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1 INTRODUCTION

Let k be an algebraically closed field of characteristic p > 2. Let W = W (k)
be its ring of Witt vectors and L = Quot(W). Let o be the Frobenius auto-
morphism on k as well as on W. By Nilpy, we denote the category of schemes
S over Spec(W) such that p is locally nilpotent on S. Let S be the closed sub-
scheme of S that is defined by the ideal sheaf pOg. Let (X, Ax) be a principally
polarized p-divisible group over k. If X is a p-divisible group, we denote its
dual by X. Then the polarization Ax is an isomorphism X — X.

We consider the functor

M : Nilpy, — Sets,

which assigns to S € Nilpy, the set of isomorphism classes of pairs (X, p),
where X is a p-divisible group over S and p : Xg = X Xgpec(k) S—XxgSisa
quasi-isogeny such that the following condition holds. There exists a principal
polarization A : X — X such that pY o Xgop and Ax g coincide up to a
scalar. Two pairs (X1, p1) and (Xa, p2) are isomorphic if p; o pgl lifts to an
isomorphism X5 — X;. This functor is representable by a formal scheme M

DOCUMENTA MATHEMATICA 13 (2008) 825-852



826 EvAa VIEHMANN

which is locally formally of finite type over Spf(W) (see [RaZ], Thm. 3.25).
Let M,eq be its underlying reduced subscheme, that is the reduced subscheme
of M defined by the maximal ideal of definition. Then M, is a scheme over
Spec(k).

The analogues of these moduli spaces for p-divisible groups without polariza-
tion have been studied by de Jong and Oort in [JO] for the case that the
rational Dieudonné module of X is simple and in [V1] without making this
additional assumption. There, the sets of connected components and of irre-
ducible components, as well as the dimensions, are determined. In the polarized
case, the moduli spaces M .q have been examined in several low-dimensional
cases. For example, Kaiser ([Kai]) proves a twisted fundamental lemma for
GSp, by giving a complete description in the case that X is two-dimensional
and supersingular. An independent description of this case is given by Kudla
and Rapoport in [KR]. In [Ri], Richartz describes the moduli space in the case
of three-dimensional supersingular X. In this paper we derive corresponding
results on the global structure of the mo duli space M,qq for arbitrary X.
The first main result of this paper concerns the set of connected components

Of Mred-

THEOREM 1. Let X be nontrivial and let X, X Xp; X Xt be the decomposition
into its multiplicative, bi-infinitesimal, and étale part. Then

70(Mired) = (GLng(x) (Qp)/GLng(x,) (Zp)) X Z.

Next we consider the set of irreducible components of Myeq. Let (N, F') be the
rational Dieudonné module of X. Here, N is an L-vector space of dimension
ht(X) and F : N — N is a o-linear isomorphism. The polarization Ax induces
an anti-symmetric bilinear perfect pairing (-,-) on N. Let G be the correspond-
ing general symplectic group of automorphisms of N respecting (-,-) up to a
scalar. Let

J={9€G(L)|goF =Fog}

It is the set of Qp-valued points of an algebraic group over Q, (see [RaZ], Prop.
1.12). There is an action of J on Meq.

THEOREM 2. The action of J on the set of irreducible components of Myeq is
transitive.

We choose a decomposition N = G}ézl N7 with N7 simple of slope \; =
mj/(m; +n;) with (m;,n;) =1 and A; < Ay for j < j'. Let

1 .
m=|3 me{mj,nj} ,
J

where |z] is the greatest integer less or equal . As N is the isocrystal of a
polarized p-divisible group, its Newton polygon is symmetric, i. e. A\yi1—; =
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1 — ;. Hence we obtain

m=| Y mitgl4ilm=n =1}, (11)

{dlm;<n;}

THEOREM 3. Meq is equidimensional of dimension

dim Myeq = % Z (m; 1)2(71] D) + Z ming +m | . (1.2)
J J<y’
Note that the equidimensionality is already a consequence of Theorem 2. How-
ever, it also follows from the proof of the dimension formula without requiring
additional work.
Our results on the set of connected components and on the dimension of M,eq
are analogous to those for other affine Deligne-Lusztig sets for split groups
where a scheme structure is known. We now define these affine Deligne-Lusztig
varieties and give a brief overview over the general results in comparison to the
results for the case treated in this paper.
Let O be a finite unramified extension of Z, or F,[[t]] and let G be a split
connected reductive group over O. Let F be the quotient field of O. Let
K = G(O). Let L be the completion of the maximal unramified extension of
F and let o be the Frobenius of L over F'. Let A be a maximal torus and B a
Borel subgroup containing A. Let p € X,(A) be dominant and let b € G(L).
Let e be the image of p or t € F* under p. Let

Xu(b) ={g € G(L)/K | g~'bo(g) € K"K} (1.3)

be the generalized affine Deligne-Lusztig set associated to p and b. We assume
that b € B(G, ) to have that X, (b) is nonempty (compare [Ral, 5). There
are two cases where it is known that X, () is the set of k-valued points of a
scheme. Here, k denotes the residue field of Or. The first case is that F' = Q,
and that X, (b) is the set of k-valued points of a Rapoport-Zink space of type
(EL) or (PEL). In that case p is always minuscule. Rapoport-Zink spaces
without polarization were considered in [V1], in that case G = GLy. For the
moduli spaces considered in this paper let G = GSpsn. We choose a basis
{e;, fi | 1 <4 < h} identifying N with L?" and the symplectic form on N with
the symplectic form on L?" defined by requiring that (e;,e;) = (fi, f;) = 0
and (e;, fj) = din+1—j. Let B be the Borel subgroup of G = GSpsy, fixing
the complete isotropic flag (e1) C (e1,e2) C --- C (e1,...,e). We choose A
to be the diagonal torus. Let m1(G) be the quotient of X, (A) by the coroot
lattice of G. Then the multiplier G — Gy, induces an isomorphism 71 (G) —
T1(Gm) =2 Z. Let p € X.(A) be the unique minuscule element whose image
in 71(G) is 1. Then p* is a diagonal matrix with diagonal entries 1 and p,
each with multiplicity h. We write F' = bo with b € G. Note that there is a
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bijection between M eq(k) and the set of Dieudonné lattices in N. Using the
above notation, we have the bijection

Xu(b) — Myea(k)
g — gW(k)™).

The second case is that F is a function field. Here X,,(b) obtains its scheme
structure by considering it as a subset of the affine Grassmannian G(L)/G(OL).
In this case we do not have to assume p to be minuscule. The X, (b) are lo-
cally closed subschemes of the affine Grassmannian. The closed affine Deligne-
Lusztig varieties X<, (b) are defined to be the closed reduced subschemes of
G(L)/G(OL) given by X<, (b) = U, 1<, Xy (b). Here p/ = pif p— " is a non-
negative linear combination of positive coroots. Note that the two schemes
X,,(b) and X<, (b) coincide if p is minuscule.

The sets of connected components of the moduli spaces of non-polarized p-
divisible groups are given by a formula completely analogous to Theorem 1
(compare [V1], Thm. A). For closed affine Deligne-Lusztig varieties in the
function field case, the set of connected components is also given by a general-
ization of the formula in Theorem 1 (see [V3], Thm. 1). The sets of connected
components of the non-closed X, (b) are not known in general. There are exam-
ples (compare [V3], Section 3) which show that a result analogous to Theorem
1 cannot hold for all non-closed X,,(b).

The only further general case where the set of irreducible components is known
are the reduced subspaces of moduli spaces of p-divisible groups without polar-
ization. Here, the group J also acts transitively on the set of irreducible com-
ponents. There are examples of affine Deligne-Lusztig varieties in the function
field case associated to non-minuscule p where this is no longer true (compare
[V2], Ex. 6.2).

To discuss the formula for the dimension let us first reformulate Theorem 3.
Let G = GSpap and p be as above. Let v = (\;) € Q" = X, (A)g be the
(dominant) Newton vector associated to (N, F') as defined by Kottwitz, see
[Kol]. Let p be the half-sum of the positive roots of G and w; the fundamental
weights of the adjoint group Gaq. Then one can reformulate (1.2) as

dim Myeqa = (2p, 0 — V) + Z\_(wi, v—p). (1.4)

In this form, the dimension formula proves a special case of a conjecture by
Rapoport (see [Ra], Conjecture 5.10) for the dimension of affine Deligne-Lusztig
varieties. Denote by rkg, the dimension of a maximal Q,-split subtorus and let
defg(F) = rkq,G — rkg,J. Note that defg(F') only depends on the conjugacy
class of F' or equivalently on the o-conjugacy class of b if we write F' = bo for
some b € G. In our case, it is equal to h — [1/2] where [ is the number of simple
summands of N. Using Kottwitz’s reformulation of the right hand side of (1.4)
in [Ko2], we obtain

1
dim Myeq = (p, 0 — V) — idefg(F). (1.5)
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For the case of moduli of p-divisible groups for G = G Ly, the analogous formula
for the dimension is shown in [V1]. In the function field case, the dimension
of the generalized affine Deligne-Lusztig variety has been determined in [V2],
[GHKR]. The formula for the dimension is also in this case the analogue of
(1.5).

