relative complete intersection in a projective space
over R. Then the conditions () and (xx) are fullfilled by [De2] Thm.1.5.

Let p be a prime number. Let R be a ring such that p is nilpotent in R. In [LZ]
Thm. 3.5 we proved a comparison between the crystalline cohomology and the
hypercohomology of the de Rham-Witt complex extending a result of Illusie [I]
if R is a perfect field. We show here a filtered version of this comparison, which
is the key to the display structure. We conjecture a more precise comparison,
which would lead to a wide generalization of the theorems above.

Let W,,(R) be the truncated Witt vectors. We set Ir,, = VW, _1(R). This
ideal is 0 for n = 1.

Let X/R be a smooth and projective scheme. We consider the crystalline
site Crys(X/W,(R)) with its structure sheaf Ox/w, (r). Let us denote by
Ix/w.(r) C Oxyw,(r) the sheaf of pd-ideals. We denote by ‘7)[(77%,‘/”(1%) its
m-~th divided power. Let

U : Crys(X/Wy(R))™ — X7

zar

be the canonical morphism of topoi.

The comparison isomorphism [LZ] is an isomorphism in the derived category
D(X.4.) of sheaves of W,,(R)-modules on X,

Run«Oxyw,,(r) — Wallx)p

We will prove a filtered version of this. Let m be a natural number. Let
ImWa 2y /R be the following subcomplex of the de Rham-Witt complex:

pmilvwnflgg(/R i pm72VWn*IQ£(/R e i} Vanlg;/il% i WnQSr(L/R e
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The filtered comparison Theorem 4.6 says that for m < p we have an isomor-
phism in the derived category

R“n*j)[(rﬂ/vn(m — I"WnSlx R (3)

We would like to have a similar comparison theorem for the truncated Nygaard
complex N""W,, 0y, , instead of T W,

X/ X/R*
d d _ av md d
(W s )iy 2 o (V00 2 W08 W00

The advantage of the Nygaard complex is that the restriction of the Frobenius
from WQ'X/R to N"W Q. is in a natural way divisible by p™ even if p is a
zero divisor. For a reduced ring R the Nygaard complex N W, . is quasi-
isomorphic to Z" W, /R Unfortunately in general we don’t know a definition
for the Nygaard complex in terms of crystalline cohomology. Nevertheless we
make the conjecture 4.1:

CONJECTURE: Assume that X /W, (R) is a smooth lifting of X. Then the Ny-
gaard complex is in the derived category canonically isomorphic to the following
complex F™S)

X/Wa(R)
0 pd pd -1 d d
Trn @war) Uy ry = -+ = Tron w0 Vg, oy = Bk pwinmy = -+

Assume that we have for varying n a compatible system of smooth liftings
Xn /W, (R). We obtain a formal scheme X = lim X,,. We set:

]:mQ;Y/W(R) = th]:mQ}Zn/Wn(R) NmWQX/R = @NmWan/R

n n

We show the following weak form of the conjecture (Corollary 4.7):
THEOREM: Assume that R is reduced and that m < p. Then there is a natural
isomorphism in the derived category of W(R)-modules on X4 :

NTWQx g = F" Uy sy (r)

Moreover we can show in support of our conjecture, that the complexes
N™W, /R and F mQ}EW W, (R) AT€ always locally quasi-isomorphic on X .
The last theorem is closely related to strong divisibility in the sense of [Fo]
1.3: Assume the assumptions (*) and (*x) are satisfied. By the last theorem
the splitting of the Hodge filtration of the formal scheme X defines a normal

decomposition:
H™(X, F'Qy jywy(my) = IRLo @ ... @ IrL; 1 & Lj & ... & Ly

It is obvious from Definition 2.2 that the Frobenius F; : H™ (X, N7 Wy g) —
H™(X, WQy / ) is bijective if j is bigger than the dimension. Therefore Fy &
F1 & ...® F;: induces a bijection:

IRLo® ... ®IgrLy — Lo®...® Ly

This is what strong divisibility asserts.
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2 THE CATEGORY OF DISPLAYS

Let R be aring, and let W (R) be the ring of Witt vectors. We set Ir = VIV (R).
If no confusion is possible we sometimes use the abbreviation I = Ir. Let
® : M — N a Frobenius-linear homomorphism of W (R)-modules. We define a
Frobenius-linear homomorphism ®:

(I):IR®W(R)M — N (4)
Yeam o £B(m)

DEFINITION 2.1 A predisplay over R consists of the following data:
1) A chain of morphisms of W(R)-modules

N H_li)PZ—)—)PlgPQ
2) For each i > 0 a W(R)-linear map
a; : Ir @w(r) Pi — Piy1.

3) For each i > 0 a Frobenius linear map

F;,: P, — P,.

The following axioms should be fulfilled

(D1) For i > 1 the diagram below is commutative and its diagonal
Ir ® P, — P; is the multiplication.

Ir@P, —2— P

IR®L7,71J( Lli

Qj—1

Ir@Py —— B
For i =0 the following map is the multiplication:

Ir@Py —2 - p —° ., p

(DQ) Fijia = E Ir® P;. — By
We will denote a predisplay as follows:
P = (Pi,Li,Ozi,Fi), 1€ Zzo.

Let X be a smooth and proper scheme over a scheme S. Then we obtain a
predisplay structure on the crystalline cohomology through the Nygaard com-
plexes N™W,,Q x /s which are built from the de Rham-Witt complex as follows:

d d m— dv m d m
(Wam1 Q%8 1r) = -+ = (Waa Q%5 )i = WaQ%)s = WaQY s ..
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This is considered as a complex of W, (Og)-modules. The index [F] means
that we consider this term as a W,,(Og)-module via restriction of scalars F :
Wn(OS) - n—l(OS)-
Let Is,, = VW,,_1(Og) C W,,(Os) be the sheaf of ideals. We define three sets
of maps:
Qm i Isn OW,(0s) NmWnQ')(/S — ,/\/'m'HWnQ'X/S
I - NeranQIX/S - NmWnQX/S (5)
F N W Qy /g = WaaQyg
These maps are given in this order by the maps between the following vertically
written procomplexes (the index n is omitted):

Is @ (WQs)imy —— (WQs)im —2— (W6 —— W%/s

e | | |

m—1 m—1

[S®(WQ;;;)[F] ’ (WQX/S)[F] ’ (WQX/S)[F] - WQS?];

aav | a| av| a|

Is® (WQYs) ——— WA/ s)p —— WQY,s ——— Wa%s

wou] w| | |

IsewWopld ™ woplt — owopl 2 wopf
o] | | |
. 2
IseWwayls o wayld —S— wayfe _rE, W2

The first unlabeled arrows on the left hand side denote the maps Vé®@w — €w,
where the product is taken in WQ¥ /s (without restriction of scalars).

DEFINITION 2.2 Let S = Spec R be an affine scheme. Let X/S be a smooth
and proper scheme. Then we associate a predisplay. We set:

P, =HYX,N'WQx/s)

The predisplay structure on the P; is easily obtained by taking the cohomology
of the maps (5).

Here we write N'™ WQ'X/R = limNmWnQ'X/R. The P; coincide with the coho-
mology of Rlim RI'(X,N*W,Qx/,s) by the proof of [LZ] Prop. 1.13 (compare

[BO] Appendix).
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REMARK: Let S = Speck be the spectrum of a perfect field. Then I(k) is
isomorphic to W (k) as W(k)-module. The maps of complexes which define &;
and i; are in this case the maps F and V used by Kato in his definition of the
F-gauges GHY(X/S).

Let A/S be an abelian scheme. Then the predisplay structure on the crystalline
cohomology H'(A/W(R), O wr)) is in fact a 3n-display structure in the
sense of [Z2]. We will introduce additional properties of predisplay structures
which arise in the crystalline cohomology of smooth and proper varieties.

Let P be a predisplay. Then we have a commutative diagram:

p ., p

T pT (6)

Py —* P

Indeed, let y € Pi4q. Then we obtain from (D1) that

ai( V1®u(y) = "y

If we apply Fii1 to the last equation and use (D2), we obtain:
Fi(1i(y)) = pFita(y)

DEFINITION 2.3 A predisplay P = (P;, t;, i, F;) is called separated if the map
of P11 to the fibre product induced by the commutative diagram (6) is injective.

Remark: Predisplays form obviously an abelian category. To each predisplay
P we can associate a separated predisplay P*?P and a canonical surjection
P — P*P. This is defined inductively: P;” = Py and P is the image of
P; 41 in the fibre product of:

FeP »

]Disep i PO PO

The functor P — P*P to the category of separated displays is left adjoint to
the forgetful functor, but it is not exact.

It is not difficult to prove that a separated predisplay has the following property:
Consider the iteration of the maps a:

Q41 Qi k—1

I g p — 91 P, Piyy (7)

Here the maps o pick up the last factor of I®. The following map is called the
“Verjlingung”:

k) 1%k — I

Va®..9 Ve — V- &) (8)
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For a separated display the iteration (7) factors through the Verjungung:

ok o p v . _
e op L TepR —— Py

The last arrow will be called agk). In particular this shows that the iteration
(7) is independent of the factors we picked up, when forming «;.

For a separated display the data «;, ¢ > 0 are uniquely determined by the
remaining data. This is seen by the following commutative diagram:

B

I®F;

For a predisplay P the cokernel F;;; := Coker «; is annihilated by I. It is
therefore an R-module.

DEFINITION 2.4 We say that a predisplay is of degree d (or a d-predisplay), if
the maps «; are surjective for i > d.

A separated predisplay of degree d is already uniquely determined by the data:
PQ, .. .Pd,Lo, .. -Ld—17FO7 . ,Fd,ao, ey Og—1 (9)

For this consider the diagram (%) above for ¢ = d. The data already given
determine a map of I ® Py to the fibre product. This map is oy and the image
is Pg4+1. Thus inductively all data of the display are uniquely determined.
Conversely assume that we have data (9) which satisfy all predisplay axioms
reasonable for these data. Then we define Py by the diagram (x) above. We
obtain also the maps aq4, tq, and Fyy1. The axioms for the extended data are
trivially satisfied, except for the requirement that

I®Pyy1 = 1® Py — Pyyy
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is the multiplication. But this follows easily by composing the diagram (x) for
t = d, with the arrow id®¢q : I ® P41 — I ® P;. Inductively we see that a
set of data (9) satisfying the predisplay axioms may be extended uniquely to a
predisplay of degree d.

We may define the twist of a predisplay. Let
P = (P, v, F)
be a predisplay. Then we define its Tate-twist
PQ) = (P, v, o, FY) (10)

as follows: For i > 1weset P/ = P,_1,1, = t;-1,0, = a1, F] = F;_1. We set
P} = Py = P|, F} = pFy,1y, = idp,. Finally of, : I ® Py — Py is defined to be
the multiplication. If we repeat this n-times we write P(n).

We define a predisplay U = (P;, i, o, F;) called the wunit display as follows:
Py =W(R), P, =1 for i > 1. The chain of the maps ¢ is as follows:

LI T. BT S wW(R), (11)

where the last map ¢ is the natural inclusion.
The maps F; : I = P, — W(R) for i > 1 coincide with the map

Vi1 -W(R), Yeé-c

The map Fp is the Frobenius on W(R). The map g : I @ W(R) — I is the
multiplication. The maps a; : I @ I — I are the Verjiingung v(?). Since the
“Verjlingung” is surjective the unit display has degree zero.
A 3n-display (P,Q,F,V~!) as defined in [Z2] gives naturally rise to data of
type (9) with Py = P, P, = Q, Fy = F, F; = V! and therefore extends
naturally to a predisplay of degree 1 as we explained above. We will make this
explicit later on.
Let R be a reduced ring. Then the multiplication by p is injective on W(R).
Let M be a projective W(R)-module, and F' : M — M be a Frobenius linear
map. Then we set:

Pi={zeM|F(z) €p'M}

We obtain maps _

FE=01/p")F:P,— Ph=M
For ¢; we take the natural inclusion P;y; — P;. For «; we take the maps
I® P, — IP, C P41 induced by multiplication. The data (P;, ¢;, «;, F;) con-
structed in this way are a separated predisplay.

The predisplays we are interested in arise from a construction which we explain
now.

DEFINITION 2.5 The following set of data we will call standard data for a dis-
play of degree d.
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A sequence Ly, ..., Lq of finitely generated projective W (R)-modules.

A sequence of Frobenius linear maps for i =0,...d:

q)szﬁLO@@Ld

We require that the map ©;P; is a Frobenius linear automorphism of Lo®...®
Lq

From these data we obtain a predisplay in the following manner: We set:
P=(IQL))®.. IRL,_1)DL,®...® Ly

fori € Z,i > 0.

We note that P; = P;41 for ¢ > d. But these identifications are not part of
the predisplay structure we are going to define. They depend on the standard
datal

We define “divided” Frobenius maps:

Fi: P — Py
The restriction of Fj to I ® Ly for k < i is ®, and to Ly for j > 0is p/®,, ;.
The map ¢; : P41 — P; is given by the following diagram:

I®Ly)®.. eI ®Li—1)B(I ® Li)®Lit1®...BLg

S ™

I®Ly)®.. eI ®Li1)® L; @®Li1®...8Lg

The map «; : I ® P; — P;y1 is given by the following diagram:
IU®Ly)®.. ®IQURL;—1)®IQL, ®IQ®Li11®... ®I® Lg

ul ul idl multl multl (13)

I®Ly) ®...® (I®Li—1) ©I®L;))® Liyw &...0 Lg

Here v = v® is the Verjiingung. We leave the verification that P =
(P;, i, a4, F;) is a separated predisplay to the reader.

DEFINITION 2.6 A predisplay is called a display if it is isomorphic to a predis-
play associated to standard data.
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REMARK: Let us assume that pR = 0. There is the notion of an F-zip by Moo-
nen and Wedhorn. The relation to displays is as follows. Let P = (P, ¢4, o, F3)
be a display over R. We define an F-zip structure on M = Py/IgPy by the
following two filtrations. Let C? as the image of P, in Py/IrP, given by the
composite of the maps ¢;. This gives the decreasing “Hodge filtration”:

.cClcotltc...ccltcc'=M.

We set D; = W(R)F; P;+IrPy/Ir Py and obtain an increasing filtration, called
the “conjugate filtration”:

0=D_CDocCcDiCcDycC...CcDgC...CM.
The morphisms F; for ¢ > 0 induce Frobenius linear morphisms:
F; : Ci/Ciy1 — Di/D;i (14)

These are Frobenius linear isomorphisms of R-modules. Indeed, if we choose a
normal decomposition {L;} we obtain identification:

C'/)C = L, /IgL; and D;/D;_y 2 W(R)F;L;/IrW (R)F;L;

The two filtrations C" and D. together with the operators (14) form an F-zip
[MW] Def. 1.5.

Let P be the display associated to the standard data (L;, ®;) as above. Let
Q = (Qi,ti,q;, F;) be a predisplay. Assume we are given homomorphisms
pi : Ly — @Q;. Then we define maps 7;:

P=I®L)®.. [ ®Li1)®L;i®...0Lg — Q;
On the summand (I ® L;_j) the map 7; is the composite:
id®pi—k a®)
IQLiy —— I®Qi—r —— Qk

On the summand L;; the map 7; is the composite:

" @
Pi+j L
Liy; —— Qiyj —— Qi

where the last arrow is a compositions of ¢'s.

PROPOSITION 2.7 The maps 7; define a homomorphism of predisplays P — Q
if and only if the following diagrams are commutative:

Li 22— @

Py —"— Qo
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‘We omit the verification.

If P = (P,Q, F,V~1!)is 3n-display in the sense of [Z2], then any normal decom-
position P = Lo ® Ly, Q = I Lo & L1 defines standard data, which determine
this display.

We will now define the tensor product of displays: Assume that P =
(Pi,tiy 0, F;) and P’ = (P!, i}, of, F]) are displays over R.

7 Y

A tensor product 7 = (T3, LOZ', o(z)z-, F};) may be constructed as follows. We choose
normal decompositions

Ph=@a®L, P=@alL,.

n>0 n>0

More precisely this means, that we fix isomorphisms of P resp. P’ with stan-
dard displays. We obtain:

P=1QLy® - ®IQL;1®L;® ...
We denote the restriction of F; : P, — P, to the direct summand L; by ®;.

We obtain data for a standard display Kj, ®;,1 > 0, if we set

K= & (L,®L).

n+m=Il
Then ¢, K; = Py ® P}, and we define Frobenius linear maps

o

(I)lZKl—>PQ®P6,

b= 3 .0,

n+m=I
[e]
From the standard data K;, ®; we obtain a display

T: (Ti;(ziao(zial%i) (15)

We will show that 7 is up to canonical isomorphism independent of the normal
decompositions of P resp. P’.

In order to do this we define bilinear forms of displays. Let 7 be an arbitrary
predisplay. A bilinear form

AN:PxP —T.

consists of the following data.
A is a sequence of maps of W(R)-modules

Aij P1®P]I — Tiyj.

DOCUMENTA MATHEMATICA 12 (2007) 147-191



DE RHAM-WITT COHOMOLOGY AND DISPLAYS 161

We require that the following diagrams are commutative:

P @ P, ——— Ty

’ o
F"®Fil lFiﬂ‘

Py® Py —— Ty

PioP, —— Ty Pi® P, —— Tiy,
w ] e i
Pip1® P, —— Titjq PioP, —— Tiyjn

Ir@P@P, —— Ir®@T;y; Ir@ P,®@P] —— I®Tiy;

ai®idl l&iﬁ-j id ®a;i l&iﬁ-ﬂ'

Py ®@P, —— Ty Pi®Pl, —— Tijt1.

REMARK: We will consider also the maps
PP — Ty, for i+37 >k,

which are the compositions of \;; and T;; — T}, the iteration of ¢.

If ¢ + 7 > k we obtain a commutative diagram:

Pi—l & Pj — Tk
L ®id 1 1 (16)
PP — Tyt

We will denote the set of bilinear forms of displays in this sense by

Bil(P x P',T).

We return to the display 7 given by the standard data K;, ®;. We will now
define maps \;; : P; ® P]( — T;1;. For this we write P; ® P]( according to the
normal decompositions:
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PeP=(@Ileclel,oL,)o( @ I8L.eL,)
n<i n<i
m<j m>j
m4n<i+j
o @ UeL.eL)e( P IeL.oL,)
n>i n<i (17)
m<j m2>j
n+m<i+j n+m>i+j
o P UeL,oL,)e(@ L.eL,).
m>i n>i
m<j m2>j
n+m>i+j
We have six direct sums in brackets, which we denote by Z;, ¢ =1,...,6 in the
order as above.
By definition T;4; has the decomposition
(18)

Ti;=( @ IeL.oL,)e( @ L.oL,).
n+m<i+j n+m>i+j

We define \;; : P ® PJ( — T;1; as a bigraded map with respect to n,m > 0,
which is on the homogeneous components as follows.

Case Z1: n<i,m < j
I®I®L,®L,, —I®L,®L,,
Vew Yol e, — V(En) ®l, 1,

Case Zo:n<i,m>jn+m<i+j

p"Iid:I®L,®L, —I®L,®L,,

Case Zg:n>i,m<jn+m<i+j

p"id:I®L,®L, —I®L,®L,,

Case Zy:m<i,m>jn+m>i+j

p"lid:I®9L, 9L, —I®L,®L,,

n>i,m<jn+m>i+j

Case Zs:
pmldIeL, L, —I®L,®L,,

Case Zg:n>i, m>j
id:L,®L,, — L,®L,,.
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PROPOSITION 2.8 The homomorphism A;j : Pi®Pj( — Tiy; defined by Z1—Zs
above define a bilinear form of displays.

PROOF: We omit the tedious but simple verification.

LEMMA 2.9 The homomorphism
Dirj=kP; ® P} — Ty

given by the sum of \;; is surjective.

PROOF: We have to show that all summand of (18) are in the image. Consider
the submodule L, ® L/, C T, where n+m > k. Weseti=nand j =k —i=
k —n < m. By Zg this submodule is in the image of P; ® PJ( — T). Next
we consider a submodule I ® L, ® L, C Ty, where n +m < k. We set i = n
and j =k —i =k —n > m. Thus we are in the case Z3 with factor p"~% = 1.
Again the submodule is in the image of P; ® Pj( — T Q.E.D.

PROPOSITION 2.10 Let P and P’ be displays. Let T = (Ti,ii,o(z)i,Fi) be the
display (15). Let Q be a separated predisplay. There is a canonical isomorphism
of abelian groups

Bil(P x P', Q) 2 Hom(7, Q).

PROOF: Assume that we are given a bilinear form. We set 7 = P ® P’. The
maps T; — @Q; are constructed inductively. For ¢ = 0 this map is Agg, where
A denotes the bilinear form. For the induction step to ¢ + 1 we consider the
diagram

T; Qi i Qo
T pT (19)
Tit1 Fon To Qo

We claim that (19) is commutative. By Lemma 2.9 it suffices to show the
commutativity if we compose the diagram with the maps Ps; ® P, — T;;1, for
s+ 1 =14 1. This amounts to the commutativity of the following diagram
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F;

Qi

Qo

P.® P,

But the diagram is commutative by the definition of a bilinear form. Now the
commutativity of (19) gives a map: Tj11 — Qi X F,,Qo,p Qo- It is clear from the
diagram above and Lemma 2.9 that this map factors through Q;+1. Q.E.D.

COROLLARY 2.11 The display (15)
T= (T'L; (Zia &ia F'L)
does not depend up to canonical isomorphism on the normal decompositions of

P and P'. We write
T=PxaP

This is clear because of the universal property of 7 proved in the last proposi-
tion. Q.E.D.
REMARK: Assume that P and P’ are given by standard data (L;, ®;) and
(L, ®%). Assume we are given bilinear forms of W (R)-modules:

Bij : Li® L} — Qiyj.
Composing this with the iteration of ¢, Q;+; — Qo, we obtain a bilinear form
Py ® Py = (©iLi) ® (®;L) — Qo
Let us assume that the following diagrams are commutative:

k3

I <I>®<I); /
L1®LJ E——— P0®PO

| 1
Figj
Qirj —— Qo
Then the 3;; extend uniquely to a bilinear form

PxP —Q
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In [Z2] Definition 18 the notion of a bilinear form of 1-displays was defined. It
is obvious from the formulas there, that a bilinear form on two 1-displays in
the sense of loc.cit. is the same as a bilinear form

P xP — U,

where the right hand side is the twisted unit display (11).

Starting from the normal decomposition of a display P it is easy to write down
the standard data of a candidate for the exterior power /\k P. It comes with
an alternating map ®*P — /\k’P. One proves as above that /\k’P has the
universal property.

We will now define the base change for displays. Let R — S be a homomor-
phism of rings. Let P = (P, ;, a4, F;) be a display over R. We will define a
display Ps = (Qi, i, a4, F;) over S, with the following properties. There are
W (R)-linear maps

Pi—>Qia

such that the following diagrams are commutative

P — Qs Q; L SN Qo IR®Q; —2— Qin1

o E | | [ |

Piyn —— Qi p - p Ir®@ P, —— Piy
(20)

PROPOSITION 2.12 There is a unique display Ps as above which enjoys the
following universal property.
If T = (T;, 0, a4, Fy) is an arbitrary display over S and

P —T;
is a set of W(R)-linear morphisms, such that the diagrams above, with Q;

replaced by T; are commutative, then there is a unique morphism of displays
over S

Ps — T,

such that the following diagrams are commutative:

NS

P,

Qi T;
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The display Ps may be constructed using a normal decomposition of P. Let
Py = ®L; be such a decomposition, and let ®; : L; — Py be the maps induced
by F;. Then L;, ®; are standard data for a display over R. We can define Pg
to be the display over S associated to the standard data W (.S) ®w(r) Li, with
the Frobenius linear maps F' @y (p) ®; = ®;.

We will now see that this definition is up to canonical isomorphism independent
of the normal decomposition chosen. It suffices to see that Pg has the universal
property Proposition 2.12.

The obvious maps P, — ); make the diagrams (20) commutative.

LEMMA 2.13 The following W (S)-module homomorphism is surjective
W(S) @wr) P ® Is @w(s) Qi—1 — Q.

PRroOF: This is clear from the definitions.

Assume that P, — T; is a set of maps as in Proposition 2.12. We construct
inductively maps Q; — T;, which are compatible with F;,¢;, ;. Therefore
we obtain the desired morphism of displays Ps — 7. Since Py — Tj is
W (R)-linear, we obtain a map

Qo = W(S) @wr) Po — To.
Assume we have already constructed W (S)-module homomorphisms
Q; — 1y,

which are compatible with F,: and « for j <.
Consider the diagram

Ti L) TO

| E (21)

Qit1 — To.

The arrow Qi1 — T} is the composition Q;41 — Q; — T; and the arrow

F;
Qi+1 — Tp is the composition Q;41 - Qo — Ty. By Lemma 2.13 we

deduce that (21) is commutative. Thus it induces a map

QiJrl — T X F;,To,p To. (22)

It suffices to show that the last map factors through 7;41. This is seen easily
by composing (22) with the morphism of the lemma.

The uniqueness of the constructed morphism Pg — 7 is obvious. This proves
the proposition. Q.E.D.
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3 DEGENERACY OF SOME SPECTRAL SEQUENCES

PropPOSITION 3.1 Let w: X — Y be a separated and quasicompact morphism.
Let K be a complex of of flat 71Oy -modules on X which is bounded above.
We assume that each K' is a quasicoherent Ox-module. Then for each m the
hypercohomology groups R, K" are quasicoherent Oy -modules. If M is a
quasicoherent Oy -module there is a canonical isomorphism

R (K ®F 1oy 'M) 2 RmK @6, M (23)

PROOF: We may assume that Y is affine. Let & = {U;} be a finite affine
covering of X. Let F" = C" (U, K') be the Czech complex. It is the complex of
global sections of a sheafified Czech complexonY: F' = C (U, K'). The sheaves
in this complex are acyclic with respect to 7. because the cohomology of an
affine scheme vanishes. One concludes [EGA III] Prop. 1.4.10 that Rm, K™ are
quasicoherent Oy-modules namely the sheaves associated to the cohomology
of F". Since the modules and sheaves involved are flat with respect to Y the
projection formula reduces to the trivial equation:

C(U,K ®Oy M) = F ®F(Y,Oy) F(Y, M)

Q.E.D.
Let w : X — S be a proper morphism of schemes, such that S is affine. In
this section we consider a bounded complex K of flat 7=1(Og)-modules. We
assume that each K* is a quasicoherent Ox-module. Moreover we assume that
the following conditions are satisfied:

(i) Rim. K" is a locally free Og-module of finite type for any i and j.

(ii) the spectral sequence of hypercohomology degenerates:

EY = Rin,K' = R'1, K~

One can easily see that with these assumptions the simple complex associated
to C" (U, K') as above is quasi-isomorphic to the direct sum of its cohomology
groups. It follows that R™7,K " commutes with arbitrary base change for
any m. For the same reason the cohomology groups Rim,K* commute with
arbitrary base change.

The degeneration of this spectral sequence may be reformulated as follows. Let
us denote the by 02™ K" and 0 <™K" the truncated complexes with respect to
the naive truncation. Then the cohomology sequence of

0—0""K - K —oc“™K — 0,
splits into short exact sequences:
0 — R, (02mK") — Rir, K — Rirm,(c<™K") — 0. (24)
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Indeed, take a Cartan-Eilenberg resolution K° — I' by injective sheaves of
abelian groups. Let L' = m,I". This complex comes with a filtration Fil™L"
which is induced by the naive filtration of K. The spectral sequence in question
is the spectral sequence of this filtered complex. The condition (24) is equivalent
to the requirement that the maps

HYFil™ ML) — HY(Fil™L)

are injective for each ¢ and m, as one may see easily from the exact cohomology
sequence. This injectivity may be restated as follows:

d(Fil™ LY N Fil™ ™ L9 = d(Fil™ T L),

We conclude by [De3] Prop. 1.3.2.
The observation shows that the spectral sequences of hypercohomology of the
truncated complexes 0= K" and 0 <™K" degenerate too.

ProprosITION 3.2 Let 1 : X — S and K be as in Proposition 3.1. Let
.— My —» My — My — ... be a sequence of Og-modules (not necessar-
ily a complex). We consider the complex

L:.. - K'®os My — K'®0, M} — K?*® My — ...

Then the spectral sequence

EY . Rim, L' = RPHIn, L
degenerates.
ProOF: We assume without loss of generality that K? = 0 for i < 0. We

say that a sequence My — M; — ... is m-stationary if it is isomorphic to a
sequence of the form:

My— ... My_1—> M, =M, =...

Because K is bounded it suffices to show the theorem for m-stationary se-
quences. We argue by induction. For m = 0 this is clear from the projection
formula (23). Assume that the proposition holds for r-stationary sequences
with » < m. For an m-stationary sequence we consider the following morphism
of complexes:

L' —»T (25)
KoM, .. K" 2M™ 2 —— K" lgMm™!l —— K" M™...

idl idl l idl

KoM .. K" 2@M™ 2 —— KnlgM™ — K" M™...

If we apply the induction assumption to I' we obtain an exact sequence for
each ¢ and the given m.

0 — RIm (0=™T) — RIT, I — Rim, (c<™I") — 0. (26)
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The morphism of complexes (25) induces a commutative diagram:

Rir,oc2™L — Rim, L

al |
Rir,c2m™] —— Rix, I
By our induction assumption (26) it follows that the upper horizontal arrow is
injective.
We have to prove that the following sequences are exact for arbitrary integers

q and n.
0 — R, (0="L") — Rim, L — Rir,(6<" L") — 0.

We have seen this for n = m. For n > m we have to consider the maps.
RI7, (02" L) — Rim, (0™ L") — Rim, L

It suffices to show that the first arrow is injective. But this follows from the
beginning of our induction.

Finally we consider the case n < m. By the cohomology sequence it is sufficient
to see that the map

Rim, L — Rim (c<"L")
is surjective. But this map factors as:
Rim. L' — Rim (0c<"L) — Rim,(c<"L")

We need to show that the second map is surjective. But the complex c<™L" is
the tensor product of c<™ K" with an (m — 1)-stationary sequence of modules.
Therefore the map is surjective by induction assumption and we are done.
Q.E.D.

PROPOSITION 3.3 Let T : C — D be a left exact functor of abelian categories

such that C has enough injective objects. Let K be a complex in C which is
bounded below. We assume that the spectral sequences in hypercohomology

EY = RTK' = RTTK
degenerates. Let f: K — K be a homomorphism of complexes. Then for each

integer m the corresponding spectral sequence of hypercohomology associated to
the complex

K(m,f): % Kgm=24 gm-1 /08 gm 4 gme1
degenerates.

We omit the proof because it uses exactly the same arguments as above.
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4  FILTERED COMPARISON THEOREMS FOR THE DE RHAM-WITT COMPLEX

Let R be a ring such that p is nilpotent in R. We consider a smooth scheme X
over R. We will fix a natural number n. Assume we are given a smooth lifting
X /Wy (R). If X admits a Witt-lift ([LZ] Def.3.3) Oy — W, (Ox) we obtain

a morphism of complexes
Qe wry — Swacoywam) — Wallx)g- (27)

It is shown in [LZ] 3.2 and 3.3, that even if X admits no Witt lift, there is a
natural isomorphism in the derived category DV (X4, W,(R)) of sheaves of
Wy, (R)-modules on X:

The aim of this section is to prove a filtered version of this isomorphism.
For typographical reasons we use the abbreviations:

Q, = Q}E/Wn(R)’ Wald = Willy g
Let us denote by me.X/W(R) the complex
IR,n ®Wn(R) Qg Ei» - % Ian ®Wn(R) Q?_l i Qnm i Qnm+1 — ... (28)

CONJECTURE 4.1 There is a canonical isomorphism in the derived category
Dt (X.ar, Wi (R)) between the Nygaard complex and the complex (28):

NTWoxp = F Qg oy gy

This question is closely related to the work of Deligne and Illusie [DI]. We will
now see that the complexes in question are always locally isomorphic.
Let us assume we are given a Witt-lift. It induces a map

K: Qn — WL
By composition with the Frobenius F': W, — Wn_lQ'[ F] We obtain a map
F :IR,n ®W,L(R) Qn — Wn—lQ[F]-
Veé@wr— € Mr(w)

Using F we obtain a morphism of complexes of F™{ — N™W,,Q:

o L N O o [ S S
3 3 2
7| 7| | (29)
Wi 10— L= Wt s W —
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Let us consider the morphism (29) in the following simple situation:
Let A = R[T,...,T4] and X = Spec A. We set A = W,,(R)[T1,...T,4] and
X = Spec A. We consider the Witt-lift:

A— W,(A

It is the unique map of W, (R)-algebras, which maps T; to its Teichmiiller
representative in W, (A).

PROPOSITION 4.2 For the Witt-lift (30) the induced morphism

me}z/wnm) HNmWnQ'X/R (31)

is for any m > 0 a quasi-isomorphism.

. . l . . . .
ProoF: We use the W, (R)-basis of QA/WW,(R) given by p-basic differential

forms. For each weight function k : [1,d] — Z>¢ we fix an order on the set
Supp k = {i1,...,4,}, such that
ordpk;, < --- <ordyk;, .

For any ascending partition of Supp k into disjoint intervals

P:Suppk=IyUlU---UI,
such that I; # () for 1 <t <[, we have the p-basic differential

é(k,P) = T"o (p=ordekngrkn) ... (p~erdekngrhy. (32)

The order on Supp k is fixed once for all and therefore not indicated in the
notation (compare [LZ] 2.1).
In [LZ] 2.2 we have defined the basic Witt differentials

en(&, k,P) € WnQi‘/R.
They are defined for functions k : [1,d] — Zxo[1], and & € V*MW, 4 (R),
where u(k) is the minimal nonnegative integer, such that the weight p Rk

takes integral values.
In our case the map (27) is the unique W,,(R)-linear map given by

O yw ) — Walla/r-
é(k,P) — en(1,k,P).
The map F looks as follows
F:lg Ow,.(R) Ql,&/wn(R) - ”*1QE4/R,[F]
Ve ® ek, P) — en—1(E, 0k, P).
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For each weight k : [1,d] — ZZO[%], we consider the subgroup WnQi‘/R(k)
of W, Q! /r» Which is generated by basic Witt-differentials ey, (&, k,P) of fixed
weight k. The complex N™W,Q splits into a direct sum of subcomplexes

N™(k):

d d m— av m
Wnﬂﬂ?p} (pk) = -+ — nflﬂ[p] l(pk) - WnQ[F](k) o

Similarly let Q%/WW’(R) (k) C QZA/WW,(R) the W, (R)-submodule generated by the

p-basic differentials &(k, P) of fixed integral weight k. Then F™€) is the direct
sum of the following subcomplexes F™ (k):

Tr @,y Q0(k) 22 22 T @,y O () S Q) — -

It is obvious that for integral weight k the map

F (k) — N™ (k) (34)

is an isomorphism of complexes. Therefore the proposition follows if we show
that for k not integral the complexes N™ (k) are acyclic. This follows in degrees
not equal to m—1 or m from the corresponding statement for the de Rham-Witt
complex (see [LZ] Proof of thm. 3.5).

For non-integral k consider a cycle w € Wn_lQ[T}]_l(k), i.e. dVw = 0. Because
of the relation F'dV = d, it follows that w is also a cycle in the de Rham-Witt
complex W,,_1£" and consequently a boundary, because k is not integral.

Finally consider a cycle w € W,,Q™ (k). It may be uniquely written as a sum

w = Zen(fpakap)'
P

By [LZ] Prop. 2.6 w is a cycle, ifft P =0 U P’, i.e. iff the first interval I of the
partition P is empty, for all e, ({p, k, P) # 0 which appear in the sum. Since k
is not integral the coefficient &p is of the form &p = Vrp and

d Ven,l('rp,pk, P) = en(&’a k,P)

We make n variable. We set A = R[T7,...,Ty4], Ay = W (R)[Th...Tq]. We
extend the Frobenius homomorphism F' : W, (R) — W,,_1(R) to a map

¢n :An — Anfla
We denote 6, : A, — W, (A) the W, (R)-algebra homomorphism, such that
Assume we are given an étale homomorphism A — B of R-algebras. Then we
find a unique set of lifting B,, of B, which are étale over A,, and morphisms

(35)
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Yp : By, — B,—1 and g, : B,, — W, (B),
which are compatible with ¢, and d,, compare [LZ] Prop. 3.2.

COROLLARY 4.3 The map €, defines a quasi-isomorphism of complezes:

pd pd m—1 d m
In @y w, () IR®Y ywory — Qg wam) -

¢ | l

— v
WoiQ5 mim —— WaQBp---

W1 Qg

PROOF: For the given number n, we find a number m such that p™W,,(R) = 0.
Let us denote by ¢™ : Ay — A, the composite of m morphisms of type
(35). Tt is clear from the definition that

d¢™ : Amin — Q4w (r)
is zero. Consider the commutative diagram

dy™ 1
Brin = OQp w.(r)

dom
Anin = Uy w.(r)-

The derivation Ay, 1, — QEH/WH(R) is zero. Since By, yn/Amin is étale, the
extension dy™ is zero too.
Consider the commutative diagram

Bm+n ’éb_) Bm

T T
Amin 5 A,

It induces a morphism of algebras which are étale over A, :

Bm+n ®Am+n,¢m A, — DBy, (36)

This is an isomorphism. Indeed since A, — A/pA has nilpotent kernel it
is enough to show that (36) becomes an isomorphism after tensoring with
®a4, A/pA. But then we obtain the well-known isomorphism

B/pB ®A/pA,Frobm A/pA — B/pB
b@ar— b - a.
From the isomorphism (36) we deduce an isomorphism

Brtn DAy, gm an/R% an/R

b ® wr— wm(b) . w. (37)
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We note that (37) becomes an isomorphism of complexes if we take 1 ® d as
a differential on the left hand side. Hence the first row of (4.3) is obtained by
tensoring the corresponding complex for B, = A, with By, 4n,.

Let us consider the complex

d d 1 av md
W1 Qg gy = - nflﬂf/Rl,[F] = Wn Qg — -+ (38)

We consider it as a complex of W4y, (A)-modules via F™ : Wy1m(4) —
Wy (A). Then all differentials become linear (compare [LZ] Remark 1.8).
This shows that we obtain the second row of diagram of Corollary 4.3 if we ten-

sorize (38) with Wy (B)®w, . (a),rm- Because of the obvious isomorphism
([LZ] (32))

Bn+m ®An+7n76 Wner(A)Q n+m(B)a
the result is the same if we tensorize (38) by

Bn+m ®An+m,5¢m :
Therefore the whole diagram of Corollary 4.3 is obtained from the correspond-
ing diagram for B = A by tensoring with B,1m®a,,,, ;m- Since this ten-
sor product is an exact functor we obtain the corollary from the proposition.
Q.E.D.

Let X/R be a smooth scheme. We assume that R is reduced and p-R = 0. Then
we consider still another complex derived from the de Rham-Witt complex. We
set WQ! = WQIX/R and define Z™W,{lx g starting in degree 0.

P, Q0 L 2y, 0t S Sy, 0t AW, (39)

We recall the relation pd Yw = Vdw of [LZ] 1.17. For varying n we obtain a
procomplex Z"W.Qx k.

PROPOSITION 4.4 Let R be a reduced ring of char p. The procomplexes T W .Q
and N™W.Q are isomorphic in the pro-category of the category of complexes
of abelian sheaves on X 4.

PRrROOF: We have an obvious morphism of procomplexes

NT"W.Q —s T"W.Q (40)

WaiQf 5 WaQly o WaaQt S w5
PV PV | Vi id |

PPTIWW,_0 L VWL 0 L VWLt S wam L

We have to prove that this induces an isomorphism of proobjects. We set
WQ = limW,Q2. On W the multiplication by p and the Verschiebung are

. —iy—1
injective. Therefore we have an inverse p*VW Py, WQg.

DOCUMENTA MATHEMATICA 12 (2007) 147-191



DE RHAM-WITT COHOMOLOGY AND DISPLAYS 175

LEMMA 4.5 Let n > k > i+ 1. Then there is a map p'VW, Q! — W, _1Q!,
which makes the following diagram commutative

inWanX/R - n—leX/R,[F]

T 7 (41)

vl PN wal
X/R X/R,|F]"

PROOF OF THE LEMMA: Let n > k > i. For £ € W, (R) we denote by ¢ its
restriction to Wy,_(R). Then we have a well-defined map

P VW, (R) — e k(R)
prVeEr— 3

Indeed, write £ = (zg,...,2n—1). Then

(42)

Pt Ve=(0,. ..,O,xgm, .. .,:Ep%_i_l) € Wit1(R).

n

Therefore the vector (oy .y Tp—i—1) € Wh_;(R) is uniquely determined by
pt Ve We view W,,_;(R) as a Wy,41(R)-module via

W1 (R) =5 Wi (R) 25 W, _i(R).

Then we obtain a morphism of W, (R)-modules because of the following
commutative diagram
) poivt
pPVW(R) ~— W(R)
! !

The existence of the diagram (41) is clearly local for the Zariski-topology on
X.

We begin with the case, where X = Spec A and A = R[T1,...,Ty] is a poly-
nomial algebra. In this case an element of inWQlA /R May be expressed, in
terms of basic Witt-differentials:

w=> 1" Veullpr, ks P), Epi € VW, iy (R). (43)

Note that e, ({p .k, k,P) = 0, when u(k) > n.
The terms of the sum (43) are uniquely determined by [LZ] Prop.2.5 because
of the direct decomposition

k
Wn+19f4/R = @k,PWn+1Qf4/R(;7P)-

Using loc. cit. we find:
iV _ iV (gl
P €(§P7k7k’,7)) =p e(§P7k7ka7))a (44)
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iff p' Vép g = pt Vfé,yk, except in the case where k/p is not integral and Iy = (0.
In the latter case the equality (44) holds, iff pit! Vép , = pitt Vﬁg,k.
With the lemma above this shows that the following map is well-defined:
inWan — Wn—(i+1)Ql
W — Z en_(i_i_l)(ngD, k?, P)

This proves the lemma in the case of a polynomial algebra A. Assume now
that A — B is a étale morphism.
The image of the canonical injection

Wii1(B)@w, ()P VWaQa/r = Was1(B)@w, ., (4 WaQa/r = W1 Qs

coincides with p'VW,p /r- This follows from the following commutative dia-
gram

Whi1(B) @w, i a),Fr WanQayp —— WaQp/r

id®pi\/l pi\/l
Woi1(B) @w, i a) Wit 1Qa/r —— Waiy1Q5/r.

The top horizontal arrow is given by ¢ ® w —¥ &w and the lower horizontal
arrow is multiplication.
Now we find the desired map by tensoring inWnQA/R — Wh—(i+1)Qa/R:

Wht1(B) @w, 1 (a) PVWaQap — Wasi(B) @w,_,4),F Wa—+1)Q4/R
vl vl
PVWallp/r — W (i+1)2B/R-
The composition of the last map with p'V : Wih—i+1)B/r — Wy_iQp/Rr is
just the restriction. This proves the lemma. Q.E.D.

The proposition follows immediately because we obtain an inverse to the map
(40):

PPV WL Q0 L pm VWL QL VWL ™ S wLam.
l l l lRes
0 d 1 m—1 dVv m
anmflg[F] — anmflg[F] [ anmflﬂ[p] i Wn,m,19 [T

The first m vertical maps defined by the lemma are equivariant with respect
to

Wi (R) %8 Wo(R) 5 Woe 1 (R)
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The remaining maps are equivariant with respect to Wy, (R) — Wj,_n(R). The
commutativity of the diagram follows, since it is a homomorphic image of a
corresponding diagram for W) without level. This proves the proposition.
Q.E.D.

Let X/R be a smooth scheme. Let us denote by Ix/war) € Ox w, (r) the

sheaf of pd-ideals. We denote by J. )[(771%( R) its m-th divided power. Let

un : Crys(X/Wn(R)) — Xzar
be the canonical morphism of sites. We are going to define a morphism in
D(X.4.) the derived category of abelian sheaves on X, for m < p:
R“n*j)[gﬂ/vn(}z) — I"Waly) gk (45)

In order to define (45) we begin with the case, where X admits an embedding
in a smooth scheme Y/R, such that Y has a Witt-lift: Y /W, (R) and Oy —
W, (Oy).

The left hand side of (45) may be computed with the filtered Poincaré lemma
[BO] Theorem 7.2: Let D be the divided power hull of X in Y. Let Ip C
Op be the pd-ideal. The pd-de Rham-complex QO p/w,(r) has the following

subcomplex FilmQD/W7L(R):

<6 d —1] & d Sym— d A
13905 > I ey > I S Qppwmy - (46)

Then the left hand side of (45) is isomorphic to the hypercohomology of (46).
The Witt-lift defines a morphism

Oy — W,(0y) — W,(Ox).
It maps the ideal sheaf of X C Y to the ideal sheaf Ix = VW,-1(0x) C
W, (Ox). Since Ix is endowed with divided powers, we obtain
Op — W, (0x), (47)
mapping Ip to Ix. The homomorphism (47) induces a map of the pd-de Rham
complexes
QD/Wn(R) - QW?L(X)/W,L(R) — WyQx/R.

Taking into account that Ig?l = ph~1Ix for h < p, we obtain the desired
morphism from (46) to the complex Z"W,,Q if m < p:

P WO — o Ix W S W Qg =

We note that IXWanX/R = VWn,lQlX/R follows from the formula
V(ndwl cdwy) = Vipd Vwr...d Vw,.
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Hence we obtain a morphism

Rune T3y, (> Fil™ 0w, 1) — T WaSx/p- (48)

The independence of the last arrow from the embedding of X into a Witt
lift (Y,Y) is proved in a standard manner: Let X — Y’ be an embedding

into a second Witt lift (Y”,Y”). Then we obtain a Witt lift of the product
Y Xspecr Y’ : Indeed, Y Xgpecw, (r) Y’ is a lifting of Y x Y’ and the two given
Witt lifts induce a morphism:

Oy ®w, (r) Oy, — Wa(Oy) @w, (r) Wn(Oy') — Wip(Oy ® Oy).

If P denotes the pd-hull of X in Y X Spec W (R) Y’. We obtain a commutative
diagram

Fil™Qp w, (r)

T

IT"W,Qx/r

/

Since the vertical arrow induces by [BO] the identity on Ruy.J )[(“;LV( R) the
independence of (45) of the chosen Witt lift follows.

If X admits no embedding in a smooth scheme Y which has a Witt lift, one
can proceed by simplicial methods [I] or [LZ] §3.2, but we omit the details here.

THEOREM 4.6 For each m < p and n the map in DV (X4, W, (R))

Run*j)[(";%,n(m — I"WnQx/r (49)

s a quasi-isomorphism.

ProoF: Clearly the question is local for the Zariski-topology on X. We
may therefore assume that X = Spec B, where the R-algebra B is étale over
R[T1,...,Ty]. From the discussion above we know that any Witt-lift of B
leads to the same morphism (49). We choose a Frobenius lift { B, }»en of the
algebra B as in the corollary 4.3. We begin with the reduction to the case
B = R[Ty,...,T,]. Let J be the kernel of B,, — B. Then JU = p~'IpB,,
where Ip = VW,,_1(R) C W,(R). Hence we have to show that the following
morphism of complexes induces a quasi-isomorphism:
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m— 0 d -1 d m d
PRy w iy — IR womy — B wam) T

l I l

U 1 LT, 4, . VW a Q50 LN W LN

(50)

We choose a number s, such that p*W,,(R) = 0. We consider the groups

in the first complex as B,is; modules via ¥® : B,ys — B,. As shown in

the proof of Corollary 4.3 we obtain a complex of B,,;s-modules. The same

is true if we consider the groups in the second complex as B, 4s-modules by

Y® : Byys — B, — W, (B).

We obtain the diagram above from the corresponding diagram for B = A by

tensoring with B, 4,®4, .. Since By, is étale over A, ,, we have reduced

our statement to the case where B = R[T7,...,T,] and where the Witt-lift is

a standard one.

In the case of a polynomial algebra we have a decomposition of the de Rham

Witt complex according to weights [LZ] 2.17.

Because the operator V' is homogeneous, we have a similar decomposition

for the complex Z"W, Q4. In fact, by [LZ] Prop. 2.5 an element of

pm =W W, 1, for [ < m — 1 may be uniquely written as a sum of elements

of the following types

en(p™ Ve b Iy, .. 1)) for k integral

en(p™ Ve b Iy, .. 1)) for Iy # 0, k not integral

en(PtVEK Ty, ..., I)) for Iy = 0, k not integral.

Here £ € W,,_1(R) for k integral and £ € V“(k)’lwn_u(k) (R) for k nonintegral.

Clearly the elements of the first type span a subcomplex of Z" W, 4,z which

is isomorphic to the complex in the first row of (50). Indeed, the p-basic

differentials of this complex are mapped to basic Witt-differentials of the first

type above. The last two types of Witt-differentials above span an acyclic

subcomplex because of the formula

den(p™ 't VE K To, . ) = en(p™ T VE K, ¢, Io, ..., I),

for Iy # 0 and k not integral. The exactness of the non integral part at W, Q7% /R
follows in the same way. Q.E.D.
Let X,,/W,(R) be a compatible system of smooth liftings of X/R for n € N.

The Theorem 4.6 provides an isomorphism in the derived category between
ImWnQX/R and

P RS jwa ) = T TR ) = - TRR ) = R pw
(51)
We know by Proposition 4.4 that {Z™W;,Qx/r} is isomorphic to the procom-
plex {N"W,Qx/r}. The same argument shows that the procomplex (51) is
quasi-isomorphic to {}‘mQ'Xn S Wi R)}ne ~ - Passing to the projective limit we
obtain:
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COROLLARY 4.7 Let R be a reduced ring. Let X/R be a smooth and proper
scheme. Assume that X,,/Wy,(R) is a compatible system of smooth liftings of
X. Then there is for each number m < p a natural isomorphism in the derived
category DT (X, or w(r))-

NTWQy g = F"Qy ()

where X = lim X, in the sense of EGA I Prop. 10.6.3.

This is a weak form of the Conjecture 4.1 which asserts this for every level
separately.

5 DISPLAY STRUCTURE ON CRYSTALLINE COHOMOLOGY

Let R be a ring such that p is nilpotent in R. Let (A, o, a) be a frame for R
[Z1]. This means that A is a torsion free a p-adic ring with an endomorphism
o : A — A, which induces the Frobenius endomorphism A/pA — A/pA.
The map a : A — R is a surjective ring homomorphism, such that the ideal
a = Ker a has divided powers.

DEFINITION 5.1 An A-window consists of
1) A finitely generated projective A-module Py.
2) A descending filtration of Py by A-submodules

...Pi+1CPiC"'CP2CP1CPO. (52)

3) o-linear homomorphisms
F;,: P, — P,.

The following conditions are required.

(i) aP; C P41 and the factor module P;y1/aP; is a finitely generated projec-
tive R-module E;11 for i > 0. We set Ey = Py/aP,.

(i) The inclusions Piy1 — P; induce injective R-module morphisms
= FBiy1 — E; — - — Ky,
such that E;y1 is a direct summand of E;.
(iii) aP; = Py1 if i is big enough.
(iv) Fi(x) = pFipa(x) for x € Piga.

(v) The union of the images F;(P;) for i € Z>q generate Py as an A-module.
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A window is called standard if it arises in the following way. Let Lg, ..., Lq be
finitely generated projective A-modules. Let

d
(I)i : Lz — @LJ
7=0

be o-linear homomorphisms, such that the determinant of ®o @ --- ® &y is a
unit. Then we set for i > 0
P=dLooa'L1®...0al; 1&L;® - @ Ly.

We define F; on this direct sum as follows: The restriction of F; to a*~*L;, for
k < i resp. Ly for k > i to is defined by

Fi(az) = ;ffk Oy (x) for 0<k<i, x €Ly, aca™*
Fi(z) = prid,(z) for i <k z € Ly.

It is clear that (P;, F;) form a window. B
Each window is isomorphic to a standard window. Indeed, let g = ©L; be a
splitting of the filtration (52) in the definition:

Ei = @j>iL;.

Let L; be a finitely generated projective A-module which lifts L;. We find
homomorphisms L; — P; which make the following diagrams commutative:

[

Li — P,

It follows from the lemma of Nakayama that ®&L; — Py is an isomorphism,
since it is modulo a. By induction we obtain

PZ-:aiLOGB~~~®aLi,1@Li®~~@Ld. (53)

We set ®; = F;|L;. The condition (v) implies that &®; : §L; — &L, is a
o-linear epimorphism and therefore an isomorphism.
REMARK: A window (F;) is of degree d, if Piy1 = aP; for i > d. To give
a window of degree d it is enough to give only the modules Fy,..., P;. The
axioms may be formulated in the same way for this finite chain of modules. The
axiom (v) then requires that the union of Fy(FPp), Fi(P1) ..., Fy(Py) generates
Py as an A-module.
We will now see that an A-window induces a display over R. There is a natural
ring homomorphism ¢ : A — W (A), such that for the Witt-polynomials w,,
there is the identity

w,(0(a)) =0"(a), a€ A
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Consider the composite ring homomorphism.
w:A— W(A) - W(R).

We have by [Z1] Prop. 1.5:

(

Py
#( pa

ola)) = Fi(a) for ac A
el

) = Vi(a) for aca.

g

The last equation makes sense because s»(a) € VIW(R) for a € a.

It is clear that a datum (L;,®;) for a standard window over A induces the
datum (W(R) ®w(a) Li, F ® ®;) for a standard display over R. We will show
that the resulting display does not depend on the decomposition Py = &L; we
have used.

We give an invariant construction of a display (Qi, ¢, ai, F;) from a window
(P;, F;). The display comes with morphisms 7; : P, — @; such that the follow-
ing diagrams commute

P —— Q Py Qiv1 Py, —— Qo
T B
Py SLSS I Qit1 a® P, —— Ir Qw(r) Qi Py —— Q.

(54)
We construct @; and 7; inductively, such that the diagrams (54) commute. We
set Qo = W(R) ®;.,4 Py and we let 79 : Py — Qo be the canonical map.
Assume that 75 : P, — Qp was constructed for k < i. Then we consider the
following commutative diagrams:

Ti F;
P Qi —= Qo
pT
F;
Qo Qi — Qo
Pip 50 e 0

We obtain a morphism to the fibre product

(W(R) ®a Piy1) ® (Ir ® Qi) — Qi XF,,Qo.p Qo- (55)
We define Q11 as the image of (55). This gives a map Py — Qis1. We
define ¢ : Q;41 — Q; and Fj11 @ Q11 — Qo and oy : IR ® Q; — Qiy1 as
the canonical maps determined by these data. A routine verification shows
that this construction gives the same result as the construction via standard
windows.
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/o,

Moreover the following universal property holds. Let (Q%, ¢}, o}, F!) be a display
over R and let ) : P, — @} be maps such that the diagrams (54) for 7/
commute. Then the maps 7] are the composition of 7; and a morphism of
displays (Qs, i, i Fy) — (Q, ¢, o, FY).

Let A% R,o0,a as before. Let X — Spec R be a scheme which is projective

and smooth. Let Y 4, Spf A be a smooth pA-adic formal scheme, which lifts
X. Weset A, = A/p™ and Y,, = ) Xgpra Spec A,. For big n the map «

Qn

factors through A,, =% R. The kernel a,, inherits a pd-structure. We consider
the crystalline topos (X/A)crys. Let Jx/a, C Oxja, be the pd-ideal sheaf.
We are interested in the cohomology groups:

REMARK: It would be more accurate to consider the cohomology groups of
Rlim RT(X/A,, J )[(771]4 ). But under the Assumptions 5.2 and 5.3 we are going

n

to make these groups will coincide.
By [BO] 7.2 the groups H, éryS(X JAn, J )[(771]4 ) are the hypercohomology groups
of the following complex F'il [m]QYn A,

m—1

C‘T]®ANQ%,L/A" - C‘T_l]@@AnQ%fn/An S an®AnQY"/An - QQL/A,L ... (57)
We will make the following assumptions:

ASSUMPTION 5.2 The cohomology groups Hq(Yn,Q’;,n/An) are for each n lo-
cally free A,-modules of finite type.

ASSUMPTION 5.3 The de Rham spectral sequence degenerates at Ey

EY = HO(Yo, Q7 0 ) = HP(Y0, Dy, a,)-

Since Y, is quasicompact and separated by assumption the cohomology sheafs
R™ fWQY /A, are quasicoherent. From the assumption we see that these
sheaves are locally free of finite type. Hence the complex R f,,. {2y /A, is quasi-
isomorphic to the direct sum of its cohomology groups. This implies that the
cohomology groups R™ fn*Q'Yn /A, commute with arbitrary base change. The

same applies to the cohomology groups RY fn*Qf,n A, By Proposition 3.2 and

the projection formula (Proposition 3.1) we obtain a degenerating spectral se-
quence

EY = B (Yo, Qa0 ) @4, a0 SHA (Y, Fil™o, )
[
HES (XA, T )

crys
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If we pass to the projective limit we obtain a degenerating spectral sequence

EY =" o HI(9,9%,0) = HEL(X/A, T{0). (58)
The groups involved have no p-torsion.
We set X = X Xgpecr Spec R, where R = R/pR. By [BO] 5.17 there is a
canonical isomorphism

Hl\yo(X/A, Ox/a) = Hlyyo(X /A, O 4).- (59)

crys crys
The absolute Frobenius on X and ¢ on A induce an endomorphism on the right
hand side of (59) and therefore an endomorphism

F: HZrys(X/A’ OX/A) - Hérya(X/Av OX/A)'
LEMMA 5.4 Let pl™ be the mazimal power of p which divides p™/m! Then the
image of the following composition

Hiyyo(XJA, TEh) = Hiyyo(X/A), Oxya) 5 Hiy(X/A, Ox)a)

crys crys crys

is contained in p™ HE. (X/A,Ox/a).
PROOF: The argument is well known [K], but we repeat it in the generality we
need. We may replace A by A,. We embed X into a smooth and projective
Ap-scheme Z, such that there is an endomorphism o : Z — Z which lifts the
absolute Frobenius modulo p and which is compatible with o on A,,. We may
take for Z the projective space. Consider the pd-hull D of X in Z. It is also
the pd-hull of X in Z. Therefore o extends to D/A,, and to the pd-differentials
Qpa,- We obtain by [BO] an isomorphism

Hi(Xv Q.D/Ay,,) — Hérys(X/A’ OX/AW,)a
which is equivariant with respect to the action of o on the left hand side and
F on the right hand side.
Consider the morphisms B

X—-D—Z.

Let I(X) be the ideal of X in Z and Jp be the ideal of X in D. Consider the
diagram

(0z,1(X)) — (Op, Ip)

la \ lo‘D
(0z,1(X)) —= (Op, Jp)
The composite x maps I(X) to p- Op. This follows because
o(z) =2 modp for z € Og. (60)
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If 2 € I(X) the image of 2P in Jp becomes divisible by p, because we have
divided powers. Therefore the induced map op on the divided power envelope
maps Jp to pOp. Therefore

(T(;i};n]) C zﬂ”q]671).
For z € Oz we find from (60) that in Q})/An:
do(z) =0 mod p.

The composite map of the lemma is induced by a map of complexes:

jl[)m]QoD/An Jhr=iloi B
al al (61)
0%, Oy

%

The image of this map lies in pl"™! - QD/AW = plmlAa, ®sz1” QD/An~ The last
equality follows since by [BO] 3.32 the sheaf Op is flat over A,,. The hyperco-
homology of the last complex is by the projection formula

pIM A, ® RU(X, Qpja,) = pl™ A, @ RTerys(X/An, Oxya,)

=plmA, @ RT(Y,, QY,L/A")

But the cohomology of the last complex is p[m]Hi(Yn,Q'Y" / An)’ since we as-
sumed that the cohomology is locally free. This shows that (61) factors on
the hypercohomology through p[m}Hcrys(X/An, Ox/a,) = p[m]Hi(Yn, Q'Yn/An).
Q.E.D.

THEOREM 5.5 Let R be a ring, such that p is nilpotent in R. Let X be a
scheme which is projective and smooth over R. Let A — R be a frame. We
assume that X lifts to a projective and smooth p-adic formal scheme )/ Spf A
such that the assumptions 5.2 and 5.3 are fullfilled. Then for each number
n < p the canonical maps
n n -1 n
}]érys()(/j4’¢7£224) - }J;rys()(//47¢7£:l4 ]) — }f;rys()(/f1767)(/A)

are injective. The A-modules P,, = H. (X/A, \7)[(771]4) for m < n together with

crys
the maps

1
—F=F, P, —F
pm

giwen by Lemma 5.4 form a window of degree n.

ProOOF: We consider a number m < n. Then we have j)’?/A = j)[;;i, a™ =

alml. We write Fil[m]QiWA = @Fil[m]Q'Yn/An. Then we find a canonical

isomorphism

Py = H"(X, Fill™Qy 4) = H2 (X/A, T ) (62)

crys
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From the degenerating spectral sequence (58) we obtain the injectivity of P,, —
P,.,_1, since we have injectivity on the associated graded groups.

In the following considerations m,n can be arbitrary natural number, without
[m]

the restriction m < n < p. Then Fz‘ly/l4 will be the complex Fz‘ll’?}/A
a0, — a0, = o aQY - O,
Consider the following morphism:
a®H"(X, Fz‘lmQ'y/A) — H" (X, an‘lmQ'y/A). (63)

We have for afFil™), /a8 degenerating spectral sequence as (58). Therefore
the right hand side of (63) is a subgroup of H"(X, FilmQ'y/A).
We claim that the induced inclusion is an equality

aH™(X, Fil™ Yy, 1) = H'(X, aFil™ 2y, ). (64)

This equality holds for m = 0 by the projection formula. Indeed, consider the
canonical map:
Fil™Qy/a — ang,/A — 0.

The kernel is the following complex C"
OHamflﬂi,/A —)~..4>CLQ§I/_AI QY — ..

This complex C'is of the same nature as Fil™(2), /A but with less ideals involved.
By an induction we may assume that

aH™(X,C) = H* (X, aC).
By the projection formula we find
aH"™(X,a™Q, Ja) = a" T H (X, Q3)4)-
The assertion (64) follows from the diagram

H"(X,aC) —— H"(X,aFil™Qy, ,) —— H"(X,a"1QY )

|| o] ] (65)

aH™(X,C) —— aH"(X, FilmQ'y/A) — aH"(X, amﬂg,/A)
The upper line is a short exact sequence by a spectral sequence argument as
above. The lower line is a complex. The first arrow is injective and the second
surjective but it is a priori not exact in the middle term. One sees that the
upper and lower line in (63) must be isomorphic. This proves (65).
We have already seen that the following maps are injective

H™(X, aFil™Qy,,) — HY(X, Fil™ Q) ) — HY(X, Fil™Qy,, ).
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Therefore we obtain an exact sequence
0 — H"(X,aFil™Qy,,) — H* (X, Fil" Q) ,) — H'(X, 07" Qy ) — 0.

Since by (64) the map a @ H" (X, Fil™Qy/4) — H"(X, aFil™Q), ) is surjec-
tive, we see that

Py = H"(X, Fil™),,,) and En, = H'(X, 07" Q)

fulfill the conditions (i)-(iii) for a window without any restriction on m and n.
We note that for fixed n we have P11 = aP,, for m > n. As explained after
the definition of a window, we can obtain a decomposition

Po,=a"Lo®a™ 'L ®---®a™ "L,

with the convention that a* = A if k < 0.
Concretely we can find the liftings L; as follows. We consider the maps:

H" (X, Fil™ ) 4) — HY (X, 0770y, 4) — H" ™™ (X, Q8 )

Then L,, is obtained by splitting the last surjection. This construction gives
isomorphisms:

Ly = H"™(X, Q8 ,)

We now impose the condition m < n < p of the theorem. By lemma 5.4
and (62) the Frobenius endomorphism F : Py — Py is divisible by p™ when
restricted to P,,. We set

1
q)m = ])—mﬂLm .
The assertion that {P,,} is a window is then equivalent with the condition that

@Zn:oq)i : @?:()Li - @g:()Li

is a o-linear isomorphism, or in other words that det(&}_,®;) is a unit in W(A).
Clearly it suffices to show that for any homomorphism R — k to a perfect field
k the image of det(®®;) by the morphism

AiW(R) - W(k)—k

is a nonzero. The compositum map A — W (k) respects the Frobenius and
induces a map on crystalline cohomology

HE (X/A,Ox/a) — Hepy (X /W (), Ox, jw (k)

crys crys

which respects the Frobenius. It is induced by the base change map for de
Rham cohomology.

H™(X, Q) 4) = B (Xe, Qg w () w (k)
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The special decomposition we have chosen
HW(X, Qy/A) =L,
induces a similar decomposition
H™ (X, Dy 0 ywiy) = HH (X 0) @4 W(k) = ©Li @4 W (k).

Therefore we have reduced our assertion to the case R = k a perfect field and
A =W (k). This case was proved by Mazur (Compare [Fo] p.91 and Kato [K]
Prop.2.5). We give an argument in the case n < p — 2 which is based on the
comparison Corollary 4.7 but doesn’t use gauges.

For any complex A" of abelian sheaves on X consider the exact sequence in-
duced by the naive filtration.

0—o05, A=A -0 A —0,
where ¢ is an arbitrary integer. If n + 1 < ¢ we obtain an isomorphism
H"(X,A) =2H"(X,0<;A).
We apply this to the Nygaard complex N"W Q' /k and to the de Rham-Witt

complex Wy, . For i <m—1 the operator E,, (5) induces clearly a bijection
of the truncated complexes

F,, : USiNmWQk/k — USiWQIX/k
Therefore if n +1 <47 <m — 1 we obtain a bijection
F, : H"(X,NmWQ'X/k) — H"(X, WQ')(/k)

We set m = n + 2. Since m < p by assumption (and because k is reduced)
there are canonical isomorphisms in the derived category:

NTWQ ), = F"Qyyw ) = Fil™Qy wx)

But since m > n the map F,, is identified with the linearization of ®®;. This
says that the last map is a Frobenius linear isomorphism. Q.E.D.
REMARK: The proof shows that Hp 5 ()) with its Hodge filtration is strongly
divisible (compare [Fo] 1.2 Prop.) for n < p — 2. If we knew that NmWQ'X/k
and F™Qy w(r) are quasi-isomorphic, the last argument would imply that
H} p(Y) is strongly divisible without restriction on n. We note also that the
last argument works directly over any reduced ring k.

COROLLARY 5.6 Let X be a smooth and projective scheme over a ring R such
that p is nilpotent in R.

Let us assume that there is a frame A — R and a smooth and projective p-adic
lifting Y/ Spf A of X, which satisfies the conditions of the theorem.

Then we obtain for n < p by base change a display structure of degree n on
H o (X/W(R),Ox/wry). This display structure is independent of the frame

crys

A and the formal lifting Y we have chosen if p- R = 0.
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PROOF: For a given frame A the independence of the lifting ) is clear, because
the window structure is purely defined in terms of the crystalline cohomology
of X/A.

If we have a morphism of frames B — A and a formal lifting Z of X to B, then
we set ) = Z 4. Then the window associated to ) is obtained from the window
associated to Z by base change (one should think in terms of decompositions
(53)). Therefore the induced displays are the same.

If p-R=0and A’ and A” are 2 frames, we obtain a new frame A’ xg A” — R.
Then ¢’ x ¢” is an endomorphism of A’ x g A” because ¢’ and ¢” induce the
same endomorphism on R. If )’/ Spf A’ and )"/ Spf A” are formal liftings, we
obtain a formal lifting )’ x, V" of X over A’ x g A”. Therefore we obtain the
same display structure by base change.

