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The local behavior of p-adic linear differential equations is, in one sense, very
easy. If the equation has a geometric origin (i.e., if it is furnished with a Frobe-
nius structure), then the radius of convergence of solutions at any nonsigular
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LOG-GROWTH FILTRATION AND FROBENIUS SLOPE FILTRATION 35

point is at least 1. In general, the p-adic norm of the coefficients a,, in the Tay-
lor series of a solution is an increasing function on n. However, one knows that
some solutions are p-adically integral power series. B.Dwork discovered these
mysterious phenomena and introduced a measure, called logarithmic growth
(or log-growth, for simplicity), for power series in order to investigate this del-
icate difference systematically (see [Dw73] and [Ka73, Section 7]). He studied
the log-growth of solutions of p-adic linear differential equations both at the
generic point and at special points (see [Ro75], [Ch83]), and asked whether the
behaviors are similar to those of Frobenius slopes or not. He conjectured that
the Newton polygon of log-growth of solutions at a special point is above the
Newton polygon of log-growth of solutions at the generic point [Dw73, Con-
jecture 2]. We refer to it as Conjecture LGpy when there are not Frobenius
structures, and as Conjecture LGFpy, where there are Frobenius structures
(see Conjecture 2.7). He also proved that the Newton polygon of log-growth of
solutions at the generic (resp. special) point coincides with the Newton polygon
of Frobenius slopes in the case of hypergeometric Frobenius-differential systems
if the systems are nonconstant, thus establishing the conjecture in these cases
[Dw82, 9.6, 9.7, 16.9].

On the other hand P.Robba studied the generic log-growth of differential mod-
ules defined over the completion of Q(z) under the p-adic Gauss norm by intro-
ducing a filtration on them via p-adic functional analysis [Ro75] (see Theorem
2.2). His theory works on more general p-adically complete fields, for example
our field &.

Let k be a field of characteristic p > 0, let V be a discrete valuation ring with
residue field k, and let K be the field of fractions of ¥V such that the charac-
teristic of K is 0. In [CT09] we studied Dwork’s problem on the log-growth
for ¢-V-modules over £ or K[z]o which should be seen as localizations of F-
isocrystals on a curve over k with coefficients in K. Here K[z]o is the ring
of bounded functions on the unit disk around z = 0, £ is the p-adically com-
plete field which is the field of fractions of K[z]o, and ¢ (resp. V) indicates
the Frobenius structure (resp. the connection) (See the notation and terminol-
ogy introduced in Section 2). We gave careful attention to Dwork’s result on
the comparison between the log-growth and the Frobenius slopes of hypergeo-
metric Frobenius-differential equations. We compared the log-growth and the
Frobenius slopes at the level of filtrations.

Let M be a ¢-V-module over K[z]o. Let M, = M ®k[q], £ be a ¢-V-module
over £ which is the generic fiber of M and let V(M) be the p-module over K
consisting of horizontal sections on the open unit disk. Denote by M,?‘ the log-
growth filtration on M,, at the generic point indexed by A € R, and by V(M )
be the log-growth filtration with real indices on the p-module V(M). Further-
more, let Sy(-) be the Frobenius slope filtration such that Sx(-)/Sx—(-) is
pure of slope .

We proved that the log-growth filtration is included in the orthogonal part
of the Frobenius slope filtration of the dual module under the natural perfect
pairing M, ®¢ M,/ — & (resp. V(M) @ V(M") — K) at the generic point
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36 CHIARELLOTTO, B. AND TSuzuki, N.