The dimension of the moduli spaces M¢q is also studied by Oort and by Chai
using a different approach. In [02], Oort defines an almost product structure
(that is, up to a finite morphism) on Newton strata of moduli spaces of polarized
abelian varieties. It is given by an isogeny leaf and a central leaf for the p-
divisible group. The dimension of the isogeny leaf is the same as that of the
corresponding M,eq. The dimension of the central leaf is determined by Chai
in [C] and also by Oort in [O4]. The dimension of the Newton polygon stratum
itself is known from [O1]. Then the dimension of M,.q can also be computed
as the difference of the dimensions of the Newton polygon stratum and the
central leaf.

We outline the content of the different sections of the paper. In Section 2 we
introduce the necessary background and notation, and reduce the problem to
the case of bi-infinitesimal groups. In the third and fourth section, we define
the open dense subscheme &7 where the a-invariant of the p-divisible group is
1 and describe its set of closed points. This description is refined in Sections 5
and 6 to prove the theorems on the set of irreducible components and on the
dimension, respectively. In the last section we determine the set of connected
components.

Acknowledgement. Part of this paper was written during a stay at the Uni-
versité Paris-Sud at Orsay which was supported by a fellowship within the
Postdoc-Program of the German Academic Exchange Service (DAAD). I thank
the Université Paris-Sud for its hospitality. I thank the referee for very helpful
remarks.

2 NOTATION AND PRELIMINARY REDUCTIONS

2.1 A DECOMPOSITION OF THE RATIONAL DIEUDONNE MODULE

The principal polarization Ax equips the rational Dieudonné module (N, F) of
X with a nondegenerate anti-symmetric bilinear pairing (-,-). It satisfies

(v, Fw) = o({(Vv,w)) (2.1)

for all z,y € N.

We assumed k to be algebraically closed. Then the classification of isocrystals
shows that IV has a decomposition into subisocrystals N; of one of the following
types. Let [ be the number of supersingular summands in a decomposition of
N into simple isocrystals. Then

(2.2)

No & N1 if [ is even
No ® N% @© N; otherwise,
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satisfying the following three properties.
1. The slopes of Ny are smaller or equal to %
2. The summand N 1 is simple and supersingular.
3. Nj is the isocrystal dual to Ny, i.e.
{(No, No) = (N1, N1) = (No, N1) = (N1, N1) = 0.

Note that if [ > 1, then this decomposition is not unique and Ny and N;
also contain supersingular summands. For ¢ € {0, %, 1} we denote by p; the
canonical projection N — N;.

The moduli spaces M,eq for different (X, Ax) in the same isogeny class are
isomorphic. Replacing X by an isogenous group we may assume that

(2.3)

X — Xo x X4 if [ is even
N Xo % X% x X1 otherwise.

Here, X; is such that its rational Dieudonné module is NV;.

Mapping (X, p) € Myeda(k) to the Dieudonné module of X defines a bijection
between M..q(k) and the set of Dieudonné lattices in N that are self-dual up
to a scalar. Here a sublattice A of N is called a Dieudonné lattice if p(A) C A
for all ¢ in the Dieudonné ring of k,

D=D(k)=W(kK)[F,V]/(FV =VF =p,aV =Vo(a),Fa=o0(a)F). (2.4)

All lattices considered in this paper are Dieudonné lattices. A lattice A C N
is self-dual up to a scalar if the dual lattice AV satisfies AY = cA with ¢ € L*.
The following notion is introduced by Oort in [O3].

DEFINITION 2.1. Let X be a p-divisible group over k and A, be its Dieudonné
module. Then X is a minimal p-divisible group if End(Ani,) is a maximal order
in End(Amin) Rw L.

Remark 2.2. By Morita equivalence X is minimal if and only if Ap;, is the
direct sum of submodules A® . such that N* = A’ . @y L is simple and that
End(A® ;) is a maximal order in End(N%), which is Oort’s original definition.
Note that in every isogeny class of p-divisible groups over k there is exactly one

isomorphism class of minimal p-divisible groups (compare [03], 1.1).
LEMMA 2.3. There is a k-valued point (X, p) of Myea such that X is minimal.

Proof. Let Ny and N; as in the decomposition above. Let Amino C No be the
lattice of a minimal p-divisible group and let A,;, 1 C Ni be the Dieudonné
module of X%. There is only one isomorphism class of one-dimensional super-
singular p-divisible groups and it consists of minimal p-divisible groups. Let
¢ € L* with A;in,% = CApyin, 1 Let

Anint ={z € N1 | (z,cy) € W for all y € Apmin,o}-
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Then Apin 1 is also the Dieudonné module of a minimal p-divisible group. Fur-
thermore, Amin = Amino © A 1@ Amin,1 satisfies AY. = cApin. Thus Apin
corresponds to an element of Mred( ) and to a minimal p-divisible group. O

mll’l

Remark 2.4. There is the following explicit description of the Dieudonné mod-
ule of a minimal p-divisible group: Let N = j N7 be a decomposition of N
into simple isocrystals. For each j we write the slope of N7 as m;/(m;j+n;) with
(mj,nj) = 1. Then there is a basis ejl, ey €hin, Of N7 with F(e]) = €lim,
for all 7, j. Here we use the notation ez A, = = pe]. For the existence com-
pare for example [V1], 4.1. Furthermore, these bases may be chosen such that
<657€z ) = 00414 Oiomyqn,+1—i for 1 <i,i" <my +nj = myp1—j +nip— g
Then we can take the lattice Anin to be the lattice generated by these basis
elements e].

2.2 MODULI OF NON-POLARIZED p-DIVISIBLE GROUPS

For the moment let X be a p-divisible group without polarization. Then associ-
ated to X there is an analogous moduli problem of quasi-isogenies of p-divisible
groups without polarization. If X is polarized, we thus obtain two functors
which are closely related. In this section we recall the definition of the moduli
spaces of non-polarized p-divisible groups and relate them to M,eq. Besides,
we provide a technical result on lattices in isocrystals which we need in the
following section.

Let My” be the functor associating to a scheme S € Nilpy, the set of pairs
(X,p) where X is a p-divisible group over S and p a quasi-isogeny X — Xz
Two such pairs (X1, p1) and (X3, p2) are identified in this set if pjopy hfts to an
isomorphism Xs — X; over S. This functor is representable by a formal scheme
which is locally formally of finite type over Spf(W) (see [RaZ], Theorem 2.16).
Let My, 4 be its reduced subscheme. We always include X in this notation,
because we compare Myeq to the two moduli spaces M5", 4 and MgP ;.

Let J*? ={g € GL(N)|goF = Fog}. Then J C J"P.

If X is a principally polarized p-divisible group, then forgetting the polarization
induces a natural inclusion as a closed subscheme

np
Mied = My eq-
Furthermore, there is a natural inclusion as a closed subscheme
np
My, vea  Mred (2.5)

mapping an S-valued point (Xo,po) to (Xo x Xy, (p,p¥)) if the number of
supersingular summands of IV is even and to (Xo x X1 x X{', (p, p1,p")) oth-
erwise. Here X1 = X1 5 is the base-change of the umque one-dimensional
supersingular p- divisible group over k and pL = id.

Let v be the valuation on the Dieudonné ring D determined by

(aF"V7) = 2vy(a) +i+ 3 (2.6)
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for every a € W (k).

LEMMA 2.5. One can decompose each B € D uniquely as B = LT(B)+ B’ with
9(B’) > o(B) and

LT(B) = > p*([a:i]V + [b:] FY).
0<i<%(B),2a+i=5(B)

Here [a;] and [b;] are Teichmiiller representatives of elements of k* or 0 and

[bo] = 0.