THEOREM 5.7 Let R be a reduced ring of characteristic p. Let X/ R be a smooth
projective scheme. Assume that there is a compatible system of smooth and
projective liftings Yy, /W, (R). We assume that the assumptions 5.2 and 5.3 are
satisfied with A, = W,(R)

Then there is a display structure on Hp,., (X/W(R),Ox;wry) for n < p,
where

P =H"(X,N"WQx/r) = Hg,,s(X/W(R), )[(W/LLV(R))'

PrOOF: The second equality is the filtered comparison theorem. If we had a
p-adic lifting Y/ Spf W (R), the theorem would follow from the last one because
W(R) — Ris a frame. The slightly more general statement follows by the same
reasoning as the last theorem. Q.E.D.
We make the following conjecture:

CONJECTURE 5.8 Let R be a ring such that p is nilpotent in R. Let X/R
be a smooth projective scheme. Let us assume that the crystalline cohomology
groups H,, (X/W,(R)) are locally free Wy (R)-modules for i >0 and n > 1,
and that the de Rham spectral sequence

BP9 = HY(X, 0% ) = HPH(X, Q) )

degenerates.
Then the canonical predisplay structure on P, = H"(X,N"WQx g) is a dis-
play structure.
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1. INTRODUCTION

In this article, we propose a description of a class of Calabi-Yau categories using
the formalism of DG-categories and the notion of ‘stabilization’, as used for the
description of triangulated orbit categories in section 7 of [21]. For d > 2, let C
be an algebraic d-Calabi-Yau triangulated category endowed with a d-cluster
tilting subcategory 7, cf. [23] [18] [19], see also [3] [13] [14]. Such categories
occur for example,

- in the representation-theoretic approach to Fomin-Zelevinsky’s cluster
algebras [12], ¢f. [6] [9] [15] and the references given there,

- in the study of Cohen-Macaulay modules over certain isolated singu-
larities, ¢f. [17] [23] [16], and the study of non commutative crepant
resolutions [36], c¢f. [17].

From C and 7 we construct an exact dg category B, which is perfectly (d+1)-
Calabi-Yau, and a non-degenerate aisle U, cf. [25], in H°(B) whose heart has
enough projectives. We prove, in theorem 7.1, how to recover the category C
from B and U using a general procedure of stabilization defined in section 7.
This extends previous results of [24] to a more general framework.

It follows from [30] that for d = 2, up to derived equivalence, the category
B only depends on C (with its enhancement) and not on the choice of 7. In
the appendix, we show how to naturally extend a t-structure, cf. [2], on the
compact objects of a triangulated category to the whole category.

EXAMPLE Let k be a field, A a finite-dimensional hereditary k-algebra and C =
C 4 the cluster category of A, see [7] [8], i.e. the quotient of the bounded derived
category of finitely generated modules over A by the functor F' = 771[1], where
7 denotes the AR-translation and [1] denotes the shift functor.
Then B is given by the dg algebra, see section 7 of [21],
B=A& (DA)[-3]

and theorem 7.1 reduces to the equivalence

D*(B)/per(B) == Ca
of section 7.1 of [21].

2. ACKNOWLEDGMENTS

This article is part of my Ph. D. thesis under the supervision of Prof. B. Keller.
I deeply thank him for countless useful discussions and for his perfect guidance
and generous patience. This work was supported by FCT-Portugal, scholarship
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3. PRELIMINARIES

Let k be a field. Let £ be a k-linear Frobenius category with split idempotents.
Suppose that its stable category C = £, with suspension functor S, has finite-
dimensional Hom-spaces and admits a Serre functor X, see [4]. Let d > 2 be
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an integer. We suppose that C is Calabi-Yau of CY-dimension d, i.e. [27] there
is an isomorphism of triangle functors

SR )
We fix such an isomorphism once and for all. See section 4 of [23] for several

examples of the above situation.
For X, Y € C and n € Z, we put

Ext"(X,Y) = Home(X, S™Y).
We suppose that C is endowed with a d-cluster tilting subcategory 7 C C, i.e.

a) 7 is a k-linear subcategory,

b) 7T is functorially finite in C, i.e. the functors Home(?, X)|7 and
Home (X, ?)|T are finitely generated for all X € C,

¢) we have Ext'(T,T") = 0 for all T,7" € T and all 0 < i < d and

d) if X € C satisfies Ext"(T,X) =0 for all 0 <i < d and all T € T, then
T belongs to 7.

Let M C & be the preimage of 7 under the projection functor. In particular,
M contains the subcategory P of the projective-injective objects in M. Note
that 7 equals the quotient M of M by the ideal of morphisms factoring through
a projective-injective.

We dispose of the following commutative square:

ME———sc

|

TC—>§:C

We use the notations of [20]. In particular, for an additive category A, we de-
note by C(A) (resp. C~(A), C®(A), ...) the category of unbounded (resp. right
bounded, resp. bounded, ...) complexes over A and by H(A) (resp. H™(A),
HP(A), ...) its quotient modulo the ideal of nullhomotopic morphisms. By [26],
¢f. also [31], the projection functor £ — £ extends to a canonical triangle func-
tor HY(£)/H®(P) — £. This induces a triangle functor H*(M)/H*(P) — E.
It is shown in [30] that this functor is a localization functor. Moreover, the
projection functor H*(M) — H®(M)/H®(P) induces an equivalence from the
subcategory H%_,.(M) of bounded £-acyclic complexes with components in M
onto its kernel. Thus, we have a short exact sequence of triangulated categories

0 — He-e(M) — H"(M)/H"(P) — C — 0.

Let B be the dg (=differential graded) subcategory of the category C®(M)q,
of bounded complexes over M whose objects are the £-acyclic complexes. We
denote by G : H~ (M) — D(B°?)°P the functor which takes a right bounded
complex X over M to the dg module

B — Hom’, (X, B),

where B is in B.
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Remark 3.1. By construction, the functor G restricted to H2_,,(M) establishes
an equivalence

G :HE (M) == per(B°P)°P .

Recall that if P is a right bounded complex of projectives and A is an acyclic
complex, then each morphism from P to A is nullhomotopic. In particular, the
complex Hom$, (P, A) is nullhomotopic for each P in H~(P). Thus G takes
H~(P) to zero, and induces a well defined functor (still denoted by G)

G : H'(M)/H*(P) — D(B)*.

4. EMBEDDING
PRroOPOSITION 4.1. The functor G is fully faithful.

For the proof, we need a number of lemmas.
It is well-known that the category H~(£) admits a semiorthogonal decompo-
sition, c¢f. [5], formed by H™(P) and its right orthogonal H,_,.(£), the full
subcategory of the right bounded £-acyclic complexes. For X in H™ (), we
write

pX —- X — a,X — SpX
for the corresponding triangle, where pX is in H~(P) and a, X is in H_,.(£).
If X lies in H~ (M), then clearly a,X lies in Hz_, (M) so that we have an
induced semiorthogonal decomposition of H~(M).

LEMMA 4.1. The functor Y : H*(M)/H*(P) — Hg_,.(M) which takes X to
a, X is fully faithful.

Proof. By the semiorthogonal decomposition of H~ (M), the functor X — a, X
induces a right adjoint of the localization functor

H™ (M) — H™(M)/H(P)
and an equivalence of the quotient category with the right orthogonal

Heyo(M).

H(P)

—

HY (M) [HY(P) = H~(M)/H(P)

Moreover, it is easy to see that the canonical functor

H(M)/H(P) — H™(M)/H™(P)
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is fully faithful so that we obtain a fully faithful functor
HY(M)/HP(P) — Hg. o (M)
taking X to a,X. Vv

Remark 4.1. Since the functor G is triangulated and takes H~(P) to zero, for
X in ‘H?(M), the adjunction morphism X — a, X yields an isomorphism

G(X) =5 G(a,X) = G(TX).

Let D_M(M) be the full subcategory of the derived category D(M) formed by
the right bounded complexes whose homology modules lie in the subcategory
Mod M of Mod M. The Yoneda functor M — Mod M, M +— M”, induces a
full embedding

U He (M) = Dy (M)

We write V for its essential image. Under ¥, the category H2_,.(M) is identi-
fied with per,,(M). Let ® : D (M) — D(B°?)° be the functor which takes
X to the dg module o
B +— Hom*(X.,¥(B)),

where B is in H%_,.(M) and X, is a cofibrant replacement of X for the pro-
jective model structure on C(M). Since for each right bounded complex M
with components in M, the complex M” is cofibrant in C(M), it is clear that
the functor G : H®(M)/H®(P) — D(B°P)°P is isomorphic to the composition
®oWoY. We dispose of the following commutative diagram

H (M) /H (P)——=H

— = > D(BP)°P

(M) —————= Dy (M) —=

per (M) —== per(B°")°P

He-ae(M) H-ae(M)

LEMMA 4.2. Let Y be an object of D), (M).
a) Y lies in per (M) iff HP(Y) is a finitely presented M-module for all
p € Z and vanishes for all but finitely many p.
b) Y lies in V iff HP(Y) is a finitely presented M-module for all p € Z
and vanishes for all p > 0.

Proof. a) Clearly the condition is necessary. For the converse, suppose first
that Y is a finitely presented M-module. Then, as an M-module, Y admits a
resolution of length d + 1 by finitely generated projective modules by theorem
5.4 b) of [23]. It follows that Y belongs to per, (M). Since per,, (M) is
triangulated, it also contains all shifts of finitely presented M-modules and all
extensions of shifts. This proves the converse.
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b) Clearly the condition is necessary. For the converse, we can suppose without
loss of generality that Y™ = 0, for all n > 1 and that Y™ belongs to proj M,
for n < 0. We now construct a sequence

=P, - =P = B

of complexes of finitely generated projective M-modules such that P, is quasi-
isomorphic to 7>_,Y for each n and that, for each p € Z, the sequence of M-
modules PP becomes stationary. By our assumptions, we have 750 — HO(Y).
Since H(Y) belongs to mod M, we know by theorem 5.4 c¢) of [23] that it
belongs to per(M) as an M-module. We define Py to be a finite resolution of
HY(Y) by finitely generated M-modules. For the induction step, consider the
following truncation triangle associated with Y

STIHTNY) = 15 1Y — 7> Y — ST2H 1Y),

for i > 0. By the induction hypothesis, we have constructed Py, ..., P; and we
dispose of a quasi-isomorphism P; = 7>_;Y. Let Q;+1 be a finite resolution
of S“F2H~=1(Y") by finitely presented projective M-modules. We dispose of a
morphism f; : P, — Q;+1 and we define P,y as the cylinder of f;. We define
P as the limit of the P; in the category of complexes. We remark that Y is
quasi-isomorphic to P and that P belongs to V. This proves the converse. /

Let X be in Hg_,.(M).

Remark 4.2. Lemma 4.2 shows that the natural ¢-structure of D(M) restricts
to a t-structure on V. This allows us to express ¥(X) as

U(X) — holim7>_;¥(X),
where 7> _;¥(X) is in per  (M).
LEMMA 4.3. We dispose of the following isomorphism

P(V(X)) = ®(holim > _; ¥ (X)) — holim ®(7>_;¥(X)).

Proof. Tt is enough to show that the canonical morphism induces a quasi-
isomorphism when evaluated at any object B of B. We have

(I)(hogim >_;¥(X))(B) = Hom'(ho%im >_;9(X), B),
but since B is a bounded complex, for each n € Z, the sequence
i — Hom" (7>_;¥(X), B)
stabilizes as i goes to infinity. This implies that

Hom® (holim 7> _; ¥ (X), B) «+— holim ®(7>_;¥(X))(B) .
K] 7

LEMMA 4.4. The functor ® restricted to the category V is fully faithful.
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Proof. Let X,Y be in H;_,.(M). The following are canonically isomorphic :

HOmD(Bop)op (Q\PX, @lIIY)
Homp 06 (PVY, DU X)
(4.1) Homp gor) (hocolim 7> _; WY, hocolim 7> ;¥ X)
i J

holim Hompery (®7> s ¥Y, hocolim &7>_; U X))
% J
(4.2) holim hocolim Homp gery (®7> _; ¥Y, 7> ;U X)
i J

holim hocolim Hompe, (A1) (75— ¥ X, 7> VY)
j M

?

(4.3) holim Homy (holim 7> _; ¥ X, 7> _; UY)
i J
Homy ((X), ¥(Y)).

Here (4.1) is by the lemma 4.3 seen in D(B°P), (4.2) is by the fact that &7>_; Y
is compact and (4.3) is by the fact that 7>_;¥Y is bounded. v

It is clear now that lemmas 4.1, 4.3 and 4.4 imply the proposition 4.1.

5. DETERMINATION OF THE IMAGE OF G

Let L, : D~ (M) — D, (M) be the restriction functor induced by the projec-
tion functor M — M. L, admits a left adjoint L : D (M) — D~ (M) which
takes Y to Y @Y%, M. Let B~ be the dg subcategory of C~(Mod M), formed
by the objects of D) (M) that are in the essential image of the restriction
of U to H%_,.(M). Let B’ be the DG quotient, cf. [11], of B~ by its quasi-
isomorphisms. It is clear that the dg categories B’ and B are quasi-equivalent,
cf. [22], and that the natural dg functor M — C~(Mod M), factors through
B~. Let R’ : D(B°P)°? — D(M°P)°P be the restriction functor induced by the
dg functor M — B’. Let @' : D, (M) — D(B'°P)°? be the functor which takes
X to the dg module N

B’ — Hom*(X,, B'),
where B’ is in B’ and X, is a cofibrant replacement of X for the projective
model structure on C(Mod M). Finally let T' : D(M) — D(M?)°P be the
functor that sends Y to
M +— Hom® (Y., M(?, M)),

where Y, is a cofibrant replacement of Y for the projective model structure on
C(Mod M) and M is in M.
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We dispose of the following diagram :

D(Bo)°r B

g

HO (M) HY (P Mz, (M) — D)y, (M) —2 = D(BoP)or B
| CI.

D (M) —>DM?)” M

LEMMA 5.1. The following square

D_M(M) i)p(glop)op B

18 commutative.
Proof. By definition (R’ o ®')(X)(M) equals Hom®(X., M(?, M)). Since
M(?, M) identifies with L,M" and by adjunction, we have

Hom®(X., M(?, M)) — Hom*(X., L,M") = Hom®((LX )., M(?, M)),
where the last member equals (I o L)(X)(M). Vv

LEMMA 5.2. The functor L reflects isomorphisms .

Proof. Since L is a triangulated functor, it is enough to show that if L(Y") = 0,
then Y = 0. Let Y be in D) (M) such that L(Y) = 0. We can suppose,
without loss of generality, that H?(Y) = 0 for all p > 0. Let us show that
HO(Y) = 0. Indeed, since H(Y) is an M-module, we have H°(Y') = LOH?(Y),
where LY : Mod M — Mod M is the left adjoint of the inclusion Mod M —
Mod M. Since HP(Y') vanishes in degrees p > 0, we have

L'H(Y) = HY(LY).
By induction, one concludes that H?(Y") = 0 for all p < 0. v

PRrROPOSITION 5.1. An object Y of D_M(M) lies in the essential image of the
functor Wo Y : HY(M)/HY(P) — Dy (M) iff >—,Y is in per (M), for all
n € Z and L(Y) belongs to per(M).

Proof. Let X be in H*(M)/Hb(P). By lemma 4.2 a), 7>_,¥Y(X) is in
per (M), for all n € Z. Since X is a bounded complex, there exists an
s < 0 such that for all m < s the m-components of T(X) are in P, which
implies that L¥Y(X) belongs to per(M).

Conversely, suppose that Y is an object of D) (M) which satisfies the condi-
tions. By lemma 4.2, Y belongs to V. Thus we have Y = ¥(Y”) for some Y’
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in Hg_,.(M). We now consider Y’ as an object of H~ (M) and also write ¥
for the functor H~ (M) — D~ (M) induced by the Yoneda functor. We can
express Y/ as
Y’ <= hocolimos_;Y”,
K]

where the o>_; are the naive truncations. By our assumptions on Y’, o>_;Y”’
belongs to H’(M)/Hb(P), for alli € Z. The functors ¥ and L clearly commute
with the naive truncations o>_; and so we have

L(Y) = L(¥Y") «— hocolim L(o>_;¥Y") — hocolimo>_, L(¥Y").

By our hypotheses, L(Y") belongs to per(M) and so there exists an m > 0 such
h.
o LY)=L(VY') <~ 05 _p L(¥Y') = L(6>_, ¥Y").
By lemma 5.2, the inclusion

V(o5 mY) =05 mlY — (YY) =Y
is an isomorphism. But since o>_,,Y” belongs to H*(M)/Hb(P), Y identifies
with (o _pmY"). N,

Remark 5.1. It is clear that if X belongs to per(M), then I'(X) belongs to
per(M°P)°P. We also have the following partial converse.

LEMMA 5.3. Let X be in D4 1(M) such that I'(X) belongs to per(M°”)°P.
Then X is in per(M).

Proof. By lemma 4.2 b) we can suppose, without loss of generality, that X is
a right bounded complex with finitely generated projective components. Ap-
plying I, we get a perfect complex I'(X). In particular I'(X) is homotopic to
zero in high degrees. But since I' is an equivalence

proj M — (proj M),

it follows that X is already homotopic to zero in high degrees. v
Remark 5.2. The natural right aisle on D(M) is the full subcategory of the
objects X such that H"(X) = 0 for all n < 0. The associated truncation

functor 7>o takes per, (M) to itself. Therefore, the natural right aisle on
D(M) restricts to a natural right aisle /7 on per 4 (M).

DEFINITION 5.1. Let U be the natural left aisle in per o (M)°P associated with
Uer.

LEMMA 5.4. The natural left aisle U on per (M)°P = per(B°P) satisfies the
conditions of proposition A.1b).

Proof. Clearly the natural left aisle I in per (M) is non-degenerate. We
need to show that for each C' € per(M)°?, there is an integer N such that
Hom(C, SNU) = 0 for each U € U. We dispose of the following isomorphism

Homyper , (ayer (C, SNU) S Hompe, a0y (S™NUP, C),
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where U denotes the natural right aisle on per,(M). Since by theorem 5.4
c) of [23] an M-module admits a projective resolution of length d 4+ 1 as an
M-module and C is a bounded complex, we conclude that for N > 0

Homyper , (m) (S~ NUP,C) = 0.
This proves the lemma. vV

We denote by 7<, and 7>,, n € Z, the associated truncation functors on
D(BoP)°P.

LEMMA 5.5. The functor ® : D), (M) — D(BP)°P restricted to the category V

is exact with respect to the given t-structures.

Proof. We first prove that ®(V<o) C D(B°?)Z,. Let X be in V<. We need to
show that ®(X) belongs to D(B°?)%. The following have the same classes of
objects : -

D(B™)Z,
D(B™)>0
(5.1) (per(B°”)<0)™
(5:2) L(per(B7)%)>0,

where in (5.1) we consider the right orthogonal in D(B°P) and in (5.2) we
consider the left orthogonal in D(B°?)°P. These isomorphisms show us that
®(X) belongs to D(B)Z,, iff

Homp osyen (B(X), B(P)) = 0,

for all P € per(M)>o. Now, by lemma 4.4 the functor @ is fully faithful and
0
Homp goryor (P(X), D(P)) — Homype, () (X, P).

Since X belongs to V<o and P belongs to per ,(M)=0, we conclude that
HomperM(M)(X, P)=0,
which implies that ®(X) € D(B°?)Z,. Let us now consider X in V. We dispose
of the truncation triangle
T<oX = X — 750X — S7<0X.
The functor @ is triangulated and so we dispose of the triangle
DT X = X — P150X — SPro X,

where ®7<¢X belongs to D(BOP)OSPO. Since ® induces an equivalence between
per ,(M) and per(B°?)°? and Hom(P, 70X ) = 0, for all P in V<, we conclude
that ®7+0X belongs to D(B°P)Z,. This implies the lemma. Vv

DEFINITION 5.2, Let D(BP)$” denote the full triangulated subcategory of
D(BP)°P formed by the objects Y such that 7>_,Y is in per(B°P)°P, for all
n € Z, and R(Y") belongs to per(M°P)°P.
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PROPOSITION 5.2. An object Y of D(BB°P)°P lies in the essential image of the
functor G : H* (M) /H*(P) — D(B)° iff it belongs to D(B)}".

Proof. Let X be in H*(M)/H®(P). Tt is clear that the 7>_,G(X) are in
per(B°P)°P for all n € Z. By proposition 5.1 we know that L¥Y(X) belongs
to per(M). By lemma 5.1 and remark 5.1 we conclude that RG(X) belongs
to per(M°)°P. Let now Y be in D(B?)?”. We can express it, by the dual of
lemma A.2 as the homotopy limit of the following diagram

T TZ,n,1Y - TzfnY - TzfnJrlY oty

where 7>_,Y belongs to per(B°P)°P, for all n € Z. But since ® induces an
equivalence between per (M) and per(B°P)°P, this last diagram corresponds
to a diagram o

T anfl - an - anJrl —
in per(M). Let p € Z. The relations among the truncation functors imply
that the image of the above diagram under each homology functor HP, p € Z,
is stationary as n goes to +oc0. This implies that

H? holim M_,, — limH? M_,, = H? M,
n n
for all 7 < p. We dispose of the following commutative diagram

holimM_,, _ . holim7s>_;M_,, =2 M_;

|

T>_;holim M _,,
- n

which implies that
T>_; ho}LimM_n -, M_;,

for all 4 € Z. Since holim M_,, belongs to V, lemma 4.3 allows us to conclude
that ®(holim M_,,) = T}L/ We now show that holim M_,, satisfies the conditions
of proposﬁion 5.1. We know that 7>_; holim 7\4,n belongs to per (M), for
all i € Z. By lemma 5.1 (T o L)(holim M_:) identifies with R(Y"), which is in
per(M°P)°P. Since holim M _,, belo?lgs to V, its homologies lie in mod M and
so we are in the concﬁtions of lemma 5.1, which implies that L(holim M_,,)

n

belongs to per ((M). This finishes the proof. Vv

6. ALTERNATIVE DESCRIPTION

In this section, we present another characterization of the image of GG, which was
identified as D(B°P );Zp in proposition 5.2. Let M denote an object of M and also
the naturally associated complex in H*(M). Since the category H®(M)/H(P)
is generated by the objects M € M and the functor G is fully faithful, we re-
mark that D(B°P );Zp equals the triangulated subcategory of D(B°P)°P generated
by the objects G(M), M € M. The rest of this section is concerned with the
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problem of characterizing the objects G(M), M € M. We denote by Py the
projective M-module M(?, M) associated with M € M and by X, the image
of M under o Y.

LEMMA 6.1. We dispose of the following isomorphism
Homp— (v (Xar,Y) = Homumoa m (Par, H(Y))
for allY € Dy (M).
Proof. Clearly Xy belongs to Dag(M)<o and is of the form
~HP,/L\H~~~HP1AHPOAHMAHO,

where P,, € P, n > 0. Now Yoneda’s lemma and the fact that H™(Y)(P,) = 0,
for all m € Z, n > 0, imply the lemma. v

Remark 6.1. Since the functor ® restricted to V is fully faithful and exact, we
have

Homp (goryor (G(M), ®(Y)) «— Homper(goryor (®(Par), HO(®(Y))),
forallY e V.

We now characterize the objects G(M) = ®(X ), M € M, in the triangulated
category D(B°P). More precisely, we give a description of the functor

Ry i= Hompgeny (7, ®(Xar)) : D(B?) — Mod k

using an idea of M. Van den Bergh, ¢f. lemma 2.13 of [10]. Consider the
following functor

Fyr = Homper(Bop)(HO(?), O(Pypy)) : per(BP)°P — mod k.

Remark 6.2. Remark 6.1 shows that the functor Rj; when restricted to
per(B°P) coincides with Fjy.

Let DF); be the composition of Fy; with the duality functor D = Hom(?, k).
Note that DFy; is homological.

LEMMA 6.2. We dispose of the following isomorphism of functors on per(B°P)
DF); — Hompgor)(®(Xar), ?[d +1]) .

Proof. The following functors are canonically isomorphic to DF® :
DHomyey(gory (H'®(?), ®(Par))

) DHomypey(ery (PH (?), ®(Par))

) DHomype,  (a) (Par, HO(?))

) DHomD&(M)(XM, 7)

) Hom’D’M(M)(?[_d — 1], Xur)

) Homp goryor (®(7)[—d — 1], ®(Xar))

) Hom’D(BOP)OP((I)(XM)a ‘I)(?)[d + 1])
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Step (6.1) follows from the fact that ® is exact. Step (6.2) follows from the fact
that @ is fully faithful and we are considering the opposite category. Step (6.3)
is a consequence of lemma 6.1. Step (6.4) follows from the (d 4 1)-Calabi-Yau
property and remark 4.2. Step (6.5) is a consequence of ® being fully faithful
and step (6.6) is a consequence of working in the opposite category. Since the
functor ®°P establish an equivalence between per,,(M)°P and per(B°P) the
lemma is proven. v

Now, since the category Mod k is cocomplete, we can consider the left Kan
extension, cf. [28], Ey of DFjy along the inclusion per(B°P) — D(BP). We
dispose of the following commutative square :

per(B°P) P hodk

f |

D(B%) - - - — - — > Mod k.

For each X of D(B°), the comma-category of morphisms P — X from a
perfect object P to X is filtered. Therefore, the functor Fj; is homological.
Moreover, it preserves coproducts and so D E); is cohomological and transforms
coproducts into products. Since D(B°P) is a compactly generated triangulated
category, the Brown representability theorem, cf. [29], implies that there is a
Zy € D(B°P) such that

DEM = Homp(gop)(‘?, ZM) .

Remark 6.3. Since the duality functor D establishes and anti-equivalence in
mod k, the functor DE) restricted to per(B°P) is isomorphic to Fiy.

THEOREM 6.1. We dispose of an isomorphism
G(M) == Zyr.

Proof. We now construct a morphism of functors from Rj; to DEj;. Since
Ry is representable, by Yoneda’s lemma it is enough to construct an element
in DEpN(®(X)s)). Let C be the category per(B°P) | ®(X,s), whose objects
are the morphisms Y’ — ®(Xjs) and let C’ be the category Xas | per (M),
whose objects are the morphisms X»; — X’. The following are can(;ically
isomorphic :

DEy(®(Xn))
(6.7) D colCimHomD(Bop) (®(Xp),Y'[d+1])
(6.8) D coclilmHompfﬂ(M) (X'[—d - 1], Xn)
(6.9) DcoliimHomD&(M)((TZ,Z-XM)[fdf 1], Xnr)

11{11 DHOI’HD;A(M)((TZ,Z'XM)[fd — 1], XM)
(610) 11{11 HOIHD&(M)(XM, TZ,Z'XM)
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Step (6.7) is a consequence of the definition of the left Kan extension and
lemma 6.2. Step (6.8) is obtained by considering the opposite category. Step
(6.9) follows from the fact that the system (7>_;Xs)iez forms a cofinal system
for the index system of the colimit. Step (6.10) follows from the (d+ 1)-Calabi-
Yau property. Now, the image of the identity by the canonical morphism

HOmD,’M(M)(XMa Xy) — lilm HomD/_\A(M)(XMv >_iXm),

gives us an element of (DE);)(®(Xas)) and so a morphism of functors from Ry
to DEjy;. We remark that this morphism is an isomorphism when evaluated at
the objects of per(B°P). Since both functors Rys and DE); are cohomological,
transform coproducts into products and D(B°P) is compactly generated, we
conclude that we dispose of an isomorphism

G(M) =5 Za; .

7. THE MAIN THEOREM

Consider the following commutative square as in section 3:

ME——¢

|

T——¢=C.

In the previous sections we have constructed, from the above data, a dg category
B and a left aisle U C H°(B), see [25], satisfying the following conditions :
- Bis an exact dg category over k such that H°(B) has finite-dimensional
Hom-spaces and is Calabi-Yau of CY-dimension d + 1,
- U C H°(B) is a non-degenerate left aisle such that :
-for all B € B, there is an integer N such that
Homgo (B, SNU) =0 for each U € U,
- the heart H of the t-structure on H°(B) associated with U has
enough projectives.
Let now A be a dg category and W C HY(A) a left aisle satisfying the above
conditions. We can consider the following general construction : Let Q denote
the category of projectives of the heart H of the t-structure on H(A) associated
with W. We claim that the following inclusion

Q—H—H'(A),
lifts to a morphism Q . Ain the homotopy category of small dg categories,
cf. [20] [32] [33] [34] [35]. Indeed, recall the following argument from section 7

of [22]: Let Q be the full dg subcategory of A whose objects are the same as
those of Q. Let 7<(Q denote the dg category obtained from Q by applying
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the truncation functor 7<¢ of complexes to each Hom-space. We dispose of the
following diagram in the category of small dg categories

Let X, Y be objects of Q. Since X and Y belong to the heart of a t-structure
in H°(A), we have
HOIHHO(A)(X, Y[*Tl]) = 0 y
for n > 1. The dg category A is exact, which implies that
H_"Homé(X, Y) — Hompo(4)(X,Y[-n]) =0,

for n > 1. This shows that the dg functor TS()Q — HO(Q) is a quasi-equivalence
and so we dispose of a morphism Q 2 A in the homotopy category of small
dg categories. We dispose of a triangle functor j* : D(A) — D(Q) given by
restriction. By proposition A.1, the left aisle W C H°(A) admits a smallest
extension to a left aisle D(AP)Z; on D(A)°P. Let D(A)%” denote the full
triangulated subcategory of D(AT”’)O” formed by the objects Y such that 7>_, Y
is in per(A°P)°P, for all n € Z, and j*(Y") belongs to per(Q°)°P.

DEFINITION 7.1. The stable category of A with respect to W is the triangle
quotient

stab(A, W) = D(AOP);p/per(AOp)Op .

We are now able to formulate the main theorem. Let B be the dg category and
U C HO(B) the left aisle constructed in sections 1 to 5.

THEOREM 7.1. The functor G induces an equivalence of categories
G : C =5 stab(B,U).

Proof. We dispose of the following commutative diagram :

C——-— -2 ——— =stab(B,U)
HO (M) /HY(P) —————>D(BT)
Heqe(M) per(B°P)°P .
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The functor G is an equivalence since it is fully faithful by proposition 4.1 and
essentially surjective by proposition 5.2. Since we dispose of an equivalence
HE_,.(M) — per(B°P)°P by construction of B and the columns of the above
diagram are short exact sequences of triangulated categories, the theorem is
proved. v

APPENDIX A. EXTENSION OF {-STRUCTURES

Let 7 be a compactly generated triangulated category with suspension functor
S. We denote by 7. the full triangulated sub-category of 7 formed by the
compact objects, see [29]. We use the terminology of [25]. Let U C 7. be a left
aisle on 7, i.e. a full additive subcategory U of 7. which satisfies:

a) SUCU,
b) U is stable under extensions, i.e. for each triangle

X—-Y—>7—-5X

of 7., we have Y € U whenever X, Z € U and
¢) the inclusion functor U — 7. admits a right adjoint.

As shown in [25], the concept of aisle is equivalent to that of ¢-structure.

PROPOSITION A.l. a) The left aisle U admits a smallest extension to a
left aisle T<g on T.
b) If U C 7T, is non-degenerate (i.e., f : X — Y is invertible iff HP(f)
is invertible for all p € Z) and for each X € T, there is an integer
N such that Hom(X,SNU) = 0 for each U € U, then T<q is also
non-degenerate.

Proof. a) Let T<( be the smallest full subcategory of 7 that contains ¢/ and is
stable under infinite sums and extensions. It is clear that 7<¢ is stable by S
since U is. We need to show that the inclusion functor 7<¢ < 7 admits a right
adjoint. For completeness, we include the following proof, which is a variant of
the ‘small object argument’, c¢f. also [1]. We dispose of the following recursive
procedure. Let X = X be an object in 7. For the initial step consider all
morphisms from any object P in U to Xy. This forms a set Iy since 7 is
compactly generated and so we dispose of the following triangle

11 P 1P
felo Xo X1~ e,

For the induction step consider the above construction with X,,, n > 1, in the
place of X,,_; and I, in the place of I,,_;. We dispose of the following diagram

X = Xo X1 Xo X3 X'

I Il e

I1r 1P I1r 1P :

felo feh felz fels
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where X’ denotes the homotopy colimit of the diagram (X;);cz. Consider now
the following triangle
STIX - X" X - X',

where the morphism X — X’ is the transfinite composition in our diagram.
Let P be in Y. We remark that since P is compact, Homs (P, X’) = 0. This
also implies, by construction of 7<¢, that Homs (R, X’) = 0, for all R in 7<.
The long exact sequence obtained by applying the functor Homz (R, ?) to the
triangle above shows that

Hom(R, X"”) — Hom(R, X).
Let X/

n_1; M > 1, be an object as in the following triangle

X=Xo—X,— X/ ;- 5X).

A recursive application of the octahedron axiom implies that X/, belongs to
S(7<y), for all n > 1. We dispose of the isomorphism

hocolim X!/ ; = S(X").
n

Since hocglim X,'_; belongs to S(7<p), we conclude that X" belongs to 7<o.

This shows that the functor that sends X to X’ is the right adjoint of the
inclusion functor 7<o — 7. This proves that 7<¢ is a left aisle on 7. We now
show that the ¢-structure associated to T<q, cf. [25], extends, from 7. to 7, the
one associated with U. Let X be in 7.. We dispose of the following truncation
triangle associated with U

Xy — X — XU L SXy,.
Clearly Xi; belongs to 7<g. We remark that ut = TSLO, and so X4 belongs
to T>O = TSJE)
We now show that 7<¢ is the smallest extension of the left aisle ¢/. Let V be
an aisle containing /. The inclusion functor V — 7 commutes with sums,

because it admits a right adjoint. Since V is stable under extensions and
suspensions, it contains <.

b) Let X be in 7. We need to show that X = 0 iff H?(X) = 0 for all p € Z.
Clearly the condition is necessary. For the converse, suppose that H?(X) = 0
for all p € Z. Let n be an integer. Consider the following truncation triangle

H"(X) = 750X — 7op1 X — SH' (X))
Since H**1(X) = 0 we conclude that

7_>n)( € m T>ma

mEeEZ

for all n € Z. Now, let C be a compact object of 7. We know that there is a
k € Z such that C € 7<j. This implies that

Homy (C, 7, X) =0
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for all n € Z, since 75, X belongs to (7<x):. The category 7 is compactly
generated and so we conclude that 7, X = 0, for all n € Z. The following
truncation triangle

T<nX = X = 75X — S7<p X,

implies that 7<, X is isomorphic to X for all n € Z. This can be rephrased as
saying that

X e ﬂ Tﬁ—n .
neN
Now by our hypothesis there is an integer N such that

HOII]T(C,Ung) =0.
Since C' is compact and by construction of 7<_y, we have
HOHIT(C, T§—N) = O.

This implies that Hom7(C, X) = 0, for all compact objects C of 7. Since 7 is
compactly generated, we conclude that X = 0. This proves the converse. /

LEMMA A.l. Let (Yp)pez be in T. We dispose of the following isomorphism
1 ([[v) < [T (%),
P P

for alln € Z.

Proof. By definition H" := 7>, 7<,, ,n € Z. Since 7>, admits a right adjoint,
it is enough to show that 7<, commute with infinite sums. We consider the
following triangle

[T = 11V = [T 7snYs = ST 7<n¥2) -
p p p p

Here []7<,Y), belongs to 7<,, since 7<,, is stable under infinite sums. Let P

P
be an object of S™U. Since P is compact, we have

Hom (P, H TonYp) «— H Homy (P, 75,Y,) = 0.
P P
Since T<,, is generated by S™U, [ 7>,Y}, belongs to 7s,,. Since the truncation

K]
triangle of Y}, is unique, this implies the following isomorphism

p
<V = r<a(J ] Y0) -
p P

This proves the lemma. Vv

PROPOSITION A.2. Let X be an object of T. Suppose that we are in the con-
ditions of proposition A.1 b). We dispose of the following isomorphism

hocolim 7<; X =X
¢ <
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Proof. We need only show that
H" (hocolim 7<; X) — H"(X),
¢ <
for all n € Z. We dispose of the following triangle, cf. [29],

HTSPX — H T<gX — hoc?Iim T<i X — S(H T<pX).
P q P
Since the functor H” is homological, for all n € Z and it commutes with infinite
sums by lemma A.1, we obtain a long exact sequence

— [TH" (e X) = [[H" (g X) — H" (hocolim <, X) —
p q

— [[H" S(r<pX) = [JH" S(r<gX) — -+
P q
We remark that the morphism [[H" S(7<,X) — [[H" S(7<¢X) is a split
q

P
monomorphism and so we obtain

H"(X) = colim H"(1<; X ) — H"(hocolim 7<; X ) .
Vv
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ABSTRACT. In this paper we derive an explicit formula for the
Hirzebruch-Mumford volume of an indefinite lattice L of rank > 3.
If ' € O(L) is an arithmetic subgroup and L has signature (2,n),
then an application of Hirzebruch-Mumford proportionality allows us
to determine the leading term of the growth of the dimension of the
spaces Sk (I') of cusp forms of weight k, as k goes to infinity. We com-
pute this in a number of examples, which are important for geometric
applications.

2000 Mathematics Subject Classification: 11F55, 32N15, 14G35

0 INTRODUCTION

In [Hil] and [Hi2] Hirzebruch considered compact quotients of a homogeneous
domain by an arithmetic group. He observed that the Chern numbers of such
quotients are proportional to the Chern numbers of the compact duals of the
homogeneous domains, and he also showed how the proportionality factor can
be used to compute the dimension of spaces of automorphic forms. Later Mum-
ford [Mum] extended Hirzebruch’s approach to the case where the quotient is
no longer compact, but only of finite volume. In this case the space of cusp
forms of weight k£ with respect to some arithmetic group I' grows asymptoti-
cally proportional to the dimension of the space of sections of the (1 — k)-th
power of the canonical bundle of the compact dual (for a precise formulation see
Theorem 1.1). We call the proportionality constant the Hirzebruch-Mumford
volume. Thus a computation of the Hirzebruch-Mumford volume for a given
group I' gives the leading term of the Hilbert polynomial of forms of weight k
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with respect to I'. Knowledge of this term is essential for many geometric ap-
plications, in particular when one considers the Kodaira dimension of modular
varieties.

The subject starts with the seminal work of Siegel [Siel] on the volume of the
orthogonal group. Very many authors have taken up his theory and generalised
it in many different directions, including Harder [Ha], Serre [Se], Prasad [Pr]
and many others. Our specific interest lies in indefinite orthogonal groups (see
the work by Shimura [Sh], Gross [Gr], Gan, Hanke and Yu [GHY], as well
as Belolipetsky and Gan [BG], to name some important recent work in this
direction). Motivated by possible applications (cf. [GHS1], [GHS2]) concern-
ing moduli spaces of K3 surfaces and similar modular varieties we started to
investigate the volume of certain arithmetic subgroups of orthogonal groups
O(L) of even indefinite lattices of signature (2,n). All our groups are defined
over the rational numbers, but for the applications we have in mind we can-
not restrict ourselves to unimodular or maximal lattices. To our knowledge
there exist no results in the literature that allow an easy calculation of the
Hirzebruch-Mumford volume for the groups we treat in this paper.

In order to compute these volumes we therefore decided to return to Siegel’s
work. Let L be an even indefinite lattice of signature (2,n) and let O(L) be its
group of isometries. The lattice L defines a domain

Qp ={[w]eP(L&C); (w,w), =0, (w,w) > 0}.

This domain has two connected components D; and D7, which are inter-
changed by complex conjugation, where Dy, = O(2,n)/ O(2) xO(n). Let 0" (L)
be the index 2 subgroup of O(L) which fixes Dy. The fundamental problem of
our paper is to determine the Hirzebruch-Mumford volume of this group. For
this one has to compare the volume of the quotient O"(L)\Dr, to the volume

of the compact dual D(LC) = O(2 +n)/0O(2) x O(n). To do so correctly, one

has to choose volume forms on the domain Dy, and the compact dual Dg—f) that
coincide at the common point of both domains given by a maximal compact
subgroup. This is in fact a problem which does not depend on the complex
structure of the domains, but can be considered in greater generality for in-
definite lattices of signature (r,s). We use the volume form on Dy, which was
introduced by Siegel. It then turns out that this must be compared to the
volume form on Déc) which is given by 1/2 of the volume form induced by
the Killing form on the Lie algebra of the group SO(r + s). Comparing these
two volumes gives us the main formula for the Hirzebruch-Mumford volume
of OT(L). This formula involves the Tamagawa (Haar) measure of the group
O(L). However, again using a result of Siegel, the computation of the Tam-
agawa measure can be reduced to computing the local densities o, (L) of the
lattice L over the p-adic integers. Our main formula for any indefinite lattice
L of rank p > 3 is

9 P
volgar (O(L)) = — |det L2 TT 720 (k/2) [ [ ap(L)
Gsp k=1 P
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where gjp is the number of the proper spinor genera in the genus of L (see The-
orem 2.1). Since everything is defined over the rationals, one can use Kitaoka’s
book [Ki] on quadratic forms to compute the local densities in question.

In order to illustrate our results, and particularly in view of applications, we
compute the Hirzebruch-Mumford volume for several examples. The lattices
and the groups which we consider are mostly related to moduli problems. We
start with a series of even unimodular lattices, namely the lattices 13 948 =
2U @ mEg(—1), where U denotes the hyperbolic plane and Eg is the positive
definite root lattice associated to Fg. The next series of examples consists of
the lattices L(;Z;) = 2U @ mEg(—1) @ (—2d), which are closely related to well
known moduli problems. Let

~+
}-2(31) =0 (Lé?))\DLéZL)

~+ m)y - m . I .
where O (Lé d )) is the subgroup of O+(Lé d )) which acts trivially on the dis-
criminant group. For m = 0 and d a prime number, .7-'2(2) is a moduli space
of Kummer surfaces (see [GH]). The spaces .7-'2((11) parametrise certain lattice-

polarised K3 surfaces and if m = 2, then Foqy = .7:2(3) is the moduli space of
K3 surfaces of degree 2d. We compute the Hirzebruch-Mumford volumes of

the groups O+(Lé7;)) and 6+(L;;n)) and obtain as a corollary the leading term
controlling the growth behaviour of the dimension of the spaces of cusp forms
for these groups. As a specialisation of this example we recover known for-
mulae for the Siegel modular group in genus 2 and the paramodular group.
Other series of examples considered in this paper, namely the even indefinite
unimodular lattices (Section 3.3), their sublattices T' (Section 3.4) and some
lattices of signature (2,8m + 2) (Section 3.6), are closely related to moduli of
K3 surfaces and related quotients of homogeneous varieties of type IV. The
volumes of these lattices determine the part of the obstruction for extending
pluricanonical differential forms on }"2(21) to a smooth compactification of this
variety which comes from the ramification divisor.

In [GHS2] we use these results to obtain information about the Kodaira di-
mension of two series of modular varieties, including effective bounds on the
degree d which guarantee that the varieties .7-'2(;”) are of general type. The case
of polarised K3 surfaces is considered in [GHS1].

The paper is organised as follows: in Section 1 we recall Hirzebruch-Mumford
proportionality and the Hirzebruch-Mumford volume in the form in which we
need it (see Theorem 1.1 and Corollary 1.2). In Section 2 we perform the
necessary volume computations and derive the main formula (see Theorem 2.1).
In Section 3 we treat in some detail several lattices which appear naturally in
moduli problems.
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1 HIRZEBRUCH-MUMFORD PROPORTIONALITY

In this section we consider an indefinite even lattice L of signature (2,n). Let
O(L) be its group of isometries. We denote by (, )z the form defined on L,
extended bilinearly to L ® R and L ® C. The domain

Q= {[W] € P(L ® (C)a (Waw)L =0, (WaW)L > 0}

has two connected components, say 2, = Dy, UD}, which are interchanged by
complex conjugation. By D] we denote the affine cone over Dy, in L ® C. Let
I' ¢ O(L) be an arithmetic group which leaves the domain Dy, invariant. A
modular form of weight k with respect to the group I' and with a (finite order)
character x : I' — C* is a holomorphic map

f:D; —C
which has the two properties

fltz) = t7Ff(z) forteC,
flg(2)) = x(9)f(z) forgel.

If n < 2 the function f(z) must also be required to be holomorphic at infinity.
A cusp form is a modular form which vanishes on the boundary.

We denote the spaces of modular forms and of cusp forms of weight k, with
respect to the group I' and character x, by M (T, x) and Sk (T, x) respectively.
These are finite dimensional vector spaces. Note that if —id € I' and (—1)* #
X(—1id) then obviously M (T, x) = 0.

Modular forms can be interpreted as sections of suitable line bundles. For this,
we first assume that the group I' is neat, in which case it acts freely on Dy,
and we also assume that the character x is trivial. Then the transformation
rules of modular forms of weight 1 define a line bundle £ on the quotient I'\ Dy,
and modular forms of weight k with trivial character become sections in £®*.
The line bundle £, and its sections, extend to the Baily-Borel compactification
I'\D, . In fact, the Baily-Borel compactification is the normal projective variety
associated to Proj (@k HO([:@’“)). In general, modular forms of weight k and
with a character y define sections of a line bundle Ly, , which differs from £®*
only by torsion.
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Every toroidal compactification (I'\Dz)*" has a morphism (I\ Dy )" — T'\D,
which is the identity on I'\Dy,. Via this morphism, we shall also consider £ and
Ly, as line bundles on (I'\Dy,)*", using the same symbol by abuse of notation.
If ' is not neat then the above remains true, as long as we consider £ and Ly, ,
as Q-line bundles or only consider weights k£ that are sufficiently divisible.
The connection with pluricanonical forms is as follows. There is an n-form dZ
on Dy, such that if f is a modular form of weight n = dim Dy, with character
det, then w = fdZ is a I'-invariant n-form on Dy. Hence, if the action of T’
on Dy, is free, w descends to an n-form on I'\Dy. Similarly, modular forms
of weight kn with character det” define k-fold pluricanonical forms on N\Dy.
If T' does not act freely, then this is still true outside the ramification locus
of the quotient map Dj, — I'\Dy. These forms will, in general, not extend
to compactifications of T\Dy. If T is a neat group, then let (I'\Dy)!*" be a
smooth toroidal compactification (which always exists by [AMRT]). Let D be
the boundary of such a toroidal compactification. If £,, get is the line bundle
of modular forms of weight n and character det, then the canonical bundle
is given by wi\p,yer = Lndet ® Or\pyyrer(—D). Hence, if f is a weight n
form with character det, not vanishing at the boundary, then fdZ defines an
n-form on (I'\Dp)*" with poles along the boundary. However, if f is a cusp
form, then fdZ does define an n-form on (I'\Dr)**, and similarly forms of
weight kn and character det® that vanish along the boundary of order k define
k-fold pluricanonical forms on (I'\Dy)**. It should be pointed out that some
authors define automorphic forms a priori as those functions that give rise to
pluricanonical forms. In our context, this means a restriction to forms of weight
kn. Moreover, the weight of these forms is sometimes defined as k. We shall
refer to the latter as the geometric weight, in contrast to the arithmetic weight
of our definition. This difference accounts for the fact that some of our formulae
differ from corresponding formulae in the literature by powers of n.

The Hirzebruch-Mumford proportionality principle, which works very generally
for quotients of a homogeneous domain D by an arithmetic group I', allows us
to estimate the growth behaviour of spaces of cusp forms as a function of
the weight k in terms of a suitably defined volume. This was first discovered
by Hirzebruch [Hil], [Hi2] in the case where the quotient I'\D is compact,
and was generalised by Mumford [Mum] to the case where T'\D has finite
volume. We denote the compact dual of D by D). Let X be the Baily-
Borel compactification of X = T'\D and let X' be some smooth toroidal
compactification of X.

THEOREM 1.1 Let I' be a neat arithmetic group which acts on a bounded
symmetric domain D. Let S¥°°™(I') = S,x (T, det”) be the space of cusp forms
of geometric weight k with respect to I'. Then

dim SE°°™(T) = volyrar (D)A (WS ) + Pr(k)

where P (k) is a polynomial whose degree is at most the dimension of X\ X.
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Proof. This is [Mum, Corollary 3.5]. O

Here volyp (I'\D) denotes a suitably normalised volume of the quotient I'\ D,
which we shall refer to as the Hirzebruch-Mumford volume. If T' acts freely,
then the Hirzebruch-Mumford volume is a quotient of Euler numbers

e(I'\D)
e(D@)"

volg pr (F) = volgum (F\D) =

If T does not act freely, then choose a normal subgroup I'V <1 T" of finite index
which does act freely. Then

vol I
VOlHI\/[ (F) = [P%(F'])
where PT is the image of I' in Aut(D), i.e. the group I modulo its centre. This
value is independent of the choice of the subgroup I".
Hirzebruch [Hil] first formulated his result in the case where the group is co-
compact, i.e., where the quotient X = T'\D is compact. Since the Chern
numbers of X and that of the compact dual are proportional and the factor of
proportionality is given by the volume, one can use Riemann-Roch to compute
the exact dimension of the space of modular foms (in this case it does not make
sense to talk about cusp forms).
We shall now apply this to orthogonal groups.

PROPOSITION 1.2 Let L be an indefinite even lattice of signature (2,n) and
let T' be an arithmetic subgroup which acts on the domain Dy,. Fix a positive
integer k and a character x. If —id € I', then we restrict to those k for which
(—=1)¥ = x(—id). Then the dimension of the space Si(T,x) of cusp forms of
arithmetic weight k grows as

2
dim Sk(F,X) = E VOlHM(F\DL)k'n + O(knil)

Proof. We shall first assume that T' is neat (in which case automatically
—id ¢ T') and that x is trivial. We consider £ as a line bundle on a smooth
toroidal compactification Xt of X = I'\Dy. It follows from the definition
of cusp forms that HO(X*'r L®%(—-D)) = Si(I'). Since £ is big and nef
and Kytwr = L%"(—D), it follows from Kawamata-Viehweg vanishing that
Ri(Xtor, L¥%(—D)) = 0 for i > 1 and k > 0 and hence y(X'*, L&*(-D)) =
RO(Xter, L2k (—D)) for k > 0. The leading term of the Riemann-Roch polyno-
mial as a function of k is given by ¢}'(£)/n!. The same argument goes through
for Ly, . Since L% and Ly, only differ by torsion they have the same leading
coefficients.

In order to apply Theorem 1.1 we consider the line bundle £,, gt of modular
forms of weight n and character det. Note that ‘C'Ircz,det = L for suitably

divisible k. Also recall that in the orthogonal case the compact dual D(¢)
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is the complex n-dimensional quadric Q, C P™*! whose canonical bundle is
wg, = Og, (—n) and it follows from the exact sequence

0 — Opnsr(n(k — 1) = 2) = Opuss (n(k — 1)) = w0 =0

that the leading term of h® (wg(:)k)) is equal to 2n™/nl. It then follows from

Hirzebruch-Mumford proportionality that

G L) _ 20
(Lo det) _ 20" ot (X)
n! n!

and hence

(L)

n!

2
= HVOIHIVI(X)

which gives the claim in the case of a neat group.

We now consider a group I' which is not necessarily neat and choose IV <« T
neat and of finite index. The group I acts on the total space of the line bundle
L, and if —id € T then it follows from our assumptions on k that this element
acts trivially. We can now apply the Lefschetz fixed point formula (cf. [T,
Appendix to §2]), from which we obtain

dim Sx(T) = dim Sg(I")"
1

= Proo > tr(dsua)
~EPT /T

— ﬁ dim Sk (T") + O(k™ 1)

o 1 / 2 n n—1

2
= = volgar (T\Dp)E™ + O(k™1).
O

Note that the growth behaviour of the space of modular forms of weight k
and that of the space of cusp forms are the same. This follows from the exact
sequence

0— £®k(—D) — LO®F £®k|D — 0.

2 COMPUTATION OF VOLUMES

In order to compute the leading coefficient that determines the growth of the
dimension of spaces of cusp forms, we have to compare the volume of a funda-
mental domain of an arithmetic group I' to the volume of the compact dual.
For this, the complex structure is not important and we therefore consider,
more generally, an indefinite integral lattice L of signature (r, s).

DOCUMENTA MATHEMATICA 12 (2007) 215-241



222 V. GRITSENKO, K. HULEK AND G. K. SANKARAN

As before, we denote the group of isometries of the lattice L by O(L). The
lattice L defines a homogeneous domain D,s. In terms of groups the domain
D, is the quotient of the orthogonal group O(L ® R) by a maximal compact
subgroup, i.e.,

Dys =Dr =0(r,8)/ O(r) x O(s) = SO(r, 8)o/ SO(r) x SO(s)
where all groups are real Lie groups and SO(r, s)g is the connected component
of the identity of SO(r, s).
The domain D, can be realised as a bounded domain in the form

D,s = {X € Mat,«s(R); I, — X'X > 0}

where I, € Mat,«(R) is the identity matrix and the action of the orthogonal
group is given in the usual form, namely by

M(X)=(AX +B)(CX +D)™*
for

M= <g‘ lB)> €0(rs), A€ Matrx(R), D€ Matyxs(R).

We consider the O(r, s)-invariant metric given by
ds? = tr((I, — X'X)"LdX (I, - 'X X)L d' X).
Since
det((I, — X*X)™H* - det((I, — "X X)™H" = det((I, — X' X)~H)r+s

the corresponding volume form is given by

AV = (det(l, — X' X)) [] dus;.
,J

Siegel computed the volume of D, with respect to this volume form in [Sie2]
(see also [Sie3, Theorem 7, p. 155]). His result is

volg(O(L)) = volg(O(L)\Dys) = 20ra0 (L)| det L|TH5TD/2 47101 = (7))

where
o =[] 7720 (k/2) (2)
k=1

and ao (L) is the real Tamagawa (Haar) measure of the lattice L. Formula (1)
is valid for any indefinite lattice L of rank > 3. As indicated by the subscript,
we shall refer to this volume as the Siegel volume of the group O(L).

DOCUMENTA MATHEMATICA 12 (2007) 215-241



THE HIRZEBRUCH-MUMFORD VOLUME ... 223

We want to understand the Siegel metric in terms of Lie algebras. Let g and t
be the Lie algebras of the indefinite orthogonal group O(r, s) and its maximal
compact subgroup O(r) x O(s) respectively. Then

g=top

where p is the orthogonal complement of t with respect to the Killing form. By
[He, p. 239] this is isomorphic to

b= {(t([)] g) L Ue Matrxs(R)}-

The space p is isomorphic to the tangent space of D,.s at 0. A straightforward
calculation shows that the O(r, s)-invariant metric ds? is induced by the Killing
functional tr(U;'Uz) on the tangent space at 0.

We now want to compare this to a suitable volume form on the compact dual.
Recall that the general situation is as follows. Let H be a bounded homoge-
neous domain and G = Aut(H )y be the connected component of the identity
of the group of automorphisms of H. In particular, H = G/K where K = G,
is the stabiliser of some point zg. There exists a unique compact real form G,
of the complex group G¢ such that G NG, = K and the symmetric domain
H = G/K can be embedded into the compact manifold D¢} = G, /K as an
open submanifold. In our situation

DY) = SO(r + 5)/ SO(r) x SO(s).

Again by [He, p.239] the tangent space of D,(«i») at the point I, is given by the

subspace
0 U
p = {<—tU O) ; Ue MatTXS(R)}

of the Lie algebra of SO(r + s). The Killing form tr(1W;*W3) of the Lie algebra
of the compact group SO(r + s) induces the form 2tr(U;'Us) on the tangent
space p’. In order to compare the volumes of D,s and its compact dual D,(f;)
we have to normalise this form in such a way that it coincides with the Siegel
metric in the common base point K € D, C D,(a?, i.e. we have to use the
form 1 tr(W1*W,). Since the dimension of SO(n) is 3n(n — 1), we get a factor
2—(r+s)(r+s=1)/4 in front of the volume of the compact group, calculated in
terms of the volume form induced by the Killing functional on SO(r +s). The
latter volume is computed in [Hua, §3.7]. Taking the above normalisation into
account we find

volg(SO(m)) = 2™ 1+, (3)

and we shall again refer to this volume as the Siegel volume. For the compact
dual this gives

volg (,DE?) = 2’77'+S'Yr_1’75_1- (4)
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Our aim is to compute the Hirzebruch-Mumford volume
volg(O(L)\Dys)

volua (O(L)) = 15(D9)
VOls(Lrs

()
To make the above equation effective, we have to determine the Tamagawa
measure

(L) = e (O(L)\ O(L @ R)) = a0 (SO(L)\ SO(L @ R)).

The genus of the indefinite lattice L contains a finite number g;’;(L) of (proper)
spinor genera (for a definition see [Ki, §6.3]). (We consider only proper classes
and proper spinor genera.) This number is always a power of two and can be
calculated effectively. It is well known that the spinor genus of an indefinite
lattice of rank > 3 coincides with the class. As was proved by M. Kneser (see
[Kn]) the weight of the representations of a given number m by a spinor genus
is the same for all genera in the genus of L. The same arguments show that all
spinor genera in the genus have the same mass. (We are grateful to R. Schulze-
Pillot for drawing our attention to this fact.) It is easy to see this in adelic
terms. A spinor genus corresponds to a double class SO(V) SO} (V)b SO4(L)
in the adelic group SOx(V'), where V = L ® Q is the rational quadratic space
and
SO} (V) = kersn: SO4(V) — QX /(QF)?

is the kernel of the spinor norm. We note that the genus of L is given by

SOA(V)L. Tt follows from the definition that the group SO} (V) contains the
commutator of SO, (V), therefore

SO(V)SOL (V)b SOA(L) = SO(V) SO (V) SO (L) b.
The mass of a spinor genus
7(SO(V) \ SO(V) SO, (V)bSOA(L)) = 7(SO(V) \ SO(V) SO, (V)SO4(L))

depends only on the genus, since the Tamagawa measure is invariant. The
Tamagawa number of the orthogonal group is 2 (see [Siel], [W], [Sh]), i.e.,
7(SO(V)\SO4(V)) = 2. Then the Tamagawa measure a (L) can be computed
via the local densities of the lattices L ® Z,, over the p-adic integers Z, (the
local Tamagawa measures). More precisely,

(L) = 0 (SO SOU 8 B) = =< [Jou(D),

Ysp »

where p runs through all prime numbers and g;’;D(L) is the number of spinor
genera in the genus of L. The local densities can be computed, at least for
quadratic forms over Q and its quadratic extensions: see [Ki]. In order to find
ap(L) it is enough to know the Jordan decomposition of L over the p-adic
integers.

We can now summarise our results as follows.
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THEOREM 2.1 (MAIN FORMULA) Let L be an indefinite lattice of rank p > 3.
Then the Hirzebruch-Mumford volume of O(L) equals

voliar (O(L)) = g+2(L) et |02 T w20/ [ ap(D)" (7)
sP k=1 P

where the o, (L) are the local densities of the lattice L and g},(L) is the number
of spinor genera in the genus of L.

Proof. This follows immediately from formulae (1), (2), (5) and (6). O

3  APPLICATIONS

In this section we want to apply the above results to compute the asymptotic
behaviour of the dimension of spaces of cusp forms for a number of specific
groups. The main applications have to do with locally symmetric varieties. In
[GHS1] we prove general type results for the moduli spaces Foq of K3 surfaces
of degree 2d, but in that special case we can use a different method. The results
we have here are used in [GHS2] to prove similar results in greater generality.

3.1 GROUPS

We first have to clarify the various groups which will play a role. In this section,
L will be an even indefinite lattice of signature (2,n), containing at least one
hyperbolic plane as a direct summand. By a classical result of Kneser we know
that if the genus of an indefinite lattice L contains more than one class, then
there is a prime p such that the quadratic form of L can be diagonalised over
the p-adic numbers and the diagonal entries all involve distinct powers of p
(see [CS, Chapter 15]). Therefore the genus of any indefinite lattice with one
hyperbolic plane contains only one class.

As an immediate corollary of Theorem 2.1 we obtain

THEOREM 3.1 Let L be a lattice of signature (2,n) (n > 1) containing at least
one hyperbolic plane. Let I be an arithmetic subgroup of O(L). Then

n+2
volgrar(T) = 2 [PO(L) : PT[det L|"+/2 TT w20 (k/2) [T (L) (8)
k=1 P

REMARK. In many interesting cases a subgroup I' is given in terms of the
orthogonal group of some sublattice L; of L. In this case one can use the
volume in order to calculate the index (see Section 3.4 below).

We shall now discuss the various groups which are of importance to us and
compute their indices in O(L). The group O(L) interchanges the two connected
components of the domain €27 and we define O+(L) as the index 2 subgroup
which fixes each of these components (as sets). This group can also be described
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using the (—1)-spinor norm on the group O(L ® R) which is defined as follows.
Every element g can be represented as a product of reflections

and, following Brieskorn [Br], we define
sn_1(g) = +1 if (vg,vg) > 0 for an even number of vy,
-9 T ) -1 otherwise.

This is independent of the representation of g as a product of reflections. It is
well known that

O1(L) = Ker(sn_1) N O(L).

To see this, note that any reflection with respect to a vector of negative square
has (—1)-spinor norm equal to 1, and any reflection with respect to a vector
of positive square has (—1)-spinor norm equal to —1 and interchanges the two
components. The Hirzebruch-Mumford volume of O™ (L) is twice that of O(L).
Let LY = Hom(L,Z) be the dual lattice and Ay, = LY /L. The finite group
Aj, carries a discriminant quadratic form gy, with values in Q/2Z [Ni, 1.3]. By
O(qr) we denote the corresponding group of isometries and the group 6(L),
called the stable orthogonal group, is defined as the kernel of the natural ho-
momorphism O(L) — O(qr). Since L contains a hyperbolic plane, it follows
from [Ni, Theorem 1.14.2] that this map is surjective. Set

O (L)=0(L)nOT(L).

~+
Finally the groups SO (L) and SO (L) are defined as the corresponding groups
of isometries of determinant 1.

LEMMA 3.2 Let D = |O(qr)|. Then we have the following diagram of groups
with indices as indicated:

~ D:1

O(L) C O(L)

U 21 U 21

~ D:1

o)y ¢ ot

U 21 U 21

so'(r) ¢ sot(w).

Proof. We shall first prove that the indices of the vertical inclusions are all 2.
To do this, we choose a hyperbolic plane U in L, which exists by assumption.
Let e1,e2 be a basis of U with e% = e% =0 and ej.eo = 1. If u = €1 — €9,

v = €1 + ey, then u? = —2, v¥ = 2 and the two reflections ¢,, and o, belong to
O(L), since they act trivially on the orthogonal complement of U. Moreover
sn_1(o,) = —1 and sn_;(o,) = 1. Hence we can use o, to conclude that the
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top two vertical inclusions are of index 2, whereas o, shows the same for the
bottom two vertical inclusions.

We have already observed that the natural map O(L) — O(qyr) is surjective,
which shows that the top horizontal inclusion has index D. Taking into account
that the reflections o, and o, act trivially on the discriminant form, we obtain
that

D =1[0(L): O(L)] = [0F(L) : 0" (L)] = [SOT(L) : SO (L)

|

Finally, we want to consider the projective groups PO(L), PO'(L) and

~+
PO (L), i.e., the corresponding groups modulo their centres. It follows im-
mediately from the above diagram that

D if —idgO (L)

oD it —ide O (L). ©)

[PO(L): PO (L)] = {

Note that —id € 6+(L) if and only if Ay is a 2-group.

3.2 LOCAL DENSITIES

Siegel’s definition of local densities of a quadratic form over a number field K
given by a matrix S € Mat,x, (K) is

rn(n—1)

1 . .
oap(S)==lim p=~ > |{X € Matyxn(Zy)mod p"; *XSX = Smod p" } |.

The local densities can be calculated explicitly, at least in the cases where
K = Q or a quadratic extension of Q (see chapter 5 of the book [Ki] and
references there). For the convenience of the reader we include the formulae
over Q in the present paper. To calculate oy (L) one should know the Jordan
decomposition of the lattice L over the local ring Z, of p-adic integers. The
main difficulties arise for p = 2: see [Ki, Theorem 5.6.3].

Let us introduce some notation. Let L be a Z,-lattice in a regular (i.e. non-
degenerate) quadratic space over Q, of rank n, and let (v;) be a basis of L.
There are two invariants of L: the scale

SC&IG(L) = {(Xa y)L X,y € L}
and the norm
norm(L) = {d ax(x,x)r; x € L, ax € Zy }.

We have 2scale(L) C norm(L) C scale(L). In fact, over Z, (p # 2) we have
norm(L) = scale(L), whereas over Zs we have either norm(L) = scale(L) or
norm(L) = 2scale(L).
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L is called p"-modular, for r € Z, if the matrix p~"(v;, v;) 1, belongs to GL,,(Z,).
In this case we can write L as the scaling N(p") of a unimodular lattice N. By
a hyperbolic space we mean a (possibly empty) orthogonal sum of hyperbolic
planes.

A regular lattice L decomposes as the orthogonal sum of lattices € ez Lj,

where L; is a p/-modular lattice of rank n; € Z>o. Put

w = Zjnj((nj + 1)/2+an)

J k>j

and

For a regular quadratic space W over the finite field Z/pZ one puts

0 if dim W is odd,
x(W) = 1 if W is a hyperbolic space,

-1 otherwise.

For a unimodular lattice N over Zy with norm(N) = 2scale(N) we define

X(N) = x(N/2N), where N/2N is given the structure of a regular quadratic

space over Z/27Z via the quadratic form Q(x) = 3(x,x)y mod 2.

For the local density a,(L) for p # 2 we have the formula
ap(L) = 2°7p* Py(L) Ey(L) (10)

where s is the number of non-zero p/-modular terms L; in the orthogonal
decomposition of L, and

Pp(L) = pr([nj/Q]), Ep(L) = H (1 + X(Nj)pfnj/g)fl

J, Lj#0

where L; is the p’-scaling of the unimodular lattice N; and [n;/2] denotes the
integer part.

The local density as(L) is given by
ag(L) = 2"~ =4 Py (LY By (L). (11)
In this formula g =5 ; ¢; Where

0 if N; is even,
qj = § n; if NV; is odd and Nj4, is even,
nj+1 if N; and N;41 are odd.
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A unimodular lattice N over Zs is even if it is trivial or if norm(N) = 2Zs, and
odd otherwise. Any unimodular lattice can be represented as the orthogonal
sum N = Never @ Nodd of even and odd sublattices such that rank N°odd < 2.
Then we put

Py(L) = [ Pa(rank N3¥"/2).

J

The second factor is Es(L) =[] Ej_l, where Ej is defined by

E; =

g (1 + X(N]e;ven)Q— rank N;"e“/2)

N =

if both N;_; and N;4 are even, unless NJ‘?dd > (e1) @ (e2) with €; = €2 mod 4:
in all other cases we put E; = 1/2.

We note that E; depends on N;_q, N; and N;4, and E; =1 if all of them are
trivial. Also g; depends on N; and N4 and ¢; = 0 if N; is trivial.

3.3 THE EVEN UNIMODULAR LATTICES I3 g/m42
We start with the example
I13 8m12 =2U & mEg(—1), where m >0

which is a natural series of even unimodular lattices of signature (2,8m + 2).
Note that 11396 = 2U @ A, where A is the Leech lattice.

The local densities are easy to calculate, since for every prime p the lattice
113 8m+2 ® Zy, over the p-adic integers is a direct sum of hyperbolic planes.
Then using (10) and (11) we obtain

ap(Ilz2gm+2) = 277 BB, (4m + 2)(1 4 p~ 4 t2)) =

where 02, is the Kronecker delta. By our main formula (8) from Theorem 3.1
we obtain

voliar (OF (L2 gme2)) = 27 250, C2)C(4) - ((8m +2)¢(4m +2)
where g4 is as in formula (2). In order to simplify this expression we use

the (-identity

732D ()T (k + %) C(2k) = (=1)"¢(1 = 2k) = (*1)“12—? (2

Together with

=MD (4m 4 2)¢ (4m + 2)
Im+3
2

1

oAm Al =3 —Um+2)p(9m 4+ 1)I(

)¢(4m +2)

gam-+1 Bam+2
dm + 2
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where the first equality comes from the Legendre duplication formula of the
I'-function, and the second equality is again a consequence of the (-identity, we
obtain

_ By By-...-Bgmy2 DBamso
s (O (12 8m42)) = 27 4mFD) . .
volras (07 (I2.8m+2)) (8m + 2)!! dm +2
Here (2n)!! =2-4-...-2n. Since the discriminant group of the lattice IT3 gyn+2

is trivial, we have the equality

~+
VOIHM(O (112,8m+2)) = VOlHM(O+(IIQ78m+2)).

In a similar way one can derive a formula for any indefinite unimodular lattice
of signature (r,s). For example, for the odd unimodular lattice M defined by
i+ + a2 -2, — - — 22, we have to take into account that the even
(M ® Z3)®¥® and odd (M ® Z2)°% parts of the lattice M over 2-adic numbers
depend on r +s mod 2 and r —s mod 8 (see [BG] for a different approach in
this special case).