(resp. the special point) [CT09, Theorem 6.17] (see the precise form in Theorem
2.3):
(V(M)))*H)

max max

M) C (Sronp (MY)E (resp. V(M) C (San

for any A € R if Apax is the highest Frobenius slope of M,. We then conjec-
tured: (a) the rationality of log-breaks A (both at the generic and special fibers)
and (b) if the bounded quotient M, /M) is pure as a p-module then the inclu-
sion relation becomes equality both at the generic and special points [CT09,
Conjectures 6.8, 6.9]. The hypothesis of (b) will be called the condition of
being “pure of bounded quotient” (PBQ) in Definition 5.1. Note that there are
examples with irrational breaks, and that both M*~ 2> M* and M* > M
can indeed occur for log-growth filtrations in absence of Frobenius structures
[CT09, Examples 5.3, 5.4]. We state the precise forms of our conjectures in
Conjecture 2.4 on £ and Conjecture 2.5 on K[z]o, and denote the conjectures
by LGF¢ and LGF g[,j,, respectively. We have proved our conjectures LGF ¢
and LGF gy, if M is of rank < 2 [CT09, Theorem 7.1, Corollary 7.2], and
then we established Dwork’s conjecture LGFp,, if M is of rank < 2 [CT09,
Corollary 7.3].

Let us now explain the results in the present paper. First we characterize
bounded ¢-V-modules over £ by using Frobenius structures (Theorem 4.1):

(1) A bounded ¢-V-module M over £ (i.e., M® = 0, which means that all
the solutions on the generic disk are bounded) is isomorphic to a direct
sum of several pure ¢-V-modules if the residue field k of V is perfect.

Note that the assertion corresponding to (1) is trivial for a ¢-V-module M
over K[xz]o such that M, is bounded by Christol’s transfer theorem (see
[CT09, Proposition 4.3]). This characterization implies the existence of a
unique increasing filtration {P;(M)} of p-V-modules M over &£ such that
P;(M)/P,_1(M) is the maximally PBQ submodule of M/P,_1(M) (Corollary
5.5). This filtration is called the PBQ filtration. When we start with a ¢-V-
module M over K[z]o, we can introduce a similar PBQ filtration for M, i.e.,
a filtration consisting of p-V-submodules over K [z]o whose generic fibers will
induce the PBQ filtration of the generic fiber M, (Corollary 5.10). To this end
we use an argument of A.J. de Jong in [dJ98] establishing the full faithfulness
of the forgetful functor from the category of ¢-V-modules over K[z]o to the
category of p-V-modules over €.

The need to study horizontality behavior for the PBQ condition with respect
to the special and generic points leads us to introduce a new condition for
¢-V-modules over K[z]o, namely, the property of being “horizontally pure of
bounded quotient ” (which, for simplicity, we abbreviate as HPBQ), cf. Defini-
tion 6.1). Then in Theorem 6.5 we prove that

(2) our conjecture LGF g,p, (see 2.5) on the comparison between the log-
growth filtration and the Frobenius slope filtration at the special point
holds for a HPBQ module.
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A HPBQ module should be understood as a ¢-V-module for which the bounded
quotient is horizontal and pure with respect to the Frobenius. Our method of
proof will lead us to introduce the related definition of equislope ¢-V-modules
over K[z]o (Definition 6.7): they admit a filtration as ¢-V-modules over K [x]
which induces the Frobenius slope filtration at the generic point. Note that a
PBQ equislope object is HPBQ. Using this result, we prove in Theorem 7.1
that

(3) our conjecture LGF¢ (see 2.4) on comparison between the log-growth
filtration and the Frobenius slope filtration at the generic point holds for
PBQ modules over £.

Indeed, for a ¢-V-module M over &£, the induced p-V-module M, = M ®¢
EX —t]o (where E[X —t]o is the ring of bounded functions on the open unit
disk at generic point t) is equislope. For the proof of comparison for HPBQ
modules, we use an explicit calculation of log-growth for solutions of certain
Frobenius equations (Lemma 4.8) and a technical induction argument.

For a submodule L of a ¢-V-module M over £ with N = M/L, the induced
right exact sequence

L/L* - M/M* — N/N* = 0

is also left exact for any A if L is a maximally PBQ submodule of M by Propo-
sition 2.6. Since there do exist PBQ filtrations, the comparison between the
log-growth filtrations and the Frobenius slope filtrations for PBQ modules both
at the generic point and at the special point implies the rationality of breaks
(Theorem 7.2 and Proposition 7.3) as well as Dwork’s conjecture (Theorem 8.1)
that the special log-growth polygon lies above the generic log-growth polygon
(including the coincidence of both end points):

(4) Our conjecture of comparison between the log-growth filtration and the
Frobenius slope filtration at the special point (Conjecture LGF k., 2.5)
implies Dwork’s conjecture (Conjecture LGFpy,, 2.7).