Proof. The V* with i > 0 and the F with i > 0 together form a basis of the
W (k)-module D. Besides, as k is perfect, every element of W (k) can be written
in a unique way as z = > -, 0%®s]. Hence we can write B = Y, 2; V"' +
Zi>0 yiFi = Zizo Zazo p* [-Ti,a]vi + Zi>0 Zazo p* [yi,a]Fi where x;,y; are
0 for all but finitely many i. By the definition of ¢(B), all z; 4, yi o With
i +2a < 9(B) vanish. Let LT(B) be the sum of all terms p®[z;]V* and
p*[Yi.a)F' on which ¥ takes the value 9(B), i.e. those with 2a + i = 9(B).
Then LT(B) is as in the lemma and (B — LT(B)) > 9(B). O

LEMMA 2.6. Let (No, boo) be the rational Dieudonné module of some p-divisible
group over k. Let m = v,(detby) and n = dimp(Ng) — m. Let v € Ny be not
contained in any proper sub-isocrystal of Ny.

1. Ann(v) = {¢ € D | p(v) = 0} is a principal left ideal of D. There is a
generating element of the form

n—1 m—1
A=aF"+bV™+ Y a;F' + Y bV
=0 =1

with a,b € W* and a;,b; € W.
2. If Ny is simple (and thus of slope m/(m + n)), we have
[a]F™ ifn<m
LT(A) = < [p]V™ ifm<mn (2.7)
[a]F+ BV ifm=n=1
for some a,b € k*.

3. Let No = @;N7 be a decomposition of Ny into simple summands. Then
LT(A) = LT(I[, L;)- Here each L; is of the form (2.7) associated to some
nonzero element in N7.

Proof. We use induction on the number of summands in a decomposition of Ny
into simple isocrystals. If Ny is simple, the lemma follows immediately from
[V1], Lemma 4.12. For the induction step write Ng = N’ & N where N’ is
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simple. Let A’ be as in the lemma and associated to N’ and py/(v) where
pn @ N — N’ is the projection. Note that an element of an isocrystal is not
contained in any proper sub-isocrystal if and only if the Dieudonné module
generated by the element is a lattice. Let A be the lattice generated by v. The
Dieudonné module generated by A’(v) is equal to AN N ", and hence also a
lattice. We may therefore apply the induction hypothesis to A’(v) and N " and
obtain some A" generating Ann(A’(v)). Thus Ann(v) is a principal left ideal
generated by A" A Multiplying the corresponding expressions for A" and A,
the lemma follows. O

2.3 REDUCTION TO THE BI-INFINITESIMAL CASE

Let X = Xt X Xp; X Xy, be the decomposition of X into its étale, bi-infinitesimal,
and multiplicative parts.

LEMMA 2.7. We have

M N M;gt red X Mxyired  if Xii is nontrivial
X,red — ’ .
My ea X Z otherwise.

and
M;&i,red = GLht(Xct)(Qp)/GLht(Xct)(ZP)‘

Proof. Consider the following morphism ¢ from the right to the left hand side of
the first isomorphism. In the first case, an S-valued point ((Xet, pet)s (Xbi, Pbi))
is mapped to (Xet X Xbi X X, (Pet, Pbis Pm)) Where X, = Xt. Furthermore, Pm
is the dual isogeny of ¢ pet and c is the scalar determined by the duality condi-
tion for pp;i. In the second case ((Xet, pet),!) is mapped to (Xet X Xm, (Pet, Pm))
with X,, = X and pm = (p'-pet)V. In both cases ¢ is a monomorphism, and to
check that it is a closed immersion we verify the valuation criterion for proper-
ness. Let (X, p) be a k[[t]]-valued point of Mx yeq such that the generic point is
in the image of ¢. Let mx : X — X with X étale over Spec(k[[t]]) and X inf
initesimal over X, as in [M], Lemma II.4.8. Our assumption implies that this
map has a right inverse Xe¢ (1)) — Xi((r)) after base change to Spec(k((t))).
By [J1], Corollary 1.2, this morphism lifts to a morphism X — X over k[[t]].
Together with the inclusion of the kernel of mx in X we obtain a morphism of
the product of an étale and an infinitesimal p-divisible group over Spec(k[[t]])
to X. Its inverse is constructed similarly by lifting the projection morphism
of Xy(()) to the kernel of mx from k(()) to k[[t]]. Hence X can be written as
a product of an étale and an infinitesimal p-divisible group. As X is selfdual,
it is then also the product of an étale, a bi-infinitesimal, and a multiplicative
p-divisible group, thus of the form Xg; x Xp; X Xy, with X, = Xet. The quasi-
isogeny p is compatible with this decompos ition, and the compatibility with
the polarizations shows that the induced quasi-isogenies (pet, Pbi, pm) have the
property that pp; is selfdual up to some scalar ¢ and py, is the dual isogeny of
¢ pet- Hence (X, p) is in the image of ¢. This finishes the proof that ¢ is proper,
hence a closed immersion.
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To show that ¢ is an isomorphism it is thus enough to show that each k-valued
point of the left hand side is contained in its image. From the Hodge-Newton
decomposition (see [Kat], Thm. 1.6.1) we obtain for each k-valued point (X, p)
a decomposition X = Xet X Xpi X Xy and p = pet X ppi X pm into the étale, bi-
infinitesimal, and multiplicative parts. The compatibility with the polarization
then yields that up to some scalar p', the quasi- isogenies py, and pe¢ are dual.
From this the first isomorphism follows. The second isomorphism is shown by
an easy calculation (compare [V1], Section 3). O

The lemma reduces the questions after the global structure of M,eq to the same
questions for Mx,, red. Thus from now on we assume that X is bi-infinitesimal.

3 THE DENSE SUBSCHEME S;

In [V1], 4.2 we define an open dense subscheme Sy} of M3" ;. Let A C N
be the lattice associated to @ € Mg’ (k). Then z € S if and only if
a(A) = dimg(A/(FA + VA)) = 1. As F and V are topologically nilpotent
on A, this is equivalent to the existence of some v € A such that A is the
Dieudonné submodule of N generated by v. Note that a(A) can also be defined
as dimy (Hom(ay, X)) where X is the p-divisible group associated to A.

Let

Sl = S§7p1 N Mred g Mred-

Then &; is open in M qq.
LEMMA 3.1. The open subscheme S is dense in Mieq.

Proof. Recall that we assume X to be bi-infinitesimal. Let (X,5) € Myea(k)
and let X\ be a corresponding polarization of X. Note that by [M], Lemma
I1.4.16 (or by [J2], Lemma 2.4.4) there is an equivalence of categories between
p-divisible groups over an adic, locally noetherian affine formal scheme Spf(A)
and over Spec(A4). From [O1], Corollary 3.11 we obtain a deformation (X, \)
of (X,\) over Spec(k[[t]]) such that the generic fiber satisfies a = 1. Next
we show that after a base change we may also deform p to a quasi-isogeny p
between (X, A) and the constant p-divisible group (X, Ax) that is compatible
with the polarizations. From [OZ], Corollary 3.2 we obtain a deformation of p
to a quasi-isogeny between X and a constant p-divisible group Y after a base-
change to the perfect hull of k[[t]]. AsY is constant it is quasi-isogenous to the
base change Xgpec(k[fgpers) of X. After composing the deformation of p with a
quasi-isogeny between Y and Xgpec(x[[jperty We may assume that Y is already
equal to Xgpeo(r(gprert)- Let z be the point of Spec(k[[t]]Pf) over the generic
point of Spec(k[[t]]). Then we may further compose the quasi-isogeny with
a self-quasi-isogeny of Xgpec(x[gpperry such that in @ it is compatible with the
polarizations of the two groups in this point. Thus we obtain a k[[t]]P*"f-valued
point of M?&?red such that the image of x is in Myeq. As M.eq is closed, this

has to be a k[[t]]P"f-valued point of M,.q. Modifying the point by a suitable
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elemen t of J, we may assume that the special point is mapped to (X,75). In
the generic point, the a-invariant of the p-divisible group X is 1. Thus this
provides the desired deformation of (X,p) to a point of Sy. O

To determine the dimension and the set of irreducible components of M,eq
it is thus sufficient to consider &;. We proceed in the same way as for the
moduli spaces of p-divisible groups without polarization. In contrast to the
non-polarized case it turns out to be useful to use two slightly different sys-
tems of coordinates to prove the assertions on the dimension and on the set of
irreducible components of M,eq.

Let us briefly recall the main steps for the moduli spaces My, of non-
polarized p-divisible groups. Their sets of irreducible componenﬁs and their
dimension are determined by studying S . In [V1], 4 it is shown that the con-
nected components of Sg” are irreducible and that J*P = {j € GL(N)|jo F =
F o j} acts transitively on them. The first step to prove this is to give a de-
scription of Sy (k). One uses that each such point corresponds to a lattice
in N with a-invariant 1. As Dieudonné modules, these lattices are generated
by a single element and the description of the set of points is given by classi-
fying these elements generating the lattices. The second step consists in the
construction of a family in M?g’r .q to show that a set of points which seems to
parametrize an irreducible compo nent of S¢”; indeed comes from an irreducible
subscheme. More precisely, a slight reformulation of the results in [V1], Section
4 yields the following proposition.