We can now use this to compute dimensions of cusp forms for this group and
we obtain

dim Sk(6+ (11278m+2); det 6) =
2—4m

By By-...-Bsmi2 Bami2  gmio 8m+1
Gnral  mmronameat OET)

Here ¢ = £1 and we must assume that k is even, since otherwise there are no
forms for trivial reasons.

3.4 'THE LATTICES 1% g8m+2

The orthogonal group of the lattice 113 gm+2 for m = 2 defines an irreducible

component of the branch divisor of the modular variety fé?). The same branch
divisor contains another component defined by the lattice

T2,8m+2 =U® U(2) ©® mEg(—l)

of discriminant 4. We note that this lattice is not maximal. For a prime number
p # 2 the p-local densities of the lattices T and M coincide. Let us calculate
az(T). Over the 2-adic ring we have T gpmi2 @ Zo = (dm + 1)U & U(2). We
have (see (11))

No =N =(dm+ 1)U, N =N;"*"=U, w=3, ¢=0,
Eo = %(1 g (amt 1)y By, = %(1 +271).
Thus
ao(To.sms2) = 28m+7(1 . 2—2) c (- 2—8m)(1 _ 2—(4m+1))_
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~+
We note that [POT (T gm12) : PO (Togmi2)] = 2 since the finite orthogonal
discriminant group of Tb gy,42 is isomorphic to Z/2Z. As a result we get

~+
volyr (O (To 8m+2)) =

2YgmaG(2) o - C(8m +2)¢(4m +2)(1 + 27 W) (1 — 27 (mR),

Using the formula for the volume of II3 g2 We see that

~+
volpyrr O (T2,8m+2)

— _ (24m+1 + 1)(24m+2 o 1) (13)
VOlMHO (112,8m+2)

If L; is a sublattice of finite index of a lattice L then 6+(L) is a subgroup

~+
of O (L1). One can use the formula of Theorem 2.1 to calculate easily the

index [6+(L1) : 6+(L)] For example, formula (13) above gives the index of
6+(11278m+2) in 6+(T278m+2). This method is much shorter than the calcula-

tion in terms of finite geometry over Z/27Z.

3.5 THE LATTICES L

We consider the lattice
LY = 2U @ mEs(—1) @ (—2d)

of signature (2,8m + 3). The lattice L(;Z;) is not maximal if d is not square

free. This lattice is of particular interest, as the lattice L(Qi) is closely related
to the moduli space of polarised K3 surfaces of degree 2d. More precisely, the
quotient space

~+
Fog =0 (L%)\DL(Z?

is the moduli space of K3 sufaces of degree 2d. As we shall see, there is
also a relation to Siegel modular forms for both the group Sp(2,Z) and the
paramodular group.

Again, the lattices over the p-adic integers are easy to understand, since
Es(—1) ® Z,, is the direct sum of four copies of a hyperbolic plane. By (10)
and (11) we find

a, (L) = P, (4m + 2) if p f2d

ap (L) = 2p° P, (4m + 2)(1 + p~ (m+2)) -1 if p is odd, p®||d
(L)) = 2846 Py (4m + 2) if d is odd

ap (L) = 28474 Py (4 + 2) (1 + 2= 4m42)=1 i dis even, 2°||d
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where the expression p?||d means that p® is the highest power of p which divides
d. Therefore

Hap (LS = ¢(2)CA) .. ¢(8m +4) (2d) 712D =8m =3 T (1 4 p~(m+2)
pld

where p(d) denotes the number of prime divisors of d.
We shall need the following.

LEMMA 3.3 Let R = (—2d). Then the order of the discriminant group O(qr)
is 2°(4),

Proof. Let g be the standard generator of Ag = Z/2dZ, given by the equiva-
lence class of 1. Then qr(g) = —1/2d mod 2Z. If ¢ € O(qr), then ¢(g) = xg
for some x with (z,2d) = 1. Hence ¢ is orthogonal if and only if

1
54 = 9g mod 27,

or equivalently
z2 =1 mod 4dZ.

This equation has 2°(D+1 solutions modulo 4dZ, and hence 2°(?) solutions
modulo 2dZ. O

m)

From this it follows also that the discriminant group of the lattice L 5q  also

has order 2°(%).
From (9) it follows that

[POLL™) : PO (L) =20 if  d>1

and 2 if d = 1. We first assume that d > 1. We put n = 8m + 3, which is the
dimension of the homogeneous domain. It follows from Corollary 3.1 that

~+ 7L+3
volgrar (O (Lé’;))) 20D+ (2q) 'Yn+2H0‘p L(m)

If d = 1 we have to multiply the right hand side by a factor 2. Using the (
identity, a straightforward calculation gives (again for d > 1 and n = 8m + 3)

~+ m d\ 2 _ns1. |By-By----- By
volgra (O (Léd))): (5) H(1 +p 2 ),| 2 (2+1)" +1|.
Jid I

We want to apply this to the moduli space of K3 surfaces of degree 2d. This
is the case m = 2: the dimension of the domain is n = 19. Using Hirzebruch-

Mumford proportionality and specialising the above volume computation to
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this case, we compute the dimension of the spaces of cusp forms:

dim 80" (L), det ¥) =
29 |By By ... Ba|

—9
le. 1 —10
19! rg( tr) 201!
p

which holds for d > 1, with an additional factor 2 for d = 1. In the latter

case we must assume that k£ and ¢ have the same parity. For d > 1 there is no
~+

restriction since —id ¢ O (L(QZ)). This should be compared to Kondo’s formula

[Ko] where, however, the Hirzebruch-Mumford volume has not been computed

explicitly. It should also be noted that Kondo uses the geometric, rather than

the arithmetic, weight.

kY + O(k'®)

3.5.1 SIEGEL MODULAR FORMS

The case m = 0 gives applications to Siegel modular forms. We shall first
consider the case d = 1. Recall that

—~ JF ~

SO (L) = 0" (L) /{+id} = Sp(2,Z)/{+id}.
From our previous computation we obtain that

~+ ~+ _
volar (SO (L)) = volya (O (L)) = 274 By By
and by Hirzebruch-Mumford proportionality this gives
dim Sk (Sp(2,7Z)) = 27437 Y By By|k® + O(k?).

Note that this coincides with [T, p. 428], taking into account that Tai’s formula
refers to modular forms of weight 3k. Tai uses Siegel’s computation of the
volume of the group Sp(2,Z), rather than the orthogonal group.
3.5.2 THE PARAMODULAR GROUP

Finally, we consider the case m = 0 and d > 1. This is closely related to

the so-called paramodular group FEISP), which gives rise to the moduli space of

(1, d)-polarised abelian surfaces. In fact
SO (LY) =~ prév
by [GH, Proposition 1.2]. We note that in this case
07 (L) 50" (LY =2
and that —id is in neither of these groups. Hence
vola (SO (L4))) = 2volsras (0" (L)

= 2@ [+ p~?)|B2Bu|
pld

DOCUMENTA MATHEMATICA 12 (2007) 215-241



234 V. GRITSENKO, K. HULEK AND G. K. SANKARAN

and by Hirzebruch-Mumford proportionality

d2
dim S (DFP)) = 551 L1+ 7)1 BaBalk® + O(k?).

3
pld

This agrees with [Sa, Proposition 2.2], where this formula was derived for d a
prime.

3.6 LATTICES ASSOCIATED TO HEEGNER DIVISORS

We shall conclude this section by computing the volume of two lattices of rank
8m + 4. Both of these lattices Kégﬂ and NQ(CT) arise from the (—2)-reflective
part of the ramification divisor of the quotient map

oF (m)

For m = 2 this is the moduli space of K3 surfaces of degree 2d. For m = 0
and a prime d we get the moduli of Kummer surfaces associated to (1, d)-
polarised abelian surfaces (see [GH]). Since the branch locus of the quotient
map gives rise to obstructions for extending pluricanonical forms defined by
modular forms, knowledge of their volumes is important for the computation

of the Kodaira dimension of .7:2(dm) (see [GHS2]).

3.6.1 THE LATTICES K"

We consider the lattice
K = U @mEs(-1) & (2) ® (~2d)

where d is a positive integer. We first have to determine the local densities for
this lattice. Since det(KéZ”) = 4d, this lattice is equivalent to the following
lattices over the p-adic integers for odd primes p:

(m) U if (24)=1
Ko’ ®Zy, = (4m+ 1)U @ o adg i (1) 1
D — — 1.

For the local densities we obtain from equations (10) and (11)

4d\ ,
ap () = Py(4m + 1)(1 — (;>p Gmi2y i

ap(KQ(:ln)) =2p°Py(4m + 1) if p°||d
as(K{M) = 28+ py(4m + 1)
where v(d) =6if d=1 mod 4, v(d) =7ifd= -1 mod 4, v(d) =8if d =2
mod 4, and v(d) =8+ s if d =0 mod 4 and 2°||d.
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From this we obtain that
TR = Aalaiac2)6(@) s+ Dzam+ 2, (), (1)
p

where
Ao(d) = 27P(d=8m=6 if =12 mod 4
VT Y o-p@=8m=T it 1 =0.3 mod 4.

Application of our main formula (7) then gives
m Sm+5 ek _
volrmar (OF (Kyy)) = 4- (4) ™% - I = re)- 1;[ap<K2d> L)

Combining formulae (14) and (15) and the (-identity (12) leads to

volar (O (K3;)) =
87n2+3 _(4m+2)r 4 9 L 4 9 4_d BQB4 .. B8m+2
Co(d)d = (4m + 2)L(4m + 2, " )—(8m+2)!!

where
Co(d) = 27p(@F1 ifd=1,2 mod 4
2T Y@ ifd=0,3 mod 4.

For applications it is also important to compute the volume with respect to

~+
the group O (KQ(;”)). For this, we have to know the order of the group of
isometries of the discriminant group.

LEMMA 3.4 Let S = (2) @ (—2d). The order of the discriminant group is

10(gs)| = 21424 ifd=—1 mod 4 or d is divisible by 8
1)1 =9 20t for all other d.

Proof. We denote the standard generators of Z/2dZ and Z/27 by g and h
respectively. We shall first consider automorphisms ¢ with ¢(g) = xg. Then
orthogonality implies 22 = 1 mod 4dZ which means, in particular, that x is
odd and (z,2d) = 1. We then have ¢(dg) = dg. We cannot have p(h) = dg+h,
because orthogonality implies that for the bilinear form B,, defined by the
quadratic form ¢ = gg, we have By(zg,dg + h) = By(g,h) = 0 and hence
—z/2 =0 mod Z, which shows that z is even, a contradiction. Hence p(h) = h
and ¢ = ¢’ x id where ¢’ € O(qr) (with R = (—2d)). In this way we obtain
2¢(4) elements in O(qs).

We shall now investigate automorphisms with ¢(g) = xg + h. Then ¢(g) =
q(¢(g)) implies the condition

22 =1+d mod 4dZ.

DOCUMENTA MATHEMATICA 12 (2007) 215-241



236 V. GRITSENKO, K. HULEK AND G. K. SANKARAN

It is not hard to check that this only has solutions if either d = —1 mod 4 or d
is divisible by 8. We shall distinguish between the cases d even and d odd. In
the first case x must be odd and (z,2d) = 1. Moreover ¢(dg) = dg and the only
possibility for an orthogonal automorphism is ¢(h) = dg + h and indeed this
gives rise to another 2°(?) orthogonal automorphisms. Now assume d is odd.
Then z is even and (z,d) = 1. In this case p(dg) = h and the only possibility
to obtain an orthogonal automorphism is ¢(h) = dg. Once more, this gives
another 2°(%) orthogonal automorphisms and this proves the lemma. O

By formula (9) it then follows that
2 ifd=1

POK) PO (KM) = {2¢@  ifd=1,2 mod4, d>1
20+ if d =3 mod 4.

Therefore
~ B BBy ... Bgm,
volpar (O (Kgy)) = 20a=0saw —2(84;71 - 23‘”*2
8mi3 _(4m+2) 4d

where d(8) denotes d mod 8 and d, , is the Kronecker symbol.

We want to reformulate this result in terms of generalised Bernoulli numbers.
In order to avoid too many different cases, we restrict here to d Z 0 mod 4
(but it is clear how to remove this restriction). If d = dot?, with dp a positive
and square-free integer, then the discriminant of the real quadratic field Q(v/d)
is equal to

D_ do ifd=1 mod4
" l4dy ifd=2,3 mod 4.

Note that

(17)

d8m2+3 _ t8m+3D8m2+3 . 1 ifd=1 mod 4
2-(8m+3) if d=2.3 mod 4.

Let xp be the quadratic character of this field. Then
L(s ad ) = L(s 1 - 18
pl2t

The character xp is an even primitive character modulo D, and the Dirichlet
L-function L(s, xp) satisfies the functional equation

1551_‘(]_78

7 ED(2)DL(s, xp) = 1~ )D2L(1 - 5, xp). (19)

s
2
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Moreover

B
L(1 =k, xp) = —=2&

where By, is the corresponding generalised Bernoulli number. Using the
functional equation (19) we obtain

7m0 (4m + 2)D™EF L(4m + 2,xp) = —2*"F1L(1— (4m+2),xp)
—  9im+l B4m+27xD ) (20)
dm + 2

Combining (16), (17), (18), (20) and the result of Lemma 3.4 then gives the
result

""JF m
volgar(O7 (K5 =

BBy ... Bsmy2 Bamy2, _
B =G amg 2 L= xo@m @) 21

pl2t

where
Fy(d) = 24mt2ifd=1 mod 4
2T 241 ifd=2,3 mod 4.

Using this, together with Hirzebruch-Mumford proportionality, we finally find
that dim Sk((~)+(K§ZL))) grows as

G2(d) By Bi...Bgmi2 Bamioxp
(8m + 2)! (8m +2)! dm + 2

18m+3 H(l — XD (p)p7(4m+2)) L 8m+2
p|2t

where
Gold) = 24mF2+0aif d=1 mod 4,
2T Y o-mt) ifg=2 3 mod 4.

3.6.2 THE LATTICES N7

We assume that d =1 mod 4 and consider the even lattice

2 1

We first have to understand this lattice over the p-adic integers. If p > 2 then 2
is a p-adic integer and we have the following equality for the anisotropic binary

form in NQ(ZL):

1—d d x
5 2% 4+ 2wy + 2y = 75932 +2(y + 5)2.
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Depending on whether d is a square in Z; or not, we then obtain from the
classification theory of quadratic forms over Z, that
U if

N @7 >~ (4m+1)U @
2d p = ( ) Cd? P i

ASHISHELS RSN

=1

We now turn to p = 2. Recall that there are only two even unimodular binary
forms over Zs, namely the hyperbolic plane and the form given by the matrix

<? ;) This implies that

U ifd=1 mod8

N™ ®Zy = (4m+1)U @ <2 1) Fdes mod s
1 2

Once again by (10) and (11) we find for the local densities that

m d\ _ .
a,,(NQ(d )) =P,(4m+1)(1 — (5) p~(4m+2) if p fd
ap(N37) = 2p* Py (dm + 1) if p*ld

m d _
042(N2(d )) — 28m+4P2(4m + 1)(1 _ (5) 92 (4m+2)).

~+
We are interested mainly in the group O (NQ(CT)). For this we need the next
lemma.

LEMMA 3.5 Let

Then Ap = 7Z/2dZ and
|O(gr)| = 2.

Proof. Since det(T') = —d, the discriminant group has order d. In fact, it is
cyclic of order d. To see this, let e and f be the basis with respect to which
the form is given by the matrix 7. Then (e — 2f)/d is in the dual lattice and
its class, say h, generates the group Ar. Every homomorphism of Ap is of the
form ¢(h) = xh, and it is an isometry if and only if 2 = 1 mod 2d. This
equation has 2°(9) solutions modulo dZ. O

It now follows from (9) that

2°(@) if d=1 mod 4 and d# 1

PON)) . PO (NI™)] =
POV PO (v = 427 0=
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By the same calculation as in the preceding example we find now that

- em_s BBy .. Bsmyo
volinas (O (N{J)) = o0 B s

8m+3

d=z UMD (4m + 2) L(4m + 2, (il)). (22)
%

As above we can use generalised Bernoulli numbers. Hence by Hirzebruch-

Mumford proportionality we obtain for d > 1 that dim Sk(6+(N2(CT))) grows
as

274m71

By -By...Bsmi2  Bamy2,xp Bm+3 H(l — o (p)pémt2)) EmE,
(8m + 2)! (8m + 2)!! dm + 2 it

Here, as before, d = dot?, with dy square-free, and D = dy is the discriminant
of the quadratic extension (@(\/E) For d = 1 we have an extra factor 2, t =1,
Xp = 1 and Bypmy2,yp = Bam42. In this case the lattice NQ(CT) is unimodular
and the formula again agrees with our previous computations in Section 3.3.
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representations satisfying Panciskin’s condition at all primes above p.
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0. INTRODUCTION

(0.0) Let F, L be number fields contained in a fixed algebraic closure Q of Q; let
M be a motive over F' with coefficients in L. The L-function of M (assuming it
is well-defined) is a Dirichlet series ) ., a,n™° with coefficients in L. For each

embedding ¢ : Q — C, the complex-valued L-function

L(tM,s) = Z t(an)n™?

n>1

is absolutely convergent for Re(s) >> 0. It is expected to admit a meromorphic
continuation to C and a functional equation of the form

(Cri) (L Loo)(tM, 5) = e(uM, 5) (L - Log) (LM (1), —s),
where
Loo(LMa S) - H LU(LMv 5)
v|oo
is a product of appropriate I'-factors (independent of ¢) and
e(tM, s) = t(e(M))cond(M)~%, e(M)eQq .
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(0.1) Let p be a prime number and p | p a prime of L above p. The p-adic realiza-
tion M, of M is a finite-dimensional Ly-vector space equipped with a continuous
action of the Galois group Gr s = Gal(Fs/F), where Fs C Q is the maximal
extension of F' unramified outside a suitable finite set S D S, U S of primes of F'.
According to the conjectures of Bloch and Kato [Bl-Ka] (generalized by Fontaine
and Perrin-Riou [Fo-PR]),

ord,—oL(:M, s) = dimz, H}(F,M; (1)) - dimg, H(F,M; (1)) =

(Cbk) 1 0
= hb(F, M} (1)) — hO(F, M; (1)),

where H}(F V) C H'(Grs,V) is the generalized Selmer group defined in [BI-
Ka].

(0.2) Consider the special case when the motive M is SELF-DUAL (i.e., when
there exists a skew-symmetric isomorphism M — M*(1)) and PURE (necessarily
of weight —1). In this case H°(F, M,,) = 0 and ords—oLoo(¢M, s) = 0, which means
that the global e-factor e(M) determines the parity of ords—oL(tM, s) (assuming
the validity of (Crg)):

(_1)ord5:0L(LM,s) —_ E(M) (021)

In this article we concentrate on the PARITY CONJECTURE FOR SELMER GROUPS,
namely on the conjecture

(Cpx (mod2)) ordy—oL(:M, ) = h}(F, My) (mod 2).

In view of (0.2.1), this conjecture can be reformulated (assuming (Crg)) as follows:
(—1)h(FMy) L () (0.2.2)

(0.3) The advantage of the formulation (0.2.2) is that the global e-factor

E(M):HEW(M)a EU(M):&J(MP)

is a product of local e-factors, which can be expressed in terms of the Galois repre-
sentation M, alone: for v { poo (resp., v | p), £,(M) is the local e-factor of the rep-
resentation of the Weil-Deligne group of F, attached to the action of Gal(F,/F,)
on M, (resp., attached to the corresponding Fontaine module D, (M, ) over F,).
For v | 00, £,(M) depends on the Hodge numbers of the de Rham realization Myr
of M, which can be read off from Dyr(M,) over F,, for any v | p.

It makes sense, therefore, to rewrite the conjecture (0.2.2) as

()M EV L e(v) = [V, (0.3.1)
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for any symplectically self-dual (V' — V*(1)) representation of G g which is
geometric (= potentially semistable at all primes above p) and pure (of weight
—1).

In the present article we consider the following question: is the conjecture (0.3.1)
invariant under deformation in p-adic families of representations of G g7 In other
words, if V,V' are two representations of Gp g (self-dual, geometric and pure)
belonging to the same p-adic family (say, in one parameter) of representations of
GF,s, is it true that

()M fe(V) = (~)M V) /e(V) ? (03.2)

The main result of this article (Thm. 5.3.1) implies that (0.3.2) holds for families
satisfying the Panciskin condition at all primes v | p. The proof follows the strategy
employed in [Ne 2, ch. 12] in the context of Hilbert modular forms (V) : multiplying
both sides of (0.3.1) by a common sign (the contribution of the “trivial zeros”),
we rewrite (0.3.1) as

(_1)ﬁ;(F,v) z gV) = ng(V% (0.3.3)

where E}(F, V) =dimg, ﬁ} (F,V) is the dimension of the extended Selmer group
(defined in 4.2 below) and &,(V) = &,(V), unless v | p and the local Euler factor
at v admits a “trivial zero”. The goal is to show that both sides of (0.3.3) remain
constant in the family (2.

The variation of H }(F , V) in the family is controlled by the torsion submodule of

a suitable IA{TJ% The generalized Cassels-Tate pairing constructed in [Ne 2, ch. 10]
defines a skew-symmetric form on this torsion submodule, which implies that the
parity of h}c (F,V) is constant in family:

(_1)ﬁ}(F,V) _ (_1)}:}(F,V’).

The Panciskin condition allows us to compute explicitly the local terms &, (V') for
all v | p, which yields

[Tavm =1 a0,
v|poo v|poo

Finally, it follows from general principles (and the purity assumption) that

Yo 4 poo g (V) =g, (V'),
hence (V) =¢&(V").

M In [loc. cit.] we worked with automorphic e-factors, but they coincide with the
Galois-theoretical e-factors ([Ne 2], 12.4.3, 12.5.4(iii)).

(2) Morally, g(V) should be the sign in the functional equation of a p-adic L-
function attached to the family.

DOCUMENTA MATHEMATICA 12 (2007) 243-274



246 JAN NEKOVAR

1. REPRESENTATIONS OF THE WEIL-DELIGNE GROUP

(1.1) THE GENERAL SETUP ([DE 1, §8], [DE 2, 3.1], [Fo-PR, 1.1.1-2])
(1.1.1) We use the notation of [Fo-PR, ch.I]. For a field L, denote by L*®" a
separable closure of L and by G, = Gal(L*P /L) the absolute Galois group of L.
Throughout this article, K will be a complete discrete valuation field of character-
istic zero with finite residue field k of cardinality ¢ = gx; denote by f = fix € Gk
the GEOMETRIC Frobenius element (f(z) = 2'/9). We identify G, — Z via
f +— 1 and denote by v : Gx—=G) — Z the canonical surjection whose
kernel Ker(v) = Ix = I is the inertia group of K. The Weil group (of K)
Wik = v HZ) = [l,ez fI (f € v=1(1)) is equipped with the topology of a
disjoint union of countably many pro-finite sets. The homomorphism

|| Wk — %, |w|=q¢ ™)

corresponds to the normalized valuation |-| : K* — ¢% via the reciprocity isomor-

phism recy : K* — W (normalized using the geometric Frobenius element).

(1.1.2) Let E be a field of characteristic zero.
An object of Repg(Wik) (= a representation of the Weil group of K over E) is a
finite-dimensional E-vector space A equipped with a continuous homomorphism

p=pa: Wk — Autg(A) (with respect to the discrete topology on the target).
As Ker(p) is open, p(I) is finite and p|; is semi-simple.

An object of Repy (/W) (= a representation of the Weil-Deligne group of K over
E) is a pair (p, N), where p = pa € Repg(Wk) and N € Endg(A) is a nilpotent
endomorphism satisfying

Yw € Wi p(w)Np(w)™" = |w| N.

Morphisms in Repy(Wk) (resp., in Repp('Wk)) are E-linear maps commut-
ing with the action of Wi (resp., with the action of Wg and N). We con-
sider Repp(Wk) as a full subcategory of Repp('Wk) via the full embedding
p — (p,0). Tensor products and duals in Rep (‘W ) are defined in the usual way:
Naga' = NaA®1+1® Nar, Nax = —(Na)*. The Tate twist of A € Repg('Wk)
by an integer m € Z is defined as A| - | = A® E| - |™, where w € Wk acts on
the one-dimensional representation E| - |™ € Repg(Wk) by |w|™.

The Frobenius semi-simplification

A= (p,N) = I = (5 N)

is an exact tensor functor Repy('Wk) — Repg('Wk). The “forget the mon-
odromy” functor

A= (va) — ANTE = (p,O)

is an exact tensor functor Repy('Wx) — Repg(Wk).
Following [Fo-PR, 1.1.2.1], we put, for each A € Repg('Wk),
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A, =APD 0 Ay =Ker(N)PD c A, Px(Au) =det(1—fu | Ay) € Elul.
We also set
0 f-1
H (A) = Ker (Af—>Af) .

(1.1.3) In the special case when E is a finite extension of Q, (p # char(k))
and when V' € Repp(Gk) is a representation of Gx over E (finite-dimensional
and continuous with respect to the topology on F defined by the p-adic valuation),
then V' gives rise to a representation WD(V) = A = (pa, N) € Repg('Wk) acting
on V, which is defined as follows ([De 1, 8.4]): there exists an open subgroup J
of I which acts on V unipotently, and through the map J < I — I(p), where
I(p) is the maximal pro-p-quotient of I (isomorphic to Z,). Fixing a topological
generator ¢ of I(p) and an integer a > 1 such that ¢* lies in the image of J, the
nilpotent endomorphism

1
N = - log pv (t*) € Endg(V)

(where py : Gxg — Autg(V) denotes the action of Gk on V) is independent of
a. Fix alift f € v71(1) C Wk of f and define

PA : WK — AutE(V)
by

pa(f"u) = py (f"u) exp(~bN) (nez,uel),

where b € Z, is such that the image of u in I(p) is equal to t*. The pair (pa, N)
defines an object A = WD(V) of Repy('Wk), the isomorphism class of which is

independent of the choices of f and ¢ ([De 1], Lemma 8.4.3), and which satisfies

Ap=vrv@D o gAY = Vv,

(1.2) SELF-DUAL REPRESENTATIONS

(1.2.1) DEFINITION. Let w : Wxg — E* be a one-dimensional object of
Repp(Wk). We say that A € Repgp('Wgk) IS w-ORTHOGONAL (Tesp., w-
SYMPLECTIC) if there exists a morphism in Repgp('Wg) A ® A — w which is
non-degenerate (i.e., which induces an isomorphism A — A* ® w) and SYMMET-
RIC (Tesp., SKEW-SYMMETRIC). If w = 1, we say that A is ORTHOGONAL (resp.,
SYMPLECTIC)).

(1.2.2) (1) If A is w-orthogonal, then det(A)? = wdim(&),
(2) If A is w-symplectic, then 2 | dim(A) and det(A) = wdim(A)/2,

(1.2.3) EXAMPLE: For m > 1, define sp(m) € Repg('Wk) by
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m—1
sp(m) = @ Ee,, N(e;) = ey, Yw e Wk w(e;) = |w|'e;.
i=0

Up to a scalar multiple, there is a unique non-degenerate morphism sp(m) ®
sp(m) — E|-|™ ! in Repg('Wk), namely

(-1,  itj=m-—1

m

This morphism is | - |™~1-symplectic (resp., | - |~ !-orthogonal) if 2 | m (resp., if

2¢m).

(1.2.4) According to [De 2, 3.1.3(ii)], indecomposable f-semi-simple objects of

Repg('Wk) are of the form p ® sp(m), where p € Repg(Wk) is irreducible and

m > 1. This implies that, for each | - |-symplectic representation A —— A*| .| €

Repg('Wk), the f-semi-simplification Af=%% is a direct sum of | - |-symplectic

representations of the following type:

(1) X&X*|-| (X € Repy('Wk)) with the standard symplectic form (z,z*) ®
(v, 97) = 2" (y) — y"(2);

(2) p®sp(m), where m > 1, p € Repi(Wp) is irreducible and |- |?>~™-symplectic
(resp., | - |>~™-orthogonal) if 2 { m (resp., if 2 | m).

(1.3) THE MONODROMY FILTRATION
(1.3.1) For each A = (p, N) € Repy('Wk), the monodromy filtration

M,A:= > ker(N')NIm(N/) (n € Z)
i—j=n+1

is the unique increasing filtration of A by E-vector subspaces satisfying

(M.A=0, | JMuA=A,  N(MA) C My_A,
Vr>0 N":grMA s oM A

(1.3.2) EXAMPLES: (1) N =0 < M_1A =0, MyA =A.
(2) If N #0 = Nt (r > 0), then M_, 1A = 0, M_,A = Im(N") # 0,
M, 1A =Ker(N") # A, M,A =A.

(1.3.3) More precisely, the endomorphism N € Endg(A) defines a morphism in
Repg(Wk)

N:A— Al
which implies that each M,A is a sub-object of AN~ in Repp(Wx),
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N : M,A — (M, 2A)| - |71

and, for each r > 0, the endomorphism N induces an isomorphism in Rep(Wk)
N”:gtMA = (@M A)| -7

(1.3.4) The monodromy filtration on the dual representation A* = (p*, —N*)
satisfies M, A* = (M_,_,A)* (n € Z), which yields canonical isomorphisms in
Repy(Wk)

~

Vm<n  MpA*/MpA* =5 (Mo A/M_y_,A)*.

(1.3.5) If(,) : A® A — FE ® w is an w-symplectic form on A, then, for
each r > 0, the formula (z,y), = (N"x,y) defines an w| - |~ -symplectic (resp.,
w| - |~"-orthogonal) form on grM A € Repp (W) if 2 | 7 (vesp., if 24 7).

(1.3.6) DIMENSIONS. The dimensions

dr = d,(A) = dim gt A =d_, (rez)

can be interpreted as follows. By the Jacobson-Morozov theorem, there exists a
(non-unique) representation
p:sl(2) =sl(2, E) — Endg(A)
0 0 . 1 0
such that p( 1 o ) = N. Putting H = p( 0 -1 )and A, = {z € A |
Hzx =ma} (m € Z), then

M,A =" A,
m<n
Decomposing A as a representation of si(2)
A @ (BT
J=0

then the multiplicities m; = m;(A) are related to other numerical invariants of A
as follows:

dim(A) => (G +)my, (¥r>0) dp = mpioi, mp=d,—d_, s

§>0 i>0
dim Im(N") =d, +2 d;, dim Ker(N"™") =dy+2>  d; + dy 1.

j>r j=1

(1.3.6.1)
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(1.4) PuriTY

(1.4.1) DEFINITION. Let E' be a field containing E and a € Z. We say that o € E’
is a ¢°~-WEIL NUMBER OF WEIGHT n € Z if «a is algebraic over Q, there exists
N € Z such that ¢™ « is integral over Z, and for each embedding o : Q(a) — C,
the usual archimedean absolute value of o(c) is equal to |o(a)|se = ¢**/2.

(1.4.2) DEFINITION. We say that A € Repp('Wk) is STRICTLY PURE OF WEIGHT
ne€Zif A=pe Repg(Wk) and if for each w € W all eigenvalues of p(w) are
¢" ") -Weil numbers of weight n € Z.

(1.4.3) DEFINITION. We say that A € Repy (W) is PURE OF WEIGHT n € Z if,
for each v € Z, gt A € Repy(Wk) is strictly pure of weight n + 7.

(1.4.4) (1) Each representation p € Repy(Wg) with finite image is strictly pure
of weight 0.

(2) If A,A’ € Repyp('Wik) are (strictly) pure of weights n and n’, respectively,
then A ® A’ is (strictly) pure of weight n 4+ n’, and A* is (strictly) pure of weight
—n.

(3) For each m € Z, E|-|™ is strictly pure of weight —2m.

(4) For each p € Repp(Wk) and m > 1,

A = p® sp(m) is pure of weight n <= p is strictly pure of weight n +m — 1
= Aj = p!|-|™7 1 is strictly pure of weight n +1 —m.

(5) If A € Repy('Wk) is pure of weight n < 0, then all eigenvalues of p(f) (for
any fe v~1(1)) on Ker(N) € MpA are g-Weil numbers of weights < n < 0, hence
HO(A) = 0.
(6) If A € Repy('Wk) is pure of weight n (but not necessarily f-semi-simple),
then A — @ p; @ sp(m;), where each p; € Repg (W) is strictly pure of weight
n+m; — 1.

(1.4.5) DEFINITION. In the situation of 1.1.3, we say that V € Repg(G k) is PURE
OF WEIGHT n € Z if WD(V) € Repy('Wk) is pure of weight n € Z in the sense
of 1.4.3.

(1.5) SPECIALIZATION OF REPRESENTATIONS OF THE WEIL-DELIGNE GROUP

(1.5.1) Let O be a discrete valuation ring containing Q; denote by E (resp., ko)
the field of fractions (resp., the residue field) of O.

(1.5.2) An object of Repp (W) (= a representation of the Weil-Deligne group of
K over Q) consists of a free O-module of finite type T', a continuous homomorphism
p = pr: Wg — Auto(T) (with respect to the discrete topology on the target)
and a nilpotent endomorphism N = Np € Endp(T') satisfying

Yw € Wi p(w)Np(w)~" = |w| N.
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The GENERIC FIBRE (resp., the SPECIAL FIBRE) of T is the representation T,, =
T ®o E € Repg('Wk) (resp., the representation Ts = T ®0 ko € Repy,, ((Wk)).
We denote by N, (resp., N;) the monodromy operator Ny ® 1 on T, (resp., on
Ty).

(1.5.3) For T € Repn('Wk), we denote by T* the representation T* =
Homp (T, O) (equipped with the dual action of Wy and the monodromy op-
erator Ny~ = —(Np)*). Given a representation w : Wxg — OF, we say
that T is w-ORTHOGONAL (resp., w-SYMPLECTIC) if there exists an isomorphism
j:T > T*®win Repy (W) satisfying j* @ w = j (resp., j* @ w = —j).

(1.5.4) PROPOSITION. Assume that T € Repy('Wik) is | - |-symplectic (hence so
are T;) and T,) and that Ts € Repy,('Wk) is pure (necessarily of weight —1).
Then:

(1) G=0  my(Ty) =my(TL). |

(2) Vj >0 dimp Ker(N}) = dimy, Ker(N?).

(3) For each j > 0, the natural injective map (Ker(Nj)NT)®e ko — Ker(N/)
is an isomorphism.

Proof. Tt is enough to prove (1), since (2) is a consequence of (1) and the formulas
(1.3.6.1), and (2) is equivalent to (3) for trivial reasons. We prove (1) by induction
on 7 =min{j > 0| Ni" = 0}. If » = 0, then there is nothing to prove. Assume
that 7 > 1 and that (1) holds whenever NJ. = 0. Recall from 1.3.2(2) and 1.3.5
that

M_y1(T;) = 0# M_(Ty) = Im(Ny),  Mr—1(Ty;) = Ker(Ny) # T,y = My (1),
M_;1(Ts) =0, M_p(Ts) =Im(Ny), My_1(T5) = Ker(Ny), M, (Ts) =T
and that M_,(T,) is | - |""-symplectic (resp., | - |""!-orthogonal) if 2 | r (resp.,
if 2 4 7). The latter property implies that, for any eigenvalue a € ko of any lift
fev=l(1) of f acting on (M_(T;)) NT) ®0 ko there exists another eigenvalue o/
such that aa’ = ¢~"!. On the other hand, (M_.(T;,) N T) ®o ko € Repy, (Wk)
is a sub-object of Ty in Repy, ('Wk), and all eigenvalues of f on T are g-Weil
numbers of weights contained in {—r — 1,—r,...,r — 1}; thus both « and o’
are g-Weil numbers of weight —r — 1. In other words, (Im(N;)) N T') ®o ko =
(M_,(T;;) N T) ®p ko is strictly pure of weight —r — 1, hence is contained in
M_,(Ts) = Im(NT) = (Im(N})) ®o ko. The opposite inclusion being trivial, we
deduce that Im(N7) is equal to Im(Ny) N7, hence is a direct summand of T' (as

an O-module); it follows that

m(Ts) = dimg, Im(N}) = dimpg Im(N;) =m,(Ty).

The representation 77 = (M,_(T;,)) N T)/(M_.(T,;) N T) € Repp('Wk) is also
| - |-symplectic, satisfies N7, = 0, and T} is pure of weight —1. By induction
hypothesis, we have

S
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The relations

m;(T?), Jj#ETT—2
m](T’;) = mr72(T7)+mr(T?)a j=r—2>20 (7:7% 5)
0, otherwise

then imply

ViZ0  my(T.) = my(Ty).

2. LOCAL &-FACTORS

(2.1) GENERAL FACTS

(2.1.1) Fix an algebraically closed field E' > E. Let v : K — E' be a
non-trivial continuous homomorphism (with respect to the discrete topology on
the target); it always exists. If ¢’ : K — E’* is another non-trivial continuous
homomorphism, then there exists unique a € K* such that ¢’ = 1),, where ¢, (y) =
¥ (ay). Denote by iy the unique E’-valued Haar measure on K which is self-dual
with respect to v; then

Vae K* gy, =|a|"? uy, (2.1.1.1)

and every non-zero E’-valued Haar measure p on K is a scalar multiple of pu:
= by, for some b € E™*.

(2.1.2) Deligne [De 1] associated to each triple (A, v, 1), where A € Rep g ('Wk)
and ¥, p are as in 2.1.1, the local e-factor (A, v, ) € E™ satisfying the following
properties.

(2.1.2.1) e(A, 0, 1) = (A7 4, ).
(2.1.2.2) If0 — p' — p — p” — 0 is an exact sequence in Repg (W), then

e(p, ¥y ) = e(p's 0, we(p” 4, ).
(2.1.2.3) eo(A,,p) = (A, p,pu) det(—f | Ay) depends only on AN=ss ¢
Repp(Wk). As (AN=3%), = A, it follows that

(A, ) = (AN, ) det(—f | Ag/Ayp).

(2.1.24) Vae€ K* (A, Y, 1) = (det A)(a) |a] = A (A 1, ).

(2.1.2.5) Vb e B  e(A, b, bp) = bIA) (A, ).

(2126) IfA=pe RepE(WK)a then 5(Pa¢aﬂ) E(p*| ’ |71/L17M*) =1 (Where I
is the measure dual to p with respect to ).

(2.1.2.7) If A = p € Repg(Wk), and if x : Wi /I — E* is an unramified
one-dimensional representation, then

e(p @ X, ¥, 1) = e(p, ¥, ) x ()P FdimlpIn(v)

DOCUMENTA MATHEMATICA 12 (2007) 243-274



ON THE PARITY OF RANKS OF SELMER GROUPS III 253

where 7 is a prime element of Ok and a(p) (resp., n(¢)) is the conductor
exponent of p (resp., of ¥).
(2.1.2.8) ([Fo-PR, 1.1.2.3]) For an exact sequence in Repy('Wk)

B) 0—A —A—A"—0,

set PK(ﬁ) = PK(Aa u)/PK(AI7u)PK(AII7u)a a(ﬁ) = dim Alf + dim Al;_
dim Ay, €(8) = (A, ¢, 1) /e(A, ), n) e(A”, 9, ), and similarly for the
dual exact sequence

B 1) 0— A" | — A*[-| — A"[- | —0;
then
Pr(B7] - |,u™") = e(B8) u™ P (83, u).

(2.1.3) LEMMA. IfA € Repg('Wk), then (A, p) e(A*|-|,¢_1,u*) = 1 (where
w* is the measure dual to p with respect to ).

Proof. Thanks to (2.1.2.1-2), we can assume that A is f-semi-simple and inde-
composable: A = p® sp(m), p € Repgy(Wk), m > 1. In this case

m—1 m
PP B/ =@ P A= pt @ spm)] [P
Jj=0 Jj=0
m—2
(A*[-1)g/ =D )P = (Ag/Ap)"
7=0
(as p(I) is finite, we have (p*)! = (p!)*), hence
det(—f | Ag/Af) det(=f | (A%[- g/ (A7[-1)5) = 15

we deduce that

E(Aﬂ/%li) E(A*| : |a¢71,ﬂ*) = E(ANissawa,u’) E((A*| : |)N755,¢—1,ﬂ*)7

which is equal to 1, by (2.1.2.6).

(2.2) | - |-SYMPLECTIC REPRESENTATIONS

(2.2.1) PROPOSITION. Let A — A*|-| € Repg('Wk) be | - |-symplectic. Then:
(1) e(A):=¢e(A, ¢, ny) does not depend on 1.

(2) e(A) = £1; more precisely:

(3) Ifp—p | | € Repp(Wk) is | - |-symplectic, then e(p) = +1.

(4) If A= X @ X*|-| isasin 1.2.4(1), then e(A) = e(AN=%%) = (det X)(—1).
(5) fFA=p®sp(2n+1) (p € Repy(Wk), n > 0), then p|-|" € Repg(Wk) is
-

|-symplectic and e(A) = e(AN=3%) = g(p| - ).
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(6) If A= p&sp2n) (p € Repg(Wk), n > 1), then p| - |*~' € Repg(Wk) is
orthogonal, there is an exact sequence in Rep (/W)

00— At — A —SA"—0
At =p@spn)-|", AT =p®sp(n),

H(A™)=H p|-|""") and
e(A) = (—1)dime H' (A7) (et A1) (—1), e(ANT5%) = (det AT)(—1).

Proof. (1) For each a € K*,

(A Y, pap,) = (A, Y, [a] P pryy) (by (2.1.1.1))
= [a|"™ A2 (A, g, pry) (by (2.1.2.5))
= (det A)(a) |a| = A 2 e(A, 1, py)  (by (2.1.2.4))
= (A9, py). (by 1.2.2(2))

(2) Writing A~%% as a direct sum of | - |-symplectic representations of the form
1.2.4(1) or 1.2.4(2), the statement follows from the explicit formulas (4)-(6) and
(3), proved below.

(3) Combining (2.1.2.6), (2.1.2.4) and 1.2.2(2), we obtain

e(p, ¥, pp)® = (p,ab, py) (det p)(—1)e(p, ), i) E( )e(pyh_1, py) =
_'E(vavﬂw (p*| | w 17MdJ =

(4) As in the proof of (3), Lemma 2.1.3 together with (2.1.2.4) yield

(D) = e(X, 0, py) (X[ [,y py) = (det X)(=1) (X, o, pyp) (X[ - [, 0, pay) =
= (det X)(—1).

Replacing X by XV=%% we obtain e(AN=%) = (det XV73%)(-1) =
(det X)(—1) = e(A).

(5) As A = p®sp(2n+ 1) is | - |-symplectic, the representation p| - |™ is also
| - |-symplectic, by 1.2.3-4 (in particular, det(p) = |- |1=2»)dim(r)/2) " The same
calculation as in the proof of Lemma 2.1.3 yields

2n—1

No/BAr= @D o P (1) = (7 [ = ot P
j=0
n—1
Ag/Dr =o' P (p']-17)",
j=0
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which implies that det (—f | Ay;/Af) =1, hence

e(A) = (AN = [T epl-V, b, i) = elpl-™) 1:[ e(ol-F@ol-P)* 1) 2 e(olI™).
=0 =0

(6) As A = p®sp(2n) is |- |-symplectic, the representation p|-|"~! is orthogonal,

by 1.2.3. The same calculation as in the proof of (5) shows that

(=) = TL (ol P @ (ol 1110 2 T det(pl- )(-1) = (det A%)(-1)

and
n—2 ) .

Ag/Bs=p " @D o [P (o P)", det(—f | Ag/A) = (=F1p']-["7").
§=0

As p(I) acts semi-simply, the (unramified) representation V = pf| . ["7! €

Repg(Wk) is also orthogonal; applying Lemma 2.2.2 below to u = f acting on V/,
we obtain

E(A)/E(AN_SS) — det (_f | Ag/Af) _ (_1)dimE Ker(f—l:V—»V).
Finally,

Ker(V2=5V) = HO(p| - |"1) = H(p @ sp(n)) = HO(A™).

(2.2.2) LEMMA. Let (V,q) be a non-degenerate quadratic space over a field L of
characteristic not equal to 2. If u € O(V, q), then

det(fu) _ (71)dimL Ker(ufl)’ det(u) _ (71)dimL Im(ufl)'

Proof. The following short argument is due to J. Oesterlé. The two formulas being
equivalent, it is enough to prove the second one. Let a € V, g(a) # 0; denote by
s € O~ (V,q) the reflection with respect to the hyperplane Ker(s — 1) = a*. A
short calculation shows that

Ker(su — 1) = Ker(u — 1) @ Lb, a=(u—1)bbeV
st | Ker(u —1)Nat € Ker(u — 1), a & Im(u — 1),
hence

dimy, Im(su — 1) = dimy, Im(u — 1) F 1. (2.2.2.1)

Writing u as a product of r > 1 reflections, we deduce from (2.2.2.1), by induction,
that dimy, Im(u — 1) = r (mod 2), as claimed.
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(2.2.3) PROPOSITION. Let A — A*|.| € Repp('Wk) be |-|-symplectic and pure
(of weight —1). Assume that there exists an exact sequence in Repp('Wi)

B) 0— AT — A — A" —0
such that the isomorphism A — A*|-| induces isomorphisms A% = (AF)*|-|.
Assume, in addition, that there exists a direct sum decomposition A = Ay @ As in

Repy('Wg) compatible with the isomorphism A — A*|-| and the exact sequence
(B), and such that H°(A; ) = 0, while

(61) 0— A — A} — A7 —0

is a direct sum of exact sequences of the type considered in Proposition 2.2.1(6).
Then

e(A) = (—1)dime H' (A7) (det A1) (—1), g(AN7%) = (det A*)(—1).

Proof. 1t is enough to treat separately A; and As. For A = A, the statement
follows from Proposition 2.2.1(6). For A = A,, the assumption H°(A~) = 0
implies that Px(A~,1) # 0. As A is pure of weight —1 < 0, we also have
HO(AY) € HO(A) = 0, by 1.4.4(5), hence Px(A+,1)Px(A,1) # 0. Letting
u — 1in (2.1.2.8), we obtain ¢(8) = 1, hence

(D) = (AT, py) (A7, py) = (AT @ (AT)"] - |) = (det AT)(-1).

Finally,

E(AN_SS) = E((A-"_)N_ssa (U Nw) E((A_)N_ssa (U Nw) =
=e((AN)N @ (A7) [) = (det(AT)V75)(—1) = (det AF)(-1).

(2.2.4) PROPOSITION. In the situation of 1.5.4, e(Ts) = e(T},) € {£1}.

Proof. For any O-module X, denote by red : X — X ®o ko the canonical
surjection. Proposition 1.5.4 implies that

red (%) = (T5)g/(Ts) s,

hence

red (2(Ty)/(T,'~**)) = red (det (= f | (T;)g/(Ty)5)) =
= (det (—f | (T4)g/(Ts)g) = &(Ts) /e (TN ).

As e(T),e(TN=%%),e(Ts),e(TN5%) € {£1}, we are reduced to showing that
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red (E(TTJ,V*SS)) < e(TN=#9).

The following argument is based on a suggestion of T. Saito. We can replace
(pr, N1) by (pr,0) and assume that Ny = 0. Furthermore, after replacing E by
a finite extension, we can assume (see [De 1, 4.10]) that

Tyfiss = @pa X Wa,
«

where p, € Rep; (W) for a subfield L C O of finite degree over Q, and w,, :
Wik /T — O* is an unramified representation of rank 1. We have

Yw € Wi Tr(w | Ts) = red (Tr(w | Ty,)) ,

hence
TS = @pa ® red(wy).

Applying (2.1.2.7) to each direct summand, we obtain

red (e(Ty)) = Hred (€(pa @ Wa, ¥, y)) = Hs(pa ®red(wy),red o, redo fy) =

=e(Ts).

(2.3) THE ARCHIMEDEAN CASE

Let L = R or C. If H is a pure R-Hodge structure over L ([Fo-PR, IIL.1]) of
weight —1, then

H= @Hr(r)e}mrv
r>0
where H, is a two-dimensional pure R-Hodge structure over L of Hodge type
(2r — 1,0), (0,2r — 1). The standard formulas ([De 3, 5.3], [Fo-PR, III.1.1.10,
I11.1.2.7]) yield

1, L=R
L=C.

Vp<0  hPTUP(H) =m_,,

we obtain

Rid- 1, L=R _
e(H) = (—1)IFRIH) o {(1)(dimRH)/2’ I _C d~(H) = thRQ(H).
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3. LocAL p-ADIC GALOIS REPRESENTATIONS

(3.1) GENERAL FACTS

(3.1.1) NOTATION. Let p be the characteristic of the residue field k of K; then
g = p" and K is a finite extension of Q,. Denote by o € Gal(Q,"/Qp) — G,
the lift of the ARITHMETIC Frobenius element x +— xP. Let L be another finite
extension of Q.

We use the standard notation

Rep.is.1.(Gx) C Repy, 1 (Gk) C Reppst,L(GK) = Repyp 1 (Gk) C Repr(Gk)

for Fontaine’s hiearchy of (finite-dimensional, L-linear) representations of Gg
([Fo]), and

Dcm’s(v) == (V ®QP ch’s)GK; Dst(v) = (V ®Qp Bst)GKa
Dyst(V) = lim (V ®q, Bst) ",
KI
Dyr(V) = (V ®q, t'Bip)“* C Dyp(V) = (V ®q, Bar)“*
for various Fontaine’s functors (above, V' € Rep; (Gk), and K’ runs through all fi-
nite extensions of K contained in K). As in [Bl-Ka], put H(K,—) = H¢ ,(Gk, —)
and, for x = e, f, st, g,

HNK,V) =Ker (H(K,V) — H'(K,V ®q, B.)),
Be=Bf.!,  Bj=DBis, By=Bun

cris ?

If K'/K is a finite Galois extension, then

HY(K,V) = HL(K', V)30, (+=0.e fost,g)  (3.1.11)

(as both H*(—,V) and H'(—,V ®q, B.) satisfy Galois descent w.r.t. the exten-
sion K'/K, and the functor of Gal(K’/K)-invariants is exact on the category of
Q[Gal(K'/K)]-modules).

(3.1.2) For V € Repyp (Gk) and i € Z, define

dp,(V) = dimp, (Dgp(V)/Dgp (V) dg (V) = Zidi(v),

(V) =Y _idp (V).

i€Z
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(3.1.3) If V€ Rep,g .(GK), then D = Dy (V) is a free (Q," ®q, L)-module
of rank equal to dimpy,(V), which is equipped (among others) with the following
structure ([Fo], [Fo-PR, 1.2.2]):

(1) An L-linear action pg : Wi — Autr (D), which is Q,"-semi-linear in the
following sense:

VweWrg VA€ QU VzeD  palw)Ax) = f ™ (\) pa(w)(z).

(2) An L-linear, o-semi-linear map ¢ : D — D commuting with pg(w) (for all
w e WK):

Vwe Wk VA€QL Vze D  p(Ax) =a(X) p(x).

(3) A (Qp" ®q, L)-linear nilpotent endomorphism N : D — D commuting with
psi(w) (for all w € W) and satisfying N¢ = ppN.
(4) An isomorphism of (K ®q, L)-modules

(D ®@qur K)9 = Dyp(V).

(3.2) POTENTIALLY SEMISTABLE REPRESENTATIONS AND REPRESENTATIONS OF
THE WEIL-DELIGNE GROUP

We recall how, for each V' € Rep,, 1 (Gk), the structure 3.1.3(1)-(3) can be used
to define a representation of the Weil-Deligne group of K ([Fo], [Fo-PR, 1.1.3.2]).

(3.2.1) Fixafield £ > Q" for which there exists an embedding 7 : L — E, and
define

WDT(V) = Dpst(V) ®Q;T®QPL,id®7— E7

which is an E-vector space of dimension dimg(WD,(V)) = dim (V). We define
an E-LINEAR action of Wi on WD, (V) by

p(w) := pa(w) o ") @ id (w € W)

and a monodromy operator N = N ® id € Endg(WD.(V)). This defines a
representation

WDT(V) = (p7 N) € RepE(/WK)a

whose isomorphism class does not depend on 7. Furthermore,

WD, : Repyg .(Gr) — Repp('Wk)

is an exact tensor functor.

(3.2.2) ExaMPLESs: (1) If V is potentially unramified, then WD, (V) =V ® -
E € Repp(Wk).
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(2) If V is semistable, then WD(V) = Dst(V) ®@ky0q, Lider £ (Ko = K NQ,"),
with p(I) acting trivially, N = N ® id and p(fx) = ¢" ® id. Conversely, if p(I)
acts trivially, then V' is semistable.

(3) fV=L(n)=L®q, Qyn) (nc€Z),then WD (V)=E|-"=E®]|-|"
(4) (Lubin-Tate theory) Fix a prime element 7 € Og. The reciprocity map
reck : K* — G% (normalized using the geometric Frobenius element) defines a
one-dimensional representation V; € Rep,.,.;s x (Gx)

~

Xr: Gr — GY 5 K* =712 x O} — O3 — K*,

which arises in the 7m-adic Tate module of any Lubin-Tate group over K associated
to 7. In this case

Dyt (Vz) = (QZ’“ ®q, K)u, goh(u) =(1® 7) ", Nu=0,
Yw e Wi psg(w)(u) = u.

If £25 Qp is afield and 7 : K < E an embedding of fields, then WD, (V;) €
Repg (Wk) is an unramified one-dimensional representation of Wi, on which f =
fx acts by 7(m)~1. For K = Q, and m = p we recover Example (3) for n = 1.

(3.2.3) DEFINITION. We say that V' € Rep,,s ,(GK) is PURE OF WEIGHT n € Z
if WD, (V) € Repg('Wk) is pure of weight n, in the sense of 1.4.3.

(3.2.4) LEMMA. For each V € Rep,s; 1(Gk) and each 7: L — E D Q)
WD, (V)IF=' = Du(V)?=' @p, E,  H'(WD.(V)) = Deyis(V)?~' @1, E.

Proof. As Dyis(V) = Dst(V)N=O7 it is enough to prove the first equality. As both
sides satisfy Galois descent with respect to finite Galois extensions K'/K, we can
assume that V' is semistable. In this case, 3.2.2(2) implies that

WD, (V)[F=! = WD, (V)= = Dst(V)*"hﬂ@KO@%L,id@TE (Ko = KNQ,").

As
Du(V)?"=! = D4 (V)#= @q, Ko

(thanks to Hilbert’s Theorem 90 for H'(K(/Qp, GL,(Kj))), it follows that
WD, (V)[F=' = Du(V)¢¥=' @, E.

(3.2.5) CoROLLARY. If V' € Rep, (Gk) is pure of weight n < 0, then
Deris(V)9=t = 0.

(3.2.6) PROPOSITION. For each V € Rep,s (G k),
(detg (WD (V)(=1) = (=) (det L V)(—1).
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Proof. As WD, is a tensor functor and d (V) = dr(dety(V)), we can replace
V by detr(V), hence assume that dim(V') = 1; denote by xv : Gxg — K* the
character by which Gk acts on V. After replacing L by a finite extension, we
can assume that L contains the Galois closure of K over Q,. As V is potentially
semistable, there exists a one-dimensional representation

x:Gg — L*
with finite image and integers n, (0 : K — L) such that

xw=x ][ (oxa)™,
o:K—L

where y : Gk — K* is as in 3.2.2(4). It follows from 3.2.2 that WD, (V) =
(Tox)a, where o : Wi /I — E* is the one-dimensional unramified representation
satisfying

This implies that

(detg (WD, (V)(—1) = x(~1), (detV)(=1)=(-1)"x(-1), n= > n,.

On the other hand,

dL(V) = l{o s K — L | ng = i},
hence n = dp (V).

(3.3) REPRESENTATIONS SATISFYING PANCISKIN’S CONDITION
We recall a few basic facts from [Ne 1].

(3.3.1) DEFINITION. We say that V € Rep(Gk) satisfies PANCISKIN’S CONDI-
TION if there exists an exact sequence in Repy (Gk)

0—VF—V —5V"—0

such that V* € Rep,y, 1 (Gk) and Dyp(V*') = 0= D p(V")/DS5 (V™). If this is
the case, then V* are uniquely determined ([Ne 1], 6.7), V € Rep, .(Gk) ([Ne 1],
1.28) and V*(1) also satisfies Panc¢iskin’s condition (with (V*(1))* = (VF)*(1)).

(3.3.2) PROPOSITION. IfV satisfies Panciskin’s condition, then:

(1) HYK,V7) = De¢pis(V7)?=t = Doy (V)=

(2) Assume that there exists a finite Galois extension K'/K over which V' becomes
semistable and such that D, ,;s (V|GK,)‘P=1 = DCM-S(V*(l)|GK,)‘P=1 =0 (the latter
condition holds, e.g., if V' is pure of weight —1, by 3.2.5). Then

H;(va) = H}(va) = Hslt(Kav) = Hgl(va)
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and there is an exact sequence
0— H'(K,V™) — H (K, V') — H}(K, V) —0,
in which HY (K, V™) = HL(K, V™).

Proof. (1) This is proved in [Ne 1, 1.28(3)] under the tacit assumption that V—
is semistable. The general case follows by passing to a finite Galois extension over
which V'~ becomes semistable and taking Galois invariants.

(2) Over K', the statement is proved in [Ne 1, 1.32]; the general case follows by
applying (3.1.1.1).

(3.3.3) PROPOSITION. Assume that V satisfies Panciskin’s condition, is pure (of
weight —1) and that there exists an isomorphism j : V. — V*(1) in Rep; (G k)
satisfying j*(1) = —j. Then:
(1) j induces isomorphisms VE — (VF)*(1).
(2) Fix an embedding of fields 7 : L — E D Q" and put A = WD,(V),
A* = WD, (V*). Then A € Repy('Wk) is |- |-symplectic and the exact sequence
in Rep (W)

0— AT —A— A" —0

satisfies the assumptions of Proposition 2.2.3.
(3) (detpA®)(—1)/(detrV*)(~1) = (~1)0) = (=) V),
(4) The e-factors of A and AN=5% are equal to

S(A) = (=1t YD ()W) (det V) (-1),
g(AN=5) = (=1)% V) (det, VF)(—1).
Proof. (1) This follows from the remarks made in 3.3.1.
(2) A is |- |-symplectic, since WD, is a tensor functor. In order to verify the

assumptions of Proposition 2.2.3, we are going to decompose A into several com-
ponents. Firstly, the functor

Repp('Wk) — Repg('Wk), X — xP)

is exact and commutes with duals. In addition, X*() is a direct summand of
X, with a functorial complement X’. Secondly, for each A € E, the minimal
polynomial ppy(T') of A over E depends only on the G'g-orbit [A] of A. We define

A= P |JKer ((f SA AN MD) ,

AEgZ n=>1

D= Ao @ | Ker (ppy () : a0 — ar).
Agq% n>1

The direct sum decomposition A = A; @ Ay in Repg('Wk) is compatible with
the isomorphism A —~ A*|-| and the exact sequence
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00— AT —SA—SA" —0.

By construction, every subquotient of Ay in Repy (/W) has trivial H°, hence
H°(AZ) =0. As A is pure of weight —1, it follows that

A= @ Om @ sp(2m),

m>1

where each o, € Repg('Wk) is an unramified representation of Wy on which
g™ f acts unipotently.

As V satisfies the Panéigkin condition, weak admissibility of V* implies that all
eigenvalues of f on AT = AT N A; (resp., on A7 = A;/AT) are of the form ¢
with n < 0 (resp., with n > 0). It follows that

A =P om@spm) [, A7 = P om @ sp(m),
m>1 m>1
which proves (2).
(3) This follows from Proposition 3.2.6 applied to V.
(4) We combine Proposition 2.2.3 (which applies to A, thanks to (2)) with the
formula (3) and the fact that

HO(A_) = DcriS(V_yp:l QL7 E= (Dcm'S(V_)(p:l n DgR(V_)) QL,r E =
=H' K,V )®L.,E.

4. GLOBAL p-ADIC GALOIS REPRESENTATIONS

(4.1) GENERALITIES

(4.1.1) NoTATION. Let F be a number field. For each prime [ of Q, let S; be the
set of primes of F' above [. Fix a prime number p, a finite extension L, of Q, and
a finite set S D Soc U S, of primes of F'. Let Fg be the maximal extension of F
(contained in F') unramified outside S; put G s = Gal(Fs/F). For each prime v of
F fix an embedding F' < F; this defines a morphism Gr, — Grp — Gp,5. For
each Galois representation V' € Rep,, (Gr,s) (continuous and finite-dimensional
over Ly), denote by Vi, € Rep,, (GF,) the local Galois representation induced by
the map G, — Gr,s. For each v & SocUS), denote by WD(V,) € Repy, ('Wr,)
the associated representation of the Weil-Deligne group of F, (see 1.1.3). As in
[Bl-Kal, we put

Yo & Soo U S, H{(F,,V)=H,,(F,,V)=Ker (H'(F,,V) — H'(F}",V))

H}(F,V):Ker(Hl(GF7S,V)—> B Hl(Fv,V)/H}(FU,V)>.
vES—So
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The Ly-vector space H} (F,V) does not change if we enlarge S.
(4.1.2) Throughout §4, assume that V satisfies the following conditions.
(1) There exists an isomorphism j : V = V*(1) in Repy, (Gr,s) satisfying

g (1) = —J.
(2) For each v € Sp, V,, € Rep;, (GF,) satisfies the Panciskin condition 3.3.1:

00—V —V,—V —0

(in particular, Vi, € Rep,o 1, (GF,))-

(3) For each v & Soc U S, (resp., v € Sp), Vi, is pure (necessarily of weight —1) in
the sense of 1.4.5 (resp., in the sense of 3.2.3).

(4) For each i € Z, the integer

d'(V) = dimg, (Dar(Ve)/Dgy (Va)) /[Fs : Q)

does not depend on v € Sp,. This condition is satisfied if V' = M, is the p-adic
realization of a motive (pure of weight —1) M over F' with coefficients in a
number field L (of which L, is a completion), as

dl(V) = dimL (FiMdR/FiJrlMdR)

in this case.

Example: F = Q and V = (S?" 'V (f))(mk —m + 1 — k/2), where m > 1 and
V(f) is the Galois representation (pure of weight k — 1) associated to a potentially
p-ordinary Hecke eigenform f € S;(I'o(IN)) of (even) weight k and trivial character.

(4.1.3) e-FACTORS. We define

d=(V) =Y id(V), (4.1.3.1)

<0

R 1, F,—R
V'U [= SOO E(VU) = (_1)[Fv.R]d (V) X { (71)diIIlLF(V)/2’ FZ C

— |

4.1.3.2)
(in view of (2.3.1), this is the correct archimedean local e-factor if V' = M, is as
in 4.1.2(4)) and

Vo & Seo e(Vy) = e(WD(V,)). (4.1.3.3)
For any prime v of F, let
V) = (—)F V), vES, 4.1.3.4
() =e(v) < { e (11.3.4)
where
h'(F,,X) = dimg, H'(F,,X) (X € Repy, (GR,))-
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Finally, define
eV)=[[ev0),  &v)=][zva) (4.1.3.5)
v

(this makes sense, as €(V,,) = 1 for all but finitely many v). It follows from
Proposition 3.3.3 that

Ve,  EVi)= (~DH M) (et ViE(-1) = e(WD(V,)N ),

(4.1.3.6)
hence
[T &) = (=)0 T (det V") (-1).
vES, vES,
As
[T <) = (-
VES
it follows that
T #v) = IJ (et v;h)(—1). (4.1.3.7)
VESUSoo vES)

(4.2) SELMER COMPLEXES AND EXTENDED SELMER GROUPS

(4.2.1) For a pro-finite group G and a representation X € Repy (G) (con-
tinuous, finite-dimensional), denote by C*(G, X) the standard complex of (non-
homogeneous) continuous cochains of G with values in X. Fix a set S, C ¥ C S
and define, for each v € § — S, the complex

C*(Gr, Vb, ves,
urvy=1{o, veT -5,
C;“A(GFMVU) = C'(GFU/IU, VWI”), veES— >,

where I, C Gp, is the inertia group. As in ([Ne 2], 12.5.9.1), define the Selmer
complex of V associated to the local conditions Ax (V) = (U (V))ves—s.. as

CH(Gr,s, Vi As(V)) =

cone<0°(GF,S,V)@ b viv)— Pp C'(GFU,V)> [-1].

vES—S vES—S

(4.2.2) PROPOSITION. (1) For eachv ¢ So US,, the complexes C*(Gr,,V) and
C:.(Gp,,V) are acyclic.
(2) Up to a canonical isomorphism, the image of C’}(GFVS,V;AE(V)) in the
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derived category Dl}t(Lp — Mod) does not depend on ¥ and S; denote it by
/R\ff(F, V) and its cohomology by ﬁ}(F, V) (as L, is a field, /Rva(F, V) =

Dicz Hy (F,V)[=i)).
(3) There is an exact sequence

0— @ H(F,,V,) — H}(F,V) — H}(F,V) — 0.
vES)

(4) If we put h4(F,V)=dimg, H}(F,V), hi(F,V)=dimz, H}(F,V), then
(—1)MEV (V) = (~)HEV /E(V),

Proof. (cf. [Ne 2, 12.5.9.2]) (1) The cohomology group H°(F,,V) = 0 van-
ishes by purity (1.4.4(5)), H?(F,,V) — HY(F,,V*(1))* = HOY(F,,V)* =
0 by duality and H!(F,,V) = 0 by the local Euler characteristic formula
S (1) R(F,, V) = 0. Finally, dimg, H..(F,,V)=h'(F,,V)=0.

(2) Independence of ¥ follows from (1), independence of S is a general fact ([Ne
2], Prop. 7.8.8).

(3) It follows from (1) and [Ne 2, Lemma 9.6.3] that there is an exact sequence

—_—

0— HY(F,V) — H°(Gps,V)— P #(F,, V) — H}(F,V) — H— 0,

vES)
where
H = Ker (HI(GRS,V) - P Hl(FU,V)/Im(Hl(U;F(V)))> :
vES—S
As
0=HF,,V), vegS
t(a2 0 V) = { vy ey

by (1) and Proposition 3.3.2(2), respectively, we deduce that H = H}(F,V).
Finally, H*(GFs,V) = 0 by purity.
(4) This is a consequence of (3) and (4.1.3.4).

5. p-ADIC FAMILIES OF GLOBAL p-ADIC GALOIS REPRESENTATIONS

(5.1) THE GENERAL SETUP

(5.1.1) Fix a number field F', a prime number p and a finite set S O S, U S of
primes of F'.
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(5.1.2) Assume that we are given the following data.

(1)

(2)
3)

(7)

A complete local noetherian domain R of dimension dim(R) = 2, whose residue
field is a finite extension of F, and whose fraction field .Z is of characteristic
Zero.

An R-module of finite type 7 equipped with an R-linear continuous action of
Gr.s (with respect to the pro-finite topology of 7). Set V =7 ®r 2.

A skew-symmetric morphism of R[Gr g]-modules

(,):T®rT — R(1) = R®z, Z,(1)
inducing an isomorphism of .Z[Gr s]-modules
VY = V*(1) = Homg (V, 2)(1).

For each v € S, an R|Gp,]-submodule 7," C 7, such that the isomorphism
V — V*(1) induces isomorphisms of .Z[G,]-modules

Vi == (W))*(1) = Homg (VF, 2)(1),

where V) =T @r %, V, =V,/V, .

A prime ideal P € Spec(R) of height ht(P) = 1, which does not contain p
and such that Rp is a discrete valuation ring. Fix a prime element wp of Rp.
The residue field «(P) = Rp/wpRp is a finite extension of Q. Define

Tp =T rRp CV, VZTp/wPTPGRepH(P)(GF,S)
and, for each v € Sp,

(Tp)t = Tp NV, (Tp), =Tr/(Tp);, V)t = (Tp)} Jwp(Tp)f C Vi,
‘/1;7 - VW/VWJF (Vvi € Repn(P) (GFu))

We assume that there exists u € £* such that u-(, ) induces an isomorphism
of Rp[GF,s]-modules

Tp — T5(1) = Homp, (Tp, Rp)(1).

This implies that, for each v € Sy, u-(, ) induces an isomorphism of Rp[Gr,]-
modules (7p)F = ((7p)F)*(1). Reducing u-( , ) modulo P, we obtain a non-
degenerate skew-symmetric morphism of x(P)[GF,s]-modules V ®,py V —
#x(P)(1) which induces, for each v € S, isomorphisms V;F — (V,F)*(1) in
Repn(P)(GFv).