As an application, we have the following theorem (Theorem 8.8) without any
assumptions.

(5) The coincidence of both log-growth polygons at the generic and special
points is equivalent to the coincidence of both Frobenius slope polygons
at the generic and special points.

Let us also mention some recent work on log-growth. Y.André ([An08]) proved
the conjecture LGpy, of Dwork without Frobenius structures, that is, the log-
growth polygon at the special point is above the log-growth filtration at the
generic point for V-modules, but without coincidence of both end points. (Note
that his convention on the Newton polygon is different from ours, see Remark
2.8). He used semi-continuity of log-growth on Berkovich spaces. K.Kedlaya
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defined the log-growth at the special point for regular singular connections and
studied the properties of log-growth [Ke09, Chapter 18].

This paper is organized in the following manner. In Section 2 we recall our
notation and results from [CT09]. In Section 3 we establish the independence
of the category of p-V-modules over & (resp. K[xz]o) of the choices of Frobenius
on & (resp. K[z]o). In Section 4 we study when the Frobenius slope filtration
of p-V-modules over & is split and prove (1) above. In Section 5 we introduce
the notion of PBQ and prove the existence of PBQ filtrations. In Section 6 we
study the log-growth filtration for HPBQ -V-modules over K[z]o and prove
the comparison (2) between the log-growth filtration and the Frobenius slope
filtration. This comparison implies the comparison (3) for PBQ ¢-V-modules
over £ in Section 7. In Section 8 we show that (4) our conjecture of comparison
at the special point implies Dwork’s conjecture.

2 PRELIMINARIES

We fix notation and recall the terminology in [CT09]. We also review Dwork’s
conjecture and our conjectures.

2.1 NOTATION
Let us fix the basic notation which follows from [CT09].
p : a prime number.
K : a complete discrete valuation field of mixed characteristic (0, p).
V : the ring of integers of K.
k : the residue field of V.
m : the maximal ideal of V.

| | - a p-adically absolute value on K and its extension as a valuation field,

which is normalized by |p| = p~1.

q : a positive power of p.

o : (g-)Frobenius on K, i.e., a continuous lift of ¢-Frobenius endomorphism
(a — a% on k). We suppose the existence of Frobenius on K. We also
denote by o a K-algebra endomorphism on Ak (0,17), which is an exten-
sion of Frobenius on K, such that o(z) is bounded and |o(z) — 27|p < 1.
Then K [z] is stable under 0. We also denote by o the unique extension
of o on &, which is a Frobenius on £. In the case we only discuss ¢-V-
modules over £, one can take a Frobenius ¢ on K such that o(z) € &
with |o(z) — 2o < 1.
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LOG-GROWTH FILTRATION AND FROBENIUS SLOPE FILTRATION 39

Kvert . the p-adic completion of the inductive limit KPef of KSK% ...
Then W is a complete discrete valuation field such that the residue
field of the ring of integers of Kvert is the perfection of k£ and that the
value group of W coincides with the value group of K. The Frobenius

—

o _uniquely extend to K perf  Moreover, taking the p-adic completion
K3l of the maximally unramified extension K?' of KP°f we have a
canonical extension of K as a discrete valuation field with the same value
group such that the residue field of the ring of integers is algebraically
closed and the Frobenius extends on it. We use the same symbol o for
Frobenius on the extension.

¢ : an element of K with log,|¢*| = —\ for a rational number A such that
o(qg*) = ¢*. Such a ¢* always exists if the residue field k is algebraically
closed and A € log,|K*|. In particular, if k is algebraically closed, then
there exists an extension L of K as a discrete valuation field with an
extension of Frobenius such that ¢* is contained in L for a fix A. In this
paper we freely extend K as above.