PROPOSITION 3.2. Let (N, F) be the isocrystal of a p-divisible group X over
k. Let m = vy(det F'). Let S = Spec(R) € Nilpy, be a reduced affine scheme
with pR =0 and let j € J™P. Letv e Np =N @ W(R)[%] such that in every
x € S(k), the reduction v, of v in x satisfies that

Uy € jAmin

and
vp(det j) = max{v,(det j') | j/ € J™ and vy € j' Amin}-

Here, Apin C N is the lattice of the minimal p-divisible group in Remark 2.4.
Let R = 0~"™(R) be the unique reduced extension of R such that ™ : R —
R has image R. Let © € Np with ™ (9) = v. Then there is a morphism
¢ : Spec(R) — M5 4 such that for every x € Spec(R)(k), the image ¢(x)
corresponds to the Dieudonné module A, in N generated by v,.

Assume in addition that X is principally polarized and that for every x, the
Dieudonné module A, corresponds to a point of Myeq. Then ¢ factors through
Mred-

Note that the second condition on v, (or more precisely the existence of the
maximum) implies that the Dieudonné submodule of N generated by v, is a
lattice.
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Proof. To prove the first assertion we may assume that j = id. Note that v
satisfies the same conditions as v. The conditions on the ¥, are reformulated in
[V1], Lemma 4.8. The condition given there is exactly the condition needed in
[V1], Section 4.4 to construct a display over S leading to the claimed morphism
¢. It maps = to the Dieudonné lattice generated by o™ (9,) = v,. The second
assertion is trivial as S is reduced and M.q a closed subscheme of M?&f’red- O

Remark 3.3. We use the same notation as in the proposition. From [V1], 4.4
we also obtain that under the conditions of Proposition 3.2, the elements

v, Vo, ..., Voeldet By, gy, pdim Novy(det F)—1,,

are a basis of the free W (R) [%]—module Np. They are the images of the standard
basis of N under some element of GL(Np).

We apply the preceding to the situation of an isocrystal N = Ny and its
dual, N;. Then GL(Ny) X Gy, is isomorphic to the Siegel Levi subgroup of
GSp(Ng @& N1). Let v € Ng = N be as in Proposition 3.2. Then there are

elements y; € (N1)p which form a basis of (V1) z which is dual to the basis
(1, ., ZdimNy) = (v, VU, ..., yupldet )y o pdim No—vp(det F)flv)

with respect to (-,-). In other words, the y; € (N1) 5 are such that (x;,y;) = d;;.

4 GEOMETRIC POINTS OF &3

4.1 N WITH AN EVEN NUMBER OF SUPERSINGULAR SUMMANDS

In this subsection we consider the case that N has an even number of super-
singular summands. By (2.2) we have a decomposition N = Ny & Nj.
Recall that by a lattice we always mean a Dieudonné lattice. Let A C N be
the lattice corresponding to a k-valued point of M,eq. Then AV = cA for some
c € L*. Let Ag = po(A) and A; = AN N;. For a subset M of N and § € {0,1}
let

(M){ ={x € Ns | (x,2') € W for all 2’ € M}. (4.1)

Then cAy = (Ag)Y. Hence Ag and A; correspond to dual p-divisible groups,
which implies a(Ag) = a(Aq).

The geometric points of S; correspond to lattices A that in addition satisfy
a(A) = 1. Especially, a(Ag) = a(A1) = 1. In this subsection we classify a
slightly larger class of lattices. We fix a lattice Ag C Ny with a(Ag) = 1 and
¢ € L*. Then we consider all lattices A C N with

po(A) = Ag and AY = cA. (4.2)

Note that we have a description of the set of lattices Ay C No with a(Ag) =1
from [V1], see also Section 2.2.

The considerations above show that AN N; = A; = ¢ 1(Ag)Y is determined
by Agp and c. Let vy be an element generating Ag as a Dieudonné module. If

DOCUMENTA MATHEMATICA 13 (2008) 825-852



MODULI SPACES OF POLARIZED p-DIVISIBLE GROUPS 837

v € A with po(v) = vg, then A is generated by v and A;. Let A be a generator
of Ann(vg) as in Lemma 2.6. We write v = vg + v1 for some v; € N7. Then
Av = Avy € A4,

Remark 4.1. Let Ag and ¢ be as above, and let A; = ¢7!(Ag)y. Let A be a
Dieudonné lattice with pg(A) = Ao, AN Ny D A; and

AY D cA. (4.3)

Let vol(-) denote the volume of a lattice, normalized in such a way that the
lattice corresponding to the basepoint (X,id) of Myeq has volume 0. The
conditions imply above that vol(AY) < vol(cA) < vol(c(Ag @ A1) = vol((Ag ®
A1)V). Dualizing the inequality for the first and last term, we see that all terms
must be equal. Thus A satisfies (4.2) and A NNy = A;.

The next step in the description of lattices with (4.2) is to reformulate (4.3). To
do so, we fix a generator vy of Ay and describe the set of all v; € Ny such that
the lattice A generated by v = vy + v; and A; as a Dieudonné lattice satisfies
(4.3) and AN Ny = Ay. Generators for A as a W-module are given by A, and
all F'v with i > 0 and V%o with ¢ > 0. Let m, n be as in Lemma 2.6 (associated
to the given Np). Note that as Ny contains all simple summands of N with
slope < 1/2 and half of the supersingular summands, m is the same as in (1.1)
and n = h—m > m. By Lemma 2.6, 1. applied to vy € Ny, the Fiv with i > n,
and the V% with i > m can be written as a linear combination of the F'v with
i <n and the V% with i < m, and a summand in Ann(vg) -v C AN Ny = A.
Hence A is already generated by A, the FPv with 0 < ¢ < n and the Vv
with 0 < 4 < m. The inclusion (4.3) is equivalent to (z,y) € ¢~ !W for all
x,y € A. This is equivalent to the same condition for pairs (z,y) where x and
y are among the generators of A described above. From the definition of A; we
see that the values on pairs of elements of A automatically satisfy this if one of
the elements is in A;. By (2.1) it is enough to consider the products of v with
all other generators. Thus (4.3) is equivalent to

(v, F'v) € c7'W

and
(v, V') € c'W (4.4)

for n > i > 0. Furthermore, the equations for V*? together with (2.1) imply
those for F*.

If 2 and y are elements of the same of the summands Ny or Ny, then (z,y) = 0.
Hence the decomposition of v together with (2.1) shows that (4.4) is equivalent
to

—1

(vo, Vivy) — (Vivg,v1) = (Flvg,11)°  — (Vivg,v1) € ¢ W. (4.5)

For ¢ € D let
&u1 () = (o, v1). (4.6)
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Then &, is left-W-linear in ¢. Let A be a generator of Ann(vy) as in Lemma
2.6. Then

o (VA) =0 (4.7)
for all ¢» € D. Note that an element v; € N7 is uniquely determined by
{(v1, Fivg) for i € {0,...,n — 1} and (vy, Vi) for i € {1,...,m}. We are
looking for the set of vy satisfying (4.5). In terms of &,,, this is

En (FY7 " =€, (V') € cIW. (4.8)

LEMMA 4.2. 1. Let M be the set of W-linear functions £ : D — L with (4.7)
and (4.8) for i < n. Then (4.6) defines a bijection between M and the
set of elements v1 € N1 as above.

2. Let M be the set of functions & : D — L/c™ W with the same properties
as in 1. Then (4.6) defines a bijection between M and the set of equiva-
lence classes of elements v1 as above. Here two such elements are called
equivalent if their difference is in ¢~ 1(Ag)y.