We assume that, for each v € S, the exact sequence

0—VH—V,—V" —0

satisfies the Panéiskin condition: V= € Rep o .(p)(Gr,) and Dy (V,F) =0 =
Dyp(Vy )/ Dgr(Vy).
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(8) We assume that, for each v € Sy, V,, is pure of weight —1 (in the sense of
1.4.5 and 3.2.3, respectively).
(9) We assume that, for each i € Z, the integer

d'(V) = dimypy (Dar(Vo)/Dgi (Vi) /[Fs = Q)

does not depend on v € Sy; put

d~(V)=> id(V).
i<0
(5.1.3) This implies, in particular, that V satisfies the assumptions 4.1.2(1)-(4).
(5.1.4) Fix v & S, U Seo. As Autr(T) is a pro-finite group containing a pro-p
open subgroup, there exists an open subgroup J of the inertia group I = I, =
Gal(F,/F"") such that J acts on 7 through the map J < I — I(p), where I(p) is
the maximal pro-p-quotient of I (isomorphic to Z,). Fixing a topological generator
t of I(p) and an integer a > 1 such that ¢* lies in the image of J, then the set
of eigenvalues of t* acting on V is stable under the map A — AV?, which implies

that there exists an integer ¢ > 1 divisible by a such that ¢t acts unipotently on
V. Defining

1
N = - log p7(t°) € Endg(7) @ Q

(where pr : Gx — Autg(7) denotes the action of G, on 7T) and (fixing a lift
fevi(l) Cc Wk of f)

pr(f™u) := pr(fu) exp(—bN) € Autrepg(T ® Q) C Autg, (Tp) (n€Z,uel)

(where b € Z,, is such that the image of u in I(p) is equal to ¢°), the pair (pz, N) de-
fines an object T' = (pr, N) of Repg,, ('WF,) in the sense of 1.5.2, the isomorphism

class of which is independent of the choice of f ([De 1], 8.4.3). By construction,
the special fibre of T is isomorphic to

Ts = WD(VU) S RepH(P) (/WFI,)-
We define
WDWy) =T, =T ®r, £ € Repx('WF,)
eWy) :==e(WD(V)).

If we choose another generator of I(p), then N is multiplied by a scalar A € z,,
which does not change the isomorphism class of WD(V,) ([De 1], 8.4.3).

(5.1.4.1)

(5.2) SELMER COMPLEXES AND EXTENDED SELMER GROUPS

(5.2.1) We equip each R-module Y = 7,7} TI with the pro-finite topology
and we denote by C*(G,Y") the corresponding complex of continuous cochains (for
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G = Grys,Gr,,Gr,/I,, respectively). For R’ = Rp,.%, define C*(G,Y ®@r R') =
C*(G,)Y)®r R'. Asin 4.21, fix aset S, C ¥ C S and define, for X = 7p,V,
Rx = Rp,.Z and each v € S — S, complexes of Rx-modules

C.(GFvaX':r)a 'UESp
US(X) =10, veEX-S,
C’L:T(GFv)X):C.(GFU/I’U)XIU); ’UES—E,

and

CH(Grs, X; As(X)) =

= Cone (C'(GF,S,X)@ P vix)— P C'(GF,,,X)) [-1].

vES—S vES—S

(5.2.2) PROPOSITION. (1) For each X = 7p,V and each v & Soc U Sy, the com-
plexes C*(Gp,,X) and C¢,.(GF,, X) are acyclic.

(2) Up to a canonical isomorphism, the image of 5}(GF,S,X; Ax (X)) in
D?t(RX — Mod) does not depend on ¥ and S; denote it by ﬁff(F,X) and its
cohomology by f[}(F,X) (as £ is a field, ﬁff(F, V)= f[}(F, V)[—1i]).

(3) There is an exact triangle in D?t(Rp — Mod)

i€Z

fR\ff(F, Tp)—&/RVFf(F, Tp) — /R\ff(F, V)— /R\ff(F, Tp)[1]
giving rise to exact sequences

0 — H}(F, Tp)/wpH}(F, Tp) — Hi(F,V) — H}™(F, Tp)[wp] — 0,

— L Y —
and an isomorphism RI'f(F,7p)Qr,.Z — RIf(F,V) in D?t(f — Mod).
(4) There exists a skew-symmetric isomorphism in D?t(R p — Mod)

RT;(F,Tp) > RHompg, (RT;(F, Tp), Rp)[-3]
inducing a skew-symmetric non-degenerate pairing

ﬁ?(F; TP)Rp—tors X ﬁ?(F; TP)Rp—tors — g/RP

~

(5) There exists an Rp-module Z of finite length such that I?J%(F, TP)Rp—tors —
Z&Z.
(6) H;(F,Tp) is a free Rp-module of rank h}(F,V) := dimg H}(F,V).

(7) hL(F,V) = hi(F,V) (mod?2).

Proof. (cf. [Ne 2,12.7.13.4]) (1) It is enough to prove the statement for X = 7p.
By ([Ne 2], Prop. 3.4.2 and 3.4.4), there is an exact sequence of complexes
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0 — C*(Gp,, Tp)2C*(GR,, Tp) — C*(Gr,, V) — 0,

which induces injections

HYGp,,Tp)/wpH (GF,,Tp) — H'(F,,V).

As H'(F,,V) = 0 by Proposition 4.2.2(1), and H (Gf,,7p) = H(Gr,,T)®r Rp
is an Rp-module of finite type (by [Ne 2], Prop. 4.2.3), it follows that
HY(GF,,7p) = 0. Finally, the unramified cohomology H.. = H} (Gr,,Tp) =
T2 /(f, — 1)TA* is an Rp-module of finite type and HY, /owpH], is a subquotient
of VIv/wpVl = H! (Gp,,V) = 0; thus H.,. = 0.

(2) This follows from (1), as in the proof of 4.2.2(2).

(3) According to (2), we can take ¥ = S, in which case the exact triangle in
question follows from the exact sequences

0 — C*(G, Tp)ZEC* (G, Tp) — C*(G, V) — 0 (G =Grs, Gr,).

The isomorphism /R\ff (F, Tp)Q%RP,f - /R\ff(F, V) is a direct consequence of
the definitions.

(4) Take again ¥ = S. According to a localized version of ([Ne 2], 7.8.4.4), there
exists an exact triangle in D?t(Rp — Mod)

RT;(F,Tp)——RHompg, (RT;(F,Tp), Rp)[-3] — P Eir,,
vES—S

in which the error terms Err, vanish for v € S, (as (7p)* = ((7p)T)*(1)), as
well as for v € S, (by (1) and [Ne 2], Prop. 6.7.6(iv)). The map ~ (which is
an isomorphism, by the previous discussion) is skew-symmetric, by ([Ne 2], Prop.
6.6.2 and 7.7.3). The skew-symmetric non-degenerate pairing

H)%(F; TP)Rp—tors X ﬁ)%(F; TP)Rp—tors — g/RP

is constructed from v in ([Ne 2], Prop. 10.2.5).

(5) This follows from (4) and the structure theory of symplectic modules of finite
length over discrete valuation rings (note that 2 is invertible in Rp).

(6) It is enough to show that H }» (F,7p) hasno Rp-torsion, which si a consequence
of the exact sequence from (3) (for ¢ = 0).

(7) In the exact sequence from (3) for ¢ = 1, the term on the left (resp., on

the right), is a k(P)-vector space of dimension iNL}(F, V), by (6) (resp., of even
dimension, by (5)); thus the dimension of the middle term (= ﬁ}(F, V)) has the
same parity as E} (EF,V).

(5.3) THE PARITY CONJECTURE IN p-ADIC FAMILIES
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(5.3.1) THEOREM. Under the assumptions 5.1.2(1)-(9), the quantity

(~1)"5 VI (V) = (~)H N E(V) =
= ()Y [T ety ] =)

vES), v€S,USwe

depends only on V and V| (v € S)).

Proof. We combine the equalities

(1) EV) ) (V) = (1) EV) (V) (Prop. 4.2.2(4))

(_1)Z;(F,v> _ (_1)E}<F,V> (Prop. 5.2.2(7))

ivy= J] &v) ] o) = ] @etV;H(-1) [ e(va)

vES,USw v @S, USee vES, v@SeoUS,
(by 4.1.3.7)
Yo & S U S, e(Vy) =e(Vy) (Prop. 2.2.4)

YweS, (detV")(—1) = (det Vi)(—1)

(both sides are equal to 1, and the L.H.S. is the reduction of the R.H.S. modulo
P).

(5.3.2) COROLLARY. Under the assumptions 5.1.2(1)-(4), if P, P' € Spec(R) are
prime ideals satisfying 5.1.2(5)-(9), then the Galois representations V = Tp/PTp
and V' = Tp/ | P'Tp: satisty

(~)MEV e(V) = (~)MEVI /e(V).

(5.3.3) OPEN QUESTIONS. It would be of interest to generalize Corollary 5.3.2
to self-dual families of Galois representations that do not satisfy the Panciskin
condition. Is it true, in general, that

(—D)F Q™) (W D(V, )N —5%) (v e Sy)

depends only on V,, and that

1\ (EV) eWD(W))
( 1) ,ng E(WD(VU)N—SS)

depends only on V7
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(5.3.4) EXAMPLE (DIHEDRAL IWASAWA THEORY). Assume that Fy C F,, are
Galois extension of F such that [Fy : F] = 2, T' = Gal(Fwx/Fy) — Z, and
't = Gal(F/F) =T x {1, 7} is dihedral:

1 1

relt T, =1, Vgel' 7197 " =g .
Let V € Rep,,, (GF,s) be a Galois representation satisfying 4.1.2(1)-(4); fix a G, s-
stable Op-lattice T C V (O, = O, ) such that the pairing (, )y : VxV — Ly(1)
induced by j maps T x T into Op(1). After enlarging S if necessary, we can assume
that S contains all primes that ramify in Fy/F; then Foo C Fs. We define the
following data of the type considered in 5.1.2:

(1) Let R = Op[[I']] be the Iwasawa algebra of I' (isomorphic to the power series
ring O,[[X]]). The Iwasawa algebra of 't is a free (both left and right) R-
module of rank 2:

O;[I*]]=R®Rr=R® TR,

Denote by ¢ the standard Op-linear involution on O, [[I']] (1(o) = o~ ! for all
oel™t).

(2) Let T =T ®p, Op[[I'"]], considered as a left R[GF,s]-module with the action
given by

r@®a) =x®ra, glz®a)=g(@)®a@ "  (r€R, zeT, ac O[],

where we have denoted by g the image of g € Gp g in I'" (cf., [Ne 2], 10.3.5.3).
(3) Asin ([Ne 2], 10.3.5.10), the formula

(z® (a1 +7az),y ® (br + 7b2)) = (2, y)v (a14(b2) + t(az)b1)

defines a skew-symmetric R-bilinear pairing (, ) : 7 x T — R(1), which
induces an isomorphism

7 ® Q — Homg(7T,R(1))® Q

(hence satisfies 5.1.2(3)).

(4) For each v € Sy, define 7t =T, ®0, Op[[L'1]] (where T,f =T NV,F).

(5) Let 8:T — L,(8)* be a homomorphism with finite image (where Ly () is a
field generated over L, by the values of 3); then P = Ker(3: R — Ly(0)) €
Spec(R) is as in 5.1.2(5), with k(P) = Ly (). It follows from ([Ne 2], Lemma

10.3.5.4) that
Gr,s

Tp/’(ﬂpr = IndGFO,S(V X ﬂ),
where we have denoted by V' ® 8 € Rep;,_(45)(GR,,s) the G, s-module V ®p,
L,(B) on which g € Gp, s acts by g®ﬁ(§3, where 7 is the image of g in I'. The
discussion in ([Ne 2], 10.3.5.10) implies that 5.1.2(6) holds with w = 1. The
conditions 5.1.2(7)-(9) for 7p/wp7p follow from the corresponding conditions
4.1.2(2)-(4) for V.
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In the situation of 5.3.4, putting Fz = Féer(ﬁ) and, for each

L, [I'-module M,

MP) ={zeM ®r, Lp(B) | Yo €T o(x) = B(o)x},

then we have

Hi(F,Tp/wpTp) = H{(Fo,V ® ) = (H}(F3,V)® 3

)Gal(Fﬁ/Fg) _

-1
_ H}(FB,V)(ﬁ ),

and the action of 7 induces an isomorphism of L, (3)-vector spaces

T HY(Fp, V)P 2 HY(F, V)@,

Applying Corollary 5.3.2, we obtain, for any pair of characters of finite order
—x
B, B : T — L,, that

(—1)hrEVEB) ) (B V @ B) = (=1 FVeR) f (R Vo B).  (5.3.5.1)

In this special case one can prove Proposition 2.2.4 directly (at least if p # 2) by
using (2.1.2.7).

It would be of interest to generalize (5.3.5.1) to more general dihedral characters,
as in [Ma-Ru].

[Bl-Ka

[De 1]

[De 2]

[Fol

[Fo-PR]
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1 INTRODUCTION

Let A be a commutative noetherian ring of Krull dimension n and P a projective
A-module of rank d. One can ask the following question: does P admit a free
factor of rank one? Serre proved a long time ago that the answer is always
positive when d > n. So in fact the first interesting case is when P is projective
of rank equal to the dimension of A. Suppose now that X is an integral smooth
scheme over a field k of characteristic not 2. To deal with the above question,

Barge and Morel introduced the Chow-Witt groups CA’Iij(X) of X (called at
that time groupes de Chow des cycles orientés, see [BM]) and associated to each

vector bundle E of rank n an Euler class é,(F) in ﬁln(X) It was proved
recently that if X = Spec(A) we have ¢,(P) = 0 if and only if P ~ Q & A
(see [Mo] for n > 4, [FS] for n = 3 and [BM] or [Fa] for the case n = 2). It
is therefore important to provide more tools, such as a ring structure and a
pull-back for regular embeddings, to compute the Chow-Witt groups and the
Euler classes.

To define C’HP(X) consider the fibre product of the complex in Milnor K-theory

0— KM(k(X)) P KLk@) ... P KLk,
z1€X® ZpEX (M)

and the Gersten-Witt complex restricted to the fundamental ideals

0—=k(x)— D F'Oxw) L. . B I"Oxw)
z1e€X™M T, €X (1)

over the quotient complex

0= [P/ (B(X)) == — D I T Oxe)
z,eX (M)

The group ﬁ{p(X) is defined as the p-th cohomology group of this fibre prod-
uct. Roughly speaking, an element of cH" (X) is the class of a sum of varieties
of codimension p with a quadratic form defined on each variety. We oviously
have a map ﬁ[p(X) — CHP(X).

Using the functoriality of the two complexes we see that the Chow-Witt groups
satisfy good functorial properties (see [Fa]). For example, we have a pull-
back morphism f* : cH’ (X) — cH’ (Y) associated to each flat morphism
f Y — X and a push-forward morphism g, : cH’ (Y,L) — 6'?[]+T(X)
associated to each proper morphism ¢ : Y — X, where r = dim(X) — dim(Y)
and L is a suitable line bundle over Y. Using this functorial behaviour, it is
possible to produce a good intersection theory. This is what we do in this paper
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using the classical strategy (see for example [Fu] or [Ro]). First we define an
exterior product

CH (X)x CH (V) — CH 7 (X x Y)

—d ——d
and then a Gysin-like homomorphism i' : CH (X) — CH (Y) associated to a
closed embedding i : Y — X of smooth schemes. The product is then defined
as the composition

i i e A it
CH (X)xCH (X)—>CH (X xX)—>=CH " (X)

where A : X — X x X is the diagonal embedding. To define the exterior
product, we first note that Rost already defined an exterior product on the
homology of the complex in Milnor K-theory ([Ro]). Thus it is enough to
define an exterior product on the homology of the Gersten-Witt complex and
show that both exterior products coincide over the quotient complex. We use
the usual product on derived Witt groups (JGN]) and show that this product
passes to homology using the Leibnitz rule proved by Balmer (see [Ba2]).

The definition of the Gysin-like map is done by following the ideas of Rost
([Ro]). It uses the deformation to the normal cone to modifiy any closed em-
bedding to a nicer closed embedding and uses also the long exact sequence
associated to a triple (Z, X, U) where Z is a closed subset of X and U = X \ Z.

The product that we obtain has the meaning of intersecting varieties with
quadratic forms defined on them. It is therefore not a surprise that the natural

map CA’I?tOt(X) — CH'"'(X) turns out to be a ring homomorphism. There is
however a surprise: the product that we obtain is a priori neither commutative
nor anticommutative. This comes from the fact that the product of triangu-
lated Grothendieck-Witt groups GW* x GWJ — GW+J does not satisfy any
commutativity property.

The organization of this paper is as follows: In section 2, we recall some ba-
sic results on triangular Witt groups. This includes the construction of the
Gersten-Witt complex, and some results on products and consanguinity. In
section 3, we construct the Chow-Witt groups, recall some results and prove
some basic facts. The definition of the exterior product takes place in section
4 and the definition of the Gysin-Witt map in section 5. In this part, we also
prove the functoriality of this map. Finally we put all the pieces together in
section 6 and prove some basic results in section 7.

I would like to thank Paul Balmer, Stefan Gille and Ivo Dell’Ambrogio for
several careful readings of earlier versions of this work. I also would like to
thank the referee for some useful comments. This research was supported by
Swiss National Science Foundation, grant PP002-112579.
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1.1 CONVENTIONS

All schemes are smooth and integral over a field k£ of characteristic different
from 2, or are localizations of such schemes. For any two schemes X and Y we
will always denote by X x Y the fibre product X xSpec(r) V-

2 PRELIMINARIES

2.1  WITT GROUPS

We recall here some basic facts on Witt groups of triangulated categories fol-
lowing the exposition of [Ba2]. We suppose that for any triangulated category
C and any objects A, B of C the group Hom (A, B) is uniquely 2-divisible. We
also suppose that all triangulated categories are essentially small.

DEFINITION 2.1. Let C be a triangulated category. A duality on C is a triple
(D,d,w) where 6 = 1, D : C — C is a d-exact contravariant functor and
@ : 1 ~ D? is an isomorphism of functors satisfying D(wa) o wpa = idpa
and T(wa) = wra for all A € C. A triangulated category C with a duality
(D, d,w) is written (C, D, §, w).

Ezample 2.2. Let X be a regular scheme and P(X) the category of locally free
coherent Ox-modules. Let D?(P(X)) be the triangulated category of bounded
complexes of objects of P(X). Then the usual duality ¥ on P(X) defined by
PV = Homp, (P,Ox) induces a 1-exact duality on D°(P(X)). We also denote
this derived duality by V. Moreover, the canonical isomorphism ev : P — PVV
for any locally free module P induces a canonical isomorphism w : 1 —VV
in D*(P(X)). More generally, if L is any invertible module over X, then the
duality Home, (_, L) on P(X) also induces a duality on D®(P(X)).

DEFINITION 2.3. Let (C, D, d,w) be a triangulated category with duality. For
any i € Z, define (D 50 ) by DO = TP 0 D, §®) = (-1)’6 and =@ =
§%(—1)10+D/2¢5, Tt is easy to check that (D™ §() ) is a duality on C. It
is called the *"-shifted duality of (D, 6, w).

DEFINITION 2.4. Let (C, D, d, @) be a triangulated category with duality, A € C
and i € Z. A morphism ¢ : A — D® A is i-symmetric if the following diagram
commutes:

The couple (A4, ¢) is called an i-symmetric pair.

DEFINITION 2.5. We denote by Symm®(C) the monoid of isometry classes of
i-symmetric pairs, equipped with the orthogonal sum.
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DEFINITION 2.6. An i-symmetric form is an i-symmetric pair (4, ¢) where ¢
is an isomorphism.

THEOREM 2.7. Let (C,D,d,w) be a triangulated category with duality and let
(A, ¢) be an i-symmetric pair. Choose an exact triangle containing ¢

A2 piog—2ecLopal

Then there exists an (i 4+ 1)-symmetric isomorphism ¢ : C — DUTVC such
that the following diagram commutes

A— o pog— e : TA
|
@& (p@ ! @ (p®
i i i i ? v
DW(DWA) — o DOA ey PN O — = T(DW(DY A))

where the rows are exact triangles and the second one is the dual of the first.
Moreover, the (i + 1)-symmetric form (C,v) is unique up to isometry. It is
denoted by cone(A, ¢).

Proof. See [Bal], Theorem 1.6. O

Ezample 2.8. Let A € C. For any i, the morphism 0 : A — D) A is symmetric
and then cone(A,0) is well defined.

COROLLARY 2.9. The above construction gives a well defined homomorphism
of monoids d' : Symm®(C) — SymmU+D(C) such that di*'d' = 0.

DEFINITION 2.10. Let (C, D, d,w) be a triangulated category with duality. The
Witt group W¥(C) is defined as Ker(d?)/Im(d'*!). Remark that Ker(d) is just
the monoid of isometry classes of i-symmetric forms.

DEFINITION 2.11. Let (C, D, d, w) be a triangulated category with duality. The
Grothendieck-Witt group GW?*(C) is defined as the quotient of Ker(d") by the
submonoid generated by the elements cone(A4, ¢) — cone(A, 0) where A € C and
¢ is (i — 1)-symmetric (0 is also seen as an (i — 1)-symmetric morphism).

Ezample 2.12. Let (D*(P(X)),",1,w) be the triangulated category with du-
ality defined in Example 2.2. Its Witt groups are the Witt groups W*(X) of
the scheme X as defined in [Bal].

2.2 PRODUCTS

Given a pairing ® : C x D — M of triangulated categories with duality and
assuming that this pairing satisfies some nice conditions, the authors of [GN]
define a pairing of Witt groups. We briefly recall some definitions (see 1.2 and
1.11 in [GN]):
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DEFINITION 2.13. Let C,D and M be triangulated categories. A product
between C and D with codomain M is a covariant bi-functor

Q:CxD—-M

exact in both variables and satisfying the following condition: the functorial
isomorphisms 74 p : AQTB~T(A®B) and Iy, p: TA® B ~ T(A® B) make
the diagram

l
TA®TB —% T(A® TB)

""TA,B\L lT(”’A,B)

T(TA® B) T(T;)TQ(A ® B)

skew-commutative.

DEFINITION 2.14. Let C,D and M be triangulated categories with dualities.
Where there is no possible confusion, we drop the subscripts for D,§ and w.
A dualizing pairing between C and D with codomain M is a product ® with
isomorphisms

Nap:DA® DB~ D(AQ B)
natural in A and B which make the following diagrams commute

1.

wAQWB

A® B———— D?A® D?B

wA@Bl \LTIDA,DB

NA,B

IpTA,DB TDA,DTB T
— T

T(DTA® DB) <=2 DA @ DB DA® DTB)

5c5MT(nTA,B)l ”AvBl l(sL‘SMT(nA,TB)

TD(TA® B) D(A® B) 5 ——=TD(A@ TB).
TA,B

D(la,B) TD(ra
THEOREM 2.15. Let C,D and M be triangulated categories with duality. Let
® : CxD — M be a dualizing pairing between C and D with codomain M.
Then ® induces for all i,j € Z a pairing

*: WHC) x WI(D) — W (M).
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Proof. See [GN], Theorem 2.9. O

Ezample 2.16. Let (D°(P(X)),",1,w) be the triangulated category with dual-
ity defined in Example 2.2. The usual tensor product induces a dualizing pair-
ing of triangulated categories and then a product W*(X)x W/ (X) — Wi (X).
Suppose that L and N are invertible modules over X. Then Home, (_, L),
Homo, (_, N) and Homp, (_,L ® N) give dualities f, # and * on D*(P(X)).
The tensor product gives a dualizing pairing

®: (D"(P(X))}, 1,w) x (D"(P(X)),f, 1,w) — (D"(P(X)),”,1,).

2.3 SUPPORTS

We briefly recall the notion of triangulated category with supports following
[Ba2].

DEFINITION 2.17. Let X be a topological space. A triangulated category de-
fined over X is a pair (C,Supp) where C is a triangulated category and Supp
assigns to each object A € C a closed subset Supp(A) of X such that the
following rules are satisfied:

A B C TA

we have Supp(C) C Supp(A) U Supp(B).

When 7 is a saturated triangulated subcategory of C and S is the multiplicative
system of morphisms whose cone is in Z, then we can construct a support on
the category S~1C := C/Z. This is done in [Ba3] when C has a tensor product.
However we will only need some basic facts, so we prove the following lemma:

LEMMA 2.18. let C be a triangulated category defined over a topological
space X. Let T be a saturated triangulated subcategory of C and let Supp(Z) =
UaezSupp(A). Suppose that Supp(A) C Supp(Z) implies A € T. Let S be the
multiplicative system in C of morphisms f such that cone(f) € T and let

I—=C——=C/T

be the exact sequence of triangulated categories obtained by inverting S. Then
C/T is a triangulated category defined over X' = X \ Supp(Z) (with the induced

topology).
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Proof. We define Suppg(A) := Supp(A)N X' for any object A € C/Z and show
that Suppg satisfies the properties of Definition 2.17. It is easy to see that the
rules (S1), (S2) and (S3) are satisfied. We only have to prove (S4).

First observe that if s : A — B is a morphism in S and

S

A B C TA

is an exact triangle in C containing s, then Suppg(A) = Suppg(B) (use (S4)
for the category C). This shows that Suppg(A) = Suppg(A’) if A~ A" in C/T.
By definition of the triangulation of C/Z, any exact triangle

[e%

A B C TA

in C/T is isomorphic to the localization of an exact triangle in C. This shows
that Suppg(C) C Suppg(A) U Suppg(B).
O

Ezample 2.19. Let D*(P(X)) be the usual triangulated category. Define the
support of an object P € DY(P(X)) as the union of the support of all the
cohomology groups of P, i.e

Supp(P) = USUPp(Hi(P))

Then it is easy to see that (D°(P(X)),Supp) is a triangulated category with
support. Denote by D*(P(X))*) the full subcategory of D*(P(X)) of objects
whose support is of codimension > k. Then D*(P(X))*) is a saturated trian-
gulated category and the following sequence

DYP(X)®) — DHP(X)) — DM(P(X))/D(P(X))®

satisfies the conditions of Lemma 2.18. So D*(P(X))/D*(P(X))* is a trian-
gulated category over X' = {z € X | codim(z) < k — 1}.

The following definitions are also due to Balmer (see [Ba2]):

DEFINITION 2.20. Let (C, Supp) be a triangulated category over X and assume
that C has a structure of triangulated category with duality (C, D, d,w). Then
we say that C is a triangulated category with duality defined over X if

(S5) Supp(A) = Supp(DA) for every object A.

DEFINITION 2.21. Let (C,Supp¢), (D,Suppp) and (M, Suppr,) be triangu-
lated categories defined over X. Suppose that

Q:CxD—-M

is a pairing of triangulated categories. The pairing ® is defined over X if

(S6) Supp (A ® B) = Supp(A) N Suppp(B).

DOCUMENTA MATHEMATICA 12 (2007) 275-312



THE CHOW-WITT RING 283

Ezample 2.22. The triangulated category D’(P(X)) with the support defined
in Example 2.19 and the pairing of Example 2.16 satisfy the condition (S5) and
(S6).

DEFINITION 2.23. The degeneracy locus of a symmetric pair (A, «) is defined
to be the support of the cone of «a:

DegLoc(a) = Supp(cone(a)).

DEFINITION 2.24. Let (C, Supp) be a triangulated category with duality defined
over X. The consanguinity of two symmetric pairs a and [ is defined to be
the following subset of X:

Cons(a, 3) = (Supp(a) N DegLoc(3)) U (DegLoc(a) N Supp(3)).
We are now ready to state the Leibnitz formula:

THEOREM 2.25 (Leibnitz formula). Assume that we have a dualizing pairing
® : C x D — F of triangulated categories with dualities over X. Let « and (3
be two symmetric pairs such that DegLoc(ca) N DegLoc(3) = 0. Then we have
an isometry

O0F -d(ax ) =0dc-d(a)* S+ dp - axd(f)
where d¢,dp,0x are the signs involved in the dualities of C,D and F.

Proof. See [Ba2], Theorem 5.2. O

3 CHOW-WITT GROUPS

Let (D°(P(X)),Y,1,) be the triangulated category with the usual duality
of Example 2.2 and consider its full subcategory D?(P(X))® of objects with
supports of codimension > 4 (here we use the support defined in Example
2.19). Then the duality on D*(P(X)) induces dualities on D*(P(X))® for any
i ([Bal]). It is also clear that D*(P(X))(+1) ¢ DP(P(X))® for any i.

DEFINITION 3.1. For all i € N, denote by D%(X) the triangulated category
DY(P(X))®/DY(P(X))t+1.

Suppose that (A4,«) is an i-symmetric form in D?(X). Then there exists an
i-symmetric pair (B, 3) such that the localization of (B, ) is (4, «) (by local-
ization we mean the map Symm®(D(P(X))®) — Symm?(D?(X)) induced by
the functor D*(P(X))® — DY(X)). Applying 2.7, we get an (i + 1)-symmetric
form (C,v). By construction, C' € D*(P(X))*Y. Localizing this form we get
a form (C,%) in WH(D?, | (X)). At first sight, this construction depends on
some choices but in fact this is not the case (see [Bal|, Corollary 4.16). Hence
we get a well defined homomorphism

d - WHD(X)) — Wi+1(Df+1(X))-
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THEOREM 3.2. Let X be a regular scheme of dimension n. Then we have a
complex

0 —— WO(DE(X)) —2> WH(DL(X)) —“> - —L> W (DY (X)) — 0.

Proof. See [BW], Theorem 3.1 and Paragraph 8. O

Let A be a regular local ring. We denote by W¥!(A) the Witt group of finite
length modules over A (see [QSS] for more informations about Witt groups of
finite length modules). The following proposition holds:

PRrRoOPOSITION 3.3. We have isomorphisms
WHDYX))~ D W(Ox.).

Q,EX(’)
Proof. See [BW], Theorem 6.1 and Theorem 6.2. O
Remark 3.4. Since we use the isomorphism of the above proposition, we briefly
recall how to obtain a symmetric complex from a finite length module. For more
details, see [BW] or [Fa], Chapter 3. Choose a point z € X9, a finite length
Ox -module M and a symmetric isomorphism ¢ : M — Exty (M, Ox ).

Let P, be a resolution of M by locally free coherent Ox ;-modules. Then P,
can be chosen of the form

0 P; Py M 0.

Dualizing this complex and shifting i times gives the following diagram

0 Pi PO M 0
| I
El 31 ¢l
v N )
0 py ... pPY Extbx’w (M,O0x ) —=0.

Using ¢ we get a symmetric morphism ¢ : Py — (P,)Y. Thus we have con-
structed an i-symmetric pair in the category D®(P(Ox .)) from the pair (M, ¢).
Since D?(X) =~ H D*(P(Ox.)) ([BW], Proposition 7.1), we can see the pair

zeX ()
(Ps, ) as a symmetric pair in D?(X).

DEFINITION 3.5. The complex

fl fl
0 WHEx) — D W'O0xe) ... D W'Oxw)
X ) T, €X (M)

is called the Gersten-Witt complex of X. We denote it by C(X, W).

DOCUMENTA MATHEMATICA 12 (2007) 275-312



THE CHOW-WITT RING 285

This complex is obtained by using the usual duality ¥ on the triangulated
category D°(P(X)) (Example 2.2). For any invertible module L over X, we
have a duality derived from the functor = Homoy ,(_, L) and we can apply
the same construction to get a Gersten-Witt complex.

DEFINITION 3.6. Let X be a regular scheme and L an invertible Ox-module.
We denote by C(X, W, L) the Gersten-Witt complex obtained from the dual-
ity .

THEOREM 3.7. Let A be a regular local k-algebra and X = Spec(A). Then for
any i > 0 we have H'(C(X,W)) = 0.

Proof. See [BGPW], Theorem 6.1. O

Let A be a regular local ring of dimension n. Denote by F' the residue field
of A. Then any choice of a generator £ € Ext"(F, A) gives an isomorphism
ag 1 W(F) — WZL(A). Recall that I(F) is the fundamental ideal of W (F). If
n <0, put I"(F) = W(F).

DEFINITION 3.8. For any n € Z let I};(A) be the image of I"(F') by a.

Remark 3.9. 1t is easily seen that I7;(A) does not depend on the choice of the
generator £ € Ext’y (F, A).

PRrROPOSITION 3.10. The differential d of the Gersten-Witt complex satisfies
d(If(Ox.2)) C 1}7_1((9;(4,) foranym € Z, x € X and y € X0,

Proof. See [Gi3], Theorem 6.4 or [Fa], Theorem 9.2.4. O

DEFINITION 3.11. Let L be an invertible Ox-module. We denote by
C(X,I% L) the complex

d—1 d—
0 I4(k(x) — D i Oxa) o B LiMOxa)
z1e€X™M z,€X (M)

Remark 3.12. In particular, we have C(X,I°, L) = C(X, W, L).

THEOREM 3.13. Let A be an essentially smooth local k-algebra. Then for any
i >0 we have H(C(X, 1)) = 0.

Proof. See |Gi3], Corollary 7.7. O

Of course, there is an inclusion C(X, I L) — C(X,I¢ L) and therefore we
get a quotient complex.

DEFINITION 3.14. Denote by C(X, Td) the complex C(X, I¢,L)/C(X, I+, L).

Remark 3.15. For any invertible module L the complexes C(X, I¢)/C(X, I4t1)
and C(X,I¢ L)/C(X, 1%, L) are canonically isomorphic (see [Fa], Corollary
E.1.3), so we can drop the L in C(X, Td).
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Remark 3.16. The complex C(X, Td) is of the form

0 — If,(k(X /IdJrl @ Id "Ox2)/1H(Ox.2))
$1€X(1)

Remark 3.17. As a consequence of Theorem 3.13, we immediately see that
HY(C(X, Td)) =0 for ¢ > 0 if X = Spec(A) where A is an essentially smooth
local k-algebra.

Let F be a field and denote by KM (F) the i-th Milnor K-theory group of F.
If i < 0 it is convenient to put KM (F) = 0.

DEFINITION 3.18. Let X be a scheme. Then for any d we have a complex

0 KM (X)) = D K@) .. @ Kilak) g
g,leX(l) T, €X (1)

We denote it by C(X, K}1).
Proof. See [Ka], Proposition 1 or [Ro], Paragraph 3. O

We also have the exactness of this complex when X is the spectrum of a smooth
local k-algebra:

THEOREM 3.19. Let A be a smooth local k-algebra. Then for all i > 0 we have
H{(C(X,KM))=0.

Proof. See [Ro], Theorem 6.1. O
If F' is a field, recall that we have a homomorphism due to Milnor
s: KM(F)— I(F)/IPY(F)

given by s({a1,...,q5}) =< 1,—a1 > ®...® < 1,—a; >. The following is
true:

LEMMA 3.20. The homomorphisms s induce a morphism of complezes

s: OX, KMy — 0(x,T%.
Proof. See [Fa], Proposition 10.2.5. O
DEFINITION 3.21. Let C(X,G% L) be the fibre product of C(X,K}!) and
C(X,I%, L) over C(X,T°):

C(X,GY L) ——= C(X,I¢ L)

| ¥

C(X, K} ox, 1.
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DEFINITION 3.22. Let X be a smooth scheme and L an invertible Ox-

module. The j-th Chow-Witt group cH’ (X,L) of X twisted by L is the
group H’(C(X,G7, L)).

Remark 3.23. Denote by GW(D(X), L) the j-th Grothendieck-Witt group of
the category D?(X) with the duality derived from Home (_, L) (see Definition
2.11). Tt is not hard to see that C(X,G7, L) is isomorphic to GW7(D%(X), L)
and therefore the complex C(X,G7, L) is

> C(X,G9, L), —= GWI(D(X), L) <L Wi+ (DY, (X),L) —> -
Hence CH’ (X,L) is a quotient of Ker(d?) and a subquotient of
GWj(D?(X), L).
We also have the exactness of the complex C(X,G?, L) in the local case:

THEOREM 3.24. Let A be a smooth local k-algebra and X = Spec(A). Then
HY(C(X,G7)) =0 for all j and all i > 0.

Proof. As C(X,G7) is the fibre product of the complexes C(X,KM) and

C(X,I) over C(X, 7]), we have an exact sequence of complexes

inducing a long exact sequence in cohomology. It follows then from Theorem
3.13 and Theorem 3.19 that H*(C(X,G7)) = 0if i > 1. For i = 1, we have an
exact sequence

HO(C(X, 1)) & HO(C(X, K1) = HO(C(X, ') — H'(C(X.C¥)) —o.
The exact sequence of complexes

0 — C(X, '*!) — C(X, ) —= C(X,T') —=0

shows that H°(C(X, 7)) maps onto H°(C(X,T’)). O

DEFINITION 3.25. Let X be a smooth scheme and L an invertible Ox-module.
We define the sheaf G7 on X by G7 (U) = H°(C(U,G’, L)).

We have:

THEOREM 3.26. Let X be a smooth scheme of dimension n. Then for any i

we have . _ 4 ‘
Hz,.,(X,G1) ~ H(C(X,G, L)).
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Proof. Define sheaves C; by C;(U) = C(U,G7, L), for any [ > 0. It is clear that
the C; are flasque sheaves. We have a complex of sheaves over X

0 Gl Co G o Cn 0.

Theorem 3.24 shows that this complex is a flasque resolution of gi. Thus the
theorem is proved.
O

Suppose that f: X — Y is a flat morphism. Since it preserves codimensions,
it induces a morphism of complexes

[ CY,&?, L) — C(X,G?, f*L)

for any j € N and any line bundle L over Y ([Fa], Corollary 10.4.2). Hence we
have:

THEOREM 3.27. Let f : X — Y be a flat morphism and L a line bundle over
Y. Then, for any i,j we have homomorphisms

f*H(C(Y,G",L)) — H(C(X,G?, f*L)).

In particular, if E is a vector bundle over Y and w : E — Y is the projection,
we have isomorphisms

7 H'(C(Y,G’, L)) — H'(C(E,G? ,7*L)).

Proof. We have a morphism of complexes f* : C(Y,G/,L) — C(X,G, f*L)
which gives the induced homomorphisms in cohomology. For the proof of ho-
motopy invariance, see Corollary 11.3.2 in [Fa]. O

PROPOSITION 3.28. Let f : X — Y and g : Y — Z be flat morphisms. Then
(9f)" = [f"g"

Proof. See [Fa], Proposition 3.4.9. O

Suppose that f : X — Y is a finite morphism with dim(Y") — dim(X) = r.
Consider the morphism of locally ringed spaces f : (X,0x) — (Y, f.Ox)
induced by f. If X is smooth, then L = f Extf, (f.Ox,Oy) is an invertible
module over Y ([Gi2], Corollary 6.6) and we get a morphism of complexes (of
degree 1)

fo: CX,G7" L@ f*N) — C(Y,G9,N)
for any invertible module N over Y ([Fa], Corollary 5.3.7).

DOCUMENTA MATHEMATICA 12 (2007) 275-312



THE CHOW-WITT RING 289

PROPOSITION 3.29. Let f : X — Y be a finite morphism between smooth
schemes. Let dim(Y) — dim(X) = r and N be an invertible module over Y.
Then the morphism of complexes f. induces a homomorphism

fo : H"(C(X,GI" ", L® f*N)) — H'(C(Y,G, N)).
In particular, we have ([Fa], Remark 9.3.5):

PropPOSITION 3.30. Let f : X — Y be a closed immersion of codimension r
between smooth schemes. Then f induces an isomorphism

fo : HT(O(X, G777, L@ f*N)) — Hx (C(Y,G’,N))
for any i,j and any invertible module N over Y.

Important remark 3.31. If f : X — Y is a closed immersion, then f, will always
be the map with support:

fo : H7(C(X,G'",L® f*N)) - Hx(C(Y,G’,N))
The transfer for finite morphisms is functorial ([Fa], proposition 5.3.8):

PROPOSITION 3.32. Let f: X — Y and g:Y — Z be finite morphisms. Then
Gifr = (gf)s

Remark 3.33. Let X be a smooth scheme and D be a smooth effective Cartier
divisor on X. Let ¢ : D — X be the inclusion and L(D) be the line bundle
over X associated to D. Then there is a canonical section s € L(D) (see [Fu],
Appendix B.4.5) and an exact sequence

0 Ox —= L(D) iOp 0.

Applying Home, (_, L(D)) and shifting, we obtain the following diagram

0 Ox > L(D) 1+Op 0
|
|

I

0 > Homoy, (L(D), L(D)) - Homo  (Ox, L(D)) = Exth_(i.0p, L(D)) =0

which shows that Extg, (i.Op, Ox) ® L(D) ~ i,0p. Proposition 3.30 shows
that we then have an isomorphism

it HH(O(D, G717 L(D))) — Hjp(C(X, G)).

LEMMA 3.34. Let g : X — Y be a flat morphism and f : Z — Y a finite
morphism. Consider the following fibre product
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v A X
1 b
A —f> Y.
Then (f')+(¢')" = g" f«-
Proof. See [Fa], Corollary 12.2.8. O

Remark 3.35. Of course, in the above fibre product we suppose that V' is also
smooth and integral. Such a strong assumption is not necessary in general, but
this case is sufficient for our purposes.

Remark 3.36. It is possible to define a map f, when the morphism f is proper
(see [Fa]) but we don’t use this fact here.

4 THE EXTERIOR PRODUCT

Let X and Y be two schemes. The fibre product X x Y comes equipped with
two projections p; : X XY — X andpo: X XY — Y.

LeEmMA 4.1. For any i, € N, the pairing

X: DYX) x DY(Y) — D?
i J

147 (X X Y)

given by PX Q = piP ® p5Q is a dualizing pairing of triangulated categories
with duality.

Proof. Straight verification. O
COROLLARY 4.2. For any i,j € N, the pairing
X:DY(X)x DY(Y) — Db (X xY)
induces a pairing
*: WHDY (X)) x W/(DYY)) — W (DY (X xY)).
Proof. Clear by Theorem 2.15. |
COROLLARY 4.3. Let ¢ € Wj(D;?(Y)). Then we have a homomorphism
pop s WHDZ (X)) — WD} (X x Y)
given by py(p) = o * .
Recall that we have isomorphisms W#(D!(X)) ~ @ W/ (Ox.,) (Proposi-

Q,EX(’)
tion 3.3).
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DEFINITION 4.4. For any s € Z, denote by I°(D!(X)) the preimage of
@ I$,(Ox ) under the above isomorphism.
e X (1)

PROPOSITION 4.5. For any m,p € N the product

*: WHDY (X)) x W/(DY(Y)) — W"(D, (X x Y))

induces a product
* 1 I™(DY (X)) x I™M(D3(Y)) — I™ (DY, (X x Y)).

Proof. Let x € X and y € Y9 . Tt is clear that the product can be computed
locally (use [GN], Theorem 3.2). So we can suppose that X = Spec(A) and
Y = Spec(B) where A and B are local in  and y respectively. Recall that we
have the following diagram

Xxy —2 -y

|

X —— Spec(k).

Let P be an A-projective resolution of k(x) and @ be a B-projective resolution
of k(y). Consider a symmetric form p : k(z) — Ext’y(k(z), A) and a symmet-
ric form p : k(y) — Ext’;(k(y), B). Then p}(p) is a symmetric isomorphism
supported by the complex P ®; B and p3(u) is a symmetric isomorphism sup-
ported by the complex A®j Q. The complex (P ®j B) ® 4w, B (A®1 Q) (which
is isomorphic to P ®j Q) has its homology concentrated in degree 0, and this
homology is isomorphic to k(z) ® k(y). Let u be a point of Spec(k(z) ® k(y)).
Then the restriction of p]p®p5u to u is a finite length module M whose support
is on u with a symmetric form
M — Ext(3L 5 (M, (A B),).

Taking its class in the Witt group, we obtain a k(u)-vector space V with a
symmetric form ¢ : V — ExtngB)u(V, (A ® B),). Now choose a unit a €
k(x)*. Consider the image a, of a under the homomorphism k(z) — k(u).
The class of pi(ap) ® p5(p) is the symmetric form

ay): V= Ext§l o (V,(A® B)).

As the same property holds for any unit b € k(y)*, we conclude that

p){(< 17_a1>®®<17_an>p)®p§(< 1,—b1>®®<17_bm>/~l/)

isequal to < 1,—(a1)y > ®...® < 1, —(bpm)u > . O
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Recall that for any scheme X we have a Gersten-Witt complex (Definition 3.5)

CX,W): o W (DY(X)) — W (DR, (X)) — -

and a complex C(X, I):

e — > @ I?l_T(OXaCCT)—> @ I?;T*I(OX’;CT+1)_>“”

T EX M Tr41€X(THD
The above proposition gives:
COROLLARY 4.6. The product
*: C(X,W)x CY, W) - C(X xY,W)
induces for any r,s € N a product
*x: C(X,I") x O(Y, I?) — C(X x Y, I""%).

Now we investigate the relations between x and the differentials of the com-
plexes.

PROPOSITION 4.7. Let ¢ € W (D5(Y)) be such that d,(Y) = 0. Then the
following diagram commutes

dy

Wi(Db(X)) WD} (X))

(U’ﬁwl l‘“/’

Wt (DY (X xY)) o Wt (DY oy
XXY

(X xY)).

Proof. Let o € WiH(D%(X)). Let X(Z"*1 be the set of points of X of codimen-
sion > i41, Y(Z9+1 the points of Y of codimension > j+1 and (X xY)(Z#+i+1)
the set of points of X x Y of codimension > i + j + 1. By Lemma 2.18, the
triangulated categories D?(X), D4(Y) and D}, ;(X x Y) are defined over the
topological spaces X \ X (&1 Y\ V(Z7+D) and (X xY)\ (X x Y)EH+D | Let
a € Symm*(D*(P(X))®) and B € Symm? (D*(P(Y))Y)) be symmetric pairs
representing ¢ and . By definition, DegLoc(«) is of codimension > i + 1,
DegLoc(f) is of codimension > j + 1 and df is neutral. It is easily seen that
Supp (dpta)NSupp(dps3) = 0 in the topological space (X xY)\ (X xY)(Zi+i+1),
Theorem 2.25 implies that

(1) d(pjorx p3B) = (—1)'dpia*p3B + (—1) pia* dp3p.
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Using Theorem 2.15, we see that we have in W7 (D?, ;(X x Y)) the equality

(1Y d5y (i x pi) = pidiy (@) % P

The following corollary is obvious.

COROLLARY 4.8. Let ¢ € I™(DYY)) be such that d) () = 0. Then the
following diagram commutes

IP(DY(X)) —— 2 (Dl (X))

2

(I)Jﬂwl l‘“/’

b —1/1b
Ip+m(Di+j(X xY)) Hﬂﬁm (Di+j+1

(X xY)).

We now have to deal with the complex in Milnor K-theory. Let C(X, KM),
C(Y,KM) and C(X xY, KM,) be the complexes in Milnor K-theory associated
to X,Y and X x Y. In [Ro], Rost defines a product

©:C0X, KM x C(Y,KM) — C(X x Y, K}M,)™

as follows: Let u € (X xY)+9), 2 € X 4 € YU be such that = and y are the
projections of u. Let p = {a1,...,a,—;} € KM (k(z)) and pp = {b1,...,bs_;} €
Kﬁj(k(y)) Then

(P © pu = (k@) @k k())uw){(@1)u, -+ (@r—i)us (01)us -5 (bs—j)u}

where the (a;),, and (b;), are the images of the a; and b; under the inclusions
k(z) — k(u) and k(y) — k(u), and I((k(z) ®k k(y)).) is the length of the
module k(z) ® k(y) localized in w.

LEMMA 4.9. For any p € C(X, KM)! and p € C(Y, KM)J we have
d(p © p) = d(p) © p+ (1) p @ d(p).
Proof. See [Ro], Paragraph 14.4. O

COROLLARY 4.10. Let p € C(Y, KM)J be such that du = 0. Then the following
diagram commutes:

7

, di ,
C(X, kM) ———— C(X, K}M)"!

o] |o

C(X XY, KM )M —= C(X x Y, KM )T
dxxy
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Proof. Obvious. O
Now we compare the products x and ®.

PROPOSITION 4.11. The following diagram commutes:

O(X, KM)i x O(Y, KMy —2= C(X x Y, KM )i+i

S(r—1) X%j)l l5<r+sw'>

CX,T)Y xCY,T')Y ——=C(X x Y,T °)i+i,
Proof. Let {a1,...,ar—;} € KM (k(x)) and {b,...,bs;} € KM (k(y)). Let
o be a symmetric isomorphism
P k(x) = Bxto, (k(z), Ox )

and p’ a symmetric isomorphism

W' k(y) = Bxty, | (k(y), Oy,y).

We then have p := s,_;({a1,...,a,—i}) =< 1,—a1 > ®@...® < 1,—a,_; > p
and p = ss_j({b1,...,bs—5}) =< 1,-b1 > ®...® < 1,=bs_; > p’. Choose
a point w in (X X Y)(”j) lying over z and y. The proof of Proposition 4.5
shows that

(p* p)u = 3(r+sfifj)({(a1)w oy (@r—i)us (01)us -+ (bs—j)u})p

where ¢ : M — Ext’ggxy”(M, Oxxvy.u) is a symmetric isomorphism and M

is a k(u)-vector space. But dimy M = I((k(z) ® k(y)).) (mod 2) where [

denotes the length. So we have in C(X x Y, THS)HJ the equality

(P p)u = 8(rts—imgy({(@0)us s (@r—i)u, (01)us -5 (bs—j)u DU(R(2) ® k(y))u)-

The right hand term is equal to s 1s—;—j({a1,...,ar—i} © {b1,...,bs_;}) by
definition. O

COROLLARY 4.12. The products

*x: O(X, I") x C(Y,I*) — C(X x Y, I""%)

and

©:C(X, KMy x O(Y,KM) - C(X x Y, KM,)

give a product

o: C(X,G") x O(Y,G*) — C(X x Y,G"*%).

DOCUMENTA MATHEMATICA 12 (2007) 275-312



THE CHOW-WITT RING 295

COROLLARY 4.13. Let p € C(Y,G*)7 such that d{,u = 0. Then pu induces a
product

_op: H(C(X,G")) —» HH(C(X x Y,G"t%)).

Proof. This a direct consequence of Proposition 4.11, Corollary 4.8 and Corol-
lary 4.10. O

Next, we have to check that _ o p is well defined on the cohomolgy class of p.
LEMMA 4.14. Let v € O(Y,G%) ! and p=d}; "y. Then _opu=0.
Proof. Suppose that « is such that di.a = 0. By Corollary 4.8 and Corollary

4.10 we have up to signs d;ri;l (aoy)=aod’ 1y =aopu. So aoypyis trivial
in Hi+I(C(X x Y,Gr+)). O
Finally:

THEOREM 4.15. Let X and Y be smooth schemes. Then for any i,j,r,s € N
the product

o: O(X,G") x O(Y,G®) — O(X x Y,G"%)
induces an exterior product
x : H(C(X,G")) x H(C(Y,G*)) — HH(C(X x Y,G"")).

This exterior product can also be defined with complexes twisted by invertible
modules.

THEOREM 4.16. Let X and Y be smooth schemes. Let L and N be invertible
modules over X and Y respectively. For any i,j,7,s € N, the pairing

o:O(X,G",L) x C(Y,G*,N) —» C(X x Y,G""* pi L @ p5N)

induces an exterior product

x: H(C(X,G",L)) x H(C(Y,G*,N)) — H(C(X xY,G", pi L@ p5N)).
Proof. Left to the reader. O

If i =r and j = s, we obtain the following corollary:

COROLLARY 4.17. Let X and Y be smooth schemes. Then for any i,j € N the
product

o:C(X,G") x C(Y,G7) — C(X x Y,G"t7)
gives an exterior product
x:CH (X)x CH (V) — CH (X x Y).
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Next we prove some properties of this exterior product:
PROPOSITION 4.18. The exterior product X is associative.

Proof. Tt clearly suffices to prove that the exterior products x and ® are asso-
ciative. For x this is clear because of the associativity of the tensor product
(up to isomorphism). For the second, see (14.2) in [Ro]. O

Now we deal with the commutativity. Let X and Y be smooth schemes and
let 7: X XY — Y x X be the flip. We have:

LeMMA 4.19. Let p € H' (C(X,KM)) and n € H/(C(Y,K2)). Then we have
e p) = (=)D (pon).

Proof. This is clear from the definition. O
LeEMMA 4.20. Let p € H(C(X,I")) and n € H’(C(Y,I°)). Then we have
T xp) = (=17 (uxn).

Proof. 1t is clear by the skew-commutativity of the product of Witt groups
(IGN], Theorem 3.1). O

Remark 4.21. Of course, the associativity and the anticommutativity of the
exterior product are also true for the twisted product of Theorem 4.16.

5 INTERSECTION WITH A SMOOTH SUBSCHEME

5.1 THE GYSIN-WITT MAP

The goal of this section is to define for any closed embedding ¢ : ¥ — X of
smooth schemes a Gysin-Witt map i' : H"(C(X,G’)) — H"(C(Y,G7)). In
order to define such a map, we adapt the ideas of Rost ([Ro|, Paragraph 11).
First we briefly recall the properties of the deformation to the normal cone.
For more details, see [Fu] (Chapter 5) or [Ro] (Chapter 10). Let Y be a closed
subscheme of a smooth scheme X. Then there is a smooth scheme D(X,Y), a
closed imbedding j : Y x A' < D(X,Y) and a flat morphism p : D(X,Y) — A!
such that the following diagram commutes

Y x Al == D(X,Y)
\ lp
pr
Al
and

(1) p~*(A' —0) = X x (A! —0) and the restriction of j is the closed imbedding
ixId:Y x (A' —0) — X x (A' —0).
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(2) p=(0) = Ny X, where Ny X is the normal cone to Y in X and the restric-
tion of j is the embedding as the zero section sg : Y — Ny X.

The scheme D(X,Y’) can be obtained as follows: Consider the blow-up M of
X x A! along Y x 0 and the blow-up X of X x0 along Y x 0. Then define
D(X,Y) to be M\ X.

If Y is smooth in a smooth scheme X, then it is locally of complete intersection
and Ny X is a vector bundle over Y of rank dim(X) — dim(Y’). Moreover,
Ny X is Cartier divisor on D(X,Y). If A’ = Spec(k[t]), then the projection
p: D(X,Y) — A' gives a homomorphism k[t] — Opx,yv)(D(X,Y)). We
still denote by t the image of ¢ under this homomorphism. We have an exact
sequence

0 —= Op(x,y) —— Op(x,y) —= K:Ony x — 0

where Kk : NyX — D(X,Y) is the inclusion. Remark 3.33 shows that
Ext%QD(wa) (k«Ony x, Op(x,v)) = k+OnNy x With generator the Koszul complex
associated to the global section t.
Let U = A' — 0 and consider the form

<1,—t>: 04 — OF

in WO(D®(U)). Now let X be a smooth scheme and consider the projection
n: X xU — U. Then n*(< 1,—t >) € W(D?(X x U)) and we also denote
it by < 1,—t >. Since the support of this form is X x U, the tensor product
gives a functor

<1,-t>® :DYX xU)— DX xU).

Using the fact that < 1, —t > is symmetric, we see that this functor is duality
preserving (see [GN], Definition 1.8 and Lemma 1.14) and therefore induces for
any ¢ a homomorphism

<1,—t>® :W{DYX xU)) — WHDYX x U)).

For some sign reasons that will be made clearer in Lemma 5.10, we will in fact
consider for any ¢ the homomorphism

my : WH{DYX x U)) — WH{D(X x U))
defined by my(a) = (1) < 1, —t > ®a.
LEMMA 5.1. For any i,j € N the homomorphism m; induces a homomorphism
P(D}(X x U)) — PFH(DY(X x U))

and the following diagram commutes
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H(DYX x U)) —5> (DL, (X x )

_ml lmt

IFHDYX % U)) ——= P, (X x U)).

Proof. The first assertion is clear. Now < 1, —t > is a global isomorphism and
we can use Theorem 2.10 in [GN] (or Theorem 2.25 in the present paper) to
see that

di(<1,—t>®a)=<1,—t>da
for any o € I7(DY(X x U)). The first term is (—1)"1d*(m¢()) and the second
one is (—1)"2my(d'a). O

Now consider t € O% ;. For any i and any z € X xU, we have a multiplication
by t:

e KG (k(a) — KX (k(x))
defined by n:({a1,...,a;}) = {t,a1,...,a;}.
LEMMA 5.2. For any i,j € N the following diagram commutes

C(X x U, KMy —T > (X x U, KM)i+!

CX x U KM)t —— C(X x U, KM ),

Proof. See [Ro], Proposition 4.6. O

COROLLARY-DEFINITION 5.3. The homomorphisms m; and n; induce for any
i,7 € N a homomorphism

{t}: H(C(X x U,GY)) — H(C(X x U,GI*1)).
We call this homomorphism multiplication by ¢.

Proof. Tt suffices to show that m; and n; give the same operation on the com-
plex C(X x U,T’). It is straightforward. O

We will need the following lemma:

LEMMA 5.4. Let f : X — Y be a flat morphism of smooth schemes. Then for
any i, j the following diagram commutes
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HI(CKY x U,G7) — 2 Hi(Oy x U,Gi+1)

(fod)*l l(fxld)*
H'(C(X x U,G7)) — > HY(C(X x U, GIH)).

Proof. First observe that (f x Id)*(< 1,—t >) =< 1, —t > by definition. Then
for any o € I"(D?(X xU)) we have (f x Id)*(msa) = m((f x Id)*«) (use [GN],
Theorem 3.4). On the other hand, we have (f x Id)*(n:(a)) = n:((f x Id)*«)
for any o € KM(k(y)) ([Ro], Lemma 4.3). Putting this together, we get the
conclusion. O

Let Y — X be a closed embedding of smooth schemes and consider the defor-
mation to the normal cone space D(X,Y). Then Ny X is a Cartier divisor and
its complement in D(X,Y") is X x U. We have a long exact sequence associated
to this triple ([Fa], Corollary 10.4.9):

HY(C(D(X,Y),G'"*tY)) = HY(C(X x U,G'*1)) g H}'\Z}X(C(D(X, V), GIt1Y)

Combining the isomorphism of Proposition 3.30 and the isomorphism

Onyx — E*EthD(x,y) (k+Ony X, OD(X,y))
mapping 1 to the Koszul complex associated to the global section ¢ of Op(x,y),
we finally get an isomorphism

kit H(C(Ny X,G7)) — H ' (C(D(X,Y),G7H)).
Let g: NyX — Y and 7 : X x U — X be the projections and consider the
following composition:

HZ(C(X X U, Gj)) THl(C(X X U, GjJrl))(F)aHi(C(NyX, Gj))

DEFINITION 5.5. Let Y be a smooth subscheme of a smooth scheme X with
inclusion i : Y — X. We denote by i' : H"(C(X,G7)) — H"(C(Y,G?)) and
call Gysin- Witt map the composition (¢*) ™! (k)" 10{t}n*.

Remark 5.6. Let i : Y — X be a closed immersion of smooth schemes and let L
be an invertible Ox-module. Then we have a twisted version of the Gysin-Witt
map:

i H'(C(X,G7, L)) — H™(C(Y,G7,i*L)).
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5.2 FUNCTORIALITY

The goal of this section is to prove that for any inclusions of smooth schemes

Z—sYy . X we have (ji)' = i'j'. The strategy is not new. We follow
the exposition of the sections 11, 12 and 13 in [Ro]. First we prove some
lemmas:

LEMMA 5.7. Let i : Y — X be a closed immersion and g : V — X be a flat
morphism. Consider the following fibre product

7]
W;>

| )

Y ——

Then we have (g')*i' = (i)' g*.

Proof. Let D(X,Y) be the deformation to the normal cone associated to the
inclusion i : Y — X and D(V, W) be the deformation associated to ' : W — V.
Let U = A' — 0. Because of the universal properties of blow-ups, we see that
g and ¢’ give a morphism D(g) : D(V,W) — D(X,Y) such that the following
diagram commutes:

DV,W)<“—V x U

D(Q)J{ Lgxl

DIX,)Y)<“— X xU

where ¢+ and ¢/ are the inclusions of the respective open subsets. We also get a
morphism N(g) : NwV — Ny X such that these diagrams commute:

NwV —L=w NV — DV, W)
N(g)l lg’ N(g)l lD(g)
NyX—q>Y Ny X —0 D(X,Y)

Now use Propositions 3.28 and 3.34, Lemma 5.4, the naturality of the connect-
ing homomorphism 9 and the diagram

W<t Ny V s DV, W) <=V x U v

l lmg) |0 l l

Y<— WX —=D(X,Y)=— X xU—>X
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to conclude (observe that D(g) and N(g) are flat because of [Ro], Remark
10.1).
O

LEMMA 5.8. Let Z—>Y LX be inclusions of smooth schemes. Then we
have inclusions a : NzY — NzX, ¢ : i*NyX — Ny X and isomorphisms
N(i*NyX)(NYX) ~NzY ®i*Ny X ~ N(Nzy)(NzX).

Proof. The first two assertions are straight computations (see also [Ne]). The
relation (2.1) in [Ne] shows that we have canonical isomorphisms

N(i*NyX)(NYX) ~ NzY & Z*NyX ~ N(Nzy)(NzX).
O

LEMMA 5.9. Let Z->Y > X be inclusions of smooth schemes. Let a :
NzY — NzX, ¢ : i*NyX — Ny X be the inclusions and q : Ny X — Y,
T NzX — Z, S1 ¢ N(i*NyX)(NYX) - i*NyX, S9 N(Nzy)(NzX) - Nzy
the projections. Then we have (s1)*c'q*j' = (s2)*a'r*(ji)'

Proof. Consider the deformation to the normal cone spaces D(Y,Z) and
D(X,Z). Using the universal property of blow-ups, we get a map D(Y, Z) —
D(X, Z) such that the following diagram commutes

Ny —2 > Nz X

YXxU———XxU
Jx1

where the top vertical maps are inclusions of the exceptional fiber in the de-
formation to the normal space and the bottom vertical maps are inclusions of
open subsets. It is easy to check that the map D(Y,Z) — D(X, Z) is a closed
immersion. Let D(X,Y, Z) be the deformation to the normal cone space associ-
ated to this closed immersion. Using again the universal property of blow-ups,
we see that the above diagram gives a sequence

D(N;X,N;Y)——= D(X,Y,Z) < D(X,Y) x U

where the first map is a closed immersion and the second one is an open im-
mersion. Consider now the space D(X,Y,Z). We have an open immersion
D(X,Z) x U — D(X,Y,Z) and a closed immersion (as the special fiber)
Npw,2)D(X,Z) — D(X,Y,Z). In fact, this exceptional fiber is isomorphic
to D(Ny X,i* Ny X)) (see [Ne], paragraph 3.2). So we get a diagram
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NyX—K>D(X,Y)<L—X><U47T>X
Ny X xU—L—— DX, Y)XxU<—-—XxUxU——=>XxU
D(NyX,i*Ny X) —2— D(X,Y, Z) <——D(X, Z) x U —=> D(X, Z)

K K K K

NNy x)Ny X ——— D(NzX,NzY) <—— Nz X x U Nz X

™

where all the lines are deformations to the normal cone, the first and fourth
columns are also deformations to the normal cone. This diagram is commuta-
tive (see [Ne|, paragraph 3.2). The maps k denote inclusions of special fibers, ¢
denote the inclusions of the complement of these special fibers and 7 denote the
relevant projections. The map ¢*;j' is obtained by composing the operations
(in cohomology) of the top row and s%b' is obtained by working with the left
column. Similarly, r*(ji)' and sia' are deduced from the right column and the
bottom row. Now all the squares appearing in this diagram are commutative
and give commutative diagrams in cohomology (Proposition 3.28, Proposition
3.32, Lemma 3.34 and the naturality of the residual homomorphism ). Using
this and Lemma 5.4, we get the result.

O

LEMMA 5.10. Let V, X and W be smooth schemes. Consider the following
commutative diagram

W ——

N,

where p,p’ are flat and i is a closed immersion. Suppose that the composition
NwV — W — X is of the same relative dimension as p. Then i'p* = (p')*.

Proof. Let D(V, W) be the deformation to the normal cone associated to ¢ and
b: D(V,W) — V xA! be the blow-down map. We have a commutative diagram
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W= NyW —5= DV, W) —= 1« a1 222 x o Al

V——X.

By definition, i'p* = (¢*) 7! (k.)~10{t}7*p*. Using Proposition 3.28, we get
i'p* = (¢*) " (ks)TLO{t}(p x Id)*(7')*. By Lemma 5.4, this gives

(q") 7 (k) TrO{t}(p x Td)* (x')" = (¢7) ' () ™1 O(p x Td)*{t}(n)".

Using Remark 10.1 in [Ro], we see that f := (p x Id)b is flat because the
composition Ny V — W — X is of the same relative dimension as p. We have
a commutative diagram

H(C(X x AL, G7)) — HI(C(X x U,G¥)) L= HIF(C(X x Al,G9)) —>

f*l/ (pXId)*l f*l

H'(C(D(V,W),&7)) = H'(C(V x U,G)) 5 HY y (C(D(V. W), GY)) —

where the first line is the localization long exact sequence associated to the
triple (X x U, X x A, X x 0) and the second line is the one associated to the
triple (V x U, D(V,W), NyW). Then

(q") ()T O(p x Td) {tH(n")" = (¢") " () T FO {E} ()"
Consider next the fibre product

Ny W —== D(V, W)

A

XT>X><A1

where ip : X — X x Al is the inclusion in 0. Using Lemma 3.34, we finally find
i'p* = (p')*(io); 10’ {t}(x")*. Tt remains to show that (ig);'0'{t}(7')* = Id to
finish the proof. At the level of Milnor K-theory, this is Lemma 4.5 in [Ro].
Thus we only have to prove this result at the level of Witt groups. Let o €
WH(D?!(X)) be such that da = 0 € WiT1(D?, | (X)). Now DegLoc((r')*a) N
DegLoc(< 1,—t >) is a closed subset of X x Al of codimension > i + 2.
Therefore we can use 2.25 to compute
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(—1)id(<1,—t > ®a) =d(< 1,—t >) @ a+ (-1)' < 1,—t > ®do.
By assumption we have da = 0 in W (D?, (X)) and then
(—1)id(<1,~t>®a)=d<1,~t>)@a=—-dt®a

in Wi(D?,, (X)). By definition of m¢, we find d(my()) = dt ® .. The latter
is precisely (i)« (see [GH], Lemma 2.8).
|

Now we have all the tools to prove the following theorem:

THEOREM 5.11. Let 7 ->Y —j>X be inclusions of smooth schemes. Then
(i)} = ‘5"

Proof. Let ¢ : Ny X — Y, p: NzY — Z and r : NzX — Z be the
projections. Consider also the projections s1 : Ny x)(Ny X) — i*Ny X
and sy : Nn,v)(NzX) — NzY. Denote by a : Nz¥ — NzX and
¢:1*NyX — Ny X the inclusions. We also have a fibre product

i*NyX—C>NyX
)
Z4i>Y.

Then

1

(s1)"(@)"d'' = (s1)*¢'q") = (s2)"a'r™(ji) = (s2)"p"(ji)
where the first equality is due to Lemma 5.7, the second is due to Lemma 5.9

and the third to Lemma 5.10. As (s2)*p* induces an isomorphism in cohomol-
ogy and ¢’'s; = psq, we get the result. O

6 THE RING STRUCTURE

Let X be a smooth scheme and let A : X — X x X be the diagonal inclusion.
For any i, j,r, s we have an exterior product (Theorem 4.15)

x : H'(C(X,G")) x HI(C(X,G*)) — HH(C(X x X,G""*))
and a Gysin-Witt map (Definition 5.5)

AL HY(C(X x X, G"9)) — HH(C(X,G9)).

DEFINITION 6.1. We denote by - the composition A' o x.
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Remark 6.2. If X is a smooth scheme and L, N are invertible Ox-modules,
then using Theorem 4.16 and Remark 5.6 we see that there is a product
- HY(C(X,G', L)) x H(C(X,G/,N)) — H(C(X,G",L @0, N)).
Remark 6.3. In particular, we have for any 7,7 € N a product
- HY(C(X,GY) x H(C(X,G7)) — H™M(C(X,G™))
which by definition is a product CA’I/JZ(X) x CH' (X) — cu'"’ (X).
Remark 6.4. Tt is clear from our construction that we also can define a product

- HUC(X, KM)) x HI(O(X,KM) — H(C(X, KM).