Ak (c,r7) : the K-algebra of analytic functions on the open disk of radius r
at the center ¢, i.e.,

forany0 <~y <r

Ag(c,r7) = {Z an(x — )" € K[z — (]

n=0

|an|y™ — 0asn — oo }

K|[z]o : the ring of bounded power series over K, i.e.,

K[z]o = {Z anz™ € A (0,17)

n=0

sup |a,| < oo} :
n

An element of K[x]o is said to be a bounded function.

K|[z]y : the Banach K-module of power series of log-growth A in Ag(0,17)
for a nonnegative real number A\ € Rxg, i.e.,

Kz]x = {Z anz™ € A (0,17)

n=0

sup [an|/(n+ 1) < 00} ,

with a norm | Y07 ) anz"|x = sup, |an|/(n + 1)*. K[z] is a K[z]o-
modules. K[z]x = 0 for A < 0 for the convenient. An element f € K[z]x
which is not contained in K[z], for v < X is said to be exactly of log-
growth A.

& : the p-adic completion of the field of fractions of K[z]o under the Gauss
norm | |o, i.e.,

5{ i anx”

n=—oo

an, € K, sup |ayp| < 00, |an| — 0(asn — oo)} .
n
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€ is a complete discrete valuation field under the Gauss norm | |o in fact
K is discrete valuated. The residue field of the ring Og of integers of £

is k((x).
t : a generic point of radius 1.

&: : the valuation field corresponding to the generic point ¢, i.e., the same
field as € in which x is replaced by ¢: we emphasize ¢ in the notation with
the respect to [CT09]. We regard the Frobenius ¢ as a Frobenius on &;.

EJX —t]o : the ring of bounded functions in Ag, (¢,17). Then

o0

TESEIX —tle ()= %(%fﬂm:t(}( )"

n=0

is a K-algebra homomorphism which is equivariant under the derivations
% and diX. The Frobenius o on &[X — t]o is defined by o on & and
o(X —t)=71(c(xz)) — o(x)|z=¢. T is again o-equivariant.

For a function f on R and for a matrix A = (a;;) with entries in R, we define
f(A) = (f(ai;)). In case where f is a norm | [, then |A| = sup; ; |a;;|. We use
1 (resp. 1,) to denote the unit matrix of suitable degree (resp. of degree r).

For a decreasing filtration {V*} indexed by the set R of real numbers, we put

VAT = uan VE, VAT = U, VH

We denote by Wx_ = Upca W, and Wi = N> W, the analogous objects
for an increasing filtration {W}x, respectively.

2.2 TERMINOLOGY

We recall some terminology and results from [CT09].

Let R be either K (K might be £) or K[z]p. A ¢-module over R consists of a
free R-module M of finite rank and an R-linear isomorphism ¢ : 6*M — M.
For a ¢-module over K, there is an increasing filtration {Sx(M)}rer which is
called the Frobenius slope filtration. Then there is a sequence A; < --- < A, of
real numbers, called the Frobenius slopes of M, such that Sy, (M)/Sx,— (M) is
pure of slope \; and M ® K& =2 @, 5,,(M) @k K?/S\,— (M) @k K?! is the
Dieudonné-Manin decomposition as ¢-modules over K2l. We call \; the first
Frobenius slope and A, the highest Frobenius slope, respectively.

Let R be either £ or K[z]o. A ¢-V-module over R consists of a ¢-module
(M, ) over R and a K-connection V : M — M ®p Qg, where Qr = Rdx, such
that ¢ 0 0*(V) = Vo . For a basis (e, ,e,), the matrices A and G with
entries R,

@(1@61,"' 31®€7‘) :(ela"' aeT)Aa V(el,"' 567‘): (ela"' ;er)Gd:E
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LOG-GROWTH FILTRATION AND FROBENIUS SLOPE FILTRATION 41

are called the Frobenius matrix and the connection matrix of R, respectively.
Then one has

d d
A+ GA = (-0(x))A0(C) (FC)

by the horizontality of ¢. We denote the dual of M by MY .
Let M be a ¢-V-module over K[z]o. We define the K-space