Proof. Let £ : D — L be given. An element vy of Ny is uniquely determined by
the value of {-,v1) on wvg, Fug, ..., F""™ lyy, Vg, ..., V™. These h values
may be chosen arbitrarily. For the values of (-,v1) on the other elements of
Duy, a complete set of relations is given by (¢ Avg,v1) = 0 for all ¢ € D. This
is equivalent to (4.7). Furthermore, (4.8) is equivalent to the condition that
the lattice generated by A; and vy + v satisfies all required duality properties.
To prove 2., we want to lift £ : D — L/c7'W to a function with values in
L. We lift the values of ¢ at ¢ € {V™ V=L . 1,... FP=m=11 arbitrarily.
Then the lifts of the remaining values are uniquely determined by (4.7). As
(4.8) was satisfied before, it still holds (as a relation modulo ¢=*W) for the
lifted functions. Then 1. implies the existence of v;. Let now w; be a second
element inducing ¢ (mod ¢~ 'W). Then (¢vg,w; — v1) € ¢ W for all ¢ € D.
Hence wy — v; € ¢ 1(Ag)Y. O

4.2 N WITH AN ODD NUMBER OF SUPERSINGULAR SUMMANDS

As parts of this case are similar to the previous one, we mainly describe the
differences. By (2.2) we have a decomposition N = Ny & N1 @ Ny.
We want to classify the lattices A C N corresponding to k-valued points of Sy.
As before let Ag = po(A) and A; = AN Ny. Let ¢ € L* with AY = cA. Then
cA1 = (Ag)y. Besides,

ANN, = (py (1))

ol <

(4.9)
Here we use (-)Y analogously to (4.1).

Again we use thze description of the Dieudonné lattices Ag C Ny with a(Ag) = 1.
We have to classify the A corresponding to some fixed Ag and ¢, and begin by
describing and normalizing the possible images under the projection to No&® N 1.
Let v € A with Dv = A and write v = vg + v1 4y with v; € N;. Let A with
9(A) = m be a generator of Ann(vp) as in Lemma 2.6.
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PROPOSITION 4.3. 1. There is a j € J such that j(v) is of the form vy +
f)% + 01 with v; € N; and ADTJ% = DAT)%

2. Let j be as in the previous statement. Then p%(jA) is the unique
Dieudonné lattice in Ny with p%(jA)V = (ep™)py(jA). Besides, (jA) N
Ny =p"p1(jA).

Proof. To prove 1. let 01 € Ny be such that v, = vy =
A and ADTJ% = DA’D%

We first reduce the assertion of 1. to the case where Ny and N are simple of
slope % Let A% be a generator of Ann(v’%) as in Lemma 2.6. As A € Ann(v’%),

we can write A = AA% with A € D. Then A generates Ann(A%vo). From
the description of annihilators of elements of Ny in Lemma 2.6 we see that we
may write vg = v + ¥p with A%vé = 0 and 9y lying in a proper subisocrystal

1
2

1 is in the kernel of

N

Ny of Ny. Then v, generates a simple subisocrystal N} of Ny of slope %
and No = N & No. Let Ni be the subisocrystal of Ny which is dual to N{.
Then we want to show that the assertion of the proposition holds for some
j € JNEnd(N) & N’% @ Nj). To simplify the notation, we may assume that N

only consists of these three summa nds.

We construct the inverse of the claimed element j € J. Let j € {9 €
GL(No @ N1) | go F = F o g} be in the unipotent radical of the parabolic
subgroup stabilizing the subspace N;. We assume that j ¢ J, i. e. that J is
not compatible with the pairing. Let vy + v; with v;1 € N; be the image of
vo. Then Ann(v;) = Ann(vg) and f = (vg + v1, Fl(vg + v1)) # 0. Let A be
a generator of Ann(vg) as in Lemma 2.6. Then A = aF + ag + bV for some
a,b e W* and ag € W. We obtain

0= (vg+v1,A(vg +v1))° =a’f7 —bf.

This is a Qp-linear equation of degree p, thus the set of solutions is a one-
dimensional Q,-vector space in L. As A also generates Ann(v} ), the number
2

(v, F(v)) is also in this vector space. Hence there is an o € Q, wit h
2 2
af = (v, F(v})). By multiplying v; by a suitable factor, we may assume that
2 2
a = —1. Note that this does not change Ann(v;). This implies that

(vo—i—vé + 1, F(vo +UI% +v1)) = 0.

Besides, we have Ann(vg + v} + v1) = Ann(vg). The element j=! we are
2

constructing will map vg to vg + vy +v1. Let Ny = D(vg + vy +v1). Then we
2 2

can extend ;! uniquely to a linear map from Ny to Ny which is compatible

with F. On Ny, we define j ~! to be the identity. Then one easily checks that

j71: Nog@® N; — Ny @ Nj respects the pairing. It remains to define ;7! on

Ni. Let ]\7% be the orthogonal complement of NO @ N;y. Then ]\7% - N% ® Ny

1
2
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ol

vy. Then Ann(u) C
Ann(v}). As u is contained in a simple isocrystal of slope %, this inclusion has
2

to be an equality. As (N1 @ N1, N1) =0, we have (u, Fu) = (v, F'v’). Hence

Let j’l(v’%) = u where u € N% is such that PN, (u)

we can extend 77! to an element of J. Then pL (4 (vo +vi+tur)) = vy —v'% =7;.
Thus j satisfies all properties of 1.

It remains to prove 2. We may assume that j = 1. Note that there is exactly
one Dieudonné lattice of each volume in N 1. Equivalently, for each o € L*
there is exactly one A C N with AY = aA. (For the rest of the proof all
dual lattices are the dual lattices inside the selfdual isocrystal N 1 .) We have
%}lé\f% = c_l(p%(A))V C p1(A). Let Ay be the lattice with ALY = Ap.

1
2

and the lengths of the two inclusions are equal. We have to show that the
length of the inclusions are both equal to m. The lattice py (A) also contains
A(p% (A)). As 9(A) = m, the length of this inclusion is m. Furthermore,

AN N% = Ann(Av;)Av = Ann(Av;)Av

C DAv: = ADv

1
2

=

Note that here we only know that the length of the inclusion is > m = ¥(A;)
where A; is a generator of Ann(Av;). Thus we obtain a second chain of inclu-
sions

We compare this to (4.10). To show that the length of the first inclusion of
this chain is not greater than the length of the second inclusion, we have to
show that Api(A) € Asi. By definition of A, this is equivalent to Ap1(A) C
c_l(Ap%(A))V. To prove this last inclusion we use again the duality relation
for A. Note that Api(A) = DAvy =pi(AN(Ny @ N1)). Let z,y € Ni & N1
Then (z,y) = (p1(z),p1(y)). Thus the duality relation for A implies that

2 2

Api(A) C e (Apy(A)Y. O

For both Theorem 2 and Theorem 3 it is enough to describe a locally closed
subset of §; whose image under the action of J is all of §;. Thus we may assume
that j = 1 and that v itself already satisfies the property of the proposition.
Especially, py (A) is then determined by c.

The element vy may be modified by arbitrary elements in py (AN (N% @ Nyp))
without changing A. Indeed, for each such element there is an element in A
whose projection to Ny & N% is the given element. Thus for fixed vy, the
projection of A to Ny & N% is described by the element v1 varying in the
W-module

pi(A)/pi(AN(Ny @ N1)) =pi(A)/A(ps(A))
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of length m which is independent of A. To choose coordinates for v 1 we use

that this module is isomorphic to W/pl™/2IW @ W/p!™/21W . Under this iso-
morphism, the element v 1 is mapped to an element of the form

Lm/2] m
Z lilp" ™' @ Z [yalp*~ L2 (4.11)
i=1 i=[m/2)+1

Here we use that k is perfect, and [y;] is the Teichmiiller representative of an
element y; of k.

Note that a(A) =1 (or the condition that j = 1) implies that A(vy) is a gen-
erator of AN N 1 and not only an arbitrary element. This is an open condition
on pi(A)/pL(AN(Ny @ Ni)). More precisely, it excludes a finite number of

hyperplanes (compare [V1], Lemma 4.8).
Let now v 1 also be fixed. It remains to determine the set of possible v; such
that A = D(vy + v1 +v1) Is a lattice with AY = cA. The same arguments as
in the previous case show that v; can be chosen in an open subset of the set of
v1 with

(vo, pv1) + (v1, Pvo) = —(v1,dv1) (mod cTW). (4.12)
for all ¢ € D.
Remark 4.4. Let ¢ € D with 9(¢) = 2m. Then ¢vi € p"p1(A) C c 1AV,
Especially, (U%,(b’l}%) is in ¢ 'W. This is later used in the form that a; =
—(vy, F'vy) satisfies (6.3).

Analogously to the previous case we use (4.6) to define &,. Then we also obtain
the analogue of Lemma 4.2.

LEMMA 4.5. 1. Let M be the set of W-linear functions £ : D — L with (4.7)
and (4.12) for i <n. Then (4.6) defines a bijection between M and the
set of elements v1 € N1 as above.

2. Let M be the set of functions € : D — L/c™ "W with the same properties
as in 1. Then (4.6) defines a bijection between M and the set of equiva-
lence classes of elements v, as above. Here two such elements are called
equivalent if their difference is in ¢=1(Ag)y .