This product coincide with the one defined by Rost ([Ro], Chapter 14) and the
natural projections 7 : C(X,GP) — C(X, Kéw) give a commutative diagram

HY(C(X,G")) x HI(C(X,G)) H™(C(X,G))

H'(C(X, KM)) x H(C(X, KM)) —— H™(C(X, K1)

Remark 6.5. Our technique provides also a product on the cohomology of the
Gersten-Witt complex of a scheme. That is, we have a product

HY(C(X, W) x HI (C(X,W)) — H™(C(X,W)).
Now we prove the associativity of the product we have defined.
PROPOSITION 6.6. The product - is associative.

Proof. First note that the exterior product is associative (Proposition 4.18).
We consider the following fibre product diagram

A
X—XxX

Al lmm

XmeXxXxX.

We see that ((Id x A)A) = ((A x Id)A)'. Theorem 5.11 shows that we have
in fact A'(Id x A)' = A(A x Id)'. Since (Id x A)' is clearly Id x A' and
(A x Id)' = A' x Id, the associativity is proved. O
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Remark 6.7. In general, the product does not satisfy any commutativity prop-
erty. This is due to the fact that x and x do not commute with the flip
T: X xX — X xX (see 4.19 and 4.20). Moreover, the product is not anti-
commutative because the signs in 4.19 and 4.20 are not compatible. However,

let a € ﬁ[z(X) and € @](X). Then « - § is an element of 6’?[1+J(X) and
is therefore represented by a sum > (Ps, ;) € Ker(d'™/) where

d GWiJrj(Dngj (X)) — Wi+j+1(D?+j+1(X))

(see Remark 3.23). Using 4.19 and 4.20, we see that 3-a = > (Ps, (—1)¥1).
For a more precise statement, the reader is referred to Theorem 7.6.

——0
Now remark that there is a canonical class 1x in CH (X) given by the sym-
metric form <1 > in GW (k(X)).

PROPOSITION 6.8. The class 1x is a left and right unit for the product -.

Proof. Let ps : X x X — X be the second projection and consider the following
commutative diagram

A
X—XxX

S

d
X

P2

By Lemma 5.10, we see that A'(p2)* = (Id)* = Id. Consider now
w € HY(C(X,G%)). Tt is clear that 1x x g = (p2)*(u) and then 1x - pu = p.
Replacing ps by p; shows that 1x is also a right unit. O

Hence we have:

THEOREM 6.9. Let X be a smooth scheme and let CH (X) be the total Chow-

Witt group of X. Then the product - turns CH (X) into a graded associative
ring with unit.

Taking the twists into account, we get the following theorem:

THEOREM 6.10. Let X be a smooth scheme and let @ CAI/{*(X, L) be
LePic(x)/2

the total twisted Chow-Witt group of X. Then the product - turns this group

into a graded associative ring with unit.

DEFINITION 6.11. Let X be a smooth scheme. We call Chow-Witt ring the
ring CH (X) and twisted Chow- Witt ring the ring @ CH (X,L).
LePic(x)/2

The following proposition is obvious:
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PROPO§I\’1/‘I*ON 6.12. Let X be a smooth scheme. Then the natural homomor-
phism CH (X) — CH*(X) is a ring homomorphism.

Remark 6.13. The same methods show that the product of Remark 6.5 gives
a graded associative anticommutative ring structure on the total cohomology
group H*(C(X,W)) of the Gersten-Witt complex associated to X.

7 BASIC PROPERTIES

We first show that the Chow-Witt ring is a functorial construction.
DEFINITION 7.1. Let X and Y be smooth schemes and f : X — Y a morphism.
Consider the graph morphism v : X — X x Y. We define

fCH (Y) = CH (X)
by f'(y) =~4(1x x y) for any y € CH (V).

PROPOSITION 7.2. The map f' : CA’I;'*(Y) — CA’I;T*(X) is a ring homomor-
phism.

Proof. We only have to check that f'(y-2) = f'(y)-f'(z) for any y, 2 € 6’?[*(5/)
Consider the following commutative diagram:

x— o xXxy

Axl lAXxY

XxX—(XxY)x (X xY).
VEXV¥f

Theorem 5.11 shows that ’Y}A!Xxy = A (v7 xv¢)'. Applying this to the cycle
1x Xy x 1x X z, we obtain the result. |

Remark 7.3. The proposition shows that CH (_) is a functor from the category
of smooth schemes to the category of rings. It is clear that the homomorphisms

CA’I?*(X) — CH*(X) give a natural transformation CA’I;T*(_) — CH*(_).

In the case where f : X — Y is a flat morphism, we can identify f' more
precisely.

PROPOSITION 7.4. Let f: X — Y be a flat morphism. Then f' = f*.
Proof. Consider the following commutative diagram:

X 2o xxy

S
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where p : X XY — Y is the projection. Since Nx(X x Y) is of rank equal
to the dimension of Y, we see that the relative dimension of the composition
Nx(X xY) — X — Y is the same as the relative dimension of p: X xY — Y.
Therefore we can use Lemma 5.10 to get fy}p* = f*. Since p*8 = 1x x [ for
any cycle on Y, the result is proved. O

Let Z C X be a closed subset of pure codimension i. As D%(X) C D*(X)®,
we have a homomorphism GW}(X) — GW#(D*(X)®). Composing with the
localization, we obtain a homomorphism GWZ(X) — GW¥(D?(X)). As the
composition GW#(D*(X)®) — GWH(D!(X)) — W HH(D(X)HD) is zero
(see [Bal]), we finally obtain a homomorphism (Remark 3.23):

az: GWL(X) — ﬁ[z(X)

Remark 7.5. Let f: X — Y be a flat morphism and Z C Y be a closed subset
of pure codimension i. The definitions of f* for the Grothendieck-Witt groups
and the definition of f* for the Chow-Witt groups show that the following
diagram commutes ([Fa], Theorem 3.2.2 and Corollary 10.4.2):

GWL(Y) —2=CH'(v)

f*t lf*

GW; 1, (X) — CH' (X).

Y(-12)
The next theorem shows that our intersection product is the expected one:

THEOREM 7.6. Let Z, T C X be closed subschemes of respective pure codi-
mension ¢ and j. Suppose that Z NT is of pure codimension i + j. Then the
following diagram commutes

GW(X) x GW(X) ——= GW 7 (X)

azxaTl laZﬂT

it

CH'(X) x CH (X) ——CH " (X).

Proof. Let v € GWE(X) and § € GWZ(X). Consider the deformation to the
normal cone space D(X x X, X) and the blow down map b: D(X x X, X) —
X x X x A'. We have the following commutative diagram
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X X
q AN
Nx(X x X)—Y = x x X
K i0
D(X x X, X) —= X x X x Al ==X x X (1)
L L/
XXX XxU=——XxXxU

where i is the inclusion in 0, ¢ is the projection and the two bottom squares
are fibre products. By definition, we have

az(y) - ar(8) = (¢*) (k) T O{tIr (az(y) x ar(d)).

Let F = b~ (7)Y (p;'Z Npy'T) in D(X x X, X) (where p; and py are the
projections of X x X onto X). Observe that :™*F = F N (X x X x U) is non
empty and of pure codimension i + j in X x X x U. Diagram (1) gives

FAONx(Xx X)=s'"F=x"" ) (p' ZNp,'T)=¢ 1 (ZNT).

As Z N T is of codimension i + j in X and ¢ is flat, ¢*(Z N T) is also of
codimension ¢ + j in Nx(X x X) and hence is of codimension ¢ + j + 1 in
D(X x X, X). Therefore F itself is of pure codimension i+ j in D(X x X, X).
By commutativity of the above diagram and Remark 7.5, we have (note that
b* is defined at the level of the Grothendieck-Witt groups, but not at the level
of the Chow-Witt groups):

T (az(7) X ar(9)) = -1 p (b7 (7)) " (p1y @ p30)) = ap (b7 (7)) (p1y ® p39))-
We have to compute (k) 10{t}m*(az () x ar(d)). By definition of 9, we have

to consider any element v € C(D(X x X, X), G/ *1),,; having the property
that *v = {t}7*(az(v) X ar(d)) and then compute d(v) where

dg : C(D(X x X, X),Gth), - C(D(X x X, X),G") 4

is the differential of the complex C(D(X x X, X), G *1), Consider the com-
mutative diagram

D(X x X, X) —2> X x X x Al == Al

LT | A

XXX xU==——=XxXxU
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and recall that Nx (X x X) is the principal Cartier divisor in D(X x X, X)
defined by f := b*pr*(t).

Consider the form b*(7)*(piy ® p5d). Its support is F. Localizing at the
generic points of F' (which are on X x X x U), we obtain a form vy in

W”j(Dﬁ’ﬂ-(D(X x X, X))). We also obtain an element v in @ Ko(k(z)).

e F(0)
The above computation shows that f is a unit in k(x) for any generic point x

of F'. We get an element

vi= (1) <1, —f > o, {f} 1) € C(D(X x X, X), G+

which satisfy o*v = {t}7*(az(vy) x ar(d)). A straightforward computation (use
Theorem 2.25 again) shows that dg(v) = df ® b*(7')*(pi~y ® p3d) in the group
GWitit{(DE, , (D(X x X, X))). But df = b*dt and

b*dt @ b* ()" (p1y ® p30) = b™(dt @ (7')" (piy ® p39))
(IGN], Theorem 3.2). Since dt ®@ (7')"(piy ® p36) = (io)«(piy ® p30) (|GH],
Lemma 2.8), we finally obtain

()~ (k" (az(7) x ar(8)) = apany (xxx) () (P17 ® p39)).

We have a commutative diagram

Ny(X x X)L X x X

|

X.
Now A=Y p;*ZNpy'T) = ZN T and using the diagram, we see that

az(y) - ar(B) = azar (A" (piy ® p39)).

Hence it only remains to show that A*(pfy ® p5d) = v x 0 to finish the proof.
This is clear by [GN], Theorem 3.2.
([l
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ABSTRACT. We define and study equivariant analytic and local
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with values in equivariant local cyclic homology.

2000 Mathematics Subject Classification: 19D55, 19K35, 19147,
46A17

Keywords and Phrases: Local cyclic homology, Chern-Connes charac-
ter

1. INTRODUCTION

Cyclic homology can be viewed as an analogue of de Rham cohomology in the
framework of noncommutative geometry [1], [3]. In this framework geomet-
ric questions are studied by means of associative algebras which need not be
commutative. An important feature of cyclic homology is the fact that the
theory can easily be defined on a large class of algebras, including Fréchet
algebras as well as algebras without additional structure. In many cases ex-
plicit calculations are possible using standard tools from homological algebra.
The connection to de Rham theory is provided by a fundamental result due to
Connes [1] showing that the periodic cyclic homology of the Fréchet algebra
C>°(M) of smooth functions on a compact manifold M is equal to the de Rham
cohomology of M.

However, in general the theory does not yield good results for Banach algebras
or C*-algebras. Most notably, the periodic cyclic cohomology of the algebra
C(M) of continuous functions on a compact manifold M is different from de
Rham cohomology. An intuitive explanation of this phenomenon is that C(M)
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only encodes the information of M as a topological space, whereas it is the
differentiable structure that is needed to define de Rham cohomology.
Puschnigg introduced a variant of cyclic homology which behaves nicely on the
category of C*-algebras [33]. The resulting theory, called local cyclic homology,
allows for the construction of a general Chern-Connes character for bivariant
K-theory. Using the machinery of local cyclic homology, Puschnigg proved
the Kadison-Kaplansky idempotent conjecture for hyperbolic groups [32]. Un-
fortunately, the construction of the local theory is quite involved. Already the
objects for which the theory is defined in [33], inductive systems of nice Fréchet
algebras, are rather complicated.

There is an alternative approach to local cyclic homology due to Meyer [24].
Based on the theory of bornological vector spaces, some features of local
cyclic homology become more transparent in this approach. It is known that
bornological vector spaces provide a very natural framework to study analytic
and entire cyclic cohomology [21]. Originally, entire cyclic cohomology was in-
troduced by Connes [2] in order to define the Chern character of #-summable
Fredholm modules. The analytic theory for bornological algebras contains en-
tire cyclic cohomology as a special case. Moreover, from a conceptual point of
view it is closely related to the local theory. Roughly speaking, the passage
from analytic to local cyclic homology consists in the passage to a certain de-
rived category.

An important concept in local cyclic homology is the notion of a smooth sub-
algebra introduced by Puschnigg [29], [33]. The corresponding concept of an
isoradial subalgebra [24], [26] plays a central role in the bornological account
to the local theory by Meyer. One of the main results in [24] is that local cyclic
homology is invariant under the passage to isoradial subalgebras. In fact, an
inspection of the proof of this theorem already reveals the essential ideas behind
the definition of the local theory. A basic example of an isoradial subalgebra
is the inclusion of C°°(M) into C'(M) for a compact manifold as above. In
particular, the natural homomorphism C*(M) — C(M) induces an invertible
element in the bivariant local cyclic homology group HL.(C*(M),C(M)).
Hence, in contrast to periodic cyclic cohomology, the local theory does not dis-
tinguish between C'(M) and C*°(M). Let us also remark that invariance under
isoradial subalgebras is responsible for the nice homological properties of the
local theory.

In this paper we define and study analytic and local cyclic homology in the
equivariant setting. This is based on the general framework for equivariant
cyclic homology developped in [35] and relies on the work of Meyer in the
nonequivariant case. In particular, a large part of the necessary analytical con-
siderations is already contained in [26]. In addition some of the material from
[24] will be reproduced for the convenience of the reader. On the other hand,
as far as homological algebra is concerned, the framework of exact categories
used by Meyer is not appropriate in the equivariant situation. This is due to
the fact that equivariant cyclic homology is constructed using paracomplexes
[35].
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We should point out that we restrict ourselves to actions of totally discon-
nected groups in this paper. In fact, one meets certain technical difficulties in
the construction of the local theory if one moves beyond totally disconnected
groups. For simplicity we have thus avoided to consider a more general setting.
Moreover, our original motivation to study equivariant local cyclic homology
and the equivariant Chern-Connes character comes from totally disconnected
groups anyway.

Noncommutative Chern characters constitute one of the cornerstones of non-
commutative geometry. The first contributions in this direction are due to
Karoubi and Connes, see [14] for an overview. In fact, the construction of the
Chern character in K-homology was the motivation for Connes to introduce
cyclic cohomology [1]. Bivariant Chern characters have been studied by several
authors including Kassel, Wang, Nistor, Puschnigg and Cuntz [17], [37], [28],
[33], [4]. As already explained above, our character is closely related to the
work of Puschnigg.

Let us now describe how the paper is organized. In section 2 we review some
facts about smooth representation of totally disconnected groups and anti-
Yetter-Drinfeld modules. These concepts are basic ingredients in the construc-
tion of equivariant cyclic homology. For later reference we also discuss the
notion of an essential module over an idempotented algebra. We remark that
anti-Yetter-Drinfeld modules are called covariant modules in [35], [36]. The
terminology used here was originally introduced in [10] in the context of Hopf
algebras. In section 3 we discuss the concept of a primitive module over an
idempotented algebra and exhibit the relation between inductive systems of
primitive modules and arbitrary essential modules. This is needed for the def-
inition of the local derived category given in section 4. From the point of view
of homological algebra the local derived category is the main ingredient in the
construction of local cyclic homology. In section 5 we recall the definition of
the analytic tensor algebra and related material from [21]. Moreover we review
properties of the spectral radius for bornological algebras and discuss locally
multiplicative algebras [26]. Section 6 contains the definition of the equivari-
ant X-complex of a G-algebra and the definition of equivariant analytic and
local cyclic homology. This generalizes the constructions in [21], [24] as well
as the definition of entire cyclic cohomology for finite groups given by Klimek,
Kondracki and Lesniewski [19]. We also discuss briefly the connection to the
original approach to local cyclic homology due to Puschnigg. In section 7 we
prove homotopy invariance, stability and excision for equivariant analytic and
local cyclic homology. The arguments for the analytic and the local theory are
analogous since both theories are constructed in a similar way. In section 8
we study a special situation where analytic and local cyclic homology are in
fact isomorphic. Section 9 is devoted to the proof of the isoradial subalgebra
theorem. As in the non-equivariant case this theorem is the key to establish
some nice features of the local theory. In particular, using the isoradial subal-
gebra theorem we study in section 10 how local cyclic homology behaves with
respect to continuous homotopies and stability in the sense of C*-algebras. As
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a preparation for the definition of the Chern-Connes character in the odd case
we consider in section 11 the equivariant X-complex of tensor products. In
section 12 we recall the general approach to bivariant K-theories developped
by Cuntz [4], [5]. Based on the resulting picture of equivariant K K-theory we
define the equivariant Chern-Connes character in section 13. In the even case
the existence of this transformation is an immediate consequence of the uni-
versal property of equivariant K K-theory [34], [22]. As in the non-equivariant
case the equivariant Chern-Connes character is multiplicative with respect to
the Kasparov product and the composition product, respectively. Finally, we
describe an elementary calculation of the Chern-Connes character in the case
of profinite groups. More detailed computations together with applications will
be discussed in a separate paper.

Throughout the paper G will be a second countable totally disconnected locally
compact group. All bornological vector spaces are assumed to be separated and
convex.

I am indebted to R. Meyer for providing me his preprint [24] and answering
several questions related to local cyclic homology.

2. SMOOTH REPRESENTATIONS AND ANTI-YETTER-DRINFELD MODULES

In this section we recall the basic theory of smooth representations of totally dis-
connected groups and the concept of an anti-Yetter-Drinfeld module. Smooth
representations of locally compact groups on bornological vector spaces were
studied by Meyer in [25]. The only difference in our discussion here is that we
allow for representations on possibly incomplete spaces. Apart from smooth
representations, anti- Yetter-Drinfeld modules play a central role in equivariant
cyclic homology. These modules were called covariant modules in [35], [36].
Smooth representations and anti-Yetter-Drinfeld modules for totally discon-
nected groups can be viewed as essential modules over certain idempotented
algebras in the following sense.

DEFINITION 2.1. An algebra H with the fine bornology is called idempotented
if for every small subset S C H there exists an idempotent e € H such that
ecx=x=x-¢ forallzes.

In other words, for every finite set F' of elements in H there exists an idempo-
tent e € H which acts like a unit on every element of F. We call a separated
H-module V essential if the natural map H®gV — V is a bornological isomor-
phism. Since H carries the fine bornology, the completion V¢ of an essential
H-module is again essential, and our notion is compatible with the concept of
an essential module over a bornological algebra with approximate identity [25].
Clearly an idempotented algebra is a bornological algebra with approximate
identity.

Let us now consider smooth representations. A representation of G on a sepa-
rated bornological vector space V' is a group homomorphism 7 : G — Aut(V)
where Aut(V') denotes the group of bounded linear automorphisms of V. A
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bounded linear map between representations of G is called equivariant if it com-
mutes with the action of G. We write Homg (V, W) for the space of equivariant
bounded linear maps between the representations V and W. Let F(G,V) be
the space of all functions from G to V. The adjoint of a representation 7 is
the bounded linear map [r] : V — F(G, V) given by [7](v)(t) = 7 (¢)(v). In the
sequel we write simply ¢ - v instead of 7 (¢)(v).

We write D(G) for the space of smooth functions on G with compact support
equipped with the fine bornology. Smoothness of a function f on a totally dis-
connected group is equivalent to f being locally constant. If V' is a bornological
vector space then D(G) ® V. = D(G,V) is the space of compactly supported
smooth functions on G with values in V. The space E(G, V') consists of all
smooth functions on G with values in V.

DEFINITION 2.2. Let G be a totally disconnected group and let V' be a separated
(complete) bornological vector space. A representation m of G on 'V is smooth if
[7] defines a bounded linear map from V into E(G, V). A smooth representation
is also called a separated (complete) G-module.

Let V be a separated G-module. Then for every small subset S C V the
pointwise stabilizer Gg of S is an open subgroup of G. Conversely, if 7 is a
representation of G on a bornological vector space V such that Gg is open for
every small subset S C V then 7 is smooth. In particular, if V carries the
fine bornology the above definition reduces to the usual definition of a smooth
representation on a complex vector space. Every representation of a discrete
group is smooth. Note that a representation 7 of G' on a separated bornological
vector space V determines a representation 7¢ of G on the completion V¢. If
V is a separated G-module then V¢ becomes a complete G-module in this way.
As already mentioned in the beginning, smooth representations can be iden-
tified with essential modules over a certain idempotented algebra. The Hecke
algebra of a totally disconnected group G is the space D(G) equipped with the
convolution product

(f*g)(t) = /G F(8)g(s~ )ds

where ds denotes a fixed left Haar measure on G. Since G is totally discon-
nected this algebra is idempotented. Every separated G-module V' becomes
an essential D(G)-module by integration, and conversely, every essential D(G)-
module is obtained in this way. This yields a natural isomorphism between
the category of separated (complete) G-modules and the category of separated
(complete) essential D(G)-modules.

A separated (complete) G-algebra is a separated (complete) bornological al-
gebra which is also a G-module such that the multiplication A ® A — A is
equivariant. For every separated G-algebra A the (smooth) crossed product
A x G is the space D(G, A) with the convolution multiplication

(fxg)(t) = /G £(5)s - g(s~11)ds.
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Note in particular that the crossed product associated to the trivial action of
G on C is the Hecke algebra of G.

In connection with actions on C*-algebras we will have to consider represen-
tations of G which are not smooth. For an arbitrary representation of G on a
bornological vector space V' the smoothing Gmooth (V) is defined by

Gmooth (V) ={f € E(G,V)|f(t) =t- f(e) for all t € G}

equipped with the subspace bornology and the right regular representation.
We will usually simply write Gmooth instead of Gmooth, in the sequel. The
smoothing Gmooth(V) is always a smooth representation of G. If V' is complete,
then Gmooth(V) is a complete G-module. There is an injective equivariant
bounded linear map ¢ty : Gmooth(V) — V given by vy (f) = f(e).

PROPOSITION 2.3. Let G be a totally disconnected group and m be a representa-
tion of G on a separated bornological vector space V. The equivariant bounded
linear map vy : Gmooth(V) — V induces a natural isomorphism

Homg (W, V) = Homg (W, Gmooth(V))
for all separated G-modules W'

Hence the smoothing functor Gmooth is right adjoint to the forgetful functor
from the category of smooth representations to the category of arbitrary rep-
resentations.

Assume that A is a separated bornological algebra which is at the same time
equipped with a representation of GG such that the multiplication A® A — A is
equivariant. Then Gmooth(A) is a separated G-algebra in a natural way. This
applies in particular to actions on C*-algebras. When C*-algebras are viewed
as bornological algebras we always work with the precompact bornology. If A is
a G-C*-algebra we use the smoothing functor to obtain a complete G-algebra
GSmooth(A). We will study properties of this construction in more detail in
section 10.

Next we discuss the concept of an anti-Yetter-Drinfeld module. Let Og be
the commutative algebra of compactly supported smooth functions on G with
pointwise multiplication equipped with the action of G by conjugation.

DEFINITION 2.4. Let G be a totally disconnected group. A separated (com-
plete) G-anti- Yetter-Drinfeld module is a separated (complete) bornological vec-
tor space M which is both an essential Og-module and a G-module such that

s (f-m)=(s-f)-(s-m)
forallse G, f € Og and m € M.

A morphism ¢ : M — N between anti-Yetter-Drinfeld modules is a bounded
linear map which is Og-linear and equivariant. In the sequel we will use the
terminology AYD-module and AYD-map for anti-Yetter-Drinfeld modules and
their morphisms. Moreover we denote by Homeg (M, N) the space of AYD-maps
between AYD-modules M and N. Note that the completion M€ of a separated
AYD-module M is a complete AYD-module.
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We write A(G) for the crossed product Og x G. The algebra A(G) is idem-
potented and plays the same role as the Hecke algebra D(G) in the context of
smooth representations. More precisely, there is an isomorphism of categories
between the category of separated (complete) AYD-modules and the category
of separated (complete) essential modules over A(G). In particular, A(G) itself
is an AYD-module in a natural way. We may view elements of A(G) as smooth
functions with compact support on G x G where the first variable corresponds

to O¢ and the second variable corresponds to D(G). The multiplication in
A(G) becomes

(- 9)(st) = /G £(5,7)g(rsr, - Le)dr

in this picture. An important feature of this crossed product is that there exists
an isomorphism T : A(G) — A(G) of A(G)-bimodules given by

T(f)(s,t) = f(s,st)

for f € A(G). More generally, if M is an arbitrary separated AYD-module we
obtain an automorphism of M 2 A(G)®a(e) M by applying T to the first tensor
factor. By slight abuse of language, the resulting map is again denoted by T'.
This construction is natural in the sense that T'¢ = ¢T for every AYD-map
¢: M — N.

3. PRIMITIVE MODULES AND INDUCTIVE SYSTEMS

In this section we introduce primitive anti-Yetter-Drinfeld-modules and discuss
the relation between inductive systems of primitive modules and general anti-
Yetter-Drinfeld-modules for totally disconnected groups. This is needed for the
definition of equivariant local cyclic homology.

Recall from section 2 that anti-Yetter-Drinfeld modules for a totally discon-
nected group G can be viewed as essential modules over the idempotented
algebra A(G). Since it creates no difficulties we shall work in the more general
setting of essential modules over an arbitrary idempotented algebra H in this
section. We let C be either the category of separated or complete essential
modules over H. Morphisms are the bounded H-module maps in both cases.
Moreover we let ind(C) be the associated ind-category. The objects of ind(C)
are inductive systems of objects in C and the morphisms between M = (M;);er
and (N;);es are given by

Homjna(cy(M, N) = linhL)nHomc(Mi, N;)
iel jeJ

where the limits are taken in the category of vector spaces. There is a canon-
ical functor lim from ind(C) to C which associates to an inductive system its
separated inductive limit.

If S is a small disk in a bornological vector space we write (S) for the associated
normed space. There is a functor which associates to a (complete) bornological
vector space V' the inductive system of (complete) normed spaces (S) where S
runs over the (completant) small disks in V. We need a similar construction
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in the context of H-modules. Let M be a separated (complete) essential H-
module and let S C M be a (completant) small disk. We write H(S) for the
image of the natural map H ® (S) — M equipped with the quotient bornology
and the induced H-module structure. By slight abuse of language we call this
module the submodule generated by S and write H(S) C M.

DEFINITION 3.1. An object of C is called primitive if it is generated by a single
small disk.

In other words, a separated (complete) essential H-module P is primitive iff
there exists a (completant) small disk S C P such that the natural map
H(S) — P is an isomorphism. Note that in the special case H = C the
primitive objects are precisely the (complete) normed spaces.

Let us write ind(P(C)) for the full subcategory of ind(C) consisting of induc-
tive systems of primitive modules. For every M € C we obtain an inductive
system of primitive modules over the directed set of (completant) small disks
in M by associating to every disk S the primitive module generated by S. This
construction yields a functor dis from C to ind(P(C)) which will be called the
dissection functor. Note that the inductive system 9is(M) has injective struc-
ture maps for every M € C. By definition, an injective inductive system is an
inductive system whose structure maps are all injective. An inductive system is
called essentially injective if it is isomorphic in ind(C) to an injective inductive
system.

The following assertion is proved in the same way as the corresponding result
for bornological vector spaces [21].

PROPOSITION 3.2. The direct limit functor lim s left adjoint to the dissection
functor dis. More precisely, there is a natural isomorphism

Home (lim(M;)je s, N) = Hominap(c)) (M) e, 0is(N))

for every inductive system (M;);es of primitive objects and every N € C.
Moreover lim dis is naturally equivalent to the identity and the functor dis is
fully faithful.

In addition we have that dis m(Mz)zef is isomorphic to (M;);er provided the
system (M;);ecs is essentially injective. It follows that the dissection functor
0is induces an equivalence between C and the full subcategory of ind(P(C))
consisting of all injective inductive systems of primitive modules.

4. PARACOMPLEXES AND THE LOCAL DERIVED CATEGORY

In this section we review the notion of a paracomplex and discuss some related
constructions in homological algebra. In particular, in the setting of anti-
Yetter-Drinfeld modules over a totally disconnected group, we define locally
contractible paracomplexes and introduce the local derived category, following
[24].

Let us begin with the definition of a para-additive category [35].
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DEFINITION 4.1. A para-additive category is an additive category C together
with a natural isomorphism T of the identity functorid : C — C.

It is explained in section 2 that every AYD-module is equipped with a natural
automorphism denoted by T'. Together with these automorphisms the category
of AYD-modules becomes a para-additive category in a natural way. In fact,
for our purposes this is the main example of a para-additive category.

DEFINITION 4.2. Let C be a para-additive category. A paracomplex C = Co®Cy
in C is a giwen by objects Cy and Cy together with morphisms 0y : Cy — C1
and 01 : C1 — Cy such that

0* =id -T.
A chain map ¢ : C — D between two paracomplexes is a morphism from C to
D that commutes with the differentials.

The morphism 0 in a paracomplex is called a differential although this con-
tradicts the classical definition of a differential. We point out that it does not
make sense to speak about the homology of a paracomplex in general.
However, one can define homotopies, mapping cones and suspensions as usual.
Moreover, due to naturality of T', the space Home¢ (P, Q) of all morphisms be-
tween paracomplexes P and @ with the standard differential is an ordinary
chain complex. We write H(C) for the homotopy category of paracomplexes
associated to a para-additive category C. The morphisms in H(C) are homo-
topy classes of chain maps. The supension of paracomplexes yields a translation
functor on H(C). By definition, a triangle

C X Y C1]

in H(C) is called distinguished if it is isomorphic to a mapping cone triangle.
As for ordinary chain complexes one proves the following fact.

PROPOSITION 4.3. Let C be a para-additive category. Then the homotopy cat-
egory of paracomplexes H(C) is triangulated.

Let us now specialize to the case where C is the category of separated (complete)
AYD-modules. Hence in the sequel H(C) will denote the homotopy category of
paracomplexes of AYD-modules. We may also consider the homotopy category
associated to the corresponding ind-category of paracomplexes. There is a
direct limit functor hi)n and a dissection functor dis between these categories
having the same properties as the corresponding functors for AYD-modules.

A paracomplex P of separated (complete) AYD-modules is called primitive
if its underlying AYD-module is primitive. By slight abuse of language, if
P is a primitive paracomplex and ¢« : P — (' is an injective chain map of
paracomplexes we will also write P for the image «(P) C C with the bornology
induced from P. Moreover we call P C C' a primitive subparacomplex of C' in
this case.

DEFINITION 4.4. A paracomplex C is called locally contractible if for every
primitive subparacomplex P of C' the inclusion map ¢ : P — C' is homotopic to
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zero. A chain map f : C — D between paracomplexes is called a local homotopy
equivalence if its mapping cone Cy is locally contractible.

The class of locally contractible paracomplexes forms a null system in H(C).
We have the following characterization of locally contractible paracomplexes.

LEMMA 4.5. A paracomplex C is locally contractible iff H.(Home(P,C)) =0
for every primitive paracomplex P.

Proof. Let P C C be a primitive subparacomplex. If H,(Hom¢(P,C)) = 0
then the inclusion map ¢ : P — C' is homotopic to zero. It follows that C
is locally contractible. Conversely, assume that C' is locally contractible. If
P is a primitive paracomplex and f : P — C is a chain map let f(P) C C
be the primitive subparacomplex corresponding to the image of f. Since C' is
locally contractible the inclusion map f(P) — C is homotopic to zero. Hence
the same is true for f and we deduce Ho(Home(P,C)) = 0. Similarly one
obtains H; (Home (P, C')) = 0 since suspensions of primitive paracomplexes are
primitive. O
We shall next construct projective resolutions with respect to the class of locally
projective paracomplexes. Let us introduce the following terminology.

DEFINITION 4.6. A paracomplex P is locally projective if H.(Home(P,C)) =0
for all locally contractible paracomplexes C'.

All primitive paracomplexes are locally projective according to lemma 4.5. Ob-
serve moreover that the class of locally projective paracomplexes is closed under
direct sums.

By definition, a locally projective resolution of C' € H(C) is a locally projec-
tive paracomplex P together with a local homotopy equivalence P — C'. We
say that a functor P : H(C) — H(C) together with a natural transformation
7 : P — id is a projective resolution functor if 7(C) : P(C) — C is a locally
projective resolution for all C' € H(C). In order to construct such a functor we
proceed as follows.

Let I be a directed set. We view I as a category with objects the elements of T
and morphisms the relations ¢ < j. More precisely, there is a morphism i — j
from 4 to j in this category iff ¢ < j. Now consider a functor F': I — C. Such a
functor is also called an I-diagram in C. We define a new diagram L(F') : I — C

as follows. Set
L(F)(j) = P F(i)
i

where the sum runs over all morphisms ¢ — jin I. The map L(F)(k) — L(F)(l)
induced by a morphism k£ — [ sends the summand over ¢ — k identically
to the summand over ¢ — [ in L(F)(I). We have a natural transformation
7(F) : L(F) — F sending the summand F(i) over ¢ — j to F(j) using the
map F(i — 7). The identical inclusion of the summand F(j) over the identity
j — j defines a section o (F') for 7(F'). Remark that this section is not a natural

transformation of I-diagrams in general.
Now let H : I — C be another diagram and let (¢(i) : F(i) — H(i));er be
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an arbitrary family of AYD-maps. Then there exists a unique natural trans-
formation of I-diagrams v : L(F') — H such that ¢(j) = ¢¥(j)o(F)(j) for all
j. Namely, the summand F(i) over i — j in L(F)(j) is mapped under % (j)
to H(j) by the map H(i — j)¢(i). We can rephrase this property as follows.
Consider the inclusion I(®) ¢ I of all identity morphisms in the category I.
There is a forgetful functor from the category of I-diagrams to the category of
I®)_diagrams in C induced by the inclusion I(®) — I and a natural isomorphism

HomI(L(F), H) = Hom](o) (F, H)

where Hom; and Hom;jo) denote the morphism sets in the categories of I-
diagrams and I(9-diagrams, respectively. This means that the previous con-
struction defines a left adjoint functor L to the natural forgetful functor.

For every j € I we have a split extension of AYD-modules

V010 AT 10)

where by definition J(F')(j) is the kernel of the AYD-map 7(F)(j) and ¢(F)(j)
is the inclusion. The AYD-modules J(F')(j) assemble to an I-diagram and we
obtain an extension

=(F)G) .
—= F(j)

L(F)

J(F)—% pr) 2L

L(F)
of I-diagrams which splits as an extension of I(¥)-diagrams. We apply the
functor L to the diagram J(F') and obtain a diagram denoted by LJ(F) and a
corresponding extension as before. Iterating this procedure yields a family of
diagrams LJ™(F'). More precisely, we obtain extensions

LI (F)) (I (

()

for alln > 0 where J°(F) = F, Jl( )= J(F)and LJ°(F) = L(F). In addition
we set LJ 1(F) = F and «(J~1(F)) = id. By construction there are natural
transformations LJ™(F) — LJ"~Y(F) for all n given by «(J" 1 (F))m(J"(F)).
In this way we obtain a complex

- — LJ3(F) — LJ*(F) — LJY(F) - LJ°(F) - F -0

(PR (L

of I-diagrams. Moreover, this complex is split exact as a complex of I(0)-
diagrams, that is, LJ*(F)(j) is a split exact complex of AYD-modules for all
jel

Assume now that F' is an [-diagram of paracomplexes in C. We view F’ as a pair
of I-diagrams Fj and F; of AYD-modules together with natural transformations
O : Fy — Fy and 0, : Fi — Fy such that 8% = id —T'. Let us construct a family
of I-diagrams (LJ(F),d",d") as follows. Using the same notation as above we
set

LJ(F)pg = LJU(F, )

for ¢ > 0 and define the horizontal differential d;;, : LJ(F)pq — LJ(F)p—1,4 by
e, = (—1)‘1LJ‘1(6,,).
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The vertical differential dp, : LJ(F')pq — LJ(F')p -1 is given by
dpg = L(JT 7 (Fp))m(J9(Fp)).

Then the relations (d¥)? = 0, (d")? = id —T as well as d°d" + d"d” = 0 hold.
Hence, if we define Tot(LJ(F')) by

(Tot LI(F))n = € LI(F)yg
ptg=n

and equip it with the boundary d* + d” we obtain an I-diagram of paracom-
plexes. We write ho-lim(F’) for the inductive limit of the diagram Tot L.J(F)
and call this paracomplex the homotopy colimit of the diagram F'. There is a
canonical chain map ho-lim(F") — lim(F’) and a natural filtration on ho- lim(F’)

— e —
given by

hO‘H_H}(F)%k = @ lim LJ(F)pq

ptq=n
q<k

for k > 0. Observe that the natural inclusion ¢* : ho- hi)n(F)Sk — ho-lim(F)
is a chain map and that there is an obvious retraction 7% : ho- lim(F) —
ho- lim (F° )=k for /¥, However, this retraction is not a chain map.

PROPOSITION 4.7. Let F' = (F});c1 be a directed system of paracomplexes. If
the paracomplexes F; are locally projective then the homotopy colimit ho—li_r)n(F)
is locally projective as well. If the system (F;)icr is essentially injective then
ho-lim(F) — lim(F) is a local homotopy equivalence.

Proof. Assume first that the paracomplexes F; are locally projective. In order
to prove that ho-lim(F) is locally projective let ¢ : ho-lim(#) — C be a chain
map where C' is a locally contractible paracomplex. We have to show that ¢
is homotopic to zero. The composition of the natural map ¢° : ho- h_n}(F)ﬁO —
ho- hi>n(F) with ¢ yields a chain map ° = ¢.0 : hi)nLJO(F) — C. By con-
struction of LJ?(F) we have isomorphisms
Home (lim LJ°(F), C) = Hom; (LJ°(F), C) = Hom ) (F, C)

where we use the notation introduced above and C is viewed as a constant
diagram of paracomplexes. Hence, since the paracomplexes F; are locally pro-

jective, there exists a morphism h° of degree one such that Oh° + h%0 = ¢°.
This yields a chain homotopy between 1" and 0. Using the retraction

70 ho-lim(F) — ho- h_r)n(F)SO we obtain a chain map ¢! = ¢ — [9, h7"]
from ho- L(F ) to C. This map is clearly homotopic to ¢ and by construction

we have ¢'.° = 0. Consider next the map ¢! given by the composition
lim LJ'(F) — ho-lim(F) — C
— —
where the first arrow is the natural one and the second map is ¢'. Since ¢!

vanishes on ho- h_r)n(F )=Y we see that ! is a chain map. Observe moreover

that JL(F) is a locally projective paracomplex. The same argument as before
yields a homotopy h' : lim LJ'(F) — C such that Oh' + h'0 = ¢'. We define
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a chain map ¢? by ¢? = ¢! — [0, h'7!] = ¢ — [0, bl 7! + h970] and get %1} = 0.
Continuing this process we obtain a family of AYD-maps h"™ : h_r)n LJ"(F)—C
which assembles to a homotopy between ¢ and zero.

Let C(m) be the mapping cone of the natural map 7 : ho-lim(F) — lim(F).
Moreover we write C(j) for the mapping cone of Tot LJ(F)(j) — F(j). It
follows immediately from the constructions that C(j) is contractible for every
j € I. Now let P C C(w) be a primitive subparacomplex. If the system F'
is essentially injective then there exists an index j € I such that P C C(j).
Consequently, the map P — C(w) is homotopic to zero in this case, and we
conclude that 7 is a local homotopy equivalence. O
Using the previous proposition we can construct a projective resolution functor
with respect to the class of locally projective paracomplexes. More precisely,
one obtains a functor P : H(C) — H(C) by setting

P(C) = ho-lim dis(C)

for every paracomplex C'. In addition, there is a natural transformation P — id
induced by the canonical chain map ho-lim(#) — lim(F) for every inductive
system F. Since 9is(C') is an injective inductive system of locally projective
paracomplexes for C' € H(C) it follows from proposition 4.7 that this yields a
projective resolution functor as desired.

Let us now define the local derived category of paracomplexes.

DEFINITION 4.8. The local derived category D(C) is the localization of H(C)
with respect to the class of locally contractible paracomplexes.

By construction, there is a canonical functor H(C) — D(C) which sends lo-
cal homotopy equivalences to isomorphisms. Using the projective resolution
functor P one can describe the morphism sets in the derived category by

Homp ¢ (C, D) = Homyy(cy (P(C), D) = Homggc)(P(C), P(D))

for all paracomplexes C' and D.
For the purposes of local cyclic homology we consider the left derived functor
of the completion functor. This functor is called the derived completion and is
given by

X]Lc _ P( X)c
for every paracomplex X of separated AYD-modules. Inspecting the construc-
tion of the homotopy colimit shows that X¢ 2 ho- lim(9is(X)“) where the
completion of an inductive system is defined entrywise.

5. THE ANALYTIC TENSOR ALGEBRA AND THE SPECTRAL RADIUS

In this section we discuss the definition of the analytic tensor algebra as well as
analytically nilpotent algebras and locally multiplicative algebras. The spectral
radius of a small subset in a bornological algebra is defined and some of its basic
properties are established. We refer to [21], [24], [26] for more details.

Let G be a totally disconnected group and let A be a separated G-algebra. We
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write Q™(A) for the space of (uncompleted) noncommutative n-forms over A.
As a bornological vector space one has Q2°(A4) = A and

QM(A) = AT ® A®"

for n > 0 where A" denotes the unitarization of A. Simple tensors in Q"(A)
are usually written in the form agday - - - da,, where ag € A* and a; € A for
j > 0. Clearly Q"(A) is a separated G-module with the diagonal action. We
denote by Q(A) the direct sum of the spaces Q™ (A). The differential d on Q(A)
and the multiplication of forms are defined in an obvious way such that the
graded Leibniz rule holds.

For the purpose of analytic and local cyclic homology it is crucial to consider
a bornology on Q(A) which is coarser than the standard bornology for a direct
sum. By definition, the analytic bornology on 2(A) is the bornology generated
by the sets

[S)(dS)>* = Su | ] S(ds)" u(ds)"
n=1
where S C A is small. Here and in the sequel the notation [S] is used to denote
the union of the subset S C A with the unit element 1 € A*. Equipped with
this bornology Q(A) is again a separated G-module. Moreover the differential
d and the multiplication of forms are bounded with respect to the analytic
bornology. It follows that the Fedosov product defined by

won=wn—(=1)dwdn

for homogenous forms w and 7 is bounded as well. By definition, the analytic
tensor algebra TA of A is the even part of Q(A) equipped with the Fedosov
product and the analytic bornology. It is a separated G-algebra in a natural
way. Unless explicitly stated otherwise, we will always equip Q2(A) and T A
with the analytic bornology in the sequel.

The underlying abstract algebra of 7 A can be identified with the tensor alge-
bra of A. This relationship between tensor algebras and differential forms is
a central idea in the approach to cyclic homology developped by Cuntz and
Quillen [6], [7], [8]. However, since the analytic bornology is different from the
direct sum bornology, the analytic tensor algebra 7 A is no longer universal for
all equivariant bounded linear maps from A into separated G-algebras. In order
to formulate its universal property correctly we need some more terminology.
The curvature of an equivariant bounded linear map f : A — B between sepa-
rated G-algebras is the equivariant linear map wy : A ® A — B given by

wr(z,y) = f(zy) — f(2)f(y).

By definition, the map f has analytically nilpotent curvature if

o

wr(S,9)> = |J wr(S,9)"

n=1
is a small subset of B for all small subsets S C A. An equivariant bounded linear
map f: A — B with analytically nilpotent curvature is called an equivariant
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lanilcur. The analytic bornology is defined in such a way that the equivariant
homomorphism [[f]] : TA — B associated to an equivariant bounded linear
map f: A — B is bounded iff f is a lanilcur.

It is clear that every bounded homomorphism f : A — B is a lanilcur. In
particular, the identity map of A corresponds to the bounded homomorphism
74 : TA — A given by the canonical projection onto differential forms of degree
zero. The kernel of the map 74 is denoted by J A, and we obtain an extension

JA TA A

of separated G-algebras. This extension has an equivariant bounded linear
splitting o4 given by the inclusion of A as differential forms of degree zero.
The algebras JA and 7 A have important properties that we shall discuss
next.

A separated G-algebra N is called analytically nilpotent if

s> =[]

neN

is small for all small subsets S C N. For instance, every nilpotent bornological
algebra is analytically nilpotent. The ideal 7 A in the analytic tensor algebra of
a bornological A is an important example of an analytically nilpotent algebra.
A separated G-algebra R is called equivariantly analytically quasifree provided
the following condition is satisfied. If K is an analytically nilpotent G-algebra
and

K>—>E—»Q

is an extension of complete G-algebras with equivariant bounded linear split-
ting then for every bounded equivariant homomorphism f : R — @ there exists
a bounded equivariant lifting homomorphism F': R — E. The analytic tensor
algebra 7 A of a G-algebra A is a basic example of an equivariantly analytically
quasifree G-algebra. Another fundamental example is given by the algebra C
with the trivial action. Every equivariantly analytically quasifree G-algebra is
in particular equivariantly quasifree in the sense of [35].

We shall next discuss the concept of a locally multiplicative G-algebra. If A
is a bornological algebra then a disk T" C A is called multiplicatively closed
provided T-T C T. A separated bornological algebra A is called locally multi-
plicative if for every small subset S C A there exists a positive real number A
and a small multiplicatively closed disk T" C A such that S C AT. It is easy to
show that a separated (complete) bornological algebra is locally multiplicative
iff it is a direct limit of (complete) normed algebras. We point out that the
group action on a G-algebra usually does not leave multiplicatively closed disks
invariant. In particular, a locally multiplicative G-algebra can not be written
as a direct limit of normed G-algebras in general.

It is clear from the definitions that analytically nilpotent algebras are locally
multiplicative. In fact, locally multiplicatively algebras and analytically nilpo-
tent algebras can be characterized in a concise way using the notion of spectral
radius.
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DEFINITION 5.1. Let A be a separated bornological algebra and let S C A be a
small subset. The spectral radius p(S) = p(S; A) is the infimum of all positive
real numbers r such that

—IS fj —lsn
n=1

is small. If no such number r exists set p(S) =

A Dbornological algebra A is locally multiplicative iff p(S) < oo for all small
subsets S C A. Similarly, a bornological algebra is analytically nilpotent iff
p(S) = 0 for all small subsets S of A.

Let us collect some elementary properties of the spectral radius. If X is a
positive real number then p(AS) = Ap(S) for every small subset S. Moreover
one has p(S™) = p(S)™ for all n > 0. Remark also that the spectral radius does
not distinguish between a small set and its disked hull. Finally, let f : A — B
be a bounded homomorphism and let S C A be small. Then the spectral radius
is contractive in the sense that

p(f(5); B) < p(S; A)
since f((r=15)°°) = (r~1f(5))> C B is small provided (r—15) is small.

6. EQUIVARIANT ANALYTIC AND LOCAL CYCLIC HOMOLOGY

In this section we recall the definition of equivariant differential forms and the
equivariant X-complex and define equivariant analytic and local cyclic homol-
ogy. In addition we discuss the relation to equivariant entire cyclic homology
for finite groups in the sense of Klimek, Kondracki and Lesniewski and the
original definition of local cyclic homology due to Puschnigg.

First we review basic properties of equivariant differential forms. The equivari-
ant n-forms over a separated G-algebra A are defined by Q% (A4) = Oc @ Q™ (A)
where Q"(A) is the space of uncompleted differential n-forms over A. The
group G acts diagonally on Q% (A) and we have an obvious Og-module struc-
ture given by multiplication on the first tensor factor. In this way the space
Q% (A) becomes a separated AYD-module.

On equivariant differential forms we consider the following operators. We have
the differential d : Q% (A) — Q%" (A) given by

d(f(s) ® xodxy -+ -dxy) = f(8) ® dxodxy - - - dxy,
and the equivariant Hochschild boundary b : Q% (A) — ngl (A) defined by

b(f(s)@moday - - - dxy) = f(s) @ mozrdas - - - day,

n—1

+ (—1)jf(s) ® xodzy - - d(xjzitr) - dey

(]

1
)" f(s)® (5_1 Ty )Todxy -+ dXp_q.

— .

+
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Moreover there is the equivariant Karoubi operator x : Q% (A) — Qg (A) and
the equivariant Connes operator B : Q% (A) — Q%" (A) which are given by the
formulas

k(f(s) @ xodxy - - -day) = (=1)" 1 f(s) @ (s - dwy)xoday - - - dvyy 4

and
n

B(f(s)®xzodxy - - dxy,) = Z(fl)mf(s) @s ' (depyy i day)dxg - - - dag, s,
i=0

respectively. All these operators are AYD-maps, and the natural symmetry

operator T' for AYD-modules is of the form

T(fs)@w)=f(s)®s " w

on equivariant differential forms. We shall write Qg (A) for the direct sum of
the spaces Q% (A) in the sequel. The analytic bornology on Qg (A) is defined
using the identification Q¢ (A) = Og @ Q(A).

Together with the operators b and B the space Qg (A) of equivariant differen-
tial forms may be viewed as a paramixed complex [35] which means that the
relations > = 0, B2 = 0 and [b, B] = bB + Bb = id —T hold. An important
purpose for which equivariant differential forms are needed is the definition of
the equivariant X-complex of a G-algebra.

DEFINITION 6.1. Let A be a separated G-algebra. The equivariant X -complex
X (A) of A is the paracomplex

d
Xa(A): Qg(A) <_b_> Qg (A)/b(Q%(4)).

Remark in particular that if 9 denotes the boundary operator in Xg(A) then
the relation 9% = id —T follows from the fact that equivariant differential forms
are a paramixed complex.

After these preparations we come to the definition of equivariant analytic cyclic
homology.

DEFINITION 6.2. Let G be a totally disconnected group and let A and B be
separated G-algebras. The bivariant equivariant analytic cyclic homology of A
and B is

HAS (A, B) = H.(Homg(Xa(T(A® Ke)), Xa(T(B®Kg))°)).

The algebra g occuring in this definition is the subalgebra of the algebra of
compact operators K(L?(G)) on the Hilbert space L?(G) obtained as the linear
span of all rank-one operators |€)(n| with £, n € D(G). This algebra is equipped
with the fine bornology and the action induced from K(L?(G)). An important
property of the G-algebra K¢ is that it is projective as a G-module.

We point out that the Hom-complex on the right hand side of the definition,
equipped with the usual boundary operator, is an ordinary chain complex al-
though both entries are only paracomplexes. Remark also that for the trivial
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group one reobtains the definition of analytic cyclic homology given in [21].

It is frequently convenient to replace the paracomplex X¢(7 (A ® K¢g)) in the
definition of the analytic theory with another paracomplex construced using the
standard boundary B + b in cyclic homology. For every separated G-algebra
A there is a natural isomorphism X¢ (7 A) = Q&"(A) of AYD-modules where
Q& (A) is the space Q¢ (A) equipped with the transposed analytic bornology.
The transposed analytic bornology is the bornology generated by the sets

(oo}
D®SUD®|[SldSuU | ] n! D ® [S)[dS](dS)>"

n=1
where D C Og and S C A are small. The operators b and B are bounded with
respect to the transposed analytic bornology. It follows that Q%" (A) becomes
a paracomplex with the differential B 4+ b. We remark that rescaling with the
constants n! in degree 2n and 2n + 1 yields an isomorphism between Q" (A)
and the space Q¢ (A) equipped with the analytic bornology.

THEOREM 6.3. Let G be a totally disconnected group. For every separated
G-algebra A there exists a bornological homotopy equivalence between the para-
complezes X (T A) and QE"(A).

Proof. The proof follows the one for the equivariant periodic theory [35] and the
corresponding assertion in the nonequivariant situation [21]. Let Q,, : Qg (A) —
Q%(A) C Q¢(A) be the canonical projection. Using the explicit formula for
the Karoubi operator one checks that the set {C"k7Q,|0 < j <n,n >0} of
operators is equibounded on ¢(A) with respect to the analytic bornology for
every C' € R. Similarly, the set {k"Q,|n > 0} is equibounded with respect to
the analytic bornology and hence {C"x7Q,,|0 < j < kn,n > 0} is equibounded
as well for each k € N. Thus an operator on Qg (A) of the form Y77 Qnhn (k)
is bounded with respect to the analytic bornology if (hy,)nen is a sequence of
polynomials whose degrees grow at most linearly and whose absolut coefficient
sums grow at most exponentially. By definition, the absolute coefficient sum
of Z?:o ajal is Z?:o |a;|. The polynomials f,, and g, occuring in the proof
of theorem 8.6 in [35] satisfy these conditions. Based on this observation, a
direct inspection shows that the maps involved in the definition of the desired
homotopy equivalence in the periodic case induce bounded maps on Qg (A)
with respect to the analytic bornology. This yields the assertion. O
Let G be a finite group and let A be a unital Banach algebra on which G acts
by bounded automorphisms. Klimek, Kondracki and Lesniewski defined the
equivariant entire cyclic cohomology of A in this situation [19]. We may also
view A as a bornological algebra with the bounded bornology and consider the
equivariant analytic theory of the resulting G-algebra.

PROPOSITION 6.4. Let G be a finite group acting on a unital Banach algebra A
by bounded automorphisms. Then the equivariant entire cyclic cohomology of
A coincides with the equivariant analytic cyclic cohomology HAS (A, C) where
A is viewed as a G-algebra with the bounded bornology.
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Proof. Tt will be shown in proposition 7.5 below that tensoring with the algebra
K¢ is not needed in the definition of H AS for finite groups. Let us write C(G)
for the space of functions on the finite group G. Using theorem 6.3 we see
that the analytic cyclic cohomology HA%(A,C) is computed by the complex
consisting of families (¢, )n>0 of n+ 1-linear maps ¢,, : AT x A" — C(G) which
are equivariant in the sense that

bn(t-ao,t-ar,...,t-ap)(s) = bnlag,a,...,a,)t tst)

and satisfy the entire growth condition
[n/2]! max |pn(ag, at,...,an)(t)] < cs

for ag € [S],a1,...,an € S and all small sets S in A. Here [n/2] =k for n = 2k
or n = 2k + 1 and cg is a constant depending on S. The boundary operator
is induced by B + b. An argument analogous to the one due to Khalkhali in
the non-equivariant case [18] shows that this complex is homotopy equivalent
to the complex used by Klimek, Kondracki and Lesniewski. ]

DEFINITION 6.5. Let G be a totally disconnected group and let A and B be sep-
arated G-algebras. The bivariant equivariant local cyclic homology HLS (A, B)
of A and B is given by

H.(Homg(Xa(T(A® Ka)™, Xa(T (B ® Ka))-9)).

Recall that the derived completion X of a paracomplex X was introduced
in section 4. In terms of the local derived category of paracomplexes defini-
nition 6.5 can be reformulated in the following way. The construction of the
derived completion shows together with proposition 4.7 that the paracomplex
Xo(T(A ® Kg))te is locally projective for every separated G-algebra A. It
follows that the local cyclic homology group HLS (A, B) is equal to the space
of morphisms in the local derived category between X¢(7 (A ® Kg))“¢ and
Xa(T(B®Kg))ke. Consequently, the passage from the analytic theory to the
local theory consists in passing from the homotopy category of paracomplexes
to the local derived category and replacing the completion functor by the de-
rived completion.

Both equivariant analytic and local cyclic homology are equipped with an
obvious composition product. Every bounded equivariant homomorphism
f : A — B induces an element [f] in HA%(A, B) and in HLS(A, B), re-
spectively. In particular, the identity map id : A — A defines an element in
these theories which acts as a unit with respect to the composition product.
If G is the trivial group then definition 6.5 reduces to the local cyclic theory
defined by Meyer in [24]. Let us briefly explain how this definition of local
cyclic homology is related to the original approach by Puschnigg. In [33] a
Fréchet algebra A is called nice if there is a neighborhood of the origin U such
that S°° is precompact for all compact sets S C U. This condition is equivalent
local multiplicativity if A is viewed as a bornological algebra with the precom-
pact bornology [21]. Hence the class of nice Fréchet algebras can be viewed as
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a particular class of locally multiplicative bornological algebras. One has the
following result [24].

PROPOSITION 6.6. Let (A;)icr and (Bj)jes be inductive systems of nice Fréchet
algebras and let A and B denote their direct limits, respectively. If the systems
(Ai)ier and (Bj)jes have injective structure maps then HL, (A, B) is naturally
isomorphic to the bivariant local cyclic homology for (A;)icr and (Bj)jes as
defined by Puschnigg.

Proof. According to the assumptions the inductive system is(X (7 A)) is iso-
morphic to the formal inductive limit of ?is(X (7 A4;));cs in the category of
inductive systems of complexes. The completion of the latter is equivalent to
the inductive system that is used in [33] to define the local theory. Comparing
the construction of the local derived category with the definition of the derived
ind-category given by Puschnigg yields the assertion. O
Consequently, the main difference between the approaches is that Meyer works
explicitly in the setting of bornological vector spaces whereas Puschnigg uses
inductive systems and considers bornologies only implicitly.

7. HOMOTOPY INVARIANCE, STABILITY AND EXCISION

In this section we show that equivariant analytic and local cyclic homology are
invariant under smooth equivariant homotopies, stable and satisfy excision in
both variables.

For the proof of homotopy invariance and stability of the local theory we need
some information about partial completions. A subset )V of a bornological
vector space V is called locally dense if for any small subset S C V there is a
small disk 7' C V such that any v € S is the limit of a T-convergent sequence
with entries in VNT'. If V is a metrizable locally convex vector space endowed
with the precompact bornology then a subset V C V is locally dense iff it is
dense in V in the topological sense [26]. Let V be a bornological vector space
and let ¢ : ¥V — V be a bounded linear map into a separated bornological vector
space V. Then V together with the map i is called a partial completion of V if
1 is a bornological embedding and has locally dense range.

We will need the following property of partial completions.

LEMMA 7.1. Let i : A — A be a partial completion of separated G-algebras.
Then the induced chain map Xg(T A — Xa(T AL is an isomorphism. If
the derived completion is replaced by the ordinary completion the corresponding
chain map is an isomorphism as well.

Proof. Let us abbreviate C = Xg(7.A) and D = X (7T A). Tt suffices to show
that the natural map 0is(C)¢ — 2is(D)° is an isomorphism of inductive sys-
tems. Since ¢ : A — A is a partial completion the same holds true for the
induced chain map C' — D. By local density, for any small disk S C D
there exists a small disk 7" C D such that any point in S is the limit of a T-
convergent sequence with entries in C NT. Observe that C' N7 is a small disk
in C since the inclusion is a bornological embedding. Consider the isometry
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(CNT) — (T). By construction, the space (S) is contained in the range of
the isometry (C'NT)¢ — (T)¢ obtained by applying the completion functor.
Since (C'NT')¢ maps naturally into (A(G){(C'NT))¢ we get an induced AYD-map
A(G)(S) — (A(G){C' NT))c. Using this observation one checks easily that the
completions of the inductive systems is(C) and dis(D) are isomorphic. O
We refer to [26] for the definition of smooth functions with values in a bornolog-
ical vector space. For metrizable locally convex vector spaces with the precom-
pact bornology one reobtains the usual notion. Let B be a separated G-algebra
and denote by C*°([0, 1], B) the G-algebra of smooth functions on the inter-
val [0,1] with values in B. The group G acts pointwise on functions, and if
B is complete there is a natural isomorphism C*°([0,1], B) = C°°[0,1]®B.
A smooth equivariant homotopy is a bounded equivariant homomorphism
O : A — C=([0,1], B). Evaluation at ¢ € [0,1] yields an equivariant homo-
morphism ®; : A — B. Two equivariant homomorphisms from A to B are
called equivariantly homotopic if they can be connected by an equivariant ho-
motopy.

PROPOSITION 7.2 (Homotopy invariance). Let A and B be separated G-algebras
and let ® : A — C*°([0,1], B) be a smooth equivariant homotopy. Then the in-
duced elements [®¢] and [®1] in HLS (A, B) are equal. An analogous statement
holds for the analytic theory. Hence HAS and HLS are homotopy invariant
in both variables with respect to smooth equivariant homotopies.

Proof. For notational simplicity we shall suppress occurences of the algebra g
in our notation. Assume first that the homotopy ® is a map from A into C[t|® B
where C[t] is viewed as a subalgebra of C'*°[0, 1] with the subspace bornology.
The map ® induces a bounded equivariant homomorphism 7A — C[t| ® 7B
since the algebra C'*°[0, 1] is locally multiplicative. As in the proof of homotopy
invariance for equivariant periodic cyclic homology [35] we see that the chain
maps Xg(7 A) — X¢(7 B) induced by @y and ®; are homotopic. Consider in
particular the equivariant homotopy ® : C[z] ® B — CJt] ® C[z] ® B defined by
O(p(z)®@b) = p(tr) ®b. We deduce that the map B — Clz]® B that sends b to
b®1 induces a homotopy equivalence between X¢(7 (Clz]® B)) and X (7T B).
It follows in particular that the chain maps X¢(7 (Clz]® B)) — X (7 B) given
by evaluation at 0 and 1, respectively, are homotopic.

Let us show that C[t] ® B — C°°([0, 1], B) is a partial completion. It suffices
to consider the corresponding map for a normed subspace V' C B since source
and target of this map are direct limits of the associated inductive systems
with injective structure maps. For a normed space V the assertion follows
from Grothendieck’s description of bounded subsets of the projective tensor
product C>®[0,1]&, V.

Due to lemma 7.1 the chain map X¢(7 (C[t] ® B))* — Xa(7C*([0,1], B))e
is an isomorphism. Hence the chain maps X (7C>([0, 1], B))** — X (7 B)X*
induced by evalution at 0 and 1 are homotopic as well. Now let & : A —
C*>([0,1], B) be an arbitrary homotopy. According to our previous argument,
composing the induced chain map X¢(7 A) — Xg(TC>=([0,1], B))° with
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the evaluation maps at 0 and 1 yields the claim for the local theory. The
assertion for the analytic theory are obtained in the same way. O
Next we study stability. Let V' and W be separated G-modules and let b :
W x V — C be an equivariant bounded bilinear map. Then (b)) =V @ W is a
separated G-algebra with multiplication

(1 ®@y1) - (12 @ y2) = 21 @ b(y1, T2)y2

and the diagonal G-action. A particular example is the algebra g which is
obtained using the left regular representation V=W = D(G) and the pairing

b(f.g) = /G F(s)g(s)ds

with respect to left Haar measure.

Let V and W be separated G-modules and let b : W x V be an equivariant
bounded bilinear map. The pairing b is called admissible if there exists nonzero
G-invariant vectors v € V and w € W such that b(w,v) = 1. In this case
p = v®uw is an invariant idempotent element in I(b) and there is an equivariant
homomorphism ¢4 : A - A® () given by ta(a) = a ® p.

PRrROPOSITION 7.3. Let A be a separated G-algebra and let b : W x V. — C
be an admissible pairing. Then the map 14 induces a homotopy equivalence
Xa(TA) ~ Xa(T(A®(b))e. If the derived completion is replaced by the
ordinary completion the corresponding map is a homotopy equivalence as well.

This result is proved in the same way as in [35] using homotopy invariance.
As a consequence we obtain the following stability properties of equivariant
analytic and local cyclic homology.

PROPOSITION 7.4 (Stability). Let A be a separated G-algebra and let b: W x
V — C be a nonzero equivariant bounded bilinear map. Moreover let l(b, A)

be any partial completion of A ® I(b). Then there exist invertible elements in
HL§ (A, 1(b, A)) and HAS (A, 1(b, A)).

Proof. For the uncompleted stabilization A®1(b) the argument for the periodic
theory in [35] carries over. If I(b, A) is a partial completion of A ® I(b) the
natural chain map X (7 (A®1(b) @ Kg)) — Xa(7 (I(b, A) ® K¢g)) becomes an
isomorphism after applying the (left derived) completion functor according to
lemma 7.1. g
An application of theorem 7.3 yields a simpler description of HAS and HLS in
the case that G is a profinite group. If G is compact the trivial one-dimensional
representation is contained in D(G). Hence the pairing used to define the
algebra K¢ is admissible in this case. This implies immediately the following
assertion.

PROPOSITION 7.5. Let G be a compact group. Then we have a natural isomor-
phism

HLY(A, B) = H,(Homa(Xa(T A, Xo(TB)™))
for all separated G-algebras A and B. An analogous statement holds for the
analytic theory.
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To conclude this section we show that equivariant analytic and local cyclic
homology satisfy excision in both variables.

THEOREM 7.6 (Excision). Let A be a separated G-algebra and let € : 0 —
K — FE — @ — 0 be an extension of separated G-algebras with bounded linear
splitting. Then there are two natural exact sequences

HL§ (A, K) — HL§ (A, E) — HL§ (A, Q)

T |

HLY(A,Q) =—— HL{ (A, E) <— HLY (A, K)

and
HL§(Q,A) —= HL§(E,A) —= HL§ (K, A)

| |

HLY(K, A) <— HL{(B, A) <— HL{(Q, A)

The horizontal maps in these diagrams are induced by the maps in £ and the
vertical maps are, up to a sign, given by composition product with an element
ch(€) in HLS(Q, K) naturally associated to the extension. Analogous state-
ments hold for the analytic theory.

Upon tensoring the given extension £ with g we obtain an extension of sepa-
rated G-algebras with equivariant bounded linear splitting. As in [35] we may
suppress the algebra g from our notation and assume that we are given an
extension

of separated G-algebras together with an equivariant bounded linear splitting
o : @ — F for the quotient map 7 : £ — Q.

We denote by Xg(7E : TQ) the kernel of the map Xg(77) : Xg(TE) —
Xa(7Q)) induced by 7. The splitting o yields a direct sum decomposition
XG(TE) = Xag(TE : TQ) ® X¢(7TQ) of AYD-modules. Moreover there is a
natural chain map p: Xq(TK) — X¢(TE : 7Q).

Theorem 7.6 is a consequence of the following result.

THEOREM 7.7. The map p: Xg(TK) — Xa(TE : TQ) is a homotopy equiv-
alence.

Proof. The proof follows the arguments given in [21], [35]. Let £ C TE be
the left ideal generated by K C 7FE. Then £ is a separated G-algebra and we
obtain an extension
N——> ¢ —>K

of separated G-algebras where 7 : £ — K is induced by the canonical projection
T : TE — E. As in [35] one shows that the inclusion £ C TFE induces a
homotopy equivalence ¢ : Xg(£) — Xo(TE : 7Q). The inclusion TK — £
induces a morphism of extensions from 0 - JK - TK — K — 0to 0 —
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N — £ — K — 0. The algebra N is analytically nilpotent and the splitting
homomorphism v : £ — 7 £ for the canonical projection constructed by Meyer
in [21] is easily seen to be equivariant. Using homotopy invariance it follows
that the induced chain map Xg(7K) — Xg(£) is a homotopy equivalence.
This yields the assertion. O

8. COMPARISON BETWEEN ANALYTIC AND LOCAL CYCLIC HOMOLOGY

In this section we study the relation between equivariant analytic and local
cyclic homology. We exhibit a special case in which the analytic and local
theories agree. This allows to do some elementary calculations in equivariant
local cyclic homology. Our discussion follows closely the treatment by Meyer,
for the convenience of the reader we reproduce some results in [24].

A bornological vector space V is called subcomplete if the canonical map V —
V¢ is a bornological embedding with locally dense range.

PROPOSITION 8.1. Let V' be a separated bornological vector space. The following
conditions are equivalent:

a) V is subcomplete.
b) for every small disk S C V there is a small disk T C V containing S such
that every S-Cauchy sequence that converges in V' is already T -convergent.
¢) for every small disk S C 'V there is a small disk T C 'V containing S such
that every S-Cauchy sequence which is a null sequence in V is already a
T-null sequence.
d) for every small disk S C 'V there is a small disk T C V' containing S such
that
ker((S)¢ — (T)%) = ker((5)® — (U)®)
for all small disks U containing T'.
e) for every small disk S C V there is a small disk T C V containing S such
that
ker((S)° — (T)¢) = ker((S)¢ — V°).