5 THE SET OF IRREDUCIBLE COMPONENTS

LEMMA 5.1. Let A C No@ Ny be a lattice generated by a sublattice Ay C Ny and
an element v with v = vo+v1 for some vy € No and vy € Ny. Let A be generated
by A1 and vy + 01 for some U1 € Nyi. If &, (Fi)”ﬂ — &, (VY =&, (Fi)"ﬂ
0, (V) for every i € {1,...,h} then there is a j € J with j(A) = A.

Proof. The assumption implies that (vg + 91 — v1,¢(vg + 01 — v1)) = 0 for
0 €{1,V,...,V"} (see the reformulation of (4.4) in Section 4.1). By (2.1), the
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same holds for ¢ € {F,...,F"}. As dim N = 2h, the o(vy + ¥; — v;) for these
elements ¢ € D generate N' = (D(vg + 01 —v1))[1/p] € N as an L-vector
space. Especially,

<’U0+’L~)17’Ul,(p(’00+’51 7’01)> =0 (51)

for all ¢ € D. Let A be a generator of Ann(vg) as in Lemma 2.6. Then (5.1) for
¢ = ¢' A implies that (vo, ¢’ A(01 —v1)) = 0 for all ¢’ € D. Thus A(0; —v;) = 0.
Let j € GL(N) be defined by vy — vo+01 —v1, j|n, =id, and joF = Foj. To
check that this is well-defined we have to verify that Aj(vy) = j(Avg) = 0. But
A(j(vo)) = A(vo+01—v1) = 0. By definition j commutes with F'. Furthermore,
(5.1) implies that j € G(L). Hence j € J. O

For vy as above and ¢ € {1,...,h} let

i

Pi(v1) = &, (V) = &0, (F')7 . (5.2)

Then the lemma yields the following corollary.

COROLLARY 5.2. Let A and A be two extensions of Ao and Ay as described
in the previous section (or, in the case of an odd number of supersingular
summands, two extensions of Ag and Ay associated to the same v%) and let
v=1wg+ v and U = vy + U1 (resp. v =1 +v1 + 1 andf):voJrv% + 1) be
the generators. Then 1b;(v1) = 1;(01) for all i implies that A and A are in one
J-orbit.

Let vg € Ny such that Duy is a lattice in Ny. Then the next proposition implies
that for each (cy,...,c) € L" there is a v; € Ny with ¥;(v1) = ¢; for all i.
We fix an irreducible component of Sy”,. Then [V1], 4 describes a mor-
phism from a complement of hyperplanes in an affine space to this irre-
ducible component that is a bijection on k-valued points. Let Spec(Rp) be
this open subscheme of the affine space. One first defines a suitable element
v0,R, € No @w W(Rp). The morphism is then constructed in such a way that
each k-valued point x of Spec(Ry) is mapped to the lattice in Ny generated by
the reduction of ™ (vo g,) at z.

PROPOSITION 5.3. Let R be a reduced k-algebra containing o™(Ry). Let
C1y...,cn € W(R)[1/p]. Then there is a morphism R — R’ where R’ is a
limit of étale extensions of R and a vy € Ny g with ¢;(v1) = ¢; for alli. Here,
the ; are defined with respect to the universal element o™ (vo,r,) € (No)om (Ro)-

For the proof we need the following lemma to simplify the occurring system of
equations.

LEMMA 5.4. Let R be an Fy-algebra and let m,n € N with m < n. For
0<i<mand0<j<nlet Pjx) € (W(R)[%])[:E] be a linear combination of
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the ol(x) = z? with 1 > 0. Assume that the coefficient of x is zero for j < i
and in W(R)* for i = j. Consider the system of equations

n

> Pi()) = a;

Jj=0

with a; € W(R)[%] and i =0,...,m. It is equivalent to a system of equations
of the form 3>, Qij(x;) = by with b; € W(R)[%] such that the Q;; satisfy the
same conditions as the P;; and in addition Q;; =0 if j < 1.

Proof. We use a modification of the Gauss algorithm to show by induction on A
that the system is equivalent to a system of relations of the form > ; Q;\](z]) =
b} with b} € L such that the Qg\j satisfy the same conditions as the P;; and
in addition Q;\j =0if j < i and j < A. For the induction step we have to
carry out the following set of modifications for j = A4+ 1 and each ¢ > A + 1.

If Qf‘j vanishes, we do not make any modification. We now assume Q7. to

ij
be nontrivial. Let ¢'i(z) and ¢% (x) be the highest powers of z occurring in
Q?Z- and Q;\J If I; < lj, we modify the jth equation by a suitable multiple of
oli~l applied to the ith equation to lower l;. Else we modify the ith equation
by a suitable multiple of o'~% applied to the jth equation to lower [;. We
proceed in this way as long as none of the two polynomials Q% and Qf‘j becomes
trivial. Note that the defining properties of the P;; are preserved by these
modifications. As (by induction) Qg\j does not have a linear term, the linear
term of @7, remains unchanged. Thus this process of modifications ends after
a finite number of steps with equations }°, Q?]-Jrl(xj) = b} which satisfy
Qi =0for j <iand j <A+ 1. For A+ 1 =n, this is what we wanted. [

Proof of Proposition 5.3. An element v; € Ny g/ is determined by the values of
&y, at any h consecutive elements of ..., F?, F,1,V,V2 .... The other values
of ¢ are then determined by &,, (#A) = 0 for all ¢ € D. Here A € Ann(vy) is
as in Lemma 2.6. Indeed, each of these equations for ¢ = F* or V* for some i
gives a linear equation with coefficients in L between the values of &,, at h +1
consecutive elements of ..., F2, F,1,V,V?2,.... For the proof of the proposition
we take the values &, (F?) for i € {1,...,h} as values determining v;. Then
all other values are linear combinations of these &,, (F*?).

The definition of 4, in (5.2) yields

o, (V)" = &0y (F) + i (1)

for i € {1,...,h}. On the other hand, &, (V?)? is a linear combination of the
&0, (F7)? for j € {1,...,h}. From this we obtain a system of h equations for
the &, (F") with 1 <4 < h of the same form as in Lemma 5.4. The resulting
equations Y. Qij (&, (F7)) = b; may be reformulated as Qii(&, (F*)) = ¢
where ¢; also contains the summands corresponding to powers of F' larger than
1. We can then consider these equations by decreasing induction on i. For
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each i, the polynomial Q;;(x) is a linear combination of powers of x of the
form x"l, and its linear term does not vanish. Thus there is a limit R’ of étale
extensions of R and &,, (F") € W(R') ® Q with v,(&, (F?)) > v,(c;) satisfying
these equations. Note that R’ is in general an infinite extension of R, because
the equations are between elements of W (R) ® Q and not over R itself. Given
&u,, Remark 3.3 shows that there is an element v1 € (N7) g which induces &,, .
Indeed, choose v; to be a suitable linear combination of the dual basis defined
there. O

5.1 PROOF OF THEOREM 2

We begin by constructing an irreducible subscheme of the subscheme of &;
where the height of the universal quasi-isogeny is 0. The k-valued points of
this subscheme correspond to lattices A with a(A) = 1 and AY = A. There
is a d € N such that for each (ci,...,cp) € (p?W)", the v; constructed in
Proposition 5.3 lies in the lattice Ay € N;. Let Ry as above. In the case
of an even number of supersingular summands let R; = 0™ (Rp). Otherwise
let 0™ (vo,r,) + V1 € Nom(Ro)lys,....ym] Where vo g, is as above and where vy €
(N1 )om (Ro)yr,....y.m] i identified with the element in (4.11). The open condition
on Spec(a™(Ro)[y1, - - -, Ym]) that Avy is a generator and not only an element
of p1 (AN N1 & Ny) is equivalent to DA’UI = ADv3. This condition is satisfied
by all Y1 that do not lie in some finite-dimensional Qp-subvector space of k£
determined by the kernel of A (compare the proof of Proposition 4.3 1.). In
this case let R; be the extension of 6™ (Ry) corresponding to this affine open
subscheme. Let in both cases

R:Rl[l'i’j |’L€{1,,h},j€{0,,d*1}]

Fori € {1,...,h} let ¢; = Z;l é[x”]p € W(R). Let Spec(R’) and v1 € Np/
be as in Proposition 5.3. Let v = 0™ (vo,r, ) +v1, resp. v = 0" (vo,r,) +v3 + 1.
Let S = Spec(R) be an irreducible component of the affine open subscheme of
Spec(R’) consisting of the points z with vy , € (Dv,)Y \ (F(Dvs)Y +V (Duv,)Y).
We denote the image of v in N also by v. A s we already know that S is
dense, this open subset is nonempty. Let R be the inverse image of R under
o™ as in Proposition 3.2. Note that v,(det F) = h, whereas v,(det F|y,) = m.
Let S = Spec(R). The next step is to define an associated morphism ¢ : § —
M eq such that in each k-valued point x of S , the image in M,eq(k) corresponds
to the lattice generated by the reduction v, of v at . By Proposition 3.2 it
is enough to show that there is a j € J such that for each x € S’(k), we
have v, € jAmin and vp(det j) = max{v,(detj’) | vy € j'Amin}. Let 1 be the
generic point of S and let Jn € J be such a maximizing element for n. Then
the same holds for each k-valued point in an open and thus dense subscheme
of S. As the property v, € JnAmin is closed, it is true for each = € g(k)
n [V1], 4 it is shown that for lattices A C N with a(A) = 1, the difference
vol(A) —max{vp(det j') | A C eqj’'Amin} is a constant only depending on N. In

DOCUMENTA MATHEMATICA 13 (2008) 825-852



MODULI SPACES OF POLARIZED p-DIVISIBLE GROUPS 845

our case, the duality condition shows that vol(Dv,) is constant on S and only
depending on ¢ and N. Thus the maximum is also constant. Hence in every
k-valued point, v, (det jn) is equal to this maximum, which is what we wanted
for the existence of ¢ : S — Mi;eq. We obtain an irreducible subscheme gp(S)
of &1 € Mieq.

To show that J acts transitively on the set of irreducible components we have
to show that for each & € S;(k) there is an element j € J such that jx lies
in the image of ¢. Let A C N be the lattice corresponding to x. The first
step is to show that there is a j € J such that j(A) is selfdual (and not only
up to a scalar ¢(A)). It is enough to show that there is a j € J such that
vp(e(A)) = vp(e(jA)) + 1. Such an element is given by taking the identity on

Nj, multiplication by p on Ny, and the map ei% — eirl on N%. Here we use
the notation of Remark 2.4 for the basis of N. Next we want to apply an
element of J modifying Ag. We have a(pg(A)) = a(A N Ny) = 1. From the
classification of lattices with a = 1 in [V1], 4 we obtain that J;” (which may
be considered as a subgroup of J by mapping j € Jg’ to the map consisting of
j and its dual on N7) is acting transitively on the set of irreducible components
of MX red- Thus by possibly multiplying with such an element we assume that
Ao hes in the fixed irreducible component chosen for Proposition 5.3. Recall
from Section 4.2 that in the case of an odd number of supersingular summands,
there is a j € J mapping the element vy to the irreducible family described
there. It remains to study the possible extensions of the lattices Ao and A4
(or in the second case of the sublattice of Ny & N 1 determined by Ag and v1
and of A;). They are given by the associated elements v;. Fix a generating
element 0™ (vg) of Ag (in the second case also an element v1) and let vy be an
element associated to the e xtension A with a(A) = 1. Then Lemma 5.1 and
the construction of S show that there is an element of J mapping A to a lattice
associated to a point of S inducing the same 1; as A. Thus the image of ¢(S)
under J is Sy, which proves the theorem. O

6 DIMENSION

We use the same notation as before, namely A is the lattice corresponding to
a point of &1, generated by an element v = vy + v1 + vy with v; € N;. Again,
A is a generator of Ann(vg) and Ag = po(A) and Ay = AN Ny.

To determine the dimension of §; and of M .q we have to classify the elements
v1 of Section 4 up to elements in ¢*A; and not up to the (locally finite) action
of J which we used in Section 5. To do so, it is more useful to use the values
of &,, as coordinates instead of the values of 1, .

We investigate the set of possible values £(¢) € L/c™'W for ¢ € D using
decreasing induction on 9(¢) > 0. Here, ¥ is as in (2.6). Recall from Lemma 4.2
2. that the use of functions ¢ with values in L/c~'W instead of L corresponds
to considering v; as an element of N1/A;. But as v; and v; + § with 6 € A4
lead to the same lattice A, this is sufficient to determine the set of possible
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extensions of Ag and A;.
Instead of equations (4.7) and (4.8) we consider the following slightly more
general problem to treat at the same time the case of an odd number of super-
singular summands. There, (4.8) is replaced by (4.12). We want to consider
W-linear functions ¢ : D — L/c™'W with
EF) — ¢V = a (mod ¢ W) (6.1)
EWA) = 0 (modc'W) (6.2)
for all v € D. Here a; € L are given elements satisfying
ap’ € YW if 25, +1i > 2m. (6.3)
Let D' = {¢ € D | 9(¢) > i}. We call a W-linear function
go . plo — L/(cT'W)

satisfying (6.1) and (6.2) a partial solution of level ig. Then the induction
step consists in determining the possible partial solutions &% of level iy leading
to a fixed solution of level 79 + 1. Note that the assumption on a; implies
that there exists the trivial partial solution £2™ = 0 of level 2m inducing
partial solutions of all higher levels. Recall that we assumed F' and V to be
elementwise topologically nilpotent on N. Thus for each function ¢ with (6.1)
and (6.2) there is a level ¢ such that ¢ induces the trivial partial solution of
level i.

Assume that we already know the £(¢) for 9(¢) > ip and want to determine
its possible values for ©(¢) = ig. Then we know in particular £(p¢) = pé(¢) €
L/c™ W, or £(¢) € L/p~ e 'W. We want to determine the possible liftings
modulo ¢~ 1W.

A basis of the k-vector space D% /D+! is given by the iy + 1 monomials

Flo VEo = pplo=2 VTl p = pyiom2 e,

Equation (6.1) leads to |ip/2] relations between the values of £ on these mono-
mials. Recall that (A) = m. Thus if §(¢) = ioc —m for some ¢ € D, (6.2) leads
to a relation between the value of & on LT(¢A) € D and values on D+l As
the £ are linear, it is sufficient to consider the max{0,iy —m + 1} relations for
¢ € {Fio—m ppio—m=2"_yio=mlnpi=m This count of relations leads to
the notation

r(io) = |i0/2] + max{0,ig — m + 1}.
Then ig + 1 < r(ip) is equivalent to ig > 2m.
The following proposition is the main tool to prove Theorem 3 on the dimension
of the moduli spaces.

ProroOSITION 6.1. 1. Let ig > 2m. Then there is a partial solution £° of
(6.1) and (6.2) of level ig. If we fix £ and an | € N with | > io, there are
only finitely many other partial solutions éi" of level ig such that £ — éio
induces the trivial partial solution of level | of the associated homogenous
system of equations.
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2. Let ig + 1 > r(ig) and let €T be a partial solution of (6.1) and (6.2)
of level ig + 1. Then to obtain a partial solution £ of level ig inducing
£t one may choose the lifts to L/c™'W of the values of % at the first
io+1—17(ig) monomials p*V? with 2a+ 3 =iy and B < 2(ig —(ig)) + 1
arbitrarily. Each of the remaining values lies in some finite nonempty set
depending polynomially on the values on the previous monomials.

Proof. Note that the existence statement in the first assertion is satisfied as
the condition on the a; yields that there is the trivial solution of level 2m. We
show the two assertions simultaneously. Let £°t! be a fixed partial solution
of level ig + 1 for any ig. It is enough to show that for a lift £, the values
of the first max{0,i9 + 1 — (o)} variables can be chosen arbitrarily, and that
the remaining values then lie in some finite set depending polynomially on the
values on the previous variables. If ig + 1 > r(ip), we have to show that this
finite set is nonempty. We investigate the relations (6.1) and (6.2) more closely.
The first set of relations shows that &% (p®F?) with 2a + b = i is determined
by £ (p®V?). Thus it is sufficient to consider this latter set of values. Be-
sides, we have to consider (6.2) for 1) € {Vio—m pyilo—m=2"_  pio=ml_ For
B € D let LT(B) as in Lemma 2.6. Then the equations for the values of
¢ relate £ (LT (4 A)) to something which is known by the induction hypoth-
esis. Let us recall the description of LT(A) from Lemma 2.6 3. Let h’' be
the number of supersingular summands of Ny. Let j > 0 with ig —m —j > 0.
Then LT(V?~"™~7FJ A) is a linear combination of V=i Fi .  Vie=i=h'pith’
whose coefficients are Teichmiiller representatives of elements of k. Further-
more, the coefficients of &0 (Vio—7 F7) and i (Vio—i—h fi+th"y are units in W.
Using (6.1) we may replace values of £% at monomials in F' by o-powers of the
values of the corresponding monomials in V. We thus obtain a relation between
a polynomial in the remaining [(ig+1)/2] values of £ and an expression which
is known by induction. For 2j < ig, the first summand &% (V=7 F7) remains
the variable associated to the highest power of V' which occurs linearly in this
polynomial. In the following we ignore all equations for 2j > iy. They only
occur for ig > 2m, a case where we only want to prove the finiteness of the set
of solutions. The system of equations with 25 < iy is of the form considered
in Lemma 5.4. The proof of this Lemma for coefficients in L/c™'W is the
same as for coefficients in L. Thus we obtain that the lifts of the values at the
ip+1—r(ip) variables associated to the largest values of j can be chosen freely
and the other ones have to satisfy some relation of the form Q;;(z) = b; for
some given b;. As the @;; have a linear term they are nontrivial. This implies
that the set of solutions of these equations is nonempty and finite and dep ends
polynomially on the previous values. O

6.1 PROOF OF THEOREM 3

By Lemma 3.1 it is enough to show that S; is equidimensional of the claimed
dimension. From [V1], 4 we obtain that the connected components of Sy
are irreducible. The discrete invariant with values in J"P/(J" N Stab(Amin))
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distinguishing the components is given by A — jx with A C jx A, and
vp(det ja) = max{vp(detj) | j € J"P,A C jAmin}.