Proof. a) = b) Let S C V be a small disk. Then there exists a small disk
R C V¢ such that every S-Cauchy sequence is R-convergent. Since V — V¢ is
a bornological embedding the disk 7" = RNV is small in V. By construction, ev-
ery S-Cauchy sequence that converges in V is already T-convergent. b) = ¢) is
clear since V' is separated. ¢) < d) Let U be a small disk containing S. Then the
kernel of the map (S)¢ — (U)° consists of all S-Cauchy sequences which are U-
null sequences. Since a null sequence in V' is a null sequence in U for some small
disk U the claim follows. d) = e) Let dis(V) be the inductive system of normed
spaces obtained as the dissection of the bornological vector space V. Condition
d) implies that the direct limit of dis(V')¢ is automatically separated. That is,
V¢ =1lim0is(V)* is equal to the vector space direct limit of the system dis(V)°
with the quotient bornology. Hence ker((S) — V°) = [Jker((S)¢ — (U)°)
where the union is taken over all small disks U containing S. e) = a) For each
small disk S in V let us define ((S)) = (S)¢/ker((S)¢ — V). According to
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e) the resulting inductive system is isomorphic to dis(V)¢ and lim({(S)) = V*.
Assume that z € ker((S) — ((S))). Then z € ker({(S) — (T)) for some small
disk T" containing S. This implies = 0 since the maps (S) — (T') — (T')¢ are
injective. Hence (S) — ((S)) is injective for all small disks S. It follows that
t:V — V¢ is a bornological embedding with locally dense range. O
We are interested in conditions which imply that the space Q(A) for a sepa-
rated bornological algebra A is subcomplete. As usual, we consider Q(A) as a
bornological vector space with the analytic bornology. Given a small set S C A
we shall write (5) for the disked hull of

sSu st ugen
n=1
inside Q(A) where we use the canonical identification Q"(A) = A®"+1 ¢ A®n
for the space of differential forms. Remark that the sets £(S) generate the
analytic bornology.

DEFINITION 8.2. A separated bornological algebra A is called tensor subcomplete
if the space Q(A) is subcomplete.

Let us call the tensor powers V®" for n € N of a bornological vector space
V' uniformly subcomplete provided the following condition is satisfied. For
every small disk S C V there is a small disk T" C V containing S such that,
independent of n € N, any S®"-Cauchy sequence which is a null sequence
in V" is already a 7%"-null sequence. In particular, the spaces V®" are
subcomplete for all n in this case.

LEMMA 8.3. A separated bornological algebra A is tensor subcomplete iff the
tensor powers A®™ for n € N are uniformly subcomplete.

Proof. Assume first that the space ©(A) is subcomplete. Let S C A be a small
disk and let (xj)ken be a S®"-Cauchy sequence which is a null sequence in
AP We write i, : A" — Q(A) and p,, : Q(A) — A®" for the natural inclu-
sion and projection onto one of the direct summands A®™ in Q(A). The maps
in and p,, are clearly bounded. In particular, the image of (xy)ren under i, is a
Q(5)-Cauchy sequence which is a null sequence in Q(A). Hence it is a Q(T")-null
sequence for some T C A. Since p,,(Q(T)) = T®" and x = ppin(zy) it follows
that the sequence (zy)ren is a T®"-null sequence. Moreover the choice of T'
does not depend on n. This shows that the tensor powers A®™ are uniformly
subcomplete.

Conversely, assume that the tensor powers A" are uniformly subcomplete. Let
S C A be a small disk and let T C A be a small disk such that S®*-Cauchy
which are null sequences in A®™ are T®™-null sequences. In addition we may
assume 25 C T. Let us write P, : Q(A) — Q(A) for the natural projection
onto the direct summand @j_, A% & A®/. Then P,(Q(S)) is contained in
Q(S) and the projections P, are equibounded. Moreover P, converges to the
identity uniformly on ©(S) since id — P, has norm < 27" as a map from (£2(.5))
into (Q(2S5)) C (UT)). Now let (x)ren be a null sequence in Q(A) which is
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Q(9)-Cauchy. The components of P,(z) are S®*¥-Cauchy sequences which
are null sequences in A®* and hence T®*-null sequences by hypothesis. Hence
(Pn(zk))nen is a Q(T)-null sequence for all n. Moreover (P, (2))nen converges
to xy, for every k, and this convergence is uniform in k. If follows that (xj)nen
is a Q(T)-null sequence, and we deduce that Q(A) is tensor subcomplete. O
Our next aim is to exhibit certain analytical conditions which are sufficient for
tensor subcompleteness. Recall that a subset S of a complete bornological vec-
tor space V is called (relatively) compact if it is a (relatively) compact subset
of the Banach space (T") for some small completant disk 7' C V. A complete
bornological vector space V is a Schwartz space if every small subset of V is
relatively compact. Every Fréchet space with the precompact bornology is a
Schwartz space.

Let V be a normed space and let W be an arbitrary bornological vector space.
By definition, a sequence (fy,)nen of bounded linear maps f, : V.— W con-
verges uniformly to f : V — W if there exists a small disk T C W such that all
frn and f are bounded linear maps V' — (T') and the sequence (f,,)nen converges
to f in Hom(V, (T")) in operator norm. A bounded linear map f: V — W can
be approximated uniformly on compact subsets by finite rank operators if for
every compact disk S C V there exists a sequence (fy,)nen of finite rank oper-
ators f, : V.— W such that f, converges uniformly to f in Hom((S),W). An
operator f : V — W is of finite rank if it is contained in the image of the natu-
ral map from the uncompleted tensor product W @ V' into Hom(V, W) where
V' = Hom(V, C) is the dual space of V. By definition, a complete bornologi-
cal vector space V satisfies the (global) approximation property if the identity
map on V can be approximated uniformly on compact subsets by finite rank
operators.

We recall that a bornological vector space V is regular if the bounded linear
functionals on V separate the points of V. Let us remark that there is also a
local version of the approximation property which is equivalent to the global
one if we restrict attention to regular spaces. Finally, we point out that for a
Fréchet space with the precompact bornology the bornological approximation
property is equivalent to Grothendieck’s approximation property [26].

PROPOSITION 8.4. Let A be a bornological algebra whose underlying bornological
vector space is a Schwartz space satisfying the approximation property. Then
A is tensor subcomplete.

Proof. According to lemma 8.3 it suffices to show that the tensor powers of A
are uniformly subcomplete. Let S C A be a small disk. We may assume S is
compact and that there is a completant small disk T' C A containing S such that
the inclusion (S) — (T') can be approximated uniformly by finite rank operators
on A. We will show that ker((S)®" — (U)®") = ker({S)®" — (T)€") for
every completant small disk U containing T'. As in the proof of proposition
8.1 this statement easily implies that the tensor powers A®™ are uniformly
subcomplete. ) )

Take an element z € ker((S)®™ — (U)®"). Then there is a compact disk
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K C (S) such that z € K®n_ Since A is regular we find a sequence (fi)ren of
finite rank operators fi : A — (T') approximating the inclusion map uniformly

on K. The uniform convergence of the operators fr on K implies that f,?”
converges uniformly towards the canonical map (K >®” — <T>®”. In particular,
the image of z in (T)®" is the limit of f,?”(x). Since the finite rank maps f;
are restrictions of maps defined on (U) and # is in the kernel of (S)®" — (U)®n
we have f,fg’"(x) =0 for all k. Hence € ker((S)®" — (T)®") as desired. [
It follows in particular that the algebra A ® Kg is tensor subcomplete provided
A is a Schwartz space satisfying the approximation property.

PROPOSITION 8.5. Let G be a totally disconnected group and let A be a G-
algebra whose underlying bornological vector space is a Schwartz space satisfying
the approximation property. Then the canonical chain map

Xa(T(A®Ke))™ — Xa(T(A® Ka))
induces an isomorphism in the local derived category.

Proof. Let us abbreviate X = Xg(7(A ® Kg)) and remark that the AYD-
module X can be written in the form X = A(G)®V for a separated bornological
vector space V. Using this observation and proposition 8.4 one checks easily
that the inductive system dis(X ) is essentially injective. Due to proposition 4.7
it follows that the natural map X 2 ho-lim(dis(X)¢) — lim(dis(X)°) = X°¢
— —

is a local homotopy equivalence. This yields the claim. O
An analogous argument shows that X (7 C)“¢ — X (7 C)¢ is a local homotopy
equivalence. It follows that there is a chain of canonical isomorphisms

Xa(TC)™ = Xg(TC)® = X(C) = Og0]

in the local derived category. In fact, the seond isomorphism is a consequence
of the fact that C is analytically quasifree combined with homotopy invariance.
The last equality is established in [35].

Consider in particular the case that G is a compact group. Then the paracom-
plex O¢g[0] is primitive. Taking into account stability, this yields

HLY(C, B) = H.($omg (Oc0], Xa(T B)™)),
and analogously we have
HAY(C, B) = H.($omg(0Og[0], Xa(T B)%))

for every G-algebra B. We conclude that there exists a natural transforma-
tion HLY(C, B) — HA%(C, B) between equivariant local and analytic cyclic
homology if the group is compact.

PROPOSITION 8.6. Let G be compact and let B be a G-algebra whose underly-
ing bornological vector space is a Schwartz space satisfying the approximation
property. Then the natural map

HLSY(C,B) — HAY(C, B)
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is an isomorphism. In particular, there is a canonical isomorphism
HLY(C,C) = HAY(C,C) = R(G)
where R(G) is the algebra of conjugation invariant smooth functions on G.

Proof. Using stability, the first assertion follows from proposition 8.5 and the
fact that Og[0] is primitive. For the second claim observe that R(G) = (Og)¢
is the invariant part of Og.

9. THE ISORADIAL SUBALGEBRA THEOREM

In this section we discuss the notion of an isoradial subalgebra and prove the
isoradial subalgebra theorem which states that equivariant local cyclic homol-
ogy is invariant under the passage to isoradial subalgebras.

Recall that a subset V of a bornological vector space V is called locally dense
if for any small subset S C V there exists a small disk 7' C V such that any
v € S is the limit of a T-convergent sequence with entries in ¥V N'T. Moreover
recall that a separated (complete) bornological algebra A is locally multiplica-
tive iff it is isomorphic to an inductive limit of (complete) normed algebras.
The following definition is taken from [26].

DEFINITION 9.1. Let A and A be complete locally multiplicative bornological
algebra. A bounded homomorphism t : A — A between bornological algebras is
called isoradial if it has locally dense range and

p(1(S); A) = p(S; A)

for all small subsets S C A. If in addition v is injective we say that A is an
isoradial subalgebra of A.

We will frequently identify .4 with its image ¢(A) C A provided ¢ : A — A is
an injective bounded homomorphism. However, note that the bornology of A
is usually finer than the subspace bornology on ¢(A). Remark in addition that
the inequality p(¢(S); A) < p(S;.A) is automatic for every small subset S C A.
If A and A are G-algebras and ¢ : A — A is an equivariant homomorphism
defining an isoradial subalgebra we say that A is an isoradial G-subalgebra of
A.

Assume that ¢ : A — A is an equivariant homomorphism and consider the
equivariant homomorphism i : A® Ko — A ® K¢ obtained by tensoring ¢ with
the identity map on Kg. It is shown in [26] that isoradial homomorphisms
are preserved under tensoring with nuclear locally multiplicative algebras. In
particular, this yields the following statement.

ProrosITION 9.2. If1: A — A is an isoradial G-subalgebra then i : AQKg —
AR Kg is an isoradial G-subalgebra as well.

Note that the algebra g carries the fine bornology which implies that tensor
products of g with complete spaces are automatically complete.
Let us now formulate and prove the isoradial subalgebra theorem.
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THEOREM 9.3. Let t: A — A be an isoradial G-subalgebra. Suppose that there
exists a sequence (op)ner of bounded linear maps o, : A — A such that for
each completant small disk S C A the maps 1o, converge uniformly towards
the inclusion map (S) — A. Then the class [1] € HLE (A, A) is invertible.

Note that the existence of bounded linear maps o, : A — A with these prop-
erties already implies that A C A is locally dense. We point out that the maps
0y, in theorem 9.3 are not assumed to be equivariant.

In fact, as a first step in the proof we shall modify these maps in order to ob-
tain equivariant approximations. Explicitly, let us define equivariant bounded
linear maps s, : AQ Kg — AR Kg by

sn(a®@k)(r,t) =t-o,(t™" - a)k(r,t)

where we view elements in A® Kz as smooth function on G x G with values in
A. As above we write 4 for the equivariant homomorphism A® Kg — A® Kg
induced by ¢. Since the maps to,, converge to the identity uniformly on small
subsets of A by assumption, the maps is, converge to the identity uniformly
on small subsets of A ® Kq.

We deduce that theorem 9.3 is a consequence of the following theorem.

THEOREM 9.4. Let t: A — A be an isoradial G-subalgebra. Suppose that there
exists a sequence (o, )ner of equivariant bounded linear maps oy, : A — A such
that for each completant small disk S C A the maps oy, converge uniformly
towards the inclusion map (S) — A. Then the chain map Xq(TA) — Xa(T A)
induced by ¢ is a local homotopy equivalence.

The proof of theorem 9.4 is divided into several steps. Let S C A be a small
completant multiplicatively closed disk. By the definition of uniform conver-
gence, there exists a small completant disk 7' C A containing .S such that to,
defines a bounded linear map (S) — (T') for every n and the sequence (104, )nen
converges to the natural inclusion map in Hom((S), (T")) in operator norm.
Hence there exists a null sequence (e, )nen of positive real numbers such that
ton(x) —x € €,T for all x € S. After rescaling with a positive scalar A\ we may
assume that 7' is multiplicatively closed and that S C AT'. Using the formula

Wi, (xa y) = l0Op (xy) — lOp (x)ban (y)
= (ton(zy) — 2y) = (ton(x) — 2)(Lon(y) — y) — 2(on(y) —y) — (ton(z) —2)y
for x,y € S and that T is multiplicatively closed we see that for any given ¢ > 0

we find N € N such that w,,, (S,S5) C €T for n > N. Remark that we have
Wie, = W, since ¢ is a homomorphism. We deduce

lim p(ws, (5,5); A) =0
n—oo
using again that T is multiplicatively closed. This in turn implies
lim p(ws, (5,5);4) =0
n—oo

since A C A is an isoradial subalgebra. This estimate will be used to obtain
local inverses for the chain map induced by ¢.
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We need some preparations. Let B and C be arbitrary separated G-algebras.
Any equivariant bounded linear map f : B — C extends to an equivariant
homomorphism 7 f : 7B — 7. This homomorphism is bounded iff f has
analytically nilpotent curvature.

LEMMA 9.5. Let C be a separated bornological algebra and let S C T C' be small.
Then
p(1c(8); C) = p(S;TC)

where ¢ : TC — C' is the quotient homomorphism.

Proof. Taking into account that 7¢ is a bounded homomorphism it suffices to
show that p(7¢(5); C) < 1 implies p(S;7C) < 1. We may assume that the set
S is of the form
S =R+ [T)(dTdT)>

where R C C and T' C C are small disks. If p(7¢(S);C) < 1 we find A > 1
such that (AR)>® C C is small. Let us choose p such that A=! + p=1 < 1
and consider the small disk P = p(AR)*™ in C. By construction we have
R-[P] € AP as well as dRd[P] C p~'dPdP. Moreover the disked hull T
of PU [P](dPdP)® is a small subset of 7C' which contains R. Now consider
x € R and [yo]dy: - - - dyan, € [P](dPdP)™. Since

x o [yoldy: - - - dyan = x[yoldy1 - - - dyan + dxd[yo]dy: - - - dyan

the previous relations yield ¥R o I C I for some v > 1. By induction we see
that the multiplicative closure @) of ¥R in 7C' is small. Choose 1 such that
vl 2n7l <1, set
K =q[T)|(dTdT)*>°

and let L be the multiplicative closure of [Q] o K o [Q]. By construction, the
set [Q] o K o [@Q] is contained in the analytically nilpotent algebra JC which
implies that L C 7C is small. Let J C 7C be the disked hull of the set @ + L.
Then J is small and we have S C J. In addition, it is straightforward to check
RoJ Cc v=1J and [T)|(dTdT)*®oJ C 2n~*J which shows SoJ C J. In the same
way as above it follows that S°° C TC is small and deduce p(S;7C) <1. O

LEMMA 9.6. Let f : B — C be an equivariant bounded linear map between
separated G-algebras. Consider the induced chain map Xa(T f) : Xa(TB) —
Xa(TC). Given a small subset S C Xa(T B) there exists a small subset T C
B such that Xg(T f) is bounded on the primitive submodule generated by S
provided w¢(T,T)*> is small.

Proof. Tt suffices to show that, given a small set S C 7 B, there exists a small
set T' C B such that T f(S) C 7C is small provided wy(T,T)> is small. We
may assume that S is of the form [R|(dRdR)> for some small set R C B.
Let F: B — TC be the bounded linear map obtained by composing f with
the canonical bounded linear splitting o : C — 7C. The homomorphism
Tf:TB — 7C is given by

T f([zoldz1 - - - dw2n) = [F(20)|lwr (21, 22) - - wr (T2n—1, T2n)
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which shows that 7 f(S) is small provided wp(R, R)* is small. Consider the
natural projection 7¢ : 7C — C. According to lemma 9.5 the homomorphism
7o preserves the spectral radii of all small subsets in 7C'. Using ¢ (wr(R, R)) =
wr(R, R) we see that wp(R, R)* is small provided p(ws(R, R)) < 1. Setting
T = AR for some A\ > 1 yields the assertion. O
Let us come back to the proof of theorem 9.4. If P C Xg(7 A) is a primitive
subparacomplex then lemma 9.6 shows that o,, induces a bounded chain map
P — Xg(TA) provided n is large enough. In fact, we will prove that the maps
oy, can be used to define bounded local homotopy inverses to the chain map
tv : Xa(TA) — Xq(TA) induced by ¢.

More precisely, let k, : A — A ® C[t] be the equivariant bounded linear map
given by kn(z)(t) = (1 — t)(topn)(x) + tx. Here C[t] is equipped with the
bornology induced from C*°[0,1]. Observe that the maps k,, converge to the
homomorphism sending = to z ® 1 uniformly on small subsets of A. The same
reasoning as for the maps to,, above shows

lim p(wg, (5,9); A® C[t]) =0

for all small subsets S C A. Now assume that P C Xg(7 A) is a primitive
subparacomplex. According to lemma 9.6 there exists N € N such that the
induced chain map Xg(7A) — Xg(7(A ® C[t])) is bounded on P for all
n > N. We compose this map with the chain homotopy between the evaluation
maps at 0 and 1 arising from homotopy invariance to get a bounded AYD-map
K, : P — X¢g(TA) of degree one which satisfies 0K,, + K,0 = id —(t0,)« on
P.

Similarly, consider the equivariant bounded linear map h,, : A — A®C[t] given
by hp(z)(t) = (1 — t)(one)(x) + tz and observe that (¢ ® id)h,, = k,t. Since
the algebra C'*°[0, 1] is nuclear the inclusion A ® C[t] — A ® CJt] preserves the
spectral radii of small subsets [26]. Hence the above spectral radius estimate
for k,, implies

Jim_p(wn,, (5,5); A@ C[i]) =0

for all small subsets S C A. Now let Q C X (7 .A) be a primitive subparacom-
plex. For n sufficiently large we obtain in the same way as above a bounded
AYD-map H, : Q@ — Xg(T A) of degree 1 such that 0H,, + H,0 = id —(o,1)«
on Q.

Using these considerations it is easy to construct bounded local contracting
homotopies for the mapping cone of the chain map ¢, : Xg(7A) — Xg(T A).
This shows that ¢, is a local homotopy equivalence and completes the proof of
theorem 9.4.

10. APPLICATIONS OF THE ISORADIAL SUBALGEBRA THEOREM

In this section we study some consequences of the isoradial subalgebra theorem
in connection with C*-algebras. This is needed to show that equivariant local
cyclic homology is a continuously and C*-stable functor on the category of G-
C*-algebras. Moreover, we discuss isoradial subalgebras arising from regular
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smooth functions on simplicial complexes [36].

In the sequel we write A ® B for the (maximal) tensor product of two C*-
algebras A and B. We will only consider such tensor products when one of the
involved C*-algebras is nuclear, hence the C*-tensor product is in fact uniquely
defined in these situations. Moreover, our notation should not lead to confusion
with the algebraic tensor product since we will not have to work with algebraic
tensor products of C*-algebras at all. All C*-algebras are equipped with the
precompact bornology when they are considered as bornological algebras.

As a technical preparation we have to examine how the smoothing of G-C*-
algebras is compatible with isoradial homomorphisms. Let us recall from [25]
that a representation 7w of G on a complete bornological vector space V' is con-
tinuous if the adjoint of 7 defines a bounded linear map [7] : V. — C(G,V)
where C(G, V) is the space of continuous functions on G with values in V' in
the bornological sense. For our purposes it suffices to remark that the repre-
sentation of G on a G-C*-algebra equipped with the precompact bornology is
continuous in the bornological sense. We need the following special cases of
results obtained by Meyer in [26].

LEMMA 10.1. Let A and A be complete locally multiplicative bornological alge-
bras on which G acts continuously. If 1 : A — A is an equivariant isoradial
homomorphism then

Gmooth(t) : Gmooth(A) — Smooth(A)

s an isoradial homomorphism as well. Moreover, if C is a complete nuclear
locally multiplicative G-algebra then the natural homomorphism

Gmooth(A)HC — Gmooth(ARC)
is isoradial.
Proof. It is shown in [26] that the inclusion Gmooth(B) — B is an isoradial
subalgebra for every complete locally multiplicative bornological algebra B on
which G acts continuously. This yields easily the first claim. In addition, the
homomorphism Smooth(A)®C — ARC is isoradial because C' is nuclear [26].
Since the action on C' is already smooth it follows that

Gmooth(A)RC = Gmooth(GSmooth(A)RC) — Smooth(ARC)

is isoradial according to the first part of the lemma. O
Let A be a G-C*-algebra and consider the natural equivariant homomorphism
A®C>[0,1] — C([0,1],4) = A® C[0,1]. This map induces a bounded equi-
variant homomorphism

Gmooth(A)RC>[0, 1] = Gmooth(ARC>[0,1]) — Smooth(C([0,1], 4))
and we have the following result.
PROPOSITION 10.2. The map Gmooth(A)RC>°[0,1] — Smooth(A ® C[0,1]) is
an isoradial G-subalgebra and defines an invertible element in

HLS (Gmooth(A)&C[0,1], Smooth(A @ C[0,1]))
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for every G-C*-algebra A.

Proof. Tt is shown in [26] that the natural inclusion ¢ : A®C®[0,1] —
C([0,1], A) is isoradial. Hence the homomorphism &mooth(A)@C>[0,1] —
Smooth(C([0, 1], A)) is isoradial according to lemma 10.1.

We choose a family o, : C([0,1], A) — A®C*>[0,1] of equivariant smoothing
operators such that the maps to,, are uniformly bounded and converge to the
identity pointwise. It follows that the maps to,, converge towards the identity
uniformly on precompact subsets of C([0,1], A). The maps o, induce equivari-
ant bounded linear maps o, : Gmooth(C([0,1], 4)) — Smooth(A)C>[0,1]
satisfying the condition of the isoradial subalgebra theorem 9.3. This yields
the assertion. O
Let Kg = K(L?(G)) be the algebra of compact operators on the Hilbert space
L?(G). The C*-algebra K¢ is equipped with the action of G' induced by the
regular representation. For every G-C*-algebra A we have a natural bounded
equivariant homomorphism A®Kg — A ® Kg. This gives rise to equivariant
homomorphisms

Gmooth(A)DKe — Gmooth(ADKg) — Gmooth(A @ Kg).

Similarly, let K = K(I?(N)) be the algebra of compact operators on an infinite
dimensional separable Hilbert space with the trivial G-action. If M. (C) de-
notes the direct limit of the finite dimensional matrix algebras M,,(C) we have
a canonical bounded homomorphism &mooth(A)® M (C) — SGmooth(A @ K).

PROPOSITION 10.3. The homomorphism Gmooth(A)®Ks — Gmooth(A®Kg)
is an isoradial G-subalgebra and defines an invertible element in

HLS (Gmooth(A)RK e, Gmooth(A @ Kg))

for every G-C*-algebra A. An analogous assertion holds for the homomorphism
Gmooth(A)D My (C) — Gmooth(A @ K).

Proof. We will only treat the map Gmooth(A)®Kg — Gmooth(A ® K¢) since
the claim concerning the compact operators with the trivial action is obtained
in a similar way.

Observe that a small subset of g is contained in a finite dimensional subal-
gebra of the form M, (C). Since A ® M,(C) is a bornological subalgebra of
A ® K¢ it follows that the homomorphism ¢ : AQKe — A ® K¢ is isoradial.
Due to lemma 10.1 the same is true for the induced map Gmooth(A)RKs —
Smooth(A ®Kg). Since G is second countable and D(G) C L?(G) is dense we
find a countable orthonormal basis (e,)nen of L?(G) contained in D(G). Pro-
jecting to the linear subspace C* C L?(G) generated by the vectors ey, ..., e,
defines a bounded linear map o, : 4 ® K¢ — A®Kqg. The maps o, are
uniformly bounded and converge towards the identity on A ® Kg pointwise.
Hence they converge towards the identity uniformly on small subsets of AQ K.
Explicitly, if p, € AT®Kg denotes the element given by

n
Pn=Y_ 1@ ej){e;]

j=1

DOCUMENTA MATHEMATICA 12 (2007) 313-359



346 CHRISTIAN VOIGT

then o, can be written as 0,(T") = p,Tpn. Since the vectors e; are smooth
we conclude that o, induces a bounded linear map Gmooth(A ® Kg) —
Gmooth(A)®K e which will again be denoted by o,,. The maps to,, converge
towards the identity uniformly on small subsets of Gmooth(A ® Kg) as well.
Hence the claim follows from the isoradial subalgebra theorem 9.3. U
We conclude this section with another application of the isoradial subalgebra
theorem. Recall from [36] that a G-simplicial complex is a simplicial complex
X with a type-preserving smooth simplicial action of the totally disconnected
group GG. We will assume in the sequel that all G-simplicial complexes have at
most countably many simplices. A regular smooth function on X is a function
whose restriction to each simplex o of X is smooth in the usual sense and which
is constant in the direction orthogonal to the boundary do in a neighborhood
of do. The algebra C°(X) of regular smooth functions on X with compact
support is a G-algebra in a natural way.

ProproOSITION 10.4. Let X be a finite dimensional and locally finite G-simplicial
complex. Then the natural map ¢ : CX(X) — Co(X) is an isoradial G-
subalgebra and defines an invertible element in

HLE (C(X), Gmooth(Co(X))).

Proof. As for smooth manifolds one checks that the inclusion homomomor-
phism ¢ : C°(X) — Cy(X) is isoradial. By induction over the dimension of X
we shall construct a sequence of bounded linear maps o, : Co(X) — C°(X)
such that vo, converges to the identity uniformly on small sets. For k& = 0
this is easily achieved by restriction of functions to finite subsets and extension
by zero. Assume that the maps o, are constructed for all (k — 1)-dimensional
G-simplicial complexes and assume that X is k-dimensional. If X*~! denotes
the (k — 1)-skeleton of X we have a commutative diagram

O (X, XH71) = O (X) — O (X" )

| l l

C(X, XF1) > Co(X) —— Co(X* )

where C*°(X, X*~1) and C(X, X*¥~1) denote the kernels of the canonical re-
striction homomorphisms and the vertical arrows are natural inclusions. It
is shown in [36] that the upper extension has a bounded linear splitting,
and the lower extension has a bounded linear splitting as well. Note that
the C(X, X% 1) is a C*-direct sum of algebras of the form Cy(AF \ OAF)
where A denotes the standard k-simplex and JAF is its boundary. Simi-
larly, C° (X, X*~1) is the bornological direct sum of corresponding subalgebras
C>(Ak\ OAF). Hence, by applying suitable cutoff functions, we are reduced to
construct approximate inverses to the inclusion C2°(AF\JAF) — Co(AF\GAF).
This is easily achieved using smoothing operators. Taking into account the iso-
radial subalgebra theorem 9.3 yields the assertion. O
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11. TENSOR PRODUCTS

In this section we study the equivariant X-complex for the analytic tensor
algebra of the tensor product of two G-algebras. This will be used in the
construction of the equivariant Chern-Connes character in the odd case.

Let us first recall the definition of the tensor product of paracomplexes of AYD-
modules [35]. If C and D are paracomplexes of separated AYD-modules then
the tensor product C'X D is given by

(C‘ZD)O =Cyh ®og Dy® Cq ®og Dy, (CgDh = (1 KOs Dy Cy Rog D,

where the group G acts diagonally and Og acts by multiplication. Using that
O¢ is commutative one checks that the tensor product C' X D becomes a sep-
arated AYD-module in this way. The boundary operator 0 in C' X D is defined

by

g — (0®id —id@d g (09T idwd

07 \ideo 0T ' \-ideo owid

and turns C' X D into a paracomplex. Remark that the formula for 9 does
not agree with the usual definition of the differential in a tensor product of
complexes.
Now let A and B be separated bornological algebras. As it is explained in [6],
the unital free product At * BT of AT and Bt can be written as

At « Bt = AT @ BT o @/ (4) ® Q0 (B)
§>0
with the direct sum bornology and multiplication given by the Fedosov product
(z1 @ y1) 0 (22 @ yo) = 172 @ y1y2 — (— 1)1 dzs @ dy1ye.

An element agday - - - da,, ® bodby - - - db,, corresponds to agbg[ai,b1] - [an, by]
in the free product under this identification where [z,y] = zy — yz denotes
the ordinary commutator. Note that if A and B are G-algebras then the free
product is again a separated G-algebra in a natural way.

Consider the extension

I = A+« Bt —"> At @ Bt

where I is the kernel of the canonical homomorphism 7 : At BT — At @ BT,
Using the description of the free product in terms of differential forms one has

I"=Poi4) e (B
Jj=k
for the powers of the ideal I.
Analogous to the analytic bornology on tensor algebras we consider an analytic

bornology on free products. By definition, the analytic bornology on At * B+
is the bornology generated by the sets

S@TU fj (S(dS)™ U (dS)™) @ (T(dT)™ U (dT)™)

n=1
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for all small sets S C A and T C B. This bornology turns A" * B into
a separated bornological algebra. We write A™ x BT for the free product of
At and BT equipped with the analytic bornology. Clearly the identity map
At x Bt — At « BT is a bounded homomorphism. Consequently the natural
homomorphisms ¢4 : AT — AT« BT and tp : BT — AT x BT are bounded.
Every unital homomorphism f : AT«B* — C into a unital bornological algebra
C is determined by a pair of homomorphisms f4 : A — C and fp : B — C.
Define a linear map ¢y : A® B — C by cf(a,b) = [fa(a), fB(b)]. Let us call
fa and fp almost commuting if

cr(8)* = er ()"

is small for every small subset S C A® B. Clearly, ¢y = 0 iff the images of f4
and fp commute. The following property of AT x Bt is a direct consequence
of the definition of the analytic bornology.

LEMMA 11.1. Let A and B be separated bornological algebras. For a pair of
bounded equivariant homomorphisms fa : A — C and fp : B — C into a unital
bornological algebra C the corresponding unital homomorphism f : AT« BT —
C is bounded iff f4o and fp are almost commuting.

In particular, the canonical homomorphism 7 : At *B+ — AT ® BT is bounded
and we obtain a corresponding extension

[ = A+« Bt — A+ @ B+t

of bornological algebras with bounded linear splitting. It is straightforward
to verify that the ideal I with the induced bornology is analytically nilpotent.
Remark that if A and B are G-algebras then all the previous constructions are
compatible with the group action.

Let I be a G-invariant ideal in a separated G-algebra R and define the para-
complex HZ (R, I) by

H&(R,1)? = Oc ® R/(Og ® I* + b(Og ® IdR))
in degree zero and by
HE(R, 1) = Og @ Q' (R)/(b(QE(R)) + Oc ® IQ'(R))
in degree one with boundary operators induced from X¢(R).
Now let A and B be separated G-algebras. We abbreviate R = AT « BT and
define an AYD-map ¢ : X¢(A") K Xq(BT) — HE(R, I) by
o(f(t) @x@y) = f(t) @y
O(f(t) ® wodzy @ yodyr) = f(t) @ xo(t™ - yo)[z1,t ™" - 1]
o(f(t) @ z @ yodyr) = f(t) ® zyody:
o(f () ® modzy ®y) = f(t) ® zodz1y
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where [z,y] = zy — yx denotes the commutator. The following result for the
analytic free product R = A" x BT is obtained in the same way as the corre-
sponding assertion in [35] for the ordinary free product.

PROPOSITION 11.2. The map ¢ : Xg(AT)XXa(BT) — HA(R,I) defined above
is an isomorphism of paracomplezes for all separated G-algebras A and B.

After these preparations we shall prove the following assertion.

PROPOSITION 11.3. Let A and B be separated locally multiplicative G-algebras.
Then there exists a natural chain map

Xe(T(A* ® BY)¥ — (Xe(TA))* R Xc(TB)))

of paracomplexes. There is an analogous chain map if the derived completion
is replaced by the ordinary completion.

Proof. Let us abbreviate Q@ = (TA)* ® (TB)*. The canonical homomor-
phism 7 : Q — A"t ® BT induces a bounded equivariant homomorphism
T7Q — T(AT @ BT). Conversely, the obvious splitting for 7 is a lanilcur
since the algebras A and B are locally multiplicative. It follows that there is
a canonical bounded equivariant homomorphism 7 (AT @ BT) — 7Q as well.
As a consequence we obtain a natural homotopy equivalence

Xg(TQ) ~ Xg(T(A+ X B+))

using homotopy invariance.

We have another analytically nilpotent extension of ) defined as follows. Since
commutators in the unital free product (7 A)" x (7 B)" are mapped to zero
under the natural map (7 A)* * (T B)T — @ we have the extension

where R = (T A)* x (TB)™" is the analytic free product of (7A)* and (7B)™"
and I is the kernel of the bounded homomorphism 7 : R — (. Since the
G-algebra I is analytically nilpotent the natural equivariant homomorphism
7@ — R is bounded and induces a chain map X¢(7 Q) — Xg(R).
Next we have an obvious chain map

p: Xa(R) — HE(R, 1)
and by proposition 11.2 there exists a natural isomorphism

Xc(TAT)RXc(TB)T) = HE(R, 1)

of paracomplexes. Assembling these maps and homotopy equivalences yields
a chain map Xg(7 (At ® B")) - Xg((TA)T) X Xg((7TB)™"). Inspecting the
construction of the derived completion we get in addition a natural chain map

(Xe(TAT) B Xe((TB)Y) — (Xe(TA)) R Xc(TB)) )
which immediately yields the assertion for the derived completion. For the

ordinary completion the argument is essentially the same. O
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COROLLARY 11.4. Let A and B be separated locally multiplicative G-algebras.
Then there exists a natural chain map

Xa(T(A® B)™ — (Xa(T A" 8 Xo(TB)-).

An analogous assertion holds if the derived completion is replaced by the ordi-
nary completion.

Proof. The claim follows easily from proposition 11.3 by applying the excision
theorem 7.7 to tensor products of the extensions 0 - A — AT — C — 0 and
0—B— BT —C—0. O

PROPOSITION 11.5. Let A be a separated locally multiplicative G-algebra. Then
the natural chain map

Xo(T(C® A) — (Xa(TC)* R Xg(T A)le)te

is a homotopy equivalence. Similarly, one obtains a homotopy equivalence if
the derived completion is replaced by the ordinary completion.

Proof. Recall that the natural map X (7C)X — X (7 C)¢ is a local homotopy
equivalence and that X¢(7C)¢ ~ X¢(C) = O¢[0] using the projection homo-
morphism 7C — C. As a consequence we obtain a natural homotopy equiva-
lence (Xg(TC) X X (T A)Le)e — (Og[0] K X (7 A)E¢)te. The composition
of the latter with the chain map X (7 (C®A))L¢ — (Xg(TC)LRX (T A)ke)te
obtained in corollary 11.4 can be identified with the canonical homotopy equiv-
alence Xg(T(C® A)) = Xg(TA)° ~ (Xg(T A)F¢)te. This proves the claim
for the derived completion. For the ordinary completion the argument is anal-
0ogous. ]
We remark that using the perturbation lemma one may proceed in a similar
way as for the periodic theory [35] in order to construct a candidate for the
homotopy inverse to the map X (R)® — HZ(R)¢ induced by the projection
p occuring in the proof of proposition 11.3. The problem is that the formula
thus obtained does not yield a bounded map in general. However, a more re-
fined construction might yield a bounded homotopy inverse. For our purposes
proposition 11.5 is sufficient.

12. ALGEBRAIC DESCRIPTION OF EQUIVARIANT KASPARAROV THEORY

In this section we review the description of equivariant K K-theory arising
from the approach developped by Cuntz [4], [5]. This approach to K K-theory
is based on extensions and will be used in the definition of the equivariant
Chern-Connes character below.

One of the virtues of the framework in [4] is that it allows to construct bivariant
versions of K-theory in very general circumstances. Moreover, one can adapt
the setup to treat equivariant versions of such theories as well. The main
ingredient in the definition is a class of extensions in the underlying category
of algebras which contains certain fundamental extensions. In particular one
needs a suspension extension, a Toeplitz extension and a universal extension.
In addition one has to specify a tensor product which preserves the given class
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of extensions.

For equivariant K K-theory the underlying category of algebras is the category
G-C*-Alg of separable G-C*-algebras. By definition, morphisms in G-C*-Alg
are the equivariant x-homomorphisms. The correct choice of extensions is the
class € of extensions of G-C*-algebras with equivariant completely positive
splitting. As a tensor product one uses the maximal C*-tensor product.

The suspension extension of a G-C*-algebra A is

Es(A): A(0,1)>——= A(0,1] —= A4

where A(0,1) denotes the tensor product A ® Cp(0,1), and accordingly the
algebras A(0, 1] and A[0, 1] are defined. The group action on these algebras is
given by the pointwise action on A.
The Toeplitz extension is defined by

E(A) K@A——>FTA—=C(SH A

where ¥ is the Toeplitz algebra, that is, the universal C*-algebra generated by
an isometry. As usual K is the algebra of compact operators, and K and ¥ are
equipped with the trivial G-action.

Finally, one needs an appropriate universal extension [5]. Given an algebra
A in G-C*-Alg there exists a tensor algebra T'A in G-C*-Alg together with a
canonical surjective equivariant *-homomorphism 74 : TA — A such that the
extension

Eu(A): JA TA A

is contained in € where J A denotes the kernel of 74. Moreover, this extension is
universal in the following sense. Given any extension€ :0 —- K — F — A — 0
in & there exists a commutative diagram

JA TA A
K E A

The left vertical map JA — K in this diagram is called the classifying map
of £. One should not confuse T'A with the analytic tensor algebra used in the
construction of analytic and local cyclic homology.

One defines J2A = J(JA) and recursively J"A = J(J" 1A) for n € N as
well as J°A = A. Let us denote by ¢4 : JA — C(S') ® A the equivariant
*-homomorphism obtained by composing the classifying map JA — A(0,1) of
the suspension extension with the inclusion map A(0,1) — C(S!)® A given by
viewing A(0,1) as the ideal of functions vanishing in the point 1. This yields
an equivariant *-homomorphism €4 : J24 — K ® A as the left vertical arrow
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in the commutative diagram

J2A TJA JA
l/fA l ldm
K® A T®A C(SH®A

where the bottom row is the Toeplitz extension £:(A). The classifying map
€4 plays an important role in the theory. If [A, B]e denotes the set of equi-
variant homotopy classes of morphisms between A and B then the previous
construction induces a map S : [J¥A, K ® B] — [J¥T2A4,K ® B] by setting
S[f] =[(K® f)oesrtzy]. Here one uses the identification K@ K® B2 K® B.
We write K¢ for the algebra of compact operators on the regular representation
L?(G) equipped with its natural G-action. The equivariant stabilization Ag of
a G-C*-algebra A is defined by Ag = A ® K® K¢. It has the property that
Ac @ K(H) 2 Ag as G-C*-algebras for every separable G-Hilbert space H.
Using this notation the equivariant bivariant K-group obtained in the approach
of Cuntz can be written as

kk$ (A, B) = lim [J**¥ (A¢), K ® Bg]

J

where the direct limit is taken using the maps S defined above. It follows
from the results in [5] that kk$ (A, B) is a graded abelian group and that there
exists an associative bilinear product for kk¢. Let us remark that we have
inserted the algebra J**%/ (Kg ® K® A) in the formula defining kk& instead of
Ke @ K® J**27 A as in [5]. Otherwise the construction of the product seems
to be unclear.
We need some more terminology. A functor F' defined on the category of G-C*-
algebras with values in an additive category is called (continuously) homotopy
invariant if F(fy) = F(f1) whenever f, and f; are equivariantly homotopic
sx-homomorphisms. It is called C*-stable if there exists a natural isomorphism
F(A) 2 F(A® K® Kg) for all G-C*-algebras A. Finally, F' is called split
exact if the sequence 0 — F(K) — F(F) — F(Q) — 0 is split exact for every
extension 0 — K — E — @ — 0 of G-C*-algebras that splits by an equivariant
s*-homomorpism o : Q — FE.
Equivariant K K-theory [16] can be viewed as an additive category K K¢ with
separable G-C'*-algebras as objects and K KOG (A, B) as the set of morphisms
between two objects A and B. Composition of morphisms is given by the Kas-
parov product. There is a canonical functor ¢ : G-C*-Alg — KK which is
the identity on objects and sends equivariant s-homomorphisms to the corre-
sponding K K-elements. Equivariant K K-theory satisfies the following univer-
sal property [34], [22].

THEOREM 12.1. An additive functor F' from G-C*-Alg into an additive category
C factorizes uniquely over KKC iff it is continuously homotopy invariant, C*-
stable and split exact. That is, given such a functor F' there exists a unique
functor chp : KKCG — C such that F = chp .
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It follows from the theory developped in [4] that the functor kk€ is homotopy
invariant, C*-stable and split exact. In fact, it is universal with respect to these
properties. As a consequence one obtains the following theorem.

THEOREM 12.2. For all separable G-C*-algebras A and B there is a natural
isomorphism KKC(A, B) = kk&(A, B).

As already indicated above we will work with the description of equivariant
K K-theory provided by kkC in the sequel. In other words, for our purposes we
could as well take the definition of kk& as definition of equivariant K K-theory.

13. THE EQUIVARIANT CHERN-CONNES CHARACTER

In this section we construct the equivariant Chern-Connes character from equi-
variant K K-theory into equivariant local cyclic homology. Moreover we calcu-
late the character in a simple special case.

First let us extend the definition of equivariant local cyclic homology HLS to
bornological algebras that are equipped with a not necessarily smooth action of
the group G. This is done by first applying the smoothing functor Gmooth in
order to obtain separated G-algebras. In particular, we may view equivariant
local cyclic homology as an additive category HL® with the same objects as
G-C*-Alg and HLg(A, B) as the set of morphisms between two objects A and
B. By construction, there is a canonical functor from G-C*-Alg to HLS.

THEOREM 13.1. Let G be a totally disconnected group. The canonical functor
from G-C*-Alg to HLS is continuously homotopy invariant, C*-stable and split
exact.

Proof. Proposition 10.2 shows together with proposition 7.2 that HLY is con-
tinuously homotopy invariant. We obtain C*-stability from proposition 10.3
together with proposition 7.4. Finally, if 0 - K — E — @ — 0 is a split
exact extension of G-C*-algebras then 0 — Gmooth(K) — Smooth(E) —
Smooth(Q) — 0 is a split exact extension of G-algebras. Hence split exactness
follows from the excision theorem 7.6. O
Having established this result, the existence of the equivariant Chern-Connes
character in the even case is an immediate consequence of the universal prop-
erty of equivariant Kasparov theory. More precisely, according to theorem 13.1
and theorem 12.1 we obtain an additive map

ch§ : KK§ (A, B) — HL§ (A, B)

for all separable G-C*-algebras A and B. The resulting transformation is mul-
tiplicative with respect to the Kasparov product and the composition product,
respectively. Remark that the equivariant Chern-Connes character chg is de-
termined by the property that it maps K K-elements induced by equivariant
s-homomorphisms to the corresponding H L-elements.

Before we extend this character to a multiplicative transformation on K K¢
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we shall describe chOG more concretely using the theory explained in sec-
tion 12. Let us fix some notation. If f : A — B is an equivariant ho-
momorphism between G-algebras we denote by ch(f) the associated class in
Ho(9Home (X (T AL, Xo(T B)'¢)). By slight abuse of notation we will also
write ch(f) for the corresponding element in HL§ (A, B). Similarly, assume
that £ : 0 - K — E — @ — 0 is an extension of G-algebras with equivariant
bounded linear splitting. We denote by ch(€) the element —d(idx) where

8 : Ho(Homg(Xa(TK), Xo(TK)E)) — H (Homa(Xa(TQ)H, Xa(T K)L))

is the boundary map in the six-term exact sequence in bivariant homology
obtained from the generalized excision theorem 7.7. Again, by slight abuse of
notation we will also write ch(€) for the corresponding element in H L (Q, K).
If f: A — B is an equivariant *-homomorphism between G-C*-algebras we
write simply ch(f) instead of ch(Gmooth(f)) for the element associated to the
corresponding homomorphism of G-algebras. In a similar way we proceed for
extensions of G-C*-algebras with equivariant completely positive splitting.
Using theorem 13.1 one shows that ch(eq) € HLY(J?A, K ® A) is invertible.
The same holds true for the iterated morphisms ch(e}) € HLE (J*" A, K ® A).
Remark also that ch(t4) € HLE (A, K ® A) is invertible.
Now assume that 2 € KK§ (A, B) is represented by f : J?"Ag — K ® Bg.
Then the class ch§ (f) is corresponds to

ch(vag) - ch(eh,) ™t - ch(f) - chepg) ™
in HL§ (Ag, Be), and the latter group is canonically isomorphic to HL§ (A, B).
For the definition of chlG we follow the discussion in [4]. We denote by j :
Co(0,1) — C(S?) the inclusion homomorphism obtained by viewing elements
of Cy(0,1) as functions on the circle vanishing in 1. Moreover let K be the
algebra of compact operators on [?(N) and let ¢ : C — K be the homomorphism
determined by sending 1 to the minimal projection onto the first basis vector in
the canonical orthonormal basis. If A is any G-C*-algebra we write 14 : A —
A ® K for the homomorphism obtained by tensoring ¢ with the identity on A.
In the sequel we write &, instead of £,(C) and similarly & instead of & (C) for
the Toeplitz extension of C.

ProPoOSITION 13.2. With the notation as above one has
, 1

ch(&) - ch(j) - ch(&) = 5 ch(v)
i Hy (Sﬁomg (XG (T(C)]LC, Xa (TK)L(’))
Proof. First observe that the same argument as in the proof of proposition
10.3 shows that the element ch(¢) is invertible. Let us write z for the element
in Hy($Homg (X (TC)e, Xa(TC)H)) given by of (2i) ch(&s) - ch(j) - ch(&;) -
ch(¢)~1. Tt suffices to show that z is equal to the identity.
We consider the smooth analogues of the extensions & and & used in [4]. The
smooth version of the suspension extension is

C*>(0,1)>——=C>(0,1] —=C
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where C>(0, 1) denotes the algebra of smooth functions on [0, 1] vanishing with
all derivatives in both endpoints. Similarly, C>°(0, 1] is the algebra of all smooth
functions f vanishing with all derivatives in 0 and vanishing derivatives in 1,
but arbitrary value f(1). The smooth Toeplitz extension is

K> T C>(Sh)

where K* is the algebra of smooth compact operators and T is the smooth
Toeplitz algebra defined in [4]. We obtain another endomorphism z*° of
X (TC)% by repeating the construction of z using the smooth supension and
Toeplitz extensions. By naturality one has in fact 2°° = z, hence it suffices to
show that z2°° is equal to the identity.

Recall that we have a local homotopy equivalence X (7 C)L¢ — Xg(7C)¢ ~
X¢(C). Using the fact that the G-action is trivial on all algebras under consid-
eration the same argument as in [4] yields that z* is equal to the identity. O
We shall use the abbreviation z4 = ch(€,(A)) for the element arising from the
universal extension of the G-C*-algebra A.

PROPOSITION 13.3. Let A be a G-C*-algebra and let €4 : J?(A) — K® A be
the canonical map. Then we have the relation

1
TATJA - Ch(eA) = 2—7” Ch(LA)
in Ho(Homa(Xa (T (Smooth(A)DKa)) e, Xa(T (Smooth(A @ K)&Kg)) ).
Proof. For an arbitrary G-C*-algebra A consider the commutative diagram

Xa(T (Gmooth(A)&Kg))Le

Xa(T (Gmooth(C ® A)Kg))ke
X (T (Gmooth(JA)RKg)) ' — Xa(T (Gmooth(JC @ A)2Kg))H
X (T (&mooth(J2A)&Ke)) —— X (T (Smooth(J*C @ A)oKq))e
ch(ea) ch(ec®id)

X (T (Gmooth(K ® A)@Ke))Le —— X (7 (Smooth(K @ A)@Kq))ke

ch(za)™?! ch(te®id) !

Xa(T (Gmooth(A)SK ) ——— X (T (Gmooth(C @ A)SKg))Le
where the upper part is obtain from the morphism of extensions

JA TA A

S T

AR JC—ARTC——= A®C
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and a corresponding diagram with A replaced by JA. Observe that there is a
natural homomorphism D@G&mooth(A)0Ke — Gmooth(D ® A)@K g for every
trivial G-C*-algebra D. For simplicity we will write Gmooth(A) instead of
Gmooth(A)®K¢ in the following commutative diagram

Xa(T (Co6mooth(A)))¢ ——— (Xg(TC) K X (7 Gmooth(A))ke)ke
2cRid
Xa(T(JC&®Gmooth(A)))r¢ —— (Xg(T(JC)) K Xo(T Smooth(A))ke)ke
2 scRid

X (T (J*CeGmooth(A))) —— (X (7T (J2C))L K X (T Smooth(A))Le)ke
ch(ec® id) ch(ec)Nid

X (T (KoGmooth(A)))Le

(Xe(TK) R X (T Gmooth(A))Le)ke

ch(ta)™! ch(:) " 'Xid

X6(T (CGmooth(A)))ke

(Xa(TC)M* K X (T Smooth(A))Le)ke

obtained using corollary 11.4. According to proposition 11.5 the first and the
last horizontal map in this diagram are homotopy equivalences. Moreover,
we may connect the right column of the first diagram with the left column
of the previous diagram. Using these observations the assertion follows from
proposition 13.2 in the same way as in [4]. O
After these preparations we shall now define the Chern-Connes character in
the odd case. For notational simplicity we assume that all G-C*-algebras A
are replaced by their equivariant stabilizations Ag. We may then use the
identification
KKSE(A, B) = lim [J*7%(A),K @ B]
Kl

and obtain a canonical isomorphism KK (A, B) = KK§(JA, B). Consider
an element u € KK (A, B) and denote by ug the element in KK§(JA, B)
corresponding to u. Then the element Ch?(u) € HL§ (A, B) is defined by

ch€ (u) = V2mi x4 - ch§ (uo)

in terms of the character in the even case obtained before. Using proposition
13.3 one concludes in the same way as in [4] that the formula

ch (z - y) = chf(z) - ch§ (y)

holds for all elements » € KK (A, B) and y € KK]-G(B, Q).
We have now completed the construction of the equivariant Chern-Connes char-
acter and summarize the result in the following theorem.
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THEOREM 13.4. Let G be a second countable totally disconnected locally com-
pact group and let A and B be separable G-C*-algebras. Then there exists a
transformation
¢h¢ : KKY(A,B) — HLS(A, B)

which is multiplicative with respect to the Kasparov product in KKC& and
the composition product in HLS. Under this transformation elements in
KKg(A, B) induced by equivariant x-homomorphisms from A to B are mapped
to the corresponding elements in HLS (A, B).

The transformation obtained in this way will be called the equivariant Chern-
Connes character. One shows as in nonequivariant case that, up to possibly a
sign and a factor v/2mi, the equivariant Chern-Connes character is compatible
with the boundary maps in the six-term exact sequences associated to an ex-
tension in €.

At this point it is not clear wether the equivariant Chern-Connes character is
a useful tool to detect information contained in equivariant K K-theory. As a
matter of fact, equivariant local cyclic homology groups are not easy to cal-
culate in general. In a separate paper we will exhibit interesting situations in
which ¢h€ becomes in fact an isomorphism after tensoring the left hand side
with the complex numbers. At the same time a convenient description of the
right hand side of the character will be obtained.

Here we shall at least illustrate the nontriviality of the equivariant Chern-
Connes character in a simple special case. Assume that G is a profinite group.
The character of a finite dimensional representation of G defines an element in
the algebra R(G) = (O¢)¢ of conjugation invariant smooth functions on G.
As usual we denote by R(G) the representation ring of G.

ProprosITION 13.5. Let G be a profinite group. Then the equivariant Chern-
Connes character

ch® : KK%(C,C) — HLY(C,C)
can be identified with the character map R(G) — R(G). This identification is
compatible with the products.

Proof. Let V be a finite dimensional representation of G. Then K(V) is a
unital G-algebra and the element in R(G) = KK§(C,C) corresponding to
V is given by the class of the equivariant homomorphism py : C — K(V)
in KK§(C,K(V)) = KK§(C,C) where py is defined by py(1) = idy. Us-
ing stability of HLS and proposition 8.6 we see that the class of chOG (pv) in
HL§(C,K(V)) = HL§(C,C) = R(G) corresponds to the character of the
representation V. The claim follows easily from these observations. O
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ABSTRACT. Some corrections are given for the manuscript “Slope
Filtrations Revisited”, DOCUMENTA MATH., Vol. 10 (2005), 447-525

2000 Mathematics Subject Classification: 14F30.

Laurent Berger has pointed out that the construction of Teichmiiller presen-
tations in [3, Definition 2.5.1] is not valid: it fails to properly account for the
nonlinearity of the Teichmiller map. This would appear to invalidate those
results of [3] depending on the use of Teichmiiller presentations, or on plus-
minus-zero presentations. Fortunately, these can be corrected by adapting the
technique of strong semiunit decompositions from [2], as follows.

Retain notation as in [3, § 2.5]. A strong semiunit presentation of x € I'y is a

convergent sum x = ), ., u;m" in which:

(a) each nonzero u; belongs to I' and satisfies vy, (u;) = vo(u;) for all n > 0;
(b) if ¢ > j and w;, u; are both nonzero, then vy(u;) < vo(u;).

Such a presentation always exists by the same proof as in [2, Proposition 3.14],
but there is no uniqueness property. Nonetheless, in each of [3, Proposi-
tion 3.3.7(c), Proposition 4.2.2, Lemma 4.3.2], one may safely replace all ref-
erences to Teichmiiller presentations (including implicit references via plus-
minus-zero presentations) with strong semiunit presentations. (One should
also disregard the parenthetical remark about canonicality in the proof of [3,
Proposition 4.2.2].)

This substitution does not suffice for the proof of surjectivity in [3,
Lemma 4.3.1], which uses the uniqueness property of Teichmiiller presenta-
tions. This is harmless for the rest of the paper, because this lemma is used
nowhere. For completeness, we point out that the lemma is an immediate con-
sequence of a result of Fourquaux [1, Corollaire 3.9.19] (applied with a = 1).
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Ruochuan Liu points out that the proof of [3, Lemma 2.9.1] is incomplete: it is
only valid in case f has no slopes in [s', s), as otherwise we cannot choose the
unit v in the first sentence of the proof. To complete the proof in general, first
note that the existence of g satisfying (a) and (b) follows from [3, Lemma 2.6.7].
To prove (c), choose s” with s’ < s” < s such that f has no slopes in [s”, s). By
the proof of [3, Lemma 2.9.1] as written, f is divisible by g in 'y ). However,
since g has no slopes less than s, g is a unit in I'jy/ 4}, so f is also divisible by
g in that ring. Since the intersection I'[y o) N [y, inside T'gr o0 is equal to
[er 7 by [3, Corollary 2.5.7], f is divisible by g in [[s,7] as desired.

Liu also notes a gap in the proof of [3, Lemma 2.9.3]: it is necessary to ensure
that ;11 € T, [7‘(71]. To fix this, we must replace g;41 — x; wherever it appears
by some y; € I',. such that g;+1 — x; — y; is divisible by h;41 in I';41; this can
be carried out by an argument similar to [3, Lemma 2.9.2].

We also take this opportunity to point out two errata to [2]. First (as noted by
Kevin Buzzard), in the introduction (p. 95), it is incorrectly asserted that “T'con
consists of series which take integral values on some open annulus with outer
radius 1.” In fact, an element of I'co, acquires this property only after multi-
plication by a large power of u (and conversely). Second, in [2, Lemma 2.3], R
should be taken to be a Bézout domain, not merely a Bézout ring.
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ABSTRACT. We study low order terms of Emerton’s spectral sequence
for simply connected, simple groups. As a result, for real rank 1
groups, we show that Emerton’s method for constructing eigenva-
rieties is successful in cohomological dimension 1. For real rank 2
groups, we show that a slight modification of Emerton’s method al-
lows one to construct eigenvarieties in cohomological dimension 2.

2000 Mathematics Subject Classification: 11F33

Throughout this paper we shall use the following standard notation:
e k is an algebraic number field, fixed throughout.

e p, q denote finite primes of k, and k,, kq the corresponding local fields.

ks = k ®qg R is the product of the archimedean completions of k.

A is the adele ring of k.

Ay is the ring of finite adeles of k.

For a finite set S of places of k, we let

ks = [ kor A% =] ko

veS vgS
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1 INTRODUCTION AND STATEMENTS OF RESULTS

1.1 INTERPOLATION OF CLASSICAL AUTOMORPHIC REPRESENTATIONS

Let G be a connected, algebraically simply connected, semi-simple group over
a number field k. We fix once and for all a maximal compact subgroup
Ko C G(ks). Our assumptions on G imply that K, is connected in the
archimedean topology. This paper is concerned with the cohomology of the
following “Shimura manifolds”:

Y(Ky) = G(k\G(A)/ Ko K,

where Ky is a compact open subgroup of G(Ay). Let W be an irreducible finite

dimensional algebraic representation of G over a field extension E/k. Such a

representation gives rise to a local system Vyr on Y (K). We shall refer to the

cohomology groups of this local system as the “classical cohomology groups”:
H s (K5, W) := H* (Y (Ky), Vi ).

class.

It is convenient to consider the direct limit over all levels K¢ of these cohomol-
ogy groups:
c.lass.(Gv W) = 1l,m Hc.lass.(Kfﬂ W)
Ky

There is a smooth action of G(Ay) on HJ,.. (G,W). Since W is a represen-
tation over a field E of characteristic zero, we may recover the finite level
cohomology groups as spaces of K y-invariants:

Hc.lass.(Kf’ W) = Hc.lass.(G’ W)Kf'
It has become clear that only a very restricted class of smooth representations
of G(Ay) may occur as subquotients of the classical cohomology H} . (G, W).
For example, in the case E = C, Ramanujan’s Conjecture (Deligne’s Theorem)
gives an archimedian bound on the eigenvalues of the Hecke operators. We shall
be concerned here with the case that E is an extension of a non-archimedean
completion of k.
Fix once and for all a finite prime p of k over which G is quasi-split. Fix a
Borel subgroup B of G xj, ky and a maximal torus T C B. We let E be a
finite extension of &y, large enough so that G splits over E. It follows that
the irreducible algebraic representations of G over E are absolutely irreducible
(§24.5 of [8]). By the highest weight theorem (§24.3 of [8]), an irreducible
representation W of G over E is determined by its highest weight ¢y, which
is an algebraic character yw : T Xy, £ — GL,/E.
By a tame level we shall mean a compact open subgroup K? C G(A‘;). Fix a
tame level K, and consider the spaces of KP-invariants:

H.

class.

(Kp7 W) = Hc.lass.(G7 W)Kp .
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The group G(k,) acts smoothly on H?  (KP, W). We also have commuting
actions of the level KP Hecke algebra:

H(KP) := {f : K"\G(A’})/K‘O — E: f has compact support}.

In order to describe the representations of H(KP®), recall the tensor product
decomposition: .
H(KP) — H(Kp)mmlﬁed@H(Kp)Sph, (1)

where H(K?)%P"? is commutative but infinitely generated, and H(K¥)ramified jg
non-commutative but finitely generated. Consequently the irreducible repre-
sentations of H(KP®) are finite-dimensional.

Let q # p be a finite prime of k. We shall say that g is unramified in K? if

a) G is quasi-split over kg, and splits over an unramified extension of kg,
q q
and

(b) KP NG(kq) is a hyper-special maximal compact subgroup of G(kq) (see
[38]).

Let S be the set of finite primes q # p, which are ramified in KP. This is a
finite set, and we have

K*=Ksx [ Ky  Ks=K’nG(ks), Kq=K"NG(ky).

q unramified

This gives the tensor product decomposition (1), where we take

H(Kp)ramiﬁed =H(Kgs), H(Kp)sph _ ® ’H(Kp).

q unramified

For each unramified prime ¢, the Satake isomorphism (Theorem 4.1 of [12])
shows that H(K ) is finitely generated and commutative. Hence the irreducible
representations of H(KP)Ph over E are 1-dimensional, and may be identified
with elements of (Spec H(K*)*P1)(E). Since the global Hecke algebra is in-
finitely generated, Spec H(K?)%! is an infinite dimensional space. One might
expect that the representations which occur as subquotients of H2, . (K?, W)
are evenly spread around this space. There is an increasing body of evidence
[1, 2, 3, 10, 11, 13, 14, 15, 18, 21, 22] that this is not the case, and that
in fact these representations are contained in a finite dimensional subset of
Spec H(K*)**" independent of W.

More precisely, let 7 be an irreducible representation of G(k,) x H(K?), which
occurs as a subquotient of HJ} . (KP, W) Qg E. We may decompose 7 as a
tensor product:

T = 7Tp ® 7_rramiﬁed ® 7_rsph,

where P! is a character of H (K)%Ph; rramified i an irreducible representation
of H(KP)ramified and 7, is an irreducible smooth representation of G(k,). We
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can say very little about the pair (W, ) in this generality, so we shall make
another restriction. We shall write Jacqg(m,) for the Jacquet module of 7y,
with respect to B(k,). The Jacquet module is a smooth, finite dimensional
representation of T(ky). It seems possible to say something about those pairs
(m, W) for which 7, has non-zero Jacquet module. Such representations
are also said to have finite slope. Classically for GL3/Q, representations of
finite slope correspond to Hecke eigenforms for which the eigenvalue of U, is
non-zero. By Frobenius reciprocity, such a m, is a submodule of a smoothly
induced representation indg((::)) 6, where 0 : T(k,) — E* is a smooth character.
In order to combine the highest weight 1y, which is an algebraic character
of T, and the smooth character 6 of T(k,), we introduce the following rigid
analytic space (see [32] for background in rigid analytic geometry):

. A a commutative
— X
T(A) = Homy, —toc.an.(T(kp), A7), Banach algebra over E.

Emerton defined the classical point corresponding to 7 to be the pair
(O, TP € (T X Spec H(Kp)Sph> (E).

We let E(n, K®)class. denote the set of all classical points. Emerton defined the
eigenvariety FE(n, K?) to be the rigid analytic Zariski closure of E(n, K*)class.
in 7' x Spec H(KP)*".

Concretely, this means that for every unramified prime q and each generator Té
for the Hecke algebra H(K,), there is a holomorphic function tf] on E(n, KP)
such that for every representation 7 in H% . (K?,W) ® E of finite slope at
p, the action of T; on 7 is by scalar multiplication by tﬁl (), where z is the
corresponding classical point.

One also obtains a description of the action of the ramified part of the Hecke
algebra. This description is different, since irreducible representations of
H(KP)ramified are finite dimensional rather than 1-dimensional. Instead one
finds that there is a coherent sheaf M of H(K¥)ramificd_modules over E(n, K?),
such that, roughly speaking, the action of H(KP?)r2mified on the fibre of a clas-
sical point describes the action of H(KP)r@mified on the corresponding part of
the classical cohomology. A precise statement is given in Theorem 1 below.
Emerton introduced a criterion (Definition 1 below), according to which the
Eigencurve E(n, K*) is finite dimensional. More precisely, he was able to prove
that the projection E(n, K?) — T is finite. If we let t denote the Lie algebra
of T(E), then there is a map given by differentiation at the identity element:

T—1,
where {is the dual space of t. It is worth noting that the image in { of a classical

point depends only on the highest weight 1y, since smooth characters have zero
derivative. Emerton also proved, assuming his criterion, that the projection
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E(n, K?) — t has discrete fibres. As a result, one knows that the dimension of
the eigencurve is at most the absolute rank of G.

The purpose of this paper is to investigate Emerton’s criterion for connected,
simply connected, simple groups. Specifically, we show that Emerton’s criterion
holds for all such groups in dimension n = 1. Emerton’s criterion typically fails
in dimension n = 2. However we prove a weaker form of the criterion for n = 2,
and we show that the weaker criterion is sufficient for most purposes.

1.2 EMERTON’S CRITERION

Let p be the rational prime below p. In [18] Emerton introduced the following
p-adic Banach spaces:

*(K?,Q,) = (hgn lim H*(V (K, K?), Z/ps)) ®z, Q-
S KF

For convenience, we also consider the direct limits of these spaces over all tame
levels KP:

H*(G, Q) = lim H*(K",Q,).
K?r
We have the following actions on these spaces:

e The group G(A‘;) acts smoothly on H* (G, Qy); the subspace H* (K?,Qp)
may be recovered as the KP-invariants:

H*(K*,Q,) = H*(G,Q,)"".

e The Hecke algebra H(K?) acts on H*(K?,Q,) ® E.

o The group G(k,) acts continuously, but not usually smoothly on the Ba-

nach space H*(K?, Qp). This is an admissible continuous representation
of G(kp) in the sense of [33] (or [16], Definition 7.2.1).

o Recall that we have fixed a finite extension E/k,, over which G splits.
We let

H*(K",E) = H*(K",Q,) ®q, E.

The group G(ky) is a p-adic analytic group. Hence, we may define the
subspace of kp-locally analytic vectors in H®(KP®, E) (see [16]):

H* (KP, E)loc.an.-
This subspace is G(kp)-invariant, and is an admissible locally analytic
representation of G(k,) (in the sense of [16], Definition 7.2.7). The Lie
algebra g of G also acts on the subspace H*(K®, E)ioc.an.-

DOCUMENTA MATHEMATICA 12 (2007) 363-397



368 RicHARD HILL

For an irreducible algebraic representation W of G over E, we shall write W be
the contragredient representation. Emerton showed (Theorem 2.2.11 of [18])
that there is a spectral sequence:

EP? = Extt(W, HY(K®, E)igc.an.) = HE'L (KP,W). (2)

class.

Taking the direct limit over the tame levels KP, there is also a spectral sequence
(Theorem 0.5 of [18]):

class.

Eth(W’ f{q (G, E)loc.an.) — Herq (G, W) (3)
In particular, there is an edge map
Hgass‘ (G’ W) - Homg(W, I:[n (Ga E)loc.an.)- (4)

DEFINITION 1. We shall say that G satisfies Emerton’s criterion in dimension
n if the following holds:

For every W, the edge map (4) is an isomorphism.

This is equivalent to the edge maps from HJI  (K?, W) to
Homg(W,H”(Kp,E)loc,an,) being isomorphisms for every W and every

tame level KP.

THEOREM 1 (Theorem 0.7 of [18]). Suppose Emerton’s criterion holds for G
in dimension n. Then we have:

1. Projection onto the first factor induces a finite map E(n, K?) — T.
2. The map E(n, K?) — t has discrete fibres.

3. If (x, \) is a point of the Eigencurve such that x is locally algebraic and
of non-critical slope (in the sense of [17], Definition 4.4.3), then (x, \) is
a classical point.

4. There is a coherent sheaf M of H(KP)r*mified_modules over E(n, K*) with
the following property. For any classical point (6w, A) € E(n,K?) of
non-critical slope, the fibre of M over the point (01w, \) is isomorphic
(as a H(KP)ramified_module) to the dual of the (61w, \)-eigenspace of the
Jacquet module of HY, . (K?, w).

In fact Emerton proved this theorem for all reductive groups G/k. He verified
his criterion in the case G = GL2/Q, n = 1. He also pointed out that the
criterion always holds for n = 0, since the edge map at (0,0) for any first
quadrant F3'® spectral sequence is an isomorphism. Of course the cohomology
of G is usually uninteresting in dimension 0, but his argument can be applied
in the case where the derived subgroup of G has real rank zero. This is the
case, for example, when G is a torus, or the multiplicative group of a definite
quaternion algebra.
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1.3 OUrR MAIN RESULTS

For our main results, G is connected, simple and algebraically simply connected.
We shall also assume that G(ko) is not compact. We do not need to assume
that G is absolutely simple. We shall prove the following.