Especially, ja is constant on each connected component of S; C Sg*). Besides,
P0(jAAmin) determines the connected component of po(A) = Ag inside Sxo,1-
Thus we may fix an irreducible component of Sx,,; and determine the dimen-
sion of the union of connected components of S; such that Ag is in this fixed
component. Let Ry and Ry, vy and v 1 be as in the proof of Theorem 2. Again
we use the functions & defined with respect to o™ (vp) instead of vy. Fix an
arbitrary partial solution £2™ of (6.1) and (6.2) of level 2m. Let

R2:R1[zw|i20,1§ﬂ§i+177’(i)].

We use decreasing induction on ¢ to lift £2™ to a partial solution of level i over
an étale extension Rg of Ry. Let R%m = Ry. Assume that a lift £t is given.
Then Proposition 6.1 shows that the values at i + 1 — r(i) monomials with
¥ = i may be lifted arbitrarily to a value of £&°. If p®V*? with 2a + § = i and
B <i+1—r(i) is such a monomial we write (using the induction hypothesis)
EF(pativh) = D icuy (e-1ylaslp’ with a; € RS Then we choose

EE V= Yl 4wy

i<vp(c—1)

Let R} be the extension of Ré“ given by adjoining further variables x;3 for
larger 3 parametrizing the other values of the lift of €71 to £ and with relations
as in Proposition 6.1, 2. and its proof. More precisely, R5 is obtained from RZ;rl
by a finite number of extensions given by equations of the form Q;;(z) = b;
(mod ¢™'W) where Q;;(z) is a polynomial that is a finite linear combination

of the monomials 27 with [ > 0 such that the coefficient of  is in W(RET)*,
This implies that R} is a finite étale extension of R5™. Let Ry = RY. Let
v1,rR; € N1,r, be such that &, . = €0, Tts existence follows again from the
existence of the dual basis in Remark 3.3. Let v = 0™ (vo,r,) + V1,Rs, OF
v = 0"(vo,r,) + V1 + v1,R,. As in the proof of Theorem 2 let S = §pec(R)
be an irreducible component of the affine open subscheme of Spec(Rj3) over
which Dv contains (Dv)y. As we want to compute the dimension of Sy, we
only have to consider these subschemes. Let R = o~ ™(R) as in Proposition
3.2. The same argument as in the proof of Theorem 2 shows that there is
a morphism ¢ : Spec(R) — M,eq mapping = € Spec(R)(k) to the lattice
generated by v,. The finiteness statements in Proposition 6.1 imply that for
each given y € & (and thus given &) there is an open neighborhood in S;
which only contains points of ¢(Spec(R)) for a finite number of choices of an
irreducible component of Sx, 1 and a corresponding component S. Besides,
the construction of R3 together with the description of the k-valued points of
S1 shows that for each y € S;(k) there is exactly one irreducible component

of Sx,,1, one corresponding component S, and one point z € Spec(R)(k) such
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that ¢(z) = y. Thus dim M,eq = dim &y is the maximum of dim Spec(R) for
all irreducible components S. It remains to show that this is equal to the right
hand side of (1.2). Note that R; is equidimensional for ¢ = 0,1,2,3. From
the construction of S we see that in case of an even number of supersingular
summands,

dim Spec(R) = dim S = dim R3 = dim R
=dim M+ Y max{0,i+1—r(i)}. (6.4)
i>0
In the other case,
dim Spec(R) = dim S = dim R3 = dim R,
=dim My> 4+ Z max{0,i+1—r(i)} + m. (6.5)
i>0
The last summand corresponds to the choice of V1.

From the decomposition of N into I simple summands N7 we obtain a decom-
position Ny = 20:1 N7 with lop = |1/2]. Let again A\; = m;/(m; + n;) be the
slope of N7. Recall from [V1], Theorem B that

g\ = (g~ 1)
dlmMXO,red = Z B) + . Z m;n;: .
J=1 {3.3'13<3" <lo}
We denote the right hand side of (1.2) by D. Let us first consider the case

of an even number of supersingular summands. Then by the symmetry of the
Newton polygon we obtain

0 1 m
D — dimMXi,red = 5 Z m;in; + 5 - Z m;ng .

J<j'<l J<i'<lo

Again by the symmetry of the Newton polygon this is equal to

lg !
m;ng m
DIPIE

j=1j'=lo+1
0 mm; m
— EALL M
B Z SRR
J,3'=1
m(m+1)
= 5 )
In the other case, the same calculation shows that
lo
. 0 m(m+1 m;n
D - dlmMXﬁ,red = ( 2 ) + 22 : 2lU+1
j=1
m(m+ 1)
=5 tm
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In the last step we used that N'o*! is supersingular, hence n;, 11 = 1.
On the other hand (6.4) implies that in the case of an even number of super-
singular summands,

dim Myea — dim MEP = > max{0,i + 1 — r(i)}
i>0
m—1 i 2m—1 i
> ([s] )+ 2 (] -oem)
2m—1 i m—1
- e 2 5]
1=0 =0
~ m(m+1)
B 2

The same calculation with (6.5) shows that for an odd number of supersingular

summands

m(m+1)
2

Together with the calculation of D —dim Mg | ;, this implies Theorem 3. O

: . np  _
dim M eq — dim MXU,red = +m

7 CONNECTED COMPONENTS

In this section we determine the set of connected components of Myeq. The
reduction to the bi-infinitesimal case in Section 2.3 shows that Theorem 1
follows from the next theorem.

THEOREM 7.1. Let X be bi-infinitesimal and non-trivial. Then

ki Mieak) — Z
A —  uyle(N)),

where AV = ¢(A) - A, induces a bijection
0 (Mred> = 7.

Proof. From Theorem 2 we obtain a J-equivariant surjection w : J —»
7o(Mied). Besides, the map x induces a surjection 7o(Myeq) — Z. We choose
the base point of M to be a minimal p-divisible group. Let A, be the cor-
responding lattice in N. An element jA;, with j € J is in the kernel of x if
and only if (jAmin)Y = jAmin. This is equivalent to jAmin = 7' Amin for some
j" € JN Spap(L). Thus we have to show that J N Spap(L) is mapped to a
single connected component of M,eq. Our choice of the base point implies that
Stab(Amin) = K. Thus the surjection = maps J N K to the component of the
identity. Note that J N Spap(L) = Jaer(Qp) where Jyer is the derived group of
J. Hence the elements of (J N Spap(L))/(J N K) correspond to vertices in the
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building of Jger. The building of Jge, is connected. To show that all vertices
correspond to points in one connected component of Mg, it is thus enough to
show that if Ag, A; are the lattices corresponding to two such vertices such that
Ag N Ay = A is of colength 1 in Ayp and A;, then the two lattices correspond
to points in the same connected component of M,eq. As a W-module Ay is
generated by A and vg for some vy € N. As the slopes of F are in (0, 1) we have
Fuvy, Vug € A. Similarly A; is generated by A and some v; with Fvy, Vo € A.
Fora € Al(k) let Ay = (A, vo+a(vi —vg)). As Ag and A; are selfdual one easily
sees that A, is selfdual for each a. By [V1], Lemma 3.4 there is a morphism
A — MTP (X) mapping each point a as above to the point of M} (X) corre-
sponding to A,. As all A, are selfdual, this induces a corresponding morphism
f A — M,eq. Hence f(0) and f(1), the points corresponding to Ag and Ay,

are in the same connected component of Meq. O
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