THEOREM 2. Emerton’s criterion holds in dimension 1.

For cohomological dimensions 2 and higher, Emerton’s criterion is quite rare.
We shall instead use the following criterion.

DEFINITION 2. We shall say that G satisfies the weak Emerton criterion in
dimension n if

(a) for every non-trivial irreducible W, the edge map (4) is an isomorphism,
and

(b) for the trivial representation W, the edge map (4) is injective, and its
cokernel is a finite dimensional trivial representation of G(Ay).

By simple modifications to Emerton’s proof of Theorem 1, we shall prove the
following in §4.

THEOREM 3. If the weak Emerton criterion holds for G in dimension n, then
1. Projection onto the first factor induces a finite map E(n, K?) — T.
2. The map E(n, K?) — t has discrete fibres.

3. If (x, \) is a point of the Eigencurve such that x is locally algebraic and
of non-critical slope, then either (x, ) is a classical point or (x, \) is the
trivial representation of T(ky) x H(KP)Ph.

In order to state our next theorems, we recall the definition of the congruence
kernel. As before, G/k is simple, connected and simply connected and G (ko)
is not compact. By a congruence subgroup of G(k), we shall mean a subgroup
of the form

I(Ky) = G(k) N (G(kso) x Kyp),

where Ky C G(Ay) is compact and open. Any two congruence subgroups are
commensurable.

An arithmetic subgroup is a subgroup of G(k), which is commensurable with a
congruence subgroup. In particular, every congruence subgroup is arithmetic.
The congruence subgroup problem (see the survey articles [30, 31]) is the prob-
lem of determining the difference between arithmetic subgroups and congruence
subgroups. In particular, one could naively ask whether every arithmetic sub-
group of G is a congruence subgroup. In order to study this question more
precisely, Serre introduced two completions of G(k):

Gk) = 1}}(LHG(IC)/F(K)”)7
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G(k)=_ lim  G(k)/T.
I" arithmetic
There is a continuous surjective group homomorphism G(k) — G(k). The
congruence kernel Cong(G) is defined to be the kernel of this map. Recall the
following:

THEOREM 4 (Strong Approximation Theorem [23, 24, 25, 28, 29]). Suppose
G/k is connected, simple, and algebraically simply connected. Let S be a set
of places of k, such that G(kg) is not compact. Then G(k)G(kg) is dense in
G(A).

Under our assumptions on G, the strong approximation theorem implies that
G(k) = G(Ay), and we have the following extension of topological groups:
1 — Cong(G) — G(k) — G(Af) — 1.

By the real rank of G, we shall mean the sum

m = Z ranky, G.

v|oco

It follows from the non-compactness of G(ks), that the real rank of G is at
least 1. Serre [37] has conjectured that for G simple, simply connected and
of real rank at least 2, the congruence kernel is finite; for real rank 1 groups
he conjectured that the congruence kernel is infinite. These conjectures have
been proved in many cases and there are no proven counterexamples (see the
surveys [30, 31]).

Our next result is the following.

THEOREM 5. If the congruence kernel of G is finite then the weak Emerton
criterion holds in dimension 2.

Theorems 2 and 5 follow from our main auxiliary results:

THEOREM 6. Let G be as described above. Then I~{0(G, E) = E, with the trivial
action of G(Ay).

THEOREM 7. Let G be as described above. Then

f{l (Ga E) = HomCtS(Cong(G)’ E)G(A;)fsmooth’

where Cong(G) denotes the congruence kernel of G.

The reduction of Theorem 2 to Theorem 6 is given in §2, and the reduction
of Theorem 5 to Theorem 7 is given in §3. Theorem 6 is proved in §6 and
Theorem 7 is proved in §8.

Before going on, we point out that in some cases these cohomology spaces
are uninteresting. In the case F = C, the cohomology groups are related,
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via generalizations of the Eichler—Shimura isomorphism, to certain spaces of
automorphic forms. More precisely, Franke [19] has shown that

H(:lass‘ (Kf7 W) = Hr.el‘Lie(gv KOO? w Y A(Kf))a

where A(K7) is the space of automorphic forms ¢ : G(k)\G(A)/K- K¢ — C.
The right hand side is relative Lie algebra cohomology (see for example [9]).
Since the constant functions form a subspace of A(K7), we have a (g, Ks)-
submodule W C W ® A(K/). This gives us a map:

HIZI.Lie(g’ KOO) W) - gass. (G’ W) (5)

We shall say that the cohomology of G is given by constants in dimension n if
the map (5) is surjective. For example the cohomology of SLy/Q is given by
constants in dimensions 0 and 2, although (5) is only bijective in dimension 0.
On the other hand, if G(k)\G(A) is compact then (5) is injective.

It is known that the cohomology of G is given by constants in dimensions
n < m and in dimensions n > d — m, where d is the common dimension of the
spaces Y (Ky) and m is the real rank of G. One shows this by proving that the
relative Lie algebra cohomology of any other irreducible (g, K )-subquotient
of W ® A(KY) vanishes in such dimensions (see for example Corollary I11.8.4 of
9).

If the cohomology is given by constants in dimension n, then HJ . (G, W) is
a finite dimensional vector space, equipped with the trivial action of G(Ay).
From the point of view of this paper, cohomology groups given by constants
are uninteresting. Thus Theorem 2 is interesting only for groups of real rank
1, whereas Theorem 5 is interesting, roughly speaking, for groups of real rank
2.

In fact we can often do a little better than Theorem 3. We shall prove the
following in §5:

THEOREM 8. Let G/k be connected, semi-simple and algebraically simply con-
nected and assume that the weak Emerton criterion holds in dimension n. As-
sume also that at least one of the following two conditions holds:

(a) HY, .. (G,C) is given by constants in dimensions p < n and

H' [ (8, K, C) =0; or
(b) G(k) is cocompact in G(A).
Then all conclusions of Theorem 1 hold for the eigenvariety E(n, K*).

The theorem is valid, for example, in the following cases where Emerton’s
criterion fails:

e SL3/Q in dimension 2;

e Sp,/Q in dimension 2;
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e Spin groups of quadratic forms over Q of signature (2,1) with [ > 3 in
dimension 2;

e Special unitary groups SU(2,!) with [ > 3 in dimension 2;
e SLy/k, where k is a real quadratic field, in dimension 2.

Our results generalize easily to simply connected, semi-simple groups as follows.
Suppose G/k is a direct sum of simply connected simple groups G;/k. Assume
also that the tame level KP decomposes as a direct sum of tame levels Kf
in Gy (A'}). By the Kiinneth formula, we have a decomposition of the sets of
classical points:

E(naKp)ClaSS‘ = U ]_S_‘[E(niaKlp)classn

ni+-tns=n i=1

1.4 SoME HISTORY

Coleman and Mazur constructed the first “eigencurve” in [15]. In our cur-
rent notation, they constructed the H'-eigencurve for GL2/Q. In fact they
showed that the points of their eigencurve parametrize overconvergent eigen-
forms. Their arguments were based on earlier work of Hida [20] and Coleman
[14] on families of modular forms. Similar results were subsequently obtained
by Buzzard [10] for the groups GL;/k, and for the multiplicative group of a
definite quaternion algebra over Q, and later more generally for totally definite
quaternion algebras over totally real fields in [11]. Kassaei [21] treated the case
that G is a form of GLay/k, where k is totally real and G is split at exactly one
archimedean place. Kissin and Lei in [22] treated the case G = GLg/k for a
totally real field k, in dimension n = [k : Q.

Ash and Stevens [2, 3] obtained similar results for GL,,/Q by quite differ-
ent methods. More recently, Chenevier [13] constructed eigenvarieties for any
twisted form of GL,,/Q which is compact at infinity. Emerton’s construction is
apparently much more general, as his criterion is formulated for any reductive
group over a number field. However, it seems to be quite rare for his crite-
rion to hold. One might expect the weak criterion to hold more generally; in
particular one might optimistically ask the following:

Question. For G/k connected, simple, algebraically simply connected and of
real rank m, does the weak Emerton criterion always hold in dimension m?

Acknowledgements. The author benefited greatly from taking part in a study
group on Emerton’s work, organized by Kevin Buzzard. The author would like
to thank all the participants in the London number theory seminar for many
useful discussions. The author is also indebted to Prof. F. E. A. Johnson
and Dr. Frank Neumann for their help with certain calculations, and to the
anonymous referee for some helpful suggestions.
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2 PROOF OF THEOREM 2

Let G/k be simple, algebraically simply connected, and assume that G(k) is
not compact. We shall prove in §6 that H°(G, E) = E, with the trivial action of
G(Ay). As a consequence of this, the terms Ef % in Emerton’s spectral sequence
(3) are Lie-algebra cohomology groups of finite dimensional representations:

0
E3” = HY, (g, W).

Such cohomology groups are completely understood. We recall some relevant
results:

THEOREM 9 (Theorem 7.8.9 of [39]). Let g be a semi-simple Lie algebra over
a field of characteristic zero, and let W be a finite-dimensional representation
of g, which does not contain the trivial representation. Then we have for all
n >0,

Hilie(ga W) =0.
THEOREM 10 (Whitehead’s first lemma (Corollary 7.8.10 of [39])). Let g be

a semi-simple Lie algebra over a field of characteristic zero, and let W be a
finite-dimensional representation of g. Then we have

Hﬁie(ga W) =0.

THEOREM 11 (Whitehead’s second lemma (Corollary 7.8.12 of [39])). Let g be
a semi-simple Lie algebra over a field of characteristic zero, and let W be a
finite-dimensional representation of g. Then we have

Hﬁie(ga W) =0.

We shall use these results to verify Emerton’s criterion in dimension 1, thus
proving Theorem 2. We must verify that the edge map 4 is an isomorphism
for n = 1 and for every irreducible algebraic representation W of G. The small
terms of the spectral sequence are:

Homgy (W, H'(G, E))

E3*
Hgie(ng) Hﬁie(gaW) Hﬁie(ng)

We therefore have an exact sequence:

0— Hﬁie(ga W) - Hl

class.

(G, W) — Homy (W, H(G, E)) — HE,.(g, W).
By Theorems 10 and 11 we know that the first and last terms are zero. There-
fore the edge map is an isomorphism.

O
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3 PROOF OF THEOREM 5

Let G/k be connected, simple and simply connected, and assume that G(ko)
is not compact. In §8 we shall prove the isomorphism

H' (G7 @P) = HomCtS(Cong(G)a QP)G(A?)—smooth'
As a consequence, we have:

COROLLARY 1. If the congruence kernel of G is finite then I:II(G, Qp) =0.

In this context, it is worth noting that the following may be proved by a similar
method.

THEOREM 12. If the congruence kernel of G is finite then ﬁd’l(G,@p) =0,
where d is the dimension of the symmetric space G(koo)/Koo-

We shall use the corollary to verify the weak Emerton criterion in dimension
2. Suppose first that W is a non-trivial irreducible algebraic representation of
G. We must show that the edge map (4) is an isomorphism. By Theorem 9 we
know that the bottom row of the spectral sequence is zero, and by the corollary
we know that the first row is zero. The small terms of the spectral sequence
are as follows:

Homg (W, f{Q (G7 E)loc.an.)
E;" : 0 0 0
0 0 0 O

Hence in this case the edge map is an isomorphism.

In the case that W is the trivial representation, we must only verify that
the edge map is injective and that its cokernel is a finite dimensional trivial
representation of G(Ay). We still know in this case that the first row of the
spectral sequence is zero. For the bottom row, Theorems 10 and 11 tell us that
the spectral sequence is as follows:

Homg (B, H*(G, E)ioc.an.)
Ey* 0 00
E 0 0 Hi(e,E)
It follows that we have an exact sequence

0— H02 (Gv E) - HOIIlg(E, ];[2((@, E)loc.an.) - Hﬁie(ga E) (6)

lass.

The action of G(Af) on H3, (g, E) is trivial, since this action is defined by the
(trivial) action on H°(G, E) = E.
U
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Remark. It is interesting to calculate the cokernel of the edge map in (6). In
fact it is known that for any simple Lie algebra g over a field E of characteristic
zero, H3, (g, E) = E. We therefore have by the Kiinneth formula:

HEie(ga E) = Eda

where d is the number of simple factors of G xj, k. In particular, this is never
zero. The exact sequence (6) can be continued for another term as follows:

0— H?

class.

(G E) - H2(G E)loc an. - Hﬁie(gﬂE) class (G E)G(Af)

In order to calculate the last term, we first choose an embedding of E in C,
and tensor with C. There is a map

H3el‘Lie(g7 Ky,C) — H}

r class.

(G, 050,

If the k-rank of G is zero, then this map is an isomorphism. In other cases,
it is often surjective, although the author does not know how to prove this
statement in general. The groups HY, |,.(g, Ko, C) are the cohomology groups
of compact symmetric spaces (see §1.1.6 of [9]) and are completely understood.
In particular, it is often the case that H3, . (g, Koo, C) = 0. This implies that

the edge map in (6) often has a non-trivial cokernel.

4 PROOF OF THEOREM 3

Theorem 3 is a variation on Theorem 1. In order to prove it, we recall some of
the intermediate steps in Emerton’s proof of Theorem 1.

n [17], Emerton introduced a new kind of Jacquet functor, Jacqg, from the
category of essentially admissible (in the sense of Definition 6.4.9 of [16]) lo-
cally analytic representations of G(k,) to the category of essentially admissible
locally analytic representations of T(kp). This functor is left exact, and its
restriction to the full subcategory of smooth representations is exact. Indeed,
its restriction to smooth representations is the usual Jacquet functor of coin-
variants.

Applying the Jacquet functor to the space H™(K®, E)ioc.an., One obtains an
essentially admissible locally analytic representation of T(k,). On the other
hand, the category of essentially admissible locally analytic representations of
T(ky) is anti-equivalent to the category of coherent rigid analytic sheaves on
T (Proposition 2.3.2 of [18]). We therefore have a coherent sheaf & on 7.
Since the action of H(K™®) on H"(K‘“7 E)loc.an. commutes with that of G(k,),
it follows that H(KP) acts on €. Let A be the image of H(K*)*" in the sheaf
of endomorphisms of €. Thus A is a coherent sheaf of commutative rings on
T. Writing Spec A for the relative spec of A over T we have a Zariski-closed
embedding Spec A — T x Spec H(K?)*h, Since A acts as endomorphisms of
&, we may localize € to a coherent sheaf M on Spec A.

Theorem 1 may be deduced from the following two results.
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THEOREM 13 (2.3.3 of [18]). (i) The natural projection Spec A — T is a
finite morphism.

(ii) The map Spec A — t has discrete fibres.

(iii) The fibre of M over a point (x,\) of T x Spec H(KP)! is dual to the
(T(kp) = x, H(KP)P" = X)-eigenspace of Jacqy(H™(K®, E)ioc.an.). In
particular, the point (x, \) lies in Spec A if and only if this eigenspace is
non-zero.

For any representation V' of G(k,) over E, we shall write Viy_1c.alg. for the sub-
space of W-locally algebraic vectors in V. Note that under Emerton’s criterion,
we have

HTL

class.

(Kp’ W) ® W = gn(Kp’ E)Wfloc,alg.' (7)

Hence H}}, . (K?, W) ® W is a closed subspace of I:I"(Kp, E)ioc.an.- By left-

exactness of Jacqy we have an injective map

JvaIB(Hn (KP,W) & W) - Ja'CqIB(Hn(KP;E)IOC‘an‘)

class.

There are actions of T(ky) and H(K®) on these spaces, so we may restrict this
map to eigenspaces:

Jach(H" (va W) ® W)(X’/\) - JaCQ]B(E[n(pr E)loc.an.)(X’/\)a

class.
(x,\) € T x Spec H(KP)*".
The next result tells us that this restriction is often an isomorphism.

THEOREM 14 (Theorem 4.4.5 of [17]). Let V' be an admissible continuous rep-
resentation of G(ky) on a Banach space. If x := 0w € T(E) is of non-critical
slope, then the closed embedding

Jacqy (Viv—1oc.alg.) — Jacdg(Vioc.an.)
induces an isomorphism on x-eigenspaces.
We recall Theorem 3.
THEOREM. If the weak Emerton criterion holds for G in dimension n, then
1. Projection onto the first factor induces a finite map E(n, K?) — T.
2. The map E(n,K?) — t has discrete fibres.

3. If (x, \) is a point of the Figencurve such that x is locally algebraic and
of non-critical slope, then either (x, A) is a classical point or (x, A) is the
trivial representation of T(ky) x H(KP)Ph.
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Proof. To prove the first two parts of the theorem, it is sufficient to show that
E(KP?,n) is a closed subspace of Spec A. Since E(n, K?) is defined to be the
closure of the set of classical points, it suffices to show that each classical point
is in Spec A.

Suppose 7 is a representation appearing in HJ. . (K?, W) and let (8w, )
be the corresponding classical point. This means that the (6, \)-eigenspace
in the Jacqg(m) is non-zero. By exactness of the Jacquet functor on smooth
representations, it follows that the (6, A) eigenspace in the Jacquet module of
HY . (KP, W) is non-zero. Hence by Proposition 4.3.6 of [17], the (0¢w, \)-
eigenspace in the Jacquet module of H?,  (KP, W) ® W is non-zero. By left-
exactness of the Jacquet functor, it follows that the (64w, \) eigenspace in the
Jacquet module of ﬁ"(G,E)loc‘an‘ is non-zero. Hence by Theorem 13 (iii) it
follows that the classical point is in Spec A.

If (6, M) is of non-critical slope then Theorem 14 shows that the converse also

holds. O

5 PROOF OF THEOREM &

We first recall the statement:

THEOREM. Let G/k be connected, semi-simple and algebraically simply con-
nected and assume that the weak Emerton criterion holds in dimension n. As-
sume also, that at least one of the following two conditions holds:

(a) HY . (G,C) is gien by constants in dimensions p < n and

H™ (9, Koo, C) =0; or

rel.Lie
(b) G(k) is cocompact in G(A).
Then all the conclusions of Theorem 1 hold for the eigenvariety E(n, K*).

Proof. To prove the theorem, we shall find a continuous admissible Banach
space representation V', such that for every irreducible algebraic representation
W, there is an isomorphism of smooth G(A¢)-modules

Hgass‘ (G’ W) = Homg (Wa Vioc.an.)- (8)

Recall that by the weak Emerton criterion, we have an exact sequence of smooth
G(Af)-modules

0— H"... (G,E)— H"G,E)? —E"—0, r>0. (9)

class. loc.an.

It follows, either from Lemma 1 or from Lemma 2 below, that all such sequences
split. We therefore have a subspace E” ¢ H™(G, E), on which G(A) acts
trivially. We define V' to be the quotient, so that there is an exact sequence of
admissible continuous representations of G(As) on E-Banach spaces.

0— E"— H"(G,E) —» V — 0. (10)
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Taking g-invariants of (10) and applying Whitehead’s first lemma (Theorem
10), we have an exact sequence:

0 - ET - gn(G7 E)lgoc.an. - Vigc,an. - 0 (11)
On the other hand, E" is a direct summand of I:I"(G, E)L. ... so this sequence

also splits. Comparing (9) and (11), we obtain

" (G E)= V3

class. loc.an.

= Homg (E7 Vioc.an.)-

This verifies (8) in the case that W is the trivial representation.
Now taking W to be a non-trivial irreducible representation, and applying

Homg (W, —10c.an.) to (10), we obtain a long exact sequence:
0— Homg(W, H”(G, E)ioc.an.) — Homyg (W, Vioc.an.) — Exté(W, E™).

By Whitehead’s first lemma, the final term above is zero. Hence, by the weak
Emerton criterion, we have:

H(?lass‘ (G’ W) = Homg (W, f{n(Gv E)loc.an.) = Homg (W; Vioc.an.)-

O

LEMMA 1. Assume that HY, . (G, C) is given by constants in dimensions ¢ < n

and H™ 1. (9, Ks,C) = 0. Then

rel.Lie

EXt%}(Af)(E’ chlass.(Gv E)) =0,
where the Ext-group is calculated from the category of smooth representations
of G(Ay) over E.

Proof. Since we are dealing with smooth representations, the topology of E
plays no role, so it is sufficient to prove that
1
EXtG(Af)((C’ chla,ss.(Gv (C)) =0,
To prove this, it is sufficient to show that for every sufficiently large finite set
S of finite primes of k, we have

Extg(14)(C, Hifaes (G, C)) = 0.

For this, we shall use the spectral sequence of Borel (§3.9 of [7]; see also §2 of

[6]):

Ext?

G(rs) (B H

class.

(G,C)) = HZ' (G,0),

S—class.

where HS_ ... (G, —) denotes the direct limit over all S-congruence subgroups:

Hg‘—class.(G’ _) = h_I? HC.}roup(FS(KS)a _)a
K
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Ts(K%) = G(k) N (G(koous) x K¥).
By Proposition X.4.7 of [9], we know that

Extf ., (C,C) =0, p>1

Since HY .. (G,C) is a trivial representation of G(Ay) in dimensions ¢ < n,

it follows from Borel’s spectral sequence that Exté( ks) (€, Hi,o (G, C)) injects

class.
into H2TL (G, C). On the other hand, it is shown in Theorem 1 of [6], that

for S sufficiently large, Hg+c11abb (G, C) is isomorphic to Hr’;"ile(g, K,C).

Under the hypothesis that H™l. (g, Koo, C) = 0, it follows that for S suffi-

rel.Lie
ciently large, Ext ks)(C, Hio (G,C)) = 0. 0

LEMMA 2. Assume that G(k) is cocompact in G(A). Then
EXt%}(Af)(E H class. (Ga E)) =0,

where the Ext-group is calculated from the category of smooth representations
of G(Ay) over E.

G,E))=0forallp>0.)

class (

(The argument in fact shows that Extg( A )(E

Proof. As in the proof of the previous lemma, we shall show that for S suffi-
ciently large,
EXt(Il}(ks ((C Hj class. (G’C)) =

Recall that we have a decomposition:

—

L*(G(k)\G(A)) = P m(x) -,

T

with finite multiplicities m(7) and automorphic representations 7. Here the &
denotes a Hilbert space direct sum. We shall write m = 7o, ® 7y, where 7 is
an irreducible unitary representation of G(ks) and ¢ is a smooth irreducible
unitary representation of G(A¢). This decomposition may by used to calculate
the classical cohomology (Theorem VIL.6.1 of [9]):

(:lass @m : rel Lle(gvKOOﬂTOO) ®7Tf

It is therefore sufficient to show that for each automorphic representation m, we
have (for S sufficiently large) Ext(%;(k &) (C,7¢) = 0. The smooth representation
7y decomposes as a tensor product of representations of G(kq) for q € S,
together with a representation of G(A? ):

®7rq ®7r?.

qeSs
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This gives a decomposition of the cohomology:

Ext® o) (C,mp) = | Q) Exte s, y(C,mg) | @ 7. (12)
qes

There are two cases to consider.
Case 1. Suppose 7 is the trivial representation, consisting of the constant
functions on G(k)\G(A). Then by Proposition X.4.7 of [9], we have

Ext&(kq)((c,((:) = 0, n Z 1.

This implies by (12) that Ext%;,(ks)((C, C)=0.

Case 2. Suppose 7 is non-trivial, and hence contains no non-zero constant
functions. If q is a prime for which no factor of G(kq) is compact, then it
follows from the strong approximation theorem that the local representation
T4 is non-trivial. This implies that

Ext%(kq)((C, 7q) = Homg ) (C, mq) = 0.
If S contains at least two such primes, then we have by (12)
EXt(%;(kS)((C, ’/Tf) =0.
O

Remark. At first sight, it might appear that Exté(Af)((C, H’ .. (G,C)) should

always be zero; however this is not the case. For example, if G = SLo/Q then
EXtéLg(Af) ((C, H(}lass‘ (SLQ/Qﬂ (C)) =C.

This may be verified using the spectral sequence of Borel cited above, together
with the fact that HZ, ;. (sl2,SO(2),C) = C.

rel.Lie

6 PROOF OF THEOREM 6
We assume in this section that G/k is connected, simple and algebraically
simply connected, and that G(k«) is not compact.

PROPOSITION 1. As topological spaces, we have Y (Kf) = T'(K§)\G(koo)/Koo-

Proof. By the strong approximation theorem (Theorem 4), G(k)G(kx) is a
dense subgroup of G(A). Since G(ko)K is open in G(A), this implies that
G(k)G(koo) Ky is a dense, open subgroup of G(A). Since open subgroups are
closed it follows that

G(k)G (koo ) K s = G(A).

Quotienting out on the left by G(k), we have (as coset spaces):
(G(k) NG (koo ) K\ (G (koo ) Kf) = G(R)\G(A).
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Substituting the definition of I'(K ), we have:
(KNG (koo ) Ky = G(K)\G(A).
Quotienting out on the right by KKy, we get:

DK \G(koo) /Koo = Y (Ky).

O
In particular, this implies:
COROLLARY 2. Y (K7y) is connected.
Proof. G(koo) is connected. O

If K is sufficiently small then the group I'(K ) is torsion-free. We shall assume
that this is the case. Hence Y (K ) is a manifold. Its universal cover is G(R)/K,
and its fundamental group is I'(Ky).

CoROLLARY 3. If T'(Ky) is torsion-free then H®(Y(Kyf),—) =
Héroup(F(Kf)ﬂi)‘

Proof. This follows because I'(K ) is the fundamental group of Y (Ky), and
the universal cover G(kw )/ Koo is contractible. See for example [36]. O

COROLLARY 4. Let G/k be connected, simple, simply connected and assume
G(kso) is not compact. Then as G(Ay)-modules,

H°(G, E)ioc.n. = H*(G, E) = E.
Proof. Since every Y (Ky) is connected, we have a canonical isomorphism:
HO(Y (KyKP), Z/p") = Z/p.
Furthermore, the pull-back maps
HO(Y (Ko KP),Z/p") — HO(Y (K KP), Z/p") (K € K,)
are all the identity on Z/p®. It follows that

lim HO(Y(KP ), Z/p*) = Z/p".
Ky

Since the pull-back maps are all the identity, it follows that the action of G(k,)
on this group is trivial. Taking the projective limit over s and tensoring with
FE we find that

HY(K?,E)=E.

The action of G(ky) is clearly still trivial, and hence every vector is locally
analytic. The groups H°(KP?, E) for varying tame level K? form a direct system
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with respect to the pullback maps. These pullback maps are all the identity
on F. Taking the direct limit over the tame levels, we obtain:

H°(G,E)=E.

Since the pullback maps are all the identity, it follows that the action of G(A'})
on H(G, E) is trivial. O

7 SoME COHOMOLOGY THEORIES

In this section we introduce some notation and recall some results, which will
be needed in the proof of Theorem 7. It is worth mentioning that the theorem
is much easier to prove in the case that G has finite congruence kernel. In
that case one quite easily shows that H' =0 by truncating the proof given
in §8 shortly after the end of “step 1” of the proof. Furthermore, our main
application (Theorem 5) requires only this easier case.

7.1 DISCRETE COHOMOLOGY

Let G be a profinite group acting on an abelian group A. We say that the
action is smooth if every element of A has open stabilizer in G. For a smooth
G-module A, we define Hj,. (G, A) to be the cohomology of the complex of
smooth cochains on G with values in A. Due to compactness, cochains take
only finitely many values, so we have

Hc?isc.(G’ A) = hl>n Héroup(G/U7 AU)
U

Here the limit is taken over the open normal subgroups U of G, and the coho-
mology groups on the right hand side are those of finite groups.

THEOREM 15 (Hochschild—Serre spectral sequence (§2.6b of [35])). Let G be a
profinite group and A a discrete G-module on which G acts smoothly. Let H
be a closed, normal subgroup. Then there is a spectral sequence:

Hgisc‘(G/H’ Hgisc.(H7 A)) = HIH‘Q (G’ A)

disc.

For calculations with adele groups, we need the following result on countable
products of groups.

PROPOSITION 2 (see §2.2 of [35]). Let
G=]]¢:
€N
be a countable product of profinite groups and let A be a discrete G-module.
For any finite subset S C N we let

Gs =[] G

€S
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Then
Hgisc‘(Gv A) - hl,n chlisc.(Gsv A)
s
Here the limit is taken over all finite subsets with respect to the inflation maps.
COROLLARY 5. Let G and A be as in the previous proposition, and assume that
the action of G on A is trivial. Assume also that for a fized n, we have:

Hiiso (GiyA) =0, r=1,...,n—1,i€N.

Then

chlisc.(G’ A) = @ Hgisc‘(Gi’ A)
€N

Proof. Let S C N be a finite set and let i ¢ S. We have a direct sum decom-
position
Gsugiy = Gs @ Gi.

Regarding this as a (trivial) group extension, we have a spectral sequence:
Hy (Gs,HY(Gi, A)) = HG[!(Gsugy, A

since the sum is direct, it follows that all the maps in the spectral sequence are
zero, and we have

n

Hcrllisc.(GSU{i}a A) = @ H(?l;cr (Gs, Hgisc‘(Gia A))
r=0

By our hypothesis, most of these terms vanish, and we are left with:
H(Tilisc.(GSU{i}a A) = H(Tilisc.(Gsv A) D Hgisc.(Giv A)
By induction on the size of S, we deduce that
Hgise (Gs, A) = @ Hgise (Gi, A).
€S

The result follows from the previous proposition. ]

7.2 CONTINUOUS COHOMOLOGY

Again suppose that G is a profinite group, acting on an abelian topological
group A. We call A a continuous G-module if the map Gx A — A is continuous.
For a continuous G-module A, we define the continuous cohomology groups
H?. (G, A) to be the cohomology of the complex of continuous cochains. If the
topology on A is actually discrete then continuous cochains are in fact smooth,

so we have
HC.tS(G7 A) = H(;isc.(Gv A)
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7.3 DERIVED FUNCTORS OF INVERSE LIMIT

Let Ab be the category of abelian groups. By a projective system in Ab, we
shall mean a collection of objects A, (s € N) and morphisms ¢ : As41 — As.
We shall write Ab" for the category of projective systems in Ab. There is a
functor
lim : Ab" — Ab.
S

This functor is left-exact. It has right derived functors
(1131 > : Ab" — Ab.

It turns out that (1}111 is zero for n > 2. The first derived functor has the
S

following simple description due to Eilenberg. We define a homomorphism
A HAS — HAS, (A(as)), = as — ¢(ast1).
S S

With this notation we have
lim As = ker A.
S

Eilenberg showed that
lgnlAs = coker A.

A projective system A; is said to satisfy the Mittag—Leffler condition if for
every s € N there is a t > s such that for every w > ¢ the image of A, in A is
equal to the image of A; in As.

ProPOSITION 3 (Proposition 3.5.7 of [39]). If A, satisfies the Mittag—Leffler
condition then lgnlAS =0.

This immediately implies:

COROLLARY 6 (Exercise 3.5.2 of [39]). If As is a projective system of finite
abelian groups then 1i£n1A5 =0.

We shall use the derived functor li(in1 to pass between discrete and continuous

cohomology:

THEOREM 16 (Eilenberg—Moore Sequence (Theorem 2.3.4 of [27])). Let G be a
profinite group and A a projective limit of finite discrete continuous G-modules

A =lim As.
S
Then there is an exact sequence:

0 — lim'H} (G, As) — H,
S

disc. cts

(Ga A) - 1}111 Hgisc‘(Gv As) — 0.
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7.4 STABLE COHOMOLOGY

For a continuous representation V' of G(k,) over E, we shall write Vi, for the
set of smooth vectors. The functor V' — Vg is left exact from the category
of continuous admissible representations of G(k,) (in the sense of [33]) to the
category of smooth representations. We shall write HY (G(ky), —) for the right-
derived functors. This is called “stable cohomology” by Emerton (Definition
1.1.5 of [18]). It turns out that stable cohomology may be expressed in terms
of continuous group cohomology as follows (Proposition 1.1.6 of [18]):

H:t(G(kP)a V) = li,m Hc.ts(KP?V)
Ky

There is an alternative description of these derived functors which we shall also
use. Let Vipc.an. denote the subspace of locally analytic vectors in V. There is
an action of the Lie algebra g on Vigc.an.. Stable cohomology may be expressed
in terms of Lie algebra cohomology as follows (Theorem 1.1.13 of [18]):

Hs.t(G(kP)av) - HI:ie(gaVioc‘an‘» (13)

8 PROOF OF THEOREM 7

In this section, we shall assume that G/k is connected, simply connected
and simple, and that G(ks) is not connected. We regard the vector space
Homs(Cong(G), Q,) as a p-adic Banach space with the supremum norm:

ol = sup [d(x)lp.

z€Cong(G)

We regard Homets(Cong(G),Z/p®) as a discrete abelian group. The group
G(Ay) acts on these spaces as follows:

(9¢)(x) = ¢9"zg), g€ G(Af), = € Cong(G).
LEMMA 3. The action of G(Ay) on Homes(Cong(G),Z/p®) is smooth.

Proof. One may prove this directly; however it is implicit in the Hochschild—
Serre spectral sequence. It is sufficient to show that the action of some open
subgroup is smooth. Let K be a compact open subgroup of G(Ay), and write
write K for the preimage of Ky in G(k). We therefore have an extension of
profinite groups:

1 — Cong(G) — Ky — K — 1.

We shall regard Z/p® as a trivial, and hence smooth, K f-module. It follows
that each H, . (Cong(G),Z/p®) is a smooth K ¢-module. On the other hand
we have

Hom,s(Cong(G), Z/p*) = H}i. (Cong(G),Z/p®).
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LeMMA 4. The action of G(Af) on the p-adic Banach space
Homyes(Cong(G), Qp) is continuous.

Proof. It is sufficient to prove this for the open submodule
Homs(Cong(G),Z,). We have, as topological G(A ;)-modules:

Homygs(Cong(G), Z,) = lim Homes(Cong(G), Z/p®).

Continuity follows from the previous Lemma. O

We shall say that a vector v € Homes(Cong(G),Q,) is G(A‘})—smooth if its
stabilizer in G(A'}) is open. The set of such vectors will be written

Homcts (CODg(G) ) QP)G(A; )—smooth*

THEOREM. Assume G/k is connected, simple and simply connected, and that
G(koo) is mot compact. Then we have an isomorphism of G(Af)-modules:

gl ((G? Qp) = HomCts(Cong(G)7 Qp)G(AF‘)fsmooth-

Proof. Choose a level Ky small enough so that I'(K) is torsion-free. By Corol-
lary 3, we have:

H'(Y (Ky),Z/p") = Heyoup (L (K), Z/D%).

Elements of Héroup(F(Kf),Z/ps) are group homomorphisms I'(K;) — Z/p®.
Let K ¢ be the preimage of K¢ in G(k), this is equal to the profinite completion
of I'(Ky). It follows that homomorphisms I'(Ks) — Z/p® correspond bijectively
to continuous homomorphisms K; — Z/p®. We therefore have:

H' (Y (Ky), Z/p*) = Hijpo (K1, Z/p").
We have an extension of profinite groups:
1 — Cong(G) — Ky — Kj — 1.
This gives rise to a Hochschild—Serre spectral sequence (Theorem 15):

Hil?

disc.

(Kt, Hyo (Cong(G), Z/p®)) = HG L (Ky, Z/p%).

disc.

From this we have an inflation-restriction sequence containing the following
terms:

0— H!

disc.

(Ky,Z/p*) — H'(Y(Kf),Z/p*) —

14
— Hj. (Cong(G),Z/p*)%s — H3. (Kg,Z/p*) &

The proof of the theorem consists of applying the functors lim , lim , — ®z, Q)
K, s
and lim to the sequence (14).
K®r

DOCUMENTA MATHEMATICA 12 (2007) 363-397



EIGENVARIETIES IN SMALL COHOMOLOGICAL DIMENSIONS 387

Step 1. We first substitute Ky = K, KP?, and apply the functor lim to (14).
Ky
We have by the Kiinneth formula:
11)11’1 H&isc.(KPva Z/pé) = H&isc.(Kpa Z/pé)a
p
1i>m Hgisc.(Kpr7 Z/pé) = Hgisc.(Kp’ Z/pé)
p
By Lemma 3 we have:

li>m Héisc‘ (CODg(G), Z/ps)K;.Kp = Héisc‘(cong(G)’ Z/ps)K’j .
KP

Since the functor lim is exact, the sequence remains exact:

K)J
0~ i (K 2/p") = lin H'(Y (K K), 2/") —
’ (15)
= Hiie (Cong(G), Z/p)*" — Hi,, (KP,Z/p*).

Interlude. Before going on, we make some restrictions on the tame level K?,
and investigate the first and last terms in the sequence (15).
We shall assume that the tame level K* is a product of local factors:

K? =[] Ka
q7p

where each K, is a compact open subgroup of G(kgq). Consider the following
sets of finite primes of k:

S={q:qlpand q # p},

T={q:q fpand Kq # [Kq, Kql]}.

Both these sets are finite. We shall also assume from now on that for each
prime q € T', the group K, is chosen small enough so that it is a pro-q group,
where ¢ is the rational prime below g. In particular, for each q € T" we have
forn>1,

Hc"llisc.(KQﬂZ/ps) =0. (16)

We have a decomposition of K*:

K? = Kg x Kp x KS9TUlp} (17)

where we are using the notation:

Ks= ][ Kq K9 =]] K,

qes qés
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By the Kiinneth formula and (16), (17), we have:
HSoo (KP,2/p") = Hio (Ks K50 Z/p%). (18)
By assumption, the group K5YTY{P} is perfect, so we have
Hjipo (KUY, 2/p%) = 0. (19)
Again by the Kiinneth formula together with (18), (19), we have:
Hgie (KP,Z/p%) = Hijee. (K5, Z/%). (20)
Hiio (KP, Z/p%) = Hiie (K5, Z/p°) ® Hijge (K5VT, 2/p%). (21)

For each prime q ¢ S UT U {p}, there is an open normal pro-¢q subgroup
Ly C Ky. We shall write G(q) for the (finite) quotient group. We therefore
have a Hochschild-Serre spectral sequence:

Héroup(G(q)’ Hgisc‘ (LC!’ Z/ps)) == Hp+q (va Z/ps)'

disc.

This spectral sequence degenerates: for n > 1 we have
H"(Lq,Z/p%) = 0.
Hence,

Hiise.(Kq, Z/P°) = Heroup (G(a), Z/p%),  a¢ SUTU{p}.  (22)

Since G(q) is a finite perfect group, it has a universal central extension. We
shall write 71 (G(q)) for the kernel of this extension, i.e. the Schur multiplier
of G(q). By (22) we have:

Hiise (Kq, Z/p*) = Homgroup (m1 (G(a)), Z/p%). (23)
By Corollary 5 and (23) we have:
Hgisc. (KSUTU{p}a Z/ps) = @ HomGroup (7T1 (G(C])), Z/ps)' (24)
q¢SUTU{p}

From (21) and (24) we have:
Hijoe(K?, Z/p") = H* (K5, 2/p") © Homess(m; ") /%), (25)

where we are using the notation
SUTU
m = I miG).
q¢SUTU{p}
uTU{p}

The only property of 7rls
groups, not depending on s.

which we require, is that it is a product of finite
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Step 2. We are now ready to apply the functor lim to the sequence (15). To

S
keep track of the exactness, we splice the sequence (15) into two:

0— Héisc‘(K&Z/ps) - 1l,m Hl(Y(Kpr), Z/ps) - A(S) - 07 (26)
Ky
0— A(S) - Héisc.(COng(G%Z/ps)Kv - Hgisc.(Kp7Z/ps)' (27)

Step 2a. Applying the functor lim to (26), we have a long exact sequence:
0 — lim Hy (Ks,Z/p®) — lim lim H(Y (K*Ky), Z/p*) —
S s K,

(28)
— lim A(s) — lim' H},,. (Ks,Z/p").

In order to calculate the individual terms in (28), we shall use the Eilenberg—
Moore sequence (see Theorem 16):

0 — lim' Hy ' (K5, Z/p*) — Hly(Ks,Zy) — lim Hi (Ks,Z/p%) — 0. (29)
S g

Taking n = 1 in (29) we have

hln H(}isc.(KS7 Z/ps) = Hclts(KS, Zp)
Since [Kg, Kg] is open in Kg, it follows that:
1@ Héisc.(KSa Z/ps) =0. (30)

Also, since the groups H}, . (Ks,Z/p®) are all finite, it follows by Corollary 6
that
lim! 12, (K5, 2/p") = 0. (31)
S

Substituting (30) and (31) into (28), we get

lim lim H' (Y (K*K,),Z/p%) = lim A(s). (32)
s Ky S

Step 2b. Applying the left-exact functor lim to (27) and substituting (32) we

obtain the following exact sequence:
0 — lim lim H'(Y (K K,), Z/p") = lim (Hj...(Cong(G), Z/p")"")
S

TR (33)
- I%Ln Hgisc‘(Kp’ Z/pé)
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We shall investigate the second and third terms in this sequence further.
The functors lim and —K? commute, so we have
S

i (e (Cone(©)2/3)%") = (i B (Cona(@.2/37)) 39
Again by the Eilenberg—Moore sequence (29) we have by (34):
lim (H}. (Cong(€).Z/p")" ) = Hly(Cong(€). 2,)"".  (35)
To calculate the third term in (33) we shall use (25). This shows that

lim Ho (K*,Z/p%) = lim H3y (Ks,Z/p*) ® lim Home(r; 2 VP Z/p%).
S S S

36
Since ﬂfUTU{p} is a product of finite groups, it follows that )
lirfn Homcts(ﬂ'fUTUp, Z/p®) = 0.
Substituting this into (36), we obtain:
uln Hc21isc,(Kp7Z/ps) = hin Hgisc‘(KSWZ/ps)' (37)
Substituting (31) into the Eilenberg—Moore sequence (29), we have:
li%n Hgts(KSa Z[p®) = Hgts(KSa Lp). (38)

Substituting (38) into (37) we have:

: 2
llln Hcts
s

(KP’Z/ps) = H

cts

(Ks,Zp).

The sequence (33) is therefore

0 — lim lim H'(Y(K*K,),Z/p") — H.

iy cts
s KF

(Cong(G)aZ;D)KF - H2 (KS,Z;D)'

cts

(39)

Step 3. We next apply the exact functor — ®z, Q) to (39). Note that since K?
and Cong(G) are compact, we have

Cc.ts(vazP) ®Zp Q;D = Cc.ts(Kpa Qp)a

Céis(Cong(G), Zp) @z, Qp = C¢(Cong(G), Qp).
Furthermore, since Q,, is flat over Z,, we have
H:ts(vaZp) ®z, Qp = Hc.ts(Kp7Qp)7
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Hc.ts(cong(G)v ZP) ®Zp QP = Hc.ts(cong(G)v @p)

Since HY,(Cong(G),Z,) is torsion-free, we have

cts

(Ha(Cong(6), Z,)%" ) @2, Q) = Hiyy(Cong(G), )"
Again, since ), is flat over Z,, we have an exact sequence:

0— I:-rl(va@p) - HcltS(Cong(G), Qp)Kp - Hgts(KSv@p)~ (40)

Step 4. Applying the exact functor lim to (40), we have an exact sequence
Kr

0— [:[1((@, Qp) — HcltS(Cong(G), QP)G(AF)fsmooth - Hst(G(kS)va)- (41)

As G(ks) is a Qp-analytic group, the stable cohomology may be expressed in
terms of Lie algebra cohomology (using (13)):

HSt(G(kS)va) = Hﬁie(g ®k ks, Qp),

where we are regarding g ®x ks as a Lie algebra over Q,. By Whitehead’s
second lemma (Theorem 11) we have

HZ(G(ks),Qp) = 0.

Hence ~
Hl (G7 Qp) = H(}ts(cong(G)7 Qp)G(Ap)fsmooth-

9 SOME EXAMPLES

9.1 SLy/Q

Let G = SL2/Q. Since g is 3-dimensional, the spectral sequence has non-

zero terms only in columns 0 to 3. Since arithmetic subgroups have virtual

cohomological dimension 1, it follows that H™ = 0 for n > 1. Taking W to be

the trivial representation, the Fy sheet of the spectral sequence is as follows:
HY(G, E)? E 0 0

loc.an.
.7. .
E2 :

B 0 0 F

The connection map E21 1, ES Ois an isomorphism, and the spectral sequence
stabilizes at E5 as follows:
Eo,o . Hl(G’ E)lgoc.an. 0 00
3 :
E 0 0 O
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9.2 SL;1(D) FOR AN INDEFINITE QUATERNION ALGEBRA D

Let k be a totally real field and let D be a quaternion algebra over k, which is
indefinite at exactly one real place of k. We shall consider the group G(—) =
SL1(D ®j —) over k. Arithmetic subgroups of G have virtual cohomological
dimension 2, so we have classical cohomology groups in dimensions 0, 1 and
2. In dimensions 0 and 2 these are given by constants, and are 1-dimensional.
On the other hand it is easy to show that H? (G,Qp) =0. The E, sheet of the
spectral sequence is as follows:
HY(G, E)? E*> 0 0

[X) . loc.an.
E} :

E 0 0 E

The connection map E21 1 ES’O is surjective, and the spectral sequence sta-
bilizes at F3 as follows:

.0 I~{1 (G’ E)lgOC an E 0 O
E31 . : :

E 0 0 0

9.3 SLs/k FOR k REAL QUADRATIC

Let k be a real quadratic field and consider the group G = SLy/k. The non-zero
classical cohomology groups are the following:
Hcolass.(Gv W) = WG;

H3... (G, W) infinite dimensional.

It is known in this case (see [37]) that the congruence kernel of G is trivial.
We therefore have H(G, E) = 0, and we can also show that H3(G,E) = 0.
Therefore the weak Emerton criterion holds in dimension 2. We also have
H?(g, Koo, C) = 0. Therefore we may apply Theorem 8 to the eigenvariety
E(2,K?). The Es-sheet of the spectral sequence is as follows:

‘H2(G’E)lgoc.a,n. 0 0 0
E* : 0 00 0
E 0 0 F

The map H?(G, E)® — FE in the Ej3-sheet is surjective, and the spectral

loc.an.
sequence stabilizes at the Fy-sheet:

H(?lass‘ (G’ E) 000
[ opal 0 00 0
E 0 0 O
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9.4 SL3/Q

Arithmetic subgroups of SL3(Q) have virtual cohomological dimension 4, as
the symmetric space is 5-dimensional. We have the following non-zero classical
cohomology groups:

H(?lass‘ (G’ W) = WG?
H2,..(G,W) = infinite dimensional,
H3... (G,W) = infinite dimensional.

It was shown in [4] that the congruence kernel is trivial. Hence the weak
Emerton criterion holds in dimension 2, and in fact the only non-zero Banach
space representations are:

H°(G,E) = E,
H*(G,E) = infinite dimensional,
H*(G,E) = infinite dimensional.

Furthermore, erl.Lie(g,Koo,(C) = 0. We may therefore apply Theorem 8 to
the eigenvariety F(2, K*). One can use Poincaré duality to construct an eigen-
variety interpolating H3, . .
The author has not been able to calculate all of the terms of the spectral

sequence. However the Fs-sheet is as follows:

HG,E) .. ? 707 7 7 7.0 0
ey HYG,E){ . .. Exty(E,H*G,E)ocan) ? ? 72 7 7 7 7
0 0 000 0 00 0

E 0 0 E 0 E 00 E

This is stable by the Fs-sheet, and most things are known:

? 00 0O0O0O0TO0TO 0
e H3. .. (GE) ? 00 000 00
0 0000 0 O0O0O0
K 00 0O0O0O0OTO0TO 0
9.5 Sp,/Q

Arithmetic subgroups of Sp,(Q) have cohomological dimension 5, as the sym-
metric space is 6-dimensional. It was shown in [5] that the congruence kernel
is trivial. Furthermore H?(g, Koo, C) = 0. We may therefore apply Theorem
8 to give a construction of the H?-eigencurve. By Poincaré duality, it is also
possible to construct a reasonable H*-eigenvariety.
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9.6 Spin(2,1) (I > 3)

Let L be a Z-lattice equipped with a quadratic form of signature (2,1) with
1 > 3. We let G/Q be the corresponding Spin group. This has real rank 2, and
the corresponding symmetric space has dimension 2I. The congruence kernel
was shown to be trivial for such groups by Kneser [26]. Hence G satisfies the
weak Emerton criterion in dimension 2. It turns out that H?(g, Ko, C) = 0,
so we may apply Theorem 8 to E(2, K*).
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INTRODUCTION

Dans tout ce travail, p est un nombre premier impair, K un corps de ca-
ractéristique 0, complet pour une valuation discrete, absolument non ramifié
et de corps résiduel k parfait de caractéristique p. Nous noterons W 'anneau
des vecteurs de Witt a coefficients dans k, c’est donc I’anneau des entiers de K.
Tous trois sont munis d’une action de Frobenius, notée . Fixons K une cloture
algébrique de K, et posons I'x = Gal(K, K). Nous noterons C le complété de
Ket X:Tx — Z,, désignera le caractere cyclotomique de I'c (c’est-a-dire que
g(z) = 2¥) pour tout g € 'k et pour toute racine de I'unité z € K d’ordre
une puissance de p). Nous allons étudier les représentations continues de T'x
dans des Qp-espaces vectoriels de dimension finie.

Nous nous restreindrons aux représentations cristallines, condition vérifiée dans
bien des cas issus de la géométrie (par exemple, pour le module de Tate ou la
cohomologie étale a coefficients dans @, d’une variété abélienne ayant bonne
réduction). L’avantage de ces représentations est que J.-M. Fontaine et P. Col-
mez ont montré dans [Fon94b] et [CF00] qu’elles forment une catégorie tanna-
kienne, qui est ®-équivalente a la catégorie tannakienne des p-modules filtrés
sur K faiblement admissibles (c’est & dire ceux qui ont des réseaux fortement
divisibles).
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Le foncteur qui induit cette équivalence de catégories se décrit de la maniere
suivante : si V' est une représentation p-adique cristalline, le p-module filtré
associé est Deris p(V) = (V ®q, Beris)'* (le quasi-inverse est donné par : pour
D un ¢-module filtré faiblement admissible, Veris p(D) = FﬂO(D ®ic Beris)?).
De plus, ’application

Vcris,p(D) ®@p Beris — D ®x Beris

issue de la multiplication de B,;s est un isomorphisme (préservant l'action de
T, la filtration, et le morphisme ). Cela peut se traduire de la fagon suivante :
en notant wy le foncteur oubli qui a la Q,-représentation cristalline V" associe
le Qp-espace vectoriel sous-jacent & V, et wp celui qui associe le K-espace
vectoriel sous-jacent & Deyis p(V), alors les ®-isomorphismes du foncteur fibre
wy ®q, K sur le foncteur fibre wp, Isom(wy ®q, K, wp), forment un torseur
sous Aut®(wy ) et sous Aut®(wp), qui est non vide sur Beps.

Du coté des p-modules filtrés sur I, nous disposons de la notion de réseaux
fortement divisibles (dont 'existence est une condition nécessaire et suffisante
pour que le module soit faiblement admissible), qui sont des p-modules filtrés
sur W (cf. paragraphe 1.3). J.-M. Fontaine et G. Laffaille ont montré dans
[FL82] que, si la longueur de la filtration est strictement plus petite que p —
1, il existe une équivalence de catégories abéliennes entre réseaux fortement
divisibles d’un module filtré faiblement admissible, et les réseaux stables de la
représentation cristalline associée.

Plus précisément, & M un @-module filtré sur W vérifiant Fil'(M) = {0
et Fi12_p(M) = M, ils associent le réseau Vpis(M) = FﬂO(M Qw Ac,.is)"oo7
et cette construction induit un foncteur exact, pleinement fidele (dont nous
noterons Depis un quasi-inverse). Deux problémes apparaissent : la condition
sur la filtration n’est pas stable par produit tensoriel, et ’application naturelle

Vcris(M) ®Zp Acris - M Qw Acm’s

n’est pas un isomorphisme (le déterminant est une puissance de ¢, non inversible
dans A.is). De plus, une question naturelle se pose : est-ce qu’il existe un
point f de Isom(wy ®q, K, wp) qui envoie un réseau galoisien sur celui qui
lui correpond d’apres la correspondance de Fontaine-Laffaille ? Répondre a ces
questions revient a étudier les propriétés tannakiennes de Vpis.

L’idée va étre d’introduire la théorie des modules de Wach de L. Berger (voir
[Ber04]), qui & un réseau d’une Q,-représentation cristalline associe un (¢, I')-
module dont un quotient redonne le p-module filtré sur W correspondant a la
théorie de Fontaine-Laffaille. L’intérét des modules de Wach est leur compati-
bilité avec le produit tensoriel (le module de Wach d’un produit tensoriel est
le produit tensoriel des modules de Wach). Le probléme se ramene alors & :
pouvons-nous a partir d’'un ¢-module filtré sur W reconstruire le module de
Wach correspondant ? Pouvons-nous le faire de maniere a ce que cette construc-
tion soit fonctorielle ?
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Le résultat technique principal de cet article est la construction a partir des
idées de N. Wach d’un foncteur de la catégorie des modules de Fontaine-
Laffaille vers la catégorie des modules de Wach. Plus précisément, notons
MF(;‘ la catégorie des ¢-modules filtrés N libres sur W tels que Fﬂ*h(N) =N,
Fil'(N) = {0} (cf. paragraphe 1.3 pour plus de détails) et MFw < —h >
la catégorie engendrée par MF;\}‘ pour les opérations de sous-objets, objets
quotients, produit tensoriel et somme directe, V,is le foncteur de Fontaine-
Laffaille, @ Mg h 1a catégories des duaux des modules de Wach de hauteur h
(ce qui correspond & des modules de Wach d’apres la définition de [Ber04]), et
I'®Mg la réunion sur h > 0 des 1"<I>M§h, N le foncteur "module de Wach”,
Vo, le foncteur de Fontaine pour les (o, I')-module sur Og, Vris p le foncteur
de Fontaine pour les p-modules filtrés sur X admissibles, et j : S — Og¢ qui in-
duit le foncteur extension des scalaires j* de la catégorie des modules de Wach
vers la catégorie des (o, T')-modules sur Og.

THEOREME 1. Soit h un entier compris entre 0 et p — 2, alors il existe un
foncteur ¥~ exact, préservant le produit tensoriel, fidéle et pleinement fidéle
de MFw < —h > vers '®Mg . Restreint a MF;&‘, ce foncteur est essentiel-
lement surjectif sur F@Mgh. De plus, pour tout objet M de MF;\}‘, F~(M)
est fonctoriellement isomorphe & N(Veris(M)). Dans le cas général, F~ (M)
s’interpréte encore comme le module de Wach du réseau galoisien correspon-
dant au (¢, T')-module sur Og engendré par ¥~ (M). En outre, Vo, 0j*oF~ est
isomorphe (comme foncteur) & Verisp une fois p rendu inversible, et ¢ Veris
une fois restreint a la catégorie My .

REMARQUE 1. Ce théoréme est optimal, dans le sens ot nous ne pouvons
espérer que F~ soit essentiellement surjectif sans la restriction sur h.

Pour illuster, le théoreme nous dit essentiellement que le diagramme suivant
est commutatif (ou bien sir il faut resteindre la catégorie des réseaux des
représentations cristallines a ceux & poids de Hodge-Tate dans [0, h]) :

Dcris
cris,h —h
Repr (F’C) cris MFW
Vo, AHDOS \ F- éTmodﬂ-
reMet remMg"
I
et, une fois p rendu inversible,
Rep§*(T'k) T MFw < —h >®k
VngDg \ F- ﬂ\modﬂ'
remet F@Mg[%]

-

J
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ou F~ est fidele, pleinement fidele, préserve le produit tensoriel, et suivant
les cas, peut étre essentiellement surjectif (et MFw < —h > QK représente
juste la catégorie formée des objets de MFw < —h > ol nous avons rendu p
inversible, c’est a dire la catégorie engendrée pour les opérations de produit
tensoriel, somme directe, sous-objet et objet quotient, par les modules filtrés
sur K admissibles & pente compris entre 0 et —h).

REMARQUE 2. Dans l’article nous étudierons aussi le cas plus général des p-
modules filtrés de type fini sur W (donc ayant éventuellement de la p-torsion,).

De ce théoreme, nous en déduisons le corollaire voulu :

THEOREME 2. Il existe un point du torseur Isom(wy ®q, K, wp) a coefficient

dans le corps é‘\m qui préserve les réseaux de Fontaine-Laffaille, c’est a dire qui
identifie les réseaux stables par Galois des représentations cristallines a poids
de Hodge-Tate dans [0, ]”2;2]] au W-module filtré correspondant par la théorie
de Fontaine-Laffaille.

Pour obtenir un résultat sur K plutot que sur gm, il faut modifier le probleme.
Considérons G un groupe algébrique lisse sur Z,, et une représentation p : I' —
G(Z,). Supposons donnée une immersion fermée o de G dans GLy, pour U
un Z,-module libre de rang fini, telle que la représentation oo p de I'r (dans
GL(U®z,Qp)) soit cristalline a poids de Hodge-Tate dans [0, 2] avec h un entier
compris entre 0 et p—;2. Notons V' = U ®z,Q,. Par un théoreme de Chevalley, il
existe un Q,-espace vectoriel Vi dans @, End(V)®? (en faisant agir GLy natu-
rellement sur V* et trivialement sur V, dans End(V) = V@V™) tel que Gxz,Q,
soit le groupe algébrique formé de ’ensemble des éléments de GLy qui laissent
stable V. Alors, par le foncteur de Fontaine-Laffaille, nous pouvons définir na-
turellement un groupe Gp sur D = Dygyis p(V) comme I'ensemble des éléments
de GLp laissant stable Dcris,p(Vg). Un corollaire de la proposition 6.3.3 de
[Fon79] nous donne I'existence d’un élément de Isom(wy ®q, K, wp)(K), donc
en particulier d’un isomorphisme de K-modules

f:V®&q,K—D

qui identifie G xz, K & Gp. Le comportement de f vis-a-vis des réseaux est
a priori inconnu. Pour I’étudier, nous introduisons un G-torseur Isom défini
sur W, qui est heuristiquement le G-torseur obtenu a partir de Isom(wy ®q,
K,wp) (c’est & dire une forme sur W du G xp K torseur obtenu a partir de
Isom(wy ®q, K,wp)). Le résultat suivant se montre alors en montrant que
Isom est un G-torseur trivial sur W :

THEOREME 3. Sous les hypothéses précédentes, si M = Deyis(U), il existe un
sous-groupe algébrique Gy de GLys sur W, avec Gy xw K = Gp, et il existe
[ un isomorphisme de W-modules de U @z, W sur M, qui identifie G d Gy .

fZU®ZpW—>M
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De plus, si U est un réseau de U ®z, Q) laissé stable par laction de G, alors
f[%] envoie U’ @z, W sur Deris(U”).

REMARQUE 3. Ce théoréme nous donne en particulier que les réseaux U et M
ont la méme position vis a vis du groupe G.

Avec des hypotheses plus fortes sur a, nous pouvons affaiblir I’hypothese sur
h. Une application directe de ce résultat concerne la semi-simplifiée d’une
représentation cristalline a poids de Hodge-Tate petits : le groupe algébrique
H engendré par I'image de Galois sur QQ, est alors connexe et réductif, donc
en appliquant les résultats cités dans [Tit79] (paragraphe 3.2 et 3.4.1), il existe
un groupe algébrique lisse G défini sur Z,, tel que G(Z,) contienne 'image de
Galois, et dont la fibre générique est H. Le Théoreme 3 s’applique alors.
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1 RAPPELS

1.1 RAPPELS SUR LES (¢, I')-MODULES
1.1.1 DEFINITION DE Og¢

Soit R I’ensemble des suites = = (2("), ey formées d’éléments de Og/pOg
vérifiant (z("*1)P = () pour tout n (cf. [Fon82], p. 535). C’est un anneau
parfait de caractéristique p, muni d’une valuation; son corps résiduel s’iden-
tifie & k. Son corps des fractions Fr R est un corps algébriquement clos de
caractéristique p, et R est intégralement clos dans Fr R.
Si A est une k-algebre, W(A) désigne 'anneau des vecteurs de Witt & coeffi-
cients dans A. Notons Zps = W(Fp:), Zp" = W(F,), W = W(k), Wk(A) =
Keow W(A) = W(A)[%] et sia € A, [a] = (a,0,---,0,---) le représentant de
Teichmiiller de a dans W(A). Le Frobenius x € A — aP € As’étend & W(A) en
¢ (encore appelé ’endomorphisme de Frobenius) par fonctorialité, ainsi qu’a
Wi (A) ; nous noterons o le Frobenius sur W et sur K (si A € W, a(X) := p(N)).
En particulier ceci s’applique & W(R), W (Fr R) et Wi (Fr R).
D’autre part, le groupe I'c opere par fonctorialité sur R, Fr R et W (Fr(R)),
et les anneaux W(R), W(Fr R) et Wic(R) s’identifient & des sous-anneaux de
Wi (Fr R) stables par ¢ et T'k.
Notons Z,(1) = lim fn (K) le module de Tate du groupe multiplicatif et pour
neN
tout i € N, Z,(i) = Z,(1)®" et Z,(—i) son dual. Pour tout Z,-module T, et
pour tout i € Z, posons T'(i) =T ®z, Zy(i).
Le module de Tate Z,(1) = T,,(G,,) s’identifie au sous Z,-module du groupe
multiplicatif des unités de R congrues a 1 modulo 'idéal maximal, formé des
x tels que 2(®) = 1. Choisisons un générateur de ce module, c’est-a-dire un
élément € = () ,en € R tel que (@ =1 et eV # 1, et considérons I’élément
m = [e] — 1 dans W(R). Alors 'adhérence S de la sous W-algebre de W (R)
engendrée par 7 s’identifie a 'algeébre W{n] des séries formelles en 7 & coeffi-
cients dans W ; de plus S est stable par ¢ et I'c, et nous avons les relations
suivantes :

o(m) = (L+m)P — 1
g(m) = 1 +m)*) 1

pour g € I'k.

Soit K, le sous corps de K engendré sur K par les racines p™-iémes de ['unité,

et Koo = UNICn. Notons I' = Gal(K+/K) et Hx le noyau de la projection de
ne

I'c sur I'. Le groupe Hi agit trivialement sur S. Si I'y est le sous-groupe de
torsion de T', posons Sy = ST/ ainsi que I'y = I'/Ts; J-M. Fontaine a montré
(cf. [Fon90], p. 268-273) que Sy = W]m], ot mp = —p + 3 [¢]l?). Notons

a€F,
q = p+ mo. Sp est munie d’une action naturelle de T'g.
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Notons Og le complété pour la topologie p-adique de S[%] C’est I'anneau
des entiers d’un corps complet pour une valuation discrete, absolument non
ramifié, noté £. Comme 7 est inversible dans W (Fr R), I'inclusion de S dans
W(R) se prolonge en un plongement de S[1] dans W (Fr R), et Og s’identifie
a l'adhérence de S [%] dans W(Fr R) pour la topologie p-adique, tandis que
&= Og[%] s’identfie & un sous-corps de Wi (Fr R). Alors si E = O¢/p, Op =
S/pS = k[x], ou 7 est la réduction modulo p de .

De plus, si Enr désigne 'adhérence dans Wi (Fr R) de extension maximale
non ramifiée &, de £ contenue dans Wi (Fr R) et Oém son anneau des entiers,
Oém /p est une cloture séparable E*°P de E, avec une identification des groupes
de Galois

Hyi = Gal(E*? /E) = Gal(&,/E).

1.1.2 (¢,I')-MODULES ET REPRESENTATIONS GALOISIENNES

Nous ne considérerons des (@, I')-modules que sur S ou Og (nous considérerons
aussi des (¢, I'g)-modules définis sur Sp). Soit A I'un des anneaux précédent.
Un (¢, T')-module sur A est un A-module muni d’un endomorphisme ¢, semi-
linéaire par rapport & ¢ muni en plus d’une action continue de I', semi-linéaire
par rapport a 'action de I sur A, cette action commutant avec I’endomorphisme
. Nous les supposerons toujours étale, c’est a dire de type fini sur A et tels que
Papplication linéaire ¢ : M — M, déduite de ¢ en posant p(A ® x) = A\p(z)
pour A € A et x € M est bijective. Les (¢,T')-modules étales (avec comme
morphismes les morphismes A-linéaires commutants & ¢ et & I') définissent une
®-catégorie abélienne notée T®8ME (cf. [Fon90] p.273).

Appelons représentation Z,-adique de I'x la donnée d’un Z,-module de type
fini muni d’une action linéaire et continue de I'x. Un morphisme sera une
application Z,-linéaire commutant & I’action de I'c. Notons Repz,(I'x) la
catégorie des représentations Z,-adique de I'x. La catégorie Repg, (I'x) est
défini de méme.

J.-M. Fontaine a montré dans [Fon90] (p. 274) qu’il existait une équivalence
de catégories entre T®#ME . et Repyz, (Tx) induite par le foncteur Do, (T) =
(Ogm ®z, T)Hx pour T une Z,-représentation de I'x, et son quasi inverse
Vo.(N) = (O ®o0, N)#=". La multiplication dans Og induit alors une
application naturelle et fonctorielle :

Vo,N) ®z, Ogm ﬂ) N ®o, Ofm
pour N un objet de la catégorie I‘<I>M‘(é9t8.

1.2 REPRESENTATIONS CRISTALLINES
1.2.1 REPRESENTATIONS CRISTALLINES
Pour la définition de A.ris et de ¢ := log(Je]), nous renvoyons a [Fon94al

par exemple. Nous noterons Be,js = Acms[%]. Soit V' un Qp-espace vectoriel
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de dimension finie, et p : I'x — GL(V) une représentation continue de I'k.
Définissons Deris,p par

Dcris,p(V) - (V ®Qp Bc’r‘is)r}c
Alors Deris,p(V') est un K-espace vectoriel, et dimy Deris p(V) < dimg, V.

DEFINITION 4. La représentation (p,V') est cristalline si dimx Deris,p(V) =
dime V.

Notons Repq, cris(I'x) la sous-catégorie pleine de Repg, (I'x) formée par les
représentations cristallines. Définissons MF ¢ la catégorie des p-modules filtrés
sur K : un objet D de MF est un KC-espace vectoriel de dimension finie muni
d’une filtration (Fil(D));ez formée de sous-espaces vectoriels, fitration qui est
décroissante, exhaustive séparée, et muni d’une application o-semi-linéaire bi-
jective ¢ : D — D. Dcris7p(V) est alors naturellement un w-module filtré. Un
élément de 1”image essentiel du foncteur Deris p (V) restreint & Repg, cris(Tx)
est appelé admissible. Notons MF%d la sous-catégorie pleine de MFx formée
des modules admissibles.

Reprycris(I‘;g) et MF%d sont deux catégories tannakiennes, le foncteur Deris p
induit une équivalence de ®-catégories entre ces deux catégories, et un quasi-
inverse est donné par le foncteur Veris p(D) = (Fil’(D @ Bc7‘is))¢:1 . L’ap-
plication naturelle (provenant de la multiplication dans Bers)

Vcris,p(D) ®@p Beris = D ®x Beris (5)

est alors une bijection.

1.2.2 Poibs bDE HODGE-TATE

Rappelons que pour p : 'k — GLg, (V) une représentation continue sur un
Qp-espace vectoriel de dimension finie, I'action de I'x peut s’étendre & V¢ =
V ®q, C via g(v® x) = p(g)(v) ® g(x). Notons alors pour i € Z, Ve{i} = {v e
VelVg € Tk, gv) = X(g)w}. Ve{i} est un K-sous espace vectoriel de V¢ tel
que l'injection Ve{i} — V¢ s’étend en une injection C-linéaire

@ V(c{i} Rk C— V¢
€L

Alors V est dit de Hodge-Tate si cette injection est une bijection. Les poids de
Hodge-Tate sont alors les ¢ € Z tels que dimg Ve{i} # 0. Si V est cristalline,
alors elle est de Hodge-Tate, et ses poids de Hodge-Tate sont les opposées des
sauts de la filtration de Derisp(V).

1.3 RAPPELS SUR LES (-MODULES

La catégorie qui va nous interesser est la catégorie MFw ¢ dite des ¢p-modules
filtrés sur W, dont les objets sont les W-modules N de type fini, muni
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— d’une filtration décroissante exhaustive et séparée formée de sous-modules
(Fil'(N))iez ; . _
— pour tout ¢ € Z, d’une application o-semi-linéaire ¢* : Fil'(N) — N telle
que SDi|Fili+1(N) = pp'tt;
— il existe i € Z avec Fil'(N) = {0} ;
— les Fil'(N) sont des facteurs directs dans N ;
~ S GHFIF(N)) = N.
i€Z
Les morphismes de cette catégorie sont donnés par les applications W-linéaires
compatibles aux filtrations et commutants aux ¢*. C’est une ®-catégorie qui
est abélienne, Z,-linéaire, qui possede des Hom internes (cf. [Win84]).
Soit X (respectivement Xy pour s € N*) le groupe additif des applications
périodiques (respectivement ayant s pour période) de Z dans Z. Le Frobenius
o agit sur X par V¢ € X,Vi € Z, o(§)(i) = £(i + 1), et laisse donc stable les
Xs.
Pour tout objet N de MFwy ¢, si (N;)icz est un scindage de (Fil'(N))iez,
posons pour z € N tel que z = > z; avec z; € N;, fn(z) = 3 ¢l (x;). Soit
3 3

pour tout £ € X, le W-module N{¢} := {z € N|f}(z) € N¢(;) pour tout
j € Z}. Le p-module filtré N est dit élémentaire si N = Geex N{£}.

LEMME 6. Si N est un module élémentaire, dont le module sous-jacent est libre
sur W ou sur k, alors il existe une base (eé)EEX,lﬁiﬁrg(N{ﬁ}) de N telle que

pour tout &, (eé)lgigrg(N{g}) soit une base de N{¢} et de plus &) (eé) = eff(g).
J.-P. Wintenberger a montré dans [Win84] :

THEOREME 7. Pour tout objet N de MFwy t¢, il existe un et un seul scindage

de la filtration de N tel que

— il existe un (unique) uy € Autyw (N) tel que le p-module filtré (N, (N;), uy'o
fN) soit élémentaire ;

— N/pN ait une suite de composition dont les quotients successifs sont des
modules élémentaires.

Ce scindage vérifie les propriétés de fonctorialité attendues.

Posons enfin MF[\E;{}Tf (resp. MF%’V’b]) la sous-catégorie pleine de MFwy ¢¢
formée des W-modules M (resp. modules libres) tels que Fil*(M) = M et
Fil’*' (M) = {0}. Notons MF,, = MFL"0 MFh . = MFR" et
MF%\?tf = MFQX,ht? ] (de méme sans le symbole tf). Pour terminer, nous
désignerons par MFw ¢+ < h > la catégorie engendrée par MFY, dans la
catégorie MFw f pour les opérations de sous-objet, objet quotient, somme
directe et produit tensoriel.

Soit D un p-module filtré sur K admissible. Alors il possede des sous-réseaux
fortement divisible, M, c’est-a-dire un réseau M vérifiant 3 p~io(Fil*(D) N

i€z

M) = M. En posant Fil'(M) = Fil'(D) N M, ¢' = p~"¢|pi(ar), M devient
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un @-module filtré sur W. Réciproquement, si M est un objet de MFw ¢r
libre sur W, en posant D := K @ M, Fil'(D) := K @w Fil’(M), et pour
z; € Fil'(M), o(z;) = p'e(x;), Pobjet D ainsi construit est un ¢-module
filtré sur K faiblement admissible (et donc en fait admissible) dont M est un
réseau fortement divisible. Par contre, différents M peuvent donner le méme
D. Nous noterons D)y ce p-module filtré sur K faiblement admissible construit
a partir de M.

1.4 LE THEOREME DE FONTAINE-LAFFAILLE

DEFINITION 8. Pour tout objet M de MFw ¢ tel que Fil'(M) = {0}, soit
Veris(M) la représentation galoisienne définie par :

0

Vcris (M) = (Fﬂo (M Qw Acris))w

Si M est libre comme W-module, Veris(M) est un Z,-module libre (c’est un
sous-réseau de Veris,p(Dar))-

THEOREME 9 (Théoréme de Fontaine-Laffaille). Si nous nous restreignons d la
sous-catégorie pleine des M wvérifiant Fil*"P(M) = M et Fil'(M) = {0}, alors
le foncteur Vepis ainsi défini est exact et pleinement fidéle. De plus si M est
libre sur W, Vepis(M) est un réseau de la représentation galoisienne associée
a Dy (c’est-a-dire que 18z (Veris(M)) = 18y (M)).

Nous noterons De¢yis un quasi-inverse & Vepis (Il est donc défini sur la catégorie
formée par les réseaux des représentations cristallines sur Q, de I'c. a poids de
Hodge-Tate dans [0,p — 2], et leurs quotients, & valeurs dans MF%; Pe)-

2 CONSTRUCTION DU FONCTEUR

2.1 RAPPELS SUR I'o®M3§
o)

Notons I'g <I>M]§0 (I‘<I>M]é1 se définit de la méme fagon) la sous-catégorie pleine

de la catégorie des (¢, I'g)-modules sur Sy (cf. paragraphe 1.1) formée des objets

N vérifiant :

— le Sp-module sous-jacent est de type fini et sans p’-torsion (i.e. pour tout
élément irréductible A de Sy non associé & p, A est sans A-torsion),

~ le Sp-module N /p(N ®, Sp) est annulé par ¢ (ot ¢ = 7o + p),

— le groupe Ty agit trivialement sur N /mo .

Elle est abélienne si 0 < h < p — 2, et l'inclusion j : Sy — Og induit un

foncteur j* : T'g @Mgo — F@M%S pleinement fidele qui est une équivalence de

catégorie pour 0 < h < p — 2 sur son image essentielle (cf. [Fon90], p.301). Si

N est un objet de 1"0<I>M]§O, alors j*(N) a pour espace sous-jacent N ®g, O¢.

Nous ferons souvent ’abus de notation de n’écrire que 1’espace sous-jacent pour

désigner j*(N).
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Si0 < h<p-—2etN un objet de I‘0<I>M]§O, N. Wach a montré qu’il est
possible de munir N = N /mgN d’une structure de ¢p-module filtré sur W en
posant

Fil" N = {z € N tels qu’il existe un relevement € N de x avec ¢(Z) € ¢"N'}

et pour tout x € Fil" N, ¢"(z) égal & I'image de ‘Pq(,@ dans N. Elle a alors
démontré le théoreme suivant (cf. [Wac97], p.231) :

THEOREME 10. Soit 0 < h < p — 2. Pour tout objet N de 1"0<I>M]§0, le -
module filtré i*(N) = N /moN est un objet de MFyy (¢ ; le foncteur i* ainsi
défini est exact et fidéle.

2.2 FONCTEUR ENTRE MFY, ET [o®M§

N. Wach a donné les idées pour construire un quasi-inverse a ¢* : a partir d’un
objet N de MF%V avec 0 < h < p — 2 et d’'une base adaptée a la filtration,
elle a construit un objet N tel que ¢*(N) = N. Nous allons montrer qu’en se
fixant un scindage fonctoriel de la filtration, nous rendons cette construction
fonctorielle.

ProprOSITION 11. Soit MF?,'V’tf la sous-catégorie pleine formée de la réunion
des MF%V’tf (définition analogue pour 1"0<I>M‘S"O). A tout scindage fonctoriel
de la filtration des objets de MF{,FV’tf nous pouvons associer un foncteur de
MF;IFV,tf vers <I>M§t0 (la catégorie des @-modules sur Sy dont lextension a

O¢ donne un p-module étale), qui soit fidéle, additif, exact, et qui préserve le
produit tensoriel.

Démonstration. Si N est un objet de MF%‘V’tf, et N = @N; le scindage de la
filtration, il suffit de construire sur N ®y Sy une structure de ¢-module par :
I'application ¢? étant défini sur Fili(N ), elle se restreint a N;, permettant de
poser px égal & ¢'p’ sur N;, c’est-a-dire

Va € Ny, on(x) = ¢'¢'(2)

Nous prolongeons cette définition a N ®y Sy tout entier en utilisant la semi-
linéarité de ¢n. Les propriétés de fonctorialité découlent alors de celles du
scindage de la filtration. Au niveau des fleches, ce foncteur est construit de la
maniere suivante : si f : N — N’ est un morphisme de ¢-modules filtrés, le
foncteur lui associe f ® Id. O

REMARQUE 12. Le fait qu’il existe un scindage de la filtration fonctoriel (no-
tamment préservant le produit tensoriel) nous est donné par le théoréme 7.

REMARQUE 13. Nous pouvons étendre ce foncteur de la méme facon en un
foncteur de la catégorie des p-modules filtrés libres sur W wvers <I>M(é9tg, qui
préserve sous-objet, objet quotient, somme directe, produit tensoriel et dual.
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N. Wach a montré la proposition suivante (cf. le lemme 3.1.6 p.233 de [Wac97)) :

PROPOSITION 14. Supposons 0 < h < p—2. Alors pour tout objet N de MF%V,
il existe une unique action de 'y sur N Qw So triviale modulo my et commutant
au pn construit comme dans la proposition 11. Le module N Qw So est alors
muni d’une structure de (o, Tg)-module sur Sy et devient un objet de 1"0<I>M]§0 ..

C’est le point de départ pour montrer le théoreme suivant :

THEOREME 15. Supposons 0 < h < p — 2. Il existe un ®@-foncteur F additif,
ezact, fidéle et pleinement fidéle de MFw ¢ < h > dans I‘0<I>M'S"O, qui com-
posé avec le foncteur oubli donne juste le foncteur extension des scalaires de
W a Sy. De plus, il induit une équivalence de catégories entre MF]{,‘Wtf et

I‘0<I>M]§ , dont un quasi-inverse est i*.
(o]

Démonstration. La premiere étape consiste a construire F sur MF%V Soit N
un objet de MF%V (donc libre comme W-module). Considérons N ®@w Sy :
comme 0 < h < p — 2, il existe une unique action de I'g sur N ®@w Sp qui
commute & ¢ et est triviale modulo 7y (c’est le lemme 3.1.6 p.233 de [Wac97]).
Le (¢,To) module ainsi défini, noté F(N), est bien un objet de To®Mg, . Il
faut voir que nous définissons bien ainsi un foncteur. Comme la structure de ¢-
module provient d’un scindage de la filtration qui préserve le produit tensoriel,
I'unicité de I’action de I'g nous donnera bien que F préserve le produit tensoriel
(tant que celui-ci reste dans MF%,). L'exactitude provient de la méme raison.
N. Wach a montré (lemme 3.1.1.2 de [Wac97]) qu'il existe un unique générateur
topologique go de T’y tel que % = 1 modulo ¢Sjy. 1l suffit donc d’étudier
Paction de gg. Choisissons une base adaptée a la graduation (e;)1<i<q (c’est-
a-dire : si r; est le plus grand entier tel que e; € Fil"(IV), alors pour tout r,
(€;)r;=r est une base de N,.), et si (a;,;) est la matrice des applications ¢" dans
cette base, 'action de ¢ est donné par :

ples) =q7 Y aije;
1<i<d
Avant de montrer que F préserve les sous objets, nous allons étudier plus en
détail I'action de go.
N. Wach construit 'action de go sur N ®yw Sp par récurrence modulo 7§. Nous

avons besoin de voir cette action d’une autre facon : soit G = (g;,;) la matrice
dans GL,g(n)(So) définie par go(e;) = Y gijei, et A = (ai;) € GLyg(n)(W)
i

donnant I'action de ¢7 sur e;. Alors, en écrivant wogo(e;) = > p(gi ;) ar,iq" ek

ik

et goop(e;) = > g(ai;)ar.i9(q)™ ek, la commutativité pogg = gooy nous donne
ik

pour G 'équation AQu(G) = Ggo(A)go(Q) avec @) la matrice correspondant a
Q(e;) =q"e; (et go(A) = A puisque A est a coefficients dans W). Donc G est
un point fixe de application f : H — AQw(H)go(Q )go(A™1) (et le lemme
3.1.6 p.233 de [Wac97] affirme juste l'unicité d’un tel point fixe & coefficients
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dans Sy, qui soit congru & Id modulo 7). Notons I la matrice identité dans
GLg(Ny et G = fO(I) (c’est-a-dire la composée n fois de f appliquée & I).
Alors, en utilisant que G — I € w9 M,g(n)(So), nous allons montrer :

LEMME 16. La matrice G est la limite de la suite G,,.

Démonstration. Notons ¢(™ la composée n fois de ¢ et introduisons alors
B, = AQu(A)p(Q) - -- "D (A)p™ =D (Q) qui est une matrice & coefficients
dans Sy. Nous avons G,, = B,p™ (I)go(B; '), et comme G est un point fixe
de f, G = B,p™ (G)go(B;; 1), d’ott I'égalité G,, — G = B,p™ (I — G)go(B;1).
Notons G = I — moH avec H € M,yn)(So), alors nous avons G, — G =
@™ (70) Bpp'™ (H)go(B,, ). Or, comme A est inversible (dans GL,gz(n)(W)),
les seuls dénominateurs possibles sont les puissances de go(q)", et comme

o™ (o) e
go(qsa(q)~~~<ﬂ"*1(Q))p72 "
avec G, = Bup™ (H)go (¢ (P 2Q e N(A™) - P 2Q A7) qui
est une matrice a coefficients dans Sp.

0 < r; < p—2, nous pouvons écrire G,, — G =

™ (o)
go(qsa(q)ww"*l(Q))
g0(q) = vyq avec v, inversible dans Sy, par conséquent le fait que ¢ et go
commutent nous donne 1'égalité

Donc tout revient & montrer que -— tend vers 0. Nous avons

‘P(n) (o) _ (vgp(vg) - - - @(nil)(vg))Qip (n) o
go(a(a) - " 1(q))" " —_—

(qp(q)--- " (q))P—2

En utilisant que ¢(m) = umpgP~! pour u un certain inversible dans Sy, nous
obtenons que o™ (m) = (gp(q) - -- "1 (¢))" ' mousp(u) - -- "~ (). Donc,

o™ (mo) up(u) - " (u)

=70 D)
go(ao(@) o1 @)’ 2 Weplvg) - o vg))p—2 gp(q)--- 0" V(q)

et, puisque go(q) - - - "1 (g) tend vers 0 dans Sy (g est dans 'idéal maximal de
™ (m0)

g0 (a¢(@)9" 1 (0))"

tend vers 0 dans Sy, c’est a dire que G, tend vers G. O

So, idéal qui est stable par ¢), nous pouvons conclure que

Montrons alors la proposition suivante (qui est le point technique clé de cet
article) :

ProPoOSITION 17. Soit N;; des objets de MFI\}V avec 0 < h < p—2, L
un sous-objet (dans MF3,) de M := @®jNi7j, alors Uaction de Ty sur
i

@@j F(N; ;) = M Q@w So laisse stable L @w Sp.
i
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Démonstration. 1l suffit de le montrer pour I'action du générateur gg de I'y.

Fixons pour chaque IV; ; une base (egC J )) adaptée & la graduation. Notons G(+7)

la matrice de I'action de go sur cette base et C') la matrice donnant I'action de
@ sur N; ; @w So (avec les notations précédentes, C' = AQ). Alors, par le lemme

précédent nous avons hm G = D) avec C’(i’j)go(Ggf’j))gO(C(i’j))_l =

n—-4o0o

G} et GYP = 16:9).

Prenons (u[l]); une base de L, et notons (u[l],,

base (e,(C ))

G, j)) les coordonnées de u[l] dans la
Nous voulons montrer (par récurrence) que ), ®; Gﬁ:fl go(uy, (0.0 ))

(i, J))

est une combinaison linéaire (& coefficients dans Sp) des (u[l];”’), pour u

élément quelconque de L @w S (et (u,, (.7 )) ses coordonnées). Remarquons que
par linéarité, il suffit de le montrer pour u égal aux wl[l].

Comme L est un sous-objet de M, nous avons L ®w Sy qui est stable par
. Or ¢ induit une bijection de L ®@w So[%]. Cela se traduit alors en disant

D, ®,;CHI) o(ull’ ](Z’j)) est une combinaison linéaire (& coefficients dans Sp)
des (u [l](w)), et qu'il existe N € N tel que ¢V ( ®; C7) )71(u[l’],(;’3)) est une
combinaison linéaire (& coefficients dans So) des o(u [l](m ))

Par conséquent, go(q)Ngo( ®; C9))~ ( o(ull’ ],(;’J))) s’écrit comme une com-
binaison linéaire (& coefficients dans Sp) des (go(go(u[l],(;”)))), ceci pour tout
l.

Puis, @, @50(G 7 )go(p(ull'”)) = o(@; ;G go(ull]y"”)) est pour

(w) )

tout I’ une combinaison linéaire (& coefficients dans Sp) des (¢(ull]}, cela

provient de notre hypothese de récurrence.

En reprenant que @, ®,;C)p(u [l’](i’j)) est une combinaison linéaire (& co-
efficients dans Spy) des (u[l](w)) pour tout I’, et en mettant bout & bout ces
affirmations, nous obtenons que

eBea]GS:ﬂlg (wlt) =

@ ®C(i7j) ® (p(GSJ))gO( ® C’(i’j))71(g0(u[l’]§j’j)))
est pour tout I’ une combinaison linéaire (& coefficients dans Sy) des (u[l]g] ).
Par conséquent, si gl[fl] désigne 'application gg-linéaire construite a partir de
la matrice @, ®jG§f’j) (Uhypothese de récurrence se traduisant par : L ®y So
est stable par g["]), alors gl t1l (L ®@w Sp) C WL Qw So = qLNL Rw So-
Considérons alors (f;)i<r<rg,, (m) une base de M telle qu’il existe n, € NU
{400} avec (p"* f,.) base de L. Alors g+ (pn- f,) = 3" % %
(qui dépend de r). Mais, par construction, gl** (M ®@w So) € M ®@w So,

alors gl"tH(pnr ) = Yo P"Bsfs avec B € Sp (qui dépend aussi de r). D’ou
plrBs = (;‘;} p"<, ce qui implique que ¢V divise as dans Sy, donc que g+ (Le®w

Ns

avec a; € Sg

So) C L ®w Sp, ce qui montre bien la récurrence.
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Pour initialiser la récurrence (n = 0) nous avons Gy = I63) (ol I est la
matrice identité), donc @, ®jGél’])go(u§;’])) = ugj’]) pour tout u dans L. D’ou
par récurrence la propriété est vraie pour tout n. En passant & la limite, la
propriété est vrai pour €, ®jG(i7j). Donc l'action de gg sur M ®w Sy laisse
stable L ®w Sy. O

Cette proposition est le coeur du théoreme. Elle nous donne en particulier que
si N’ est un sous-objet de N dans MF%V, alors 'action de gg sur N ®w So
laisse stable N’ @y, Sy. Elle est triviale modulo 7 : si (e;) est une base de
N, telle qu'il existe () € NU {400} avec (p*ie;) base de N', alors il existe
des coefficients z;; et y;; dans Sy tels que go(e;) = e; + 7>, @i e; et
go(pie;) = Zj ¥i,;p* e;. En identifiant les coordonnées, nous avons y;; = 1
et y;,;p% = p%ix; m si j # ¢, donc 7 divise bien y; ; dans Sy pour j # 1.
Donc l'action de gg sur F(V) se restreint en une action triviale modulo 7y sur
N’ ®w Sp qui commute & ¢, donc par unicité cette action est celle de F(N').
La deuziéme étape consiste alors a définir F sur tout MFw ¢¢ < h >. Le point
important est que pour tout objet M de MFw ¢f < h >, il existe des objets
N;.; dans MFY, et L un sous-objet de @, ®;N; ; tels que M est isomorphe a
un quotient M’ de L. Considérons alors N un sous-objet de M, et supposons
que sur M ®w Sy nous ayons une structure de (¢, g)-module qui le rende
isomorphe & M’ @y Sp muni de la structure de (¢, 'g)-module obtenu a partir
de celle de L @y Sp donnée par la proposition 17. Il faut voir que N’ Quw Sy
(ot N’ est I'image de N dans M’) est stable par I'g. En notant 7 : L — M’
la projection naturelle, 7=1(N’) est un sous-objet de L (car c’est le noyau du
morphisme L — M’/N’, donc par la remarque 1.4.2 et la proposition 1.4.1 de
[Win84], c’est bien un sous-objet de L), donc la proposition 17 nous donne bien
que 7 1(N") @y Sp est stable par I'action de I'g. Par conséquent, N @y, Sy sera
bien laissé stable par 1'action de Ty de M ®w Sp, donc sera un sous-(¢, I'g)-
module de M ®w Sp.

Puis, F se construit par itération : notons MF,, la sous-catégorie pleine de
MFw ¢, construite en disant qu’un objet de MF 1 est soit le sous-objet ou
le quotient d’un objet de MF,,, soit la somme directe de deux objets de MFy,,
soit le produit tensoriel de deux objets de MF,,, soit un objet de MF,,, et
posons (pour initialiser la récurrence) MFq = MF{}V Alors, MFw ¢ <h > =
UMF,,, et si F est construit sur MFy,, alors il s’étend naturellement & la somme
directe ou le produit tensoriel de deux objets de MF,,, et ’étude précédente
montre qu’il s’étend au cas d’un sous-objet, et donc d’un objet quotient, d’un
objet de MF,,. Nous pouvons donc donner naturellement une structure de
(p,Tp)-module & tout M ®w So, pour M un objet de MFyw ¢¢ < h >.

La troisieme étape s’occupe des morphismes. Pour M et M’ deux objets de
MFw ¢ <h >, et f: M — M’ un morphisme, nous posons F(f) = f ® Id
(En particulier, le foncteur sera exact (car Sy est plat sur W) et fidele). C’est
un morphisme de (¢,T'g) module : par construction, c’est un morphisme de
p-modules. Puis, f ®Id: M & M’ — M’ ® M’ est un morphisme de ¢-modules
filtrés, donc par la proposition 1.4.1 de [Win84], Ker(f&®Id) = {z—ylz € M, y €
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M’ y = f(x)} est naturellement un p-module filtré, sous-objet de M@ M’ donc
par la proposition 17, Ker(f @ Id) ®@w Sy est laissé stable par I’action naturelle
de T sur (M@ M')@w Sy (obtenue & partir de celle sur M @w Sy et M’ ®@w Sp),
donc f commute & Paction de T'g, car si z —y € Ker(f @ Id) @w Sp, dire que
9(z) — g(y) € Ker(f ®1d) ®w So, c’est dire que f(g(y)) = g(x) = g(f(y))-
Montrons la pleine fidélité. Remarquons que si nous munissons M ®Qw Sy de la
structure de p-module filtré donnée par Fil' (M @w So) = {x € M®w So|p(z) €
@M @wSo}, et o = %g@, alors la restriction modulo 7 est un morphisme de -
module filtré. Par conséquent, si f : M Qw Sg — M'®@w Sy est un morphisme de
(¢, Tg)-module, alors la réduction modulo 7 induit f : M — M’ un morphisme
de yp-modules filtrés. Donc f ® Id : M ®@w Sy — M’ @w Sy est un morphisme
de (¢, Tg)-module par le résultat précédent, donc g = f — f ® Id aussi, et il
se réduit modulo 7y sur l'application nulle. Notons M” le noyau de g, c’est
un sous (¢, ['g)-module de M ®yw Sp. Nous avons moM” = M”" NwoM Qw Sy
car M’ ®w Sy est sans mp-torsion. Donc M" /mgM” C M, et par le lemme du
serpent, nous avons égalité, car :

0—— M" —— M ®w So —— M @w Sy —— 0

T

0 M M M 0

les lignes horizontales sont exactes, u; est la réduction modulo my composée
avec l'inclusion M”/moM"” C M, us et ug sont la réduction modulo g, usg
est surjectif (uz aussi), et 'application naturelle Ker(us) = moM Qw So —
Ker(uz) = moM ®w So est surjective. Donc, nous avons M @w Sy = M” +
moM Qw So, I'idéal engendré par 7 est inclus dans le radical de Jacobson de Sy,
M ®w So est de type fini sur Sy, donc par le lemme de Nakayama, nous avons
M ®@w Sy = M”, donc f = f @ Id. Par conséquent le foncteur est pleinement
fidele.

La quatriéme étape est I’étude du foncteur restreint a MF%V“. Par construc-

tion, nous avons i* F(N) = N pour tout objet N de MF%V,tf' Montrons :

LEMME 18. Pour tout objet N de 1"0<I>M]§0, libre comme Sp-module, si N =
i*(N), il existe un unique isomorphisme de (p,Lo)-module F(N) — N (qui se
réduit modulo mo sur l’égalité N = i*(N)).

Démonstration. Présentons ici une démonstration de ce fait due a N. Wach.
Pour cela, considérons une base (e;)1<i<q4 de N, adaptée a la graduation, et
(a;;) la matrice des applications ¢" dans cette base (donc l'action de ¢ est
donnée sur F(N) par ¢(e;) =q™ > ajje;). Il faut alors prouver I'existence

1<i<d
et Dunicité d'une base (f;) dans N vérifiant o(f;) =¢"7 >, a,;fi avec e; =
1<i<d
fi modulo my. Ce sera suffisant car en posant h(e;) = f;, nous aurons un
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morphisme de ¢-module, qui fera commuter 'action de I'y par unicité de celle-
ci, et qui modulo 7y redonnera I’identité.

Par construction du ¢-module filtré N, la base (e;) se releve en une famille (é;)
de N avec p(é;) € ¢"N. De plus, N est complet pour la topologie my-adique
(car Sy l'est), et modulo 7, (e;) est une base, donc N étant sans torsion, (é;)
est une base de N (nous pourrions aussi invoquer le lemme de Nakayama).
Donc, il existe a;,; € So tels que :

0(E) =q7 Y e

1<i<d

et a;; = a;; modulo my. Posons «;; € Sp I'unique élément tel que a;; =
a; ; + moey j. Nous cherchons & modifier la base (&;) pour obtenir la base (f;).

Cherchons f; sous la forme f; = é; + moc;, et posons b; = > ¢ jé;. Alors,
1<i<d

puisque ¢(mo) = ug?~ "o,

o(éj + mocj) = p(é;) + umog?1p(cj), et en faisant apparaitre i q"a; ToC;,

nous obtenons . l:dl

@(éj + mocy) = 21 q"ia; j(é; + moci) + g T bj 4+ umoqPo(cs) — 21 q"7a; jmoc;
i= i=

autrement dit, nous cherchons les ¢; € N tels que

bj+ug”  Tp(e;) = Y aiei=0
1<i<d

Nous résolvons ce systeme de maniere unique par récurrence modulo 7. A
chaque étape, le systeme se résout en faisant une récurrence modulo p*, en
utilisant que p — 1 —r; > 1 (par hypothese), donc que ¢°P~17" = 0 modulo
(p, m0), et que la matrice (a; ;) est inversible modulo p. O

Pour terminer la démonstration du théoréme (c’est a dire prouver le lemme
précédent sans 'hypothese sur la liberté de N), nous aurons besoin de résultats
sur les modules de Wach, qui apparaitront plus loin dans ’article. La fin de la
démonstration sera faite a la section 4. O

Pour la suite, nous aurons besoin de faire intervenir un foncteur légerement
différent. Si N est un objet de MF;&‘, son dual N* = Homg, (N, Zy) est un
objet de MF%,, donc F(N*) est bien défini.

DEFINITION 19. Le foncteur F~ est défini sur MFQ\],rl pour h < p—2 par :
F~(N) = (F(N*) ®s, Og)” =N @w Ot

pour tout objet N de MF. Il donne bien un (p,T')-module étale sur Og (donc
est a valeurs dans I‘<I>M(é}£). 1l s’étend de méme ¢ MFw < —h >.
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REMARQUE 20. Le foncteur F consiste & munir N Qw Sy (pour N objet de
MFw < h >) d’une structure de (¢,Tg)-module, et pour avoir un foncteur
défini sur MF(,J‘, nous prenons le dual. Pour retrouver exactement les résultats
du théoréme 1 cité dans Uintroduction, il faudrait définir F~ par F~(N) =
F(N*)*. Cet objet est le dual d’un (p,Tg)-module sur Sy de hauteur h, ce n’est
donc pas un (v, To)-module, car Uaction de ¢ construite par dualité ne le laisse
pas stable (de maniére générale, le dual d’un p-module sur Sy n’est pas un p-
module). Mais nous verrons plus tard que c’est un module de Wach, au sens de
[Ber04]. En étendant les scalaires 6 Og, nous retrouvons le foncteur donné dans
la définition précédente. Pour éviter d’avoir a introduire la catégorie des duauz
des (¢,Tg)-module sur Sy de hauteur h, nous n’utilise rons que la définition 19
(le théoréme 1 se déduira alors directement du théoréme 15, des propositions
31 et 35, de la remarque 39 et des propriétés des modules de Wach montrées
par L. Berger).

Remarquons que F~ peut étre défini sur MF‘_}‘}“tf (puis sur MFwy ¢f < —h >)
en prenant pour un module de p-torsion le dual de Pontriaguine, et en passant
a la limite projective pour le cas général.

REMARQUE 21. Nowus pouvons définir F sur MF%}‘ pour h < ”2;2 en po-

sant F(N) = F(N @w WIh]) ®s, Og[—h] avec Og|—h] = F(W[h])* et W[-h]
Uobjet de MFw dont le W-module sous-jacent est W, avec Fil'(W[—-h]) =

W sii<—h
{ 0sii>—h
morphe  F(N)* (cela se voit a aide de Uunicité de Uaction de Ty agissant
trivialement modulo 7y, et commutant a o, d’aprés le lemme 3.1.6 de [Wac97]),
et F s'étend alors en un foncteur sur MFw < +h > qui a des propriétés si-
milaires a celles de F, et qui préserve le dual.

et o "(z) = o(x). Alors, F(N*) est canoniquement iso-

3 LIEN ENTRE LE FONCTEUR ET LES MODULES DE WACH

3.1 FONCTORIALITE DE gy

Rappelons le Théoreme 1’ de N. Wach (cf. [Wac97]) :

THEOREME 1°. Si N est un objet de 1"0<I>M]§0 avec 0 < h < p — 2, alors
Hommry, (75 (N), Aeris) est isomorphe (en tant que représentation galoisienne)
a Homamg, (N, Oz ).

Enoncé dans le cadre (et avec les notations) qui nous intéresse, il devient :

THEOREME 1°. Si N est un objet de MFG\?tf avec 0 < h < p—2, alors il existe
un isomorphisme gy : Vo.(F~(N)) — Veris(N) de représentations galoi-
siennes. St en plus N est libre, en passant au dual, cela donne un isomorphisme
de représentations galoisiennes tgg,l : Vo, (F(N*) ®3, Og) — Vepis(N)*.

Nous allons vérifier que cet isomorphisme est fonctoriel :
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THEOREME 22. Pour tout objet N de MFW o avec 0 < h < p—2, lapplication
gn construite par N. Wach vérifie les propmetes de fonctorialité suivante :
1. pour tout morphisme f : N — N’ entre deux objets N et N’ de MFW f>

nous avons Veris(f) o gy = gy o Vo (F~(f)) (cela s’applique en parti-
culier pour linjection d’un sous-objet, ou pour la projection sur un objet
quotient).

2. pour tout objet N et N’ de MF;&tf, INoN' = gN D gnN' ;

3. pour tout objet N et N' de MF‘_,J‘tf, pour tout sous-objet L de N @ N’
tel que L soit un objet de MFW o Lapplication gy ® gn restreinte a
Vo, (F (L)) est égale a gr,. En particulier, si N ® N’ est un objet de
MFQ\?tf, alors gnoN' = gN @ gN' 5

REMARQUE 23. Le point (3) montre en particulier que Vepis(N @ N') est égal
@ Veris(N) ®z, Veris(N') dés que N, N' et N@ N' sont des objets de MF;\}‘tf
avec 0 < h <p-—2.

Rappelons la construction de gy : N. Wach construit ’isomorphisme modulo
p" pour tout n & partir des morphismes d’anneaux (avec AL = W(R)N Og )
AL /p" — W, (R) /o et Aeris/p™ — Wi(R)/mo. Notons N := F~(N). Nous
avons la bijection V,+ (N/p") == (N ®s, AL /p™)? — (N ®@s, Og,,, jpn)? (cf
[Fon90], p.296, ol c’est exprimé pour le foncteur contravariant). Or, N. Wach
a montré que pour N objet de MF;\}‘ avec 0 < h < p — 2, le schéma suivant

. ,
N/P™ @w Acris /D" — N/p" @w Wi (R)/mo <22 N /p" @5, AL /p"
k J

Veris (N/pn) VA; (N/pn)
induit un isomorphisme de représentations galoisiennes de 'V 5+ (N/p™) sur
Veris(N/p™), c’est-a-dire que Ky = ky ok et Jyr = jar 04 sont toutes les deux
injectives, et ont méme image dans N/p" @w W, (R)/mp.

Tout ceci passe a la limite projective, et nous obtenons I’application gy bijec-
tive :

N®WACT%—>N®WW /7T0<—./\/®So

J/ \J

C[‘lS

ot Vo (W) =lim Vo (N/p") = (N ®s, 457! = Vo (N @5, O¢).

Démonstration du théoréme 22. Pour la fonctorialité au niveau des fleches, il
suffit de remarquer que le diagramme suivant est commutatif (car Vo, (F~(f))
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est juste f ®Id) :

Voo (£~ (V) 25 Rro, (- (V1)

Id
Nedy —2 5 N'w Af
Jc Jer
feld
N @ W (R)/mg—— N' @ W(R)/mo
kr kps

Id
N & Acris L N’ &® Acris

~, Vcris(f) ~
Veris (N) ——— Veris (NI)
Le fait que gvon’ = gn D gn’ se montre de la méme facon. Il reste donc a

voir le cas du produit tensoriel : considérons N et N’ deux objets de MF;J‘tf

avec h < p — 2. Soit L un sous-objet de N ® N’ qui est dans MF;\}‘tf, posons
L =L ®w Sy. Le diagramme suivant est alors commutatif :

L Qw Acrisc—> (N Qw Acm’s) (gAm..;S (N/ w Acris)

J/kL lkN@kN,

L ®w W(R)/mo“—— (N @w W(R)/m0) @w (r)/my (N’ @w W(R)/m0)

Tjﬁ TJN@]'N/

L®g, AC W ®s, A3) ® 4+ N @5, AF)

Par conséquent, 'application Ky ® K- restreinte & Vpis(L) est égale & K,
et 'application Jy ® Jp restreinte a VA; (L) est égale & Jp.

Le point important est que L étant un objet de MF(;‘tf (par hypothese), ce
sont bien des bijections, et ce sont celles qui permettent de construire gy, .
Donc gy ® g+ envoie VA; (L) sur Vepis(L) si L est un sous-objet de N @ N’
qui soit dans MF;&’tf, et plus exactement, I'application gy ® gy restreinte a
VA; (L) est égale a gr..

Si N ® N’ est un objet de MF;&’tf, le résultat précédent avec L = N @ N’
nous donne gngN' = gN Q gnN'. -

DOCUMENTA MATHEMATICA 12 (2007) 399-440



G-STRUCTURES ENTIERES ET MODULES DE WACH 419

REMARQUE 24. Nous montrons de méme que pour (Njj)i<j<n,1<i<n, Objels

n
de MFQ\],“tf avec 0 < h < p—2, et pour L un sous-objet de @@;Zl]\fm- qui
j=1
soit dans MF s, alors D ®9p-(n, ;) restreinte a Vo, (F~ (L)) est égale a
gr.
Nous pouvons traduire ces résultats en disant :

THEOREME 25. Soit 0 < h < p—2, et notons G le foncteur exact de la catégorie
MFQ\?tf vers la catégorie des représentations continues de I'x sur les Z,-
modules de rang fini, défini par : si N objet de MF;;tf, G(N) =V (F(N)).
Alors il existe g un isomorphisme de foncteurs entre G et Veris. De plus, nous
POUVONS SUPPOSET que :

— pour tous objet N et N’ de MF;Jttf, tel que N ® N’ soit encore un objet de

MFQ\?tf, nous avons gNgN' = gyN ® gN- ;
— pour tout uplet d’objets (Njj)i<j<n,1<i<n; de MFy ¢, pour tout sous-

n
objet L (dans MF‘_,J{tf) de @@?ilNi,j, Uapplication @ ®gn, ; restreinte
j=1
a Vo, (F~ (L)) est égale a gr.

3.2 LIEN ENTRE ['o®MB ET T®ME
o]

Avant de parler de modules de Wach (qui sont des S-modules), il faut com-
prendre 'extension des scalaires Sp — S.

LEMME 26. S= @ S;,ousiz e S; et ge 'y estla] (le relévement de
0<i<p—2
Teichmuller de o € ¥y ), alors g agit sur x par g(x) = [a]

.
1

7 > X(g9)~'g est un projecteur dont

g€l
limage est S;, et les p; vérifient > p; =1Id. O
0<i<p—2

Démonstration. L’application p; =

LEMME 27. S a une base normale sur Sy, c’est a dire qu’il existe e € S tel que
(g(e))ger, soit une base de S sur So. De plus, p ne divise aucun p;(e).

Démonstration. En effet, il suffit de le montrer modulo p (et ensuite de relever
une base normale de k[[r]] sur k[[mg]], puisque Sy est complet pour la topologie
p-adique). Or, Fontaine a montré dans [Fon90], page 270, que le corps des
fractions de k[[r]], k(()), est une extension galoisienne cyclique de degré p — 1
(donc modérément ramifiée) de k((mp)), dont le groupe de Galois est donné par
I's. Donc, par un théoreme de E. Noether, il existe une base normale pour les
anneaux d’entiers correspondants. Enfin, si € est cette base (modulo p), alors

pi(e) =3, X|(f?)2\7i ¢(€) est non nul (puisque chaque coordonnée suivant la base
(9(€)) est non nulle (méme modulo p)), donc p;(e) sera bien non divisible par

p si e releve €. O
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En particulier, nous avons S; = p;(e)Sy (car p;(e)Sy C S;, puis e € B;pi(e)So,
@ipi(e)So est donc un Sp-module contenant e et stable par I'y, donc S =
®ipi(e)So C ®;S; = S). Puis, remarquons que p; o p; = 0 pour i # j, donc
pour M un objet de 1"<I>M]§, nous avons les p;(M) en somme directe dans M.
Enfin, p;(e)MY C p;(M), et p;(e)M7 est isomorphe comme Sp-module &
M5 car M est sans p/-torsion, et p ne divise pas p;(e). Donc, nous avons que
pour M un objet de T®ME, M7 @5, S = &;M'7 @5, Sopi(e) s'injecte dans
M.

PROPOSITION 28. Soit M un objet de T®ME, alors MY+ est un objet de
I‘0<I>MIS‘O, et M = MY @5, S. De plus, MY /my = M/m. Enfin, si M est
S-libre, alors M7 est Sy-libre.

Démonstration. Nous avons que po(M) = M7, Or, comme I’action de 'y est
triviale modulo 7, nous avons que pour tout z € M, x — po(x) € 7 M, donc si
N est le S-module engendré par M¢ (c’est a dire que N' = M7 ®g, S d’apres
la remarque précédent la proposition), alors M = N + 7 M, donc comme M
est de type fini sur S, et que I'idéal engendré par w est dans le radical de S, le
lemme de Nakayama nous donne que M = N.

Puis, M est de type fini sur S, donc sur Sy (car S est un Sp-module libre de
rang fini par le lemme 27), donc engendré sur Sy par exemple par la famille
finie (m;). Alors, po(M) = M7 est engendré par la famille (po(m;)) (car po
est un morphisme de Sp-modules), donc est de type fini. De plus, M'7 étant
inclus dans M, il est sans p’-torsion.

Ensuite, nous avons que TMNMYS = 7o M7 : pour S, Iégalité mSNSy = mSp
provient juste de ce que 7y est un multiple de 7, donc m9.Sy C TSNSy, et pour la
réciproque, que Sy = W{[mo]]. Cela se traduit par la suite exacte de Sp-modules

0 7TQSQ S S/TFS@S/SO—>O

(la surjectivité vient juste de ce que S/m = W, et que W C Sp), et en tensorisant
par MTs au dessus de Sy, nous avons la suite exacte de Sp-modules

0 —— oMy — M — M/m & M/MYT —— 0

ce qui traduit bien tM N MYs = g MLs. Par conséquent, M7 /g s’injecte
dans M/, et 'action de T’y provient de celle sur M/, qui est triviale par
définition. De plus, nous avons vu que pour tout © € M, z — po(z) € 7 M,
donc comme po(xr) € M7, lapplication naturelle MYs/mg — M /7 (dont
nous avons vu l'injectivité) est surjective. Par conséquent, si M est S-libre,
MYs [my est W-libre et MYs est sans mo-torsion, et donc Sy étant complet
pour la topologie mp-adique, une W-base de M7 /7 se reléve en une Sp-base
de MT7.

Enfin, ¢ commute & I', donc laisse stable M'7, donc induit un morphisme
0o : MY ®, 8y — M7, Pour étudier le conoyau, remarquons d’abord que
TRy € So®y So— p(x)y € Sp et xRy € S®, S — p(x)y € S sont des
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isomorphismes (préservant I’action naturelle de I'y), donc Sp ®(s,) So[%] ~
So[%] et S®U(S)S[%] o~ S[%] (puisque S[%] est plat sur S et So[%] est plat sur Sp).
Par conséquent, So ®4(5,) S =~ S @q(s) S et So @o(sy) S[%] ~ S ®q(9) S[%] : plus
présicément, si y; € S®4(s)S s’envoye dans S sur p;(e) (nous pouvons supposer
que yo = 1 car po(e) est inversible dans Sp), alors S ®,(g) S = ©iS0 Dy (s,) So¥i
et S Qg(s) S[%] = ®iS0 Do (50) So[%]yi (c’est bien le méme y;, car S ®q(g) S
s'injecte dans S ®4(g) S[%], puisque S ®,(s) S est sans g-torsion). Et I'action
naturelle de I'y sur S®,(g) S[%] revient & dire que g(y;) = X(g)"y; pour g € I'y.
Puisque M = M"7 ®g, S, nous avons que M ®(s) S[%] = MY @, (s0) S[%] =
DM @59 So[%]yi. Donc, MY ®,(s,) So[%] s’injecte naturellement dans
M ®4(5) S[2], et (M @g(s) S[2])7 = M7 @4(54) So[2]-

Ensuite, ¢ : M ®, S — M est injective, de conoyau tué par ¢" (par définition),
donc comme S[%] est plat sur S, ¢ induit une bijection ¢ : M ®,(g) S[%] —
M ®g S[%]. Puis, S[%] = @iSO[%]pi(e), donc M ®g S[%] = M7 ®g, S[%] =
oMby ®SOSO[%]p¢(e), donc MTs ®SOSO[%] s’injecte dans M®SS[%] et MU'r®g,
S[%] = M®s S[%])Ff. Par conséquent, le diagramme

M @g(5) S[] —— M @5 S[2]
i J
MFf ®U(So) SO[%] L MFf XSy SO[%]

est commutatif, avec ¢ bijective, i et j injective, et ¢ (qui commute & Paction
de I'y) qui identifie (M ®4(g) S[%])Ff a(M®g S[%])Ff, donc ¢q est bijective
(donec M7 /pg(MY+ @, Sp) est de g-torsion, donc tué par une puissance de q
car M7 est de type fini sur Sp).

Soit alors 2 € M7, Par définition, il existe y € M®gq5)5 = oML Re(S0)S0Yi
tel que ¢(y) = ¢"x. La commutativité du diagramme et la bijectivité de ¢y nous
donne que y € MTs ®0(50)So[%]. Donc nous avons y € (MF7 ®0(50)So[%]) N(D;
MY ®q(sy) Soyi) = (MY ®a(sy) Solg]) N (M7 @o(s,) S0) = MY ®a(sy) So
En définitive, nous avons bien que M7 /po(MFs @, Sp) est tué par g".
Finalement, nous avons bien que M7 est un objet de 1"0<I’M]§0. O

REMARQUE 29. De la méme facon que pour S;, nous montrons pour M un
objet de T®MG que p;(M) = M7 @5, S; = pi(e) M.

THEOREME 30. L’extension des scalaires de Sy a S induit une équivalence
de catégories entre 1"0<I>M]§0 et I‘<I’Mls‘, préservant suites exactes et produit
tensoriel (si ce dernier est encore dans la catégorie). Un quasi-inverse est donné
par les points fizes par I'y.

Démonstration. L’essentielle surjectivité se prouve en remarquant que si f :
M — N est un morphisme de I‘<I>M]§, alors comme il commute a ’action de
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I'¢, f induit bien un morphisme de (¢, I'9)-modules entre MYs et NTs (qui
redonne f en étendant les scalaires de Sy & S). Le reste est immédiat a partir
des résultats précédents. O

3.3 MODULES DE WACH

L. Berger a défini dans [Ber04] le module de Wach N(7') d’un réseau T d’une
Qp-représentation cristalline V' a poids de Hodge-Tate négatifs comme 1'unique
S-sous-module de D¥(T') := (Af ®z, T)* (avec AL = W(R)NOg, ) vérifiant :
— N(T') est un S-module libre de rang la dimension de V';

— Dlaction de T" préserve N(T') et est triviale sur N(T') /7 N(T') ;

— il existe un entier r > 0 tel que 7" D (T") C N(T)).

Il définit de méme le module de Wach N(V') d’une représentation cristalline
V a poids de Hodge-Tate négatifs. L’unicité donne en particulier que N va
préserver somme directe et produit tensoriel, ce qui nous intéressera tout par-
ticulierement.

Donnons un résultat plus précis que le Théoreme 1’ de N. Wach :

PROPOSITION 31. Si N est un objet de MFQ\],rl avec 0 < h <p-—2, Do,(gn)
(qui identifie F~(N) = N Qw Og d Do, (Veris(N))) envoie N Qw S sur
N(Veris(N)) (le module de Wach associé d Vepis(IN)).

Démonstration. En passant au dual, cela revient & dire que F(N*) ®g, S est
isomorphe & N(Veris(IV)*) par fonctorialité du module de Wach envers le
dual. Appelons T' = Vpis(N)* et r < p — 2 Uentier tel que Fil"(N*) # {0},
Fil"*(N*) = {0}. Remarquons que la structure de (p,T)-module de F(N*)
induit une structure de (¢,T')-module sur N* @uw S, et que N* @w %S
est le dual (au sens généralisé des modules de Wach) d’un (¢, T')-module de
hauteur finie (puisque égale & r) sur S, donc par le résultat de J.-M. Fon-
taine (cf [Fon90], p.296), les périodes de N* ®w —=S sont dans Af. Par
conséquent, Vo, (N* @w £5) ®s Og) = Vo (F(N*) ®s, Os) = T =
(V" @w 2-8) 65 AT C N- ow AL,

Puis, l'identification de A avec Do, (Vo, (N)) pour N un (p,T')-module sur
Og¢ est induite par la multiplication dans Og . Donc, comme T C N* @w

LAY, nous avons DT(T) C ((N* @w £ Af) @ AP qui est identifié a

(N* @w %Ag)H’C = N*Qw %S. Donc la derniere condition de la définition
d’un module de Wach, 7" D" (T) C N* @w S, est vérifiée.

LEMME 32. Sous les notations précédentes, nous avons Uinclusion N(T') C
N*Qw S.

REMARQUE 33. La démonstration donnée ci-dessous est exactement l’idée prin-
cipale de la démonstration de l'unicité du module de Wach (cf. proposition
I1.1.1 de [Ber04])

Démonstration. Notons N1 = N(T) et No = N* @w S. N1 € DT(T) par
définition, donc nous avons l'inclusion 7" N7 C MN,. Soit © € N et s 'entier
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tel que w5z € N3, mais 75z ¢ wN5. Choisisons z ¢ 7wA; tel qu'en plus s
soit maximal, ce qui fait que 7N} C My. Comme 75z € N> et que T' agit
trivialement sur N3/mA5, nous avons pour tout g € T que (g — 1)(n%z) €
7Nz, et nous pouvons écrire (g — 1)(w°z) = g(7*)(g(z) — z) + (g(7%) — 7%)x.
Comme T agit trivialement sur N / 7N, et que N7 C N>, nous avons que
g(m%)(g(z) — x) € wNa, et donc que (g(7®) — 7%)x € wNa, ce qui est une
contradiction si s > 1, parce qu’alors g(7®) — 7° = (X(g)®* — 1)7® + - --. Donc
nous avons bien Nj C Na, autrement dit N(T) C N* @w S. O

L’étude du paragraphe précédent nous donne que le Sp-module N' = N(T)F'*
est libre et N(7T) = N(T)!'7 ®g, S. Utilisons alors le fait que le foncteur F est
essentiellement surjectif (& cause de ’hypothése sur h) pour dire que N est
isomorphe en tant que (p,Tg)-module & F(N*), donc N(T) est isomorphe au
(p,T')-module N* @y S. Notons i cet isomorphisme.

Remarquons que N(T') ® s Og = Do, (T) = N* @w Og, car une représentation
cristalline est de hauteur finie. Par conséquent, 7 induit un isomorphisme de
Do, (T) qui envoye N(T') sur N* @y S, et comme il préserve DT (T), nous
obtenons bien N* @y S C DT(T), donc N* @y S = N(T') car il vérifie toutes
les conditions de la définition du module de Wach. O

Nous pouvons alors en déduire la proposition qui nous intéresse :

PROPOSITION 34. Soit N; ; des objets de MF%, avec 0 < h < p—2, L un sous-
objet (dans MF; w/) de M = @®]N” Alors les isomorphismes de modules

de Wach
tDOg (gN:J) : N(Vcris(N;:j)*) - Ni,j Rw S

identifient L Qw S a un module de Wach.

Démonstration. Les isomorphismes ! Do, (gNi*j) induisent un isomorphisme

D o1 Dowon, s N o, Vel )) = v

(puisque le module de Wach préserve le produit tensoriel). Nous utiliserons cet
isomorphisme pour identifier ces deux espaces.

Notons (e;) une base de M telle que (p®ie;) soit une base de L, avec a; €
NU {+0c0}. Notons aussi n = rgy, (M).

La proposition 17 affirme que L ®yw S est stable par I’ action de T". Considérons

alors la sous-représentation galoisienne T de Uy, := @Q@J 1 Veris( N * )*

définie par T' = Vo, (L @w Og). Montrons que N(T') = L ®w S, c’est-a-dire

vérifions les conditions qui caractérisent un module de Wach :

~Lew S cT®g, Ogm N (Uu @z, AJSF)H’C = D(T) : l'inclusion provient
de ce que T'®z, Op = L@w Og et N(Uny) = M ®@w S via l'iso-
morphisme (et donc M ®@w S C DY (Uy) = (Um ®z, AL)7x); Dégalité
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se montre en considérant les coordonnées suivant la base (e;), car si z €

T ®z, Oz N (Unm ®z, AL)He alors il existe (3;) € (AE)™ et (;) € Oz
avec x = Y, Bie; = >, p™id;e;, donc B; = p*id; pour tout i, donc 3; € p*i A
pour tout 4, ce qui donne T'®z, Oz N(Un @z, Ab)He c DH(T) (Vinclusion
réciproque étant immédiate) ;

— L®w S est un S-module libre de rang égal & celui de T sur Z,, (qui est celui
de L ®@w Og¢ sur Og, donc celui de L sur W);

— Paction de TI' laisse stable L ®yw S (c’est la proposition 17) et est triviale
modulo 7 : action de I sur M Qv .S étant triviale modulo 7 par construction,
pour vy € I, pour i fixé, il existe (z;) € S~ et (y;) € S™ tels que y(e;) =
e+ wiej et v(pie;) = 30 y;pTe;; done y; = 1 et pMy; = Tip™
pour j # %, donc 7 divise y; dans S pour j # i.

— il existe r un entier positif tel que 7" DV (Ups) € M @w S, donc ce r donne
7" DT(T) C Mow SﬂL®WO§m = LRwS. Eneffet,siz € MQw SNLRw
Opg, , alors il existe (3;) € S™ et (6;) € Ogm avec & =y, Bie; = >, p*idie;,
donc @; = p™d; pour tout i, donc B; € p*S pour tout ¢, ce qui donne
Mw SNLQw Ofm C L ®w S (Uinclusion réciproque étant immédiate).

D’ot1, nous avons bien N(T') = L @w S. O

Ce qui nous intéressera tout particulierement, c’est le corollaire suivant :

PROPOSITION 35. Soit N; ; des objets de MF;&‘ avec 0 < h < p—2, L un
sous-objet (dans MF+y, ) facteur direct (comme W-module) de M = @ ®;jNij.

Alors les isomorphismes de modules de Wach
DOS (gNi,j) . Ni,j Qw S — N(Vcris(Ni,j))

induisent un isomorphisme de module de Wach

L ®w S — N(Vcris(L))
o n
ot Vcris(L):: Vcris,p(DL) N @ ®;n:i1 Vcris(Ni,j)-

i=1

Démonstration. Les isomorphismes Do, (gn, ;) induisent un isomorphisme

Do, (gum) = @ ®;'n:i1 Do, (gNi,j) M ew S — N(Vcl‘iS(M))

i=1

Par dualité, il suffit de voir que si Ly = M/ L, alors Do, (gas) induit un isomor-
phisme de Vepis(L§) sur L @w S. Posons T = Vo, (L @w Og). La proposition
précédente nous donne bien que N(T') = L§ ®@w S (via Do, (9um))-

Puis, une propriété du module de Wach nous permet de conclure : N(T[I—l;]) /T
s'identifie & Deris p(T' ®z, Qp) (par le théoreme I11.4.4 de [Ber04]), et 'applica-
tion gas envoie N(T')/m sur L§, donc nous avons bien que Deyis,p(T ®z, Qp) =

Ly @w K, donc que T = Vepis (L) O
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REMARQUE 36. Si M’ est le quotient du L considéré dans la proposition 35 par
le sous-objet L' (facteur direct comme W -module), alors Do, (gam) : LQw S —
N(Veris(L)) (qui induit aussi un isomorphisme L' @w S — N(Veris(L')))
induit par passage au quotient un isomorphisme M' @y S — N(Veris(M')).

COROLLAIRE 37. So0it 0 < h < p—2. Soit M et M’ deuz objets de MFw < h >,
et f: M — M’ un morphisme de p-modules filtrés. Alors Ve(F(f) @ Idg) =
Vct‘is,p(f)-

Démonstration. Soient N;; et N/, des objets de MFY,, L un sous-objet de
@ ®N; ; et Ly un sous-objet facteur direct de L, tel que M = L/ Ly, L' un sous-
objet de & ® N ; et Lj un sous-objet facteur dlrect de L', tel que M' = L'/ Lj,.
Nous allons montrer que les isomorphismes @ ® Do, (QNM) et ®® Do, (qu/qj)
identifient f ® Id & Dg(Veris,p(f))-

Pour cela, il suffit d’utiliser la fidélité et la pleine fidélité de F combiné au
théoréme 30 (pour pouvoir dire que la réduction modulo 7 est injective sur
les morphismes de (p,I')-module entre M Q@w S et M’ @w S), plus le fait que
D¢ (Veris,p(f)) modulo 7 redonne f (d’apres les résultats de L. Berger dans
[Ber04]). O

COROLLAIRE 38. Soit M et M’ deux objets de MFw <h >, et f: M — M’
un morphisme @-modules filtrés. Alors V eris,p(f) envoye Vo, (M @w Og¢) dans
Vo, (M ®w Og). En particulier, en passant au dual, V cris devient un foncteur

en posant Veris(f) = Veris,p(f)-

Démonstration. C’est une conséquence immédiate du corollaire précédent, et de
ce que si T et T’ sont deux Zy-représentations cristallines, alors un morphisme
de (¢,T')-modules g : N(T) — N(7”) induit Vo, (g9) : T = Vo,.(N(T) ®s
Og) > T ' =Vo,.(N(T') ®s O¢). O

REMARQUE 39. D’aprés ce qui précéde, le foncteur Veps et le foncteur
Vo, oF7, tous deux définis sur MFw < —h > et a valeurs dans Rep%‘;‘S(F;g),
sont isomorphes (l’isomorphisme est donné par la transformation naturelle g).

4  FIN DE LA DEMONSTRATION DU THEOREME 15

THEOREME 40. Pour 0 < h < p — 2, le foncteur F de MF%V’tf vers To®Mg,
a pour image essentielle FO@M}S‘O.

Pour montrer ce résultat, nous allons utiliser le théoreme 31 qui nous dit que
pour N objet de MFY%,, F(N) ®g, S est le module de Wach de Vpis(N*)*.
Commencgons par montrer :

PRrROPOSITION 41. Soit M un objet de I‘0<I>M1§O (avec 0 < h < p —2) de p-
torsion, et T' = Vo, (M ®g, O¢) la Z,-représentation galoisienne correspon-
dant au (o, T')-module sur Og obtenu a partir de M. Alors il existe T" C T deux
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Zy-représentations galoisiennes cristallines (c’est & dire que le module sous-
Jjacent est libre sur Zy, et en rendant p inversible nous avons une représentation
cristalline) a poids de Hodge-Tate dans [—h, 0] telles que T' s’identifie au quo-
tient de T par T".

Démonstration. Le Théoreme 1’ de [Wac97] (et la proposition 31) donne que
T" = Homy, ( Veris (HomW(i*(M),lii)nW/p”)),lii)an/p"). En notant X* le
dual de Pontriaguine d’un module de torsion X, cela s’écrit plus simplement
en T" = Veris ((./\/l/ﬂ'o)*)*. Puis, puisque (M /7m)* est un objet de la catégorie
MFQ\?tf, la proposition 1.6.3 de [Win84] nous donne qu'il existe M; € MFQ\],rl
et un épimorphisme M; — (M /mp)*. Le foncteur Vs étant exact, il existe
donc une Z,-repésentation cristalline 71 (Th = Veris(M1)) dont les poids de
Hodge-Tate sont dans [0, h] et un épimorphisme Ty — Veris ((M/m0)*).

Comme M est supposé de p-torsion, Vipis ((/\/l/ﬂ'o)*) est de p-torsion et
de type fini, donc il existe un entier n tel que p" Vris ((M/Wo)*) =
{0}. Alors T1/p™ se surjecte toujours sur Veris ((M/m)*), et en passant
au dual de Pontriaguine, 7" s’injecte dans Homg, (T1 / P lim Z, /p”) =
Homg, (T1,Z,)/p" (car T est un Z,-module libre). Si f est la projection cano-
nique Homg,, (T1,Z,) — Homg, (T1,Z,)/p", alors T = f~'(T") convient (et il
suffit de prendre 7" égal au noyau de la projection f|r). O

PROPOSITION 42. Soit M un objet de To®MS§_ (avec 0 < h < p —2) de p-
torsion, T" = Vo (M ®g, Og) et T" C T les représentations données par la
proposition ci-dessus. Alors M ®sg, S s’identifie a N(T')/ N(T").

Démonstration. Notons M1 = M ®g, S et My = N(T)/N(T") (tous les deux
vus dans le (¢, I')-module M ®g, O¢, car N(T)NDoe, (T7) = N(T") : en effet,
notons V' = N(T)NDo, (T”) = N(T)NT" @z, Og qui est stable par I'action
de T', nous avons que N N7 N(T) = 7N puisque 7 est inversible dans Oém’
donc N /7 s’'injecte dans N(T')/m, donc T' agit bien trivialement sur A/. Puis,
T" @z, Og N (T @z, AG)T* = DT(T"), car si (e;) est une base de T telle
que (p*ie;) est une base de T (avec a; € NU {+00}), alors un élément z de
I'intersection s’écrit & = ), xie; = >, p™'y;e; avec x; € Ag et y; € (95 ; donc
y; € pm¥ALN Op = AL si o # 400, et {0} sinon, donc x € T” ®z, Al
et est fixé par Hy, donc T" ®z, Og N (T g, A5)He ¢ DH(T") (Iinclusion
réciproque étant immédiate). Donc nous avons N' C DT (T") puisque N(T) C
(T ®z, A§)™< = DH(T). Enfin, 7" DT(T) ¢ N(T), donc «" DH(T") c N(T),
et comme 7" DH(T") C T" &z, Og , nous avons bien que 7" DT (T") C N.
Ces conditions caractérisent le module de Wach de T”, donc N(T')NDo, (T7) =
N(T")).

D’apres les résultats p.296 de [Fon90] (I’égalité entre D§ et j, o D}) (ou bien le
lemme IIL5 de [Col99]), nous avons My C DT (T”) et My C DT (T”), puisque
tout deux sont des S-modules de type fini stables par ¢ et p-étales (puisque
de g-hauteur finie). Puis, Paction de I' est triviale modulo 7 dans les deux cas
(puisque c’est le cas par définition sur N(7T'), et que l'action de 'y est triviale
modulo mp sur M).
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D’apres le Théoreme 111.3.1 de [Ber04], nous avons l'inclusion 7T ®z, Ak C
N(T)®s A;:. Par conséquent, en projetant nous obtenons que 7*71” ®z, A?’J -
Mo ®g AY . Par définition, nous avons que D+ (1") C DT (T") ®s AL C T' ®z,
A%, donc en prenant les points fixes sous I'action de Hy, nous avons D*(7") C
(DH(T") ®s Ag)H’C C (T ®z, A?’I)H’C = D™ (T"). Donc, en prenant les points
fixes sous Hx dans linclusion 7T’ ®z, AJSr C M3y ®g A;, nous obtenons que
T DH(T") C (M2 ®s A?’:)H’C. Donc nous avons 7" DH(T") C My en vertu du
lemme :

LEMME 43. Soit N' un S-module de type fini sans p’-torsion, alors (N ®s
A" =N

Démonstration. C’est une conséquence de la proposition 1.2.7 de [Fon90], qui
nous donne (sous les hypothéeses du lemme) une filtration décroissante AV; de NV,
telle que NV; /N1 est soit S/p-libre, soit S-libre. La propriété cherchée est stable
par suite exacte, c’est & dire vérifie que si 0 — N — N — N’ — 0 est une suite
exacte de S-modules, et que (N ®g A?’I)H’C =N, (N'®s Ag)H’C =N, alors
(N ®s AJSF)H’c = N. Dongc il suffit de montrer le lemme pour N qui est S-libre
ou S/p-libre, ce qui provient de ce que (A5)Hx = S et (AL /p)Hx = S/p. O

- M est le dual (de Pontriaguine) d’un (¢, I')-module sur S de hauteur
inférieure ou égale & h, sans p’-torsion, donc T" = Vo, (Zx M ®s, Og) vérifie
T = (HEM ®s, A5)? (cf [Fon90], p.296) puisque 0 < h. Donc T’ ®z, A} C
ﬁ/\/l@go Ajgr, et en prenant les points fixes sous Hx: (et par le lemme précédent),
nous obtenons D*(T") C 2 My, donc 7" DT (T") C M.

Ces conditions impliquent que la démonstration du lemme 32 s’applique ici (car
h < p—2, pour que nous ayons si 0 < s < h, X(g)®* —1 inversible dans Z, (c’est
a dire X(g)® — 1 # 0 modulo p) pour un g € I'), et donc M; = Mo. O

Puis

REMARQUE 44. L’unicité d’un tel module n’est plus vrai en général : dans
S/pS, S/pS et wP~1S/pS sont deux S-modules de type fini, avec action de T
triviale modulo 7, et si T = Vo, (Og/p) (c’est a dire Fp, avec Uaction triviale),
alors DT (T) = S/pS, donc la derniére condition est aussi vérifiée.

Il ne reste donc plus qu’a passer d’un module sur S & un module sur Sy, ce qui
est donné par le lemme suivant (qui est une conséquence immédiate de I’égalité

S= @ Si):

0<i<p—2
LEMME 45. Soit M un Sy-module, alors (/\/l ®s, S)Ff =M.

Ces propositions et ces lemmes mis bout a bout nous donnent le théoreme
dans le cas d'un objet de I‘0<I>M]§0 de p-torsion. C’est a dire que si M est
un objet de I‘0<I>Mls‘0 (avec 0 < h < p — 2) de p-torsion, alors il existe M
un objet de MF%V,tf tel que M = F(M). Et plus précisément, nous avons
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M = i*(M) = M/z. Donc, dans le cas o M n’est pas supposé de p-torsion,
nous avons que M/p™ = F(i*(M/p™)) pour tout n, donc en passant a la
limite projective, nous obtenons bien que M = F(i*(M)), ce qui donne bien
I’essentielle surjectivité de F, et donc termine la démonstration du théoreme
40 (et donc du théoreme 15).

5 LE POINT DU TORSEUR

5.1 CONSEQUENCE DES THEOREMES PRECEDENTS

Pour tout objet N de MF;&‘ avec 0 < h < p — 2, construisons fy comme la
composée :

Ye—(v)

—1
Vais(N) ®z, 0z 3 Vo (F~(N)) ®z, 0z — L F~(N) @0, Oz _

Now O,

o ¢ est I'isomorphisme de Fontaine (cf. paragaraphe 1.1.2), gy 'isomorphisme
de N. Wach (cf. paragraphe 3.1), et F~ est le foncteur construit a la fin de la
partie 2.

De la proposition 35 nous déduisons (toujours & 0 < h < p — 2 fixé) :

PROPOSITION 46. Pour tout uplet d’objets (N; ;)1<j<n, 1<i<n; de MFw, pour

n
tout sous-p-module filtré L facteur direct (comme W -module) de @ ®;2 N j,
j=1
Vapplication @ ®fn, , envoie Veris(L) ®z, Og  bijectivement sur L @w Og .

n
Démonstration. Rappelons que V ¢pis(L) = Veris,p(Dr) ﬂ@ ®?:”'1 Veris(Nij)-
j=1
. oy 5. . —1
Comme corollaire de la proposition 35, l'inverse de la fonction wDog (Verts (V) ©

(Do, (gn)®Id) vérifie la propriété recherchée, car Do, (gn) envoie L&y S sur

N(Veris(L)), donec Lew Og sur Do, (Veris(L)). Il suffit alors de remarquer que

fv = ¥p-(v)o(9y ®Id) = (Do, (95" )®Id) OUD o, (Versa(N)) PAT cCOmMmutativité
du diagramme suivant :

gy' ®Id

Veris(N) ®z, Og Vo, (F~(N)) ®z, Og

lwnog (Veris (N) J%m

Do, (Veris(N)) ®o, Oz m F~(N) ®o, Oz .
oc9n

car Do, et Vo, sont des foncteurs quasi-inverses I'un de l'autre. O
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En combinant ce résultat et celui de la remarque 24, nous obtenons
PROPOSITION 47. Si L est un sous-objet dans MF de @@)j]\fm- avec Nj ;

des objets de MF(,J‘ avec 0 < h <p—2, alors Vgpis(L) C @@)j Veris(N)ij-

REMARQUE 48. Cette propriété peut étre montré directement, en utilisant les
propriétés des périodes des Lubin-Tate (qui donnent par produit les périodes des
modules élémentaires) et le fait qu’un p-module filtré simple est élémentaire,
donc que (par Jordan-Hélder) tout p-module filtré tué par p a une filtration
dont le gradué associé est somme directe de modules élémentaires.

Combiné avec le Théoreme 1°, et en introduisant F; et F les foncteurs exacts
de la catégorie MFQ\],rl vers la catégorie des Og -modules libres de rang fini,
définis par : si M objet de MFw", Fi(M) = Veris(M) @z, Og et Fo(M) =
M @w Og , nous obtenons :

THEOREME 49. Pour 0 < h < p—2 fixé, il existe f un isomorphisme de foncteur

entre Fy et Fo. De plus, vis a vis du produit tensoriel, I’isomorphisme peut étre

choisi de telle sorte que :

— pour tous objets M et N de MF;&‘ tels que M ® N est encore un objet de
MF(,J‘, alors le diagramme suivant est commutatif :

f
Vcris(N®M)®O§m NeM (N®M)®Og

| | -

(Vcris(M) & Ognr) & (Vcris(N) & Ognr) m (N & Oaﬂ) ® (M ® Ognr)

— pour tout uplet d’objets (N; j)i1<j<n,1<i<n; de MF?, pour tout sous-objet
n

L de @ ®.2 N, ; dans MF;&, Vapplication @ ®fn, ; restreinte d Veris(L)
j=1

est égale a fr, ;
— pour tout uplet d’objets (Ni;)i<j<n,1<i<n, de MFW', pour tout sous-p-
n

module filtré L facteur direct (comme W-module) de @ ®.2,N; j, Uapplica-

Jj=1

n
tion @ ®fy, ; envoie (Vcris7p(DL) N @ ®?:”'1 Vcris(Ni