V(M) ={s € M®g[j, Ax(0,17) | V(s) = 0}
of horizontal sections and the K-space of solutions,
SOl(M) = HomK[[m]]o[V] (M, Ax (0, 1_)),

on the unit disk. Both dimg V(M) and dimg Sol(M) equal to rankg,j, M by
the solvability. If one fixes a basis of M, the solution Y of the equations

A(0)o(Y)=YA
Ly =YG
Y(0)=1

in Ag(0,17) is a solution matrix of M, where A(0) and Y (0) are
the constant terms of A and Y, respectively. The log-growth filtration
{V(M)*} er is defined by the orthogonal space of the K-space Soly(M) =
Hom g [z1,(v) (M, K [x]x) under the natural bilinear perfect pairing

V(M) x Sol(M) — K.

Then V(M)* = 0 for A >> 0 by the solvability of M and the log-growth
filtration is a decreasing filtration of V(M) as ¢p-modules over K. The following

proposition allows one to change the coefficient field K to a suitable extension
K.

PROPOSITION 2.1 ([CTO09, Proposition 1.10]) Let M be a @-module over
K|[z]o. For any extension K' over K as a complete discrete valuation field

with an extension of Frobenius, there is a canonical isomorphism V(M ® g [a],
K'[z]o) 2 V(M) ®k K' as log-growth filtered p-modules.

The induced p-V-module M, = M ®k,p, € over & is said to be the generic
fiber of M, and the K-module V(M) is called the special fiber of M.

Let M be a ¢-V-module over £. We denote by M, the induced ¢-V-module
M ®@¢ E[X — t]o over &[X — t]o. Applying the theory of Robba [Ro75], we
have a decreasing filtration {M?*}yer of M as ¢-V-modules over £ which is
characterized by the following universal property.

THEOREM 2.2 [Ro75, 2.6, 3.5] (See [CT09, Theorem 3.2].) For any real num-
ber N, M/M?> is the mazimum quotient of M such that all solutions of log-
growth \ of M, on the generic unit disk come from the solutions of (M/M?)..
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42 CHIARELLOTTO, B. AND TSuzuki, N.

The filtration {M*} is called the log-growth filtration of M. Note that M?* =
M for A < 0 by definition and M* = 0 for A >> 0 by the solvability. The
quotient module M/M? is called the bounded quotient, and, in particular, if
M? =0, then M is called bounded.

Our main theorem in [CT09)] is the following:
THEOREM 2.3 ([CT09, Theorem 6.17])

(1) Let M be a o-V-module over €. If Amax is the highest Frobenius slope of
M, then M* C (Sx—x..(MV)*1.

(2) Let M be a p-V-module over K[x]o. If Amax is the highest Frobenius
slope of My, then V.(M)* C (Sx_xn. (V(MYV)))*.

max

Here S+ denotes the orthogonal space of S under the natural bilinear perfect
pairing
M®@e MY = Eor V(M)®k V(M) — K.

We conjectured that equalities hold in Theorem 2.3 if M is PBQ (Definition
5.1) in [CT09], and proved them if M is of rank < 2 [CT09, Theorem 7.1,
Corollary 7.2].

CONJECTURE 2.4 ([CT09, Conjectures 6.8]) Let M be a ¢-V-module over E.

(1) All breaks of log-growth filtration of M are rational and M> = M** for
any A.

(2) Let Amax be the highest Frobenius slope of M. If M/MP° is pure as -
module (PBQ in Definition 5.1 (1)), then M* = (Sx_x,...(MV))*.
We denote Conjecture 2.4 above by LGF¢.

CONJECTURE 2.5 ([CT09, Conjectures 6.9]) Let M be a o-V-module over
KII:C]]O

(1) All breaks of log-growth filtration of V(M) are rational and V(M)» =
V(M) for any .

(2) Let Amax be the highest Frobenius slope of M,. If Mn/MS 18
pure as @-module (PBQ in Definition 5.1 (2)), then V(M)* =
(S2=Amax (V(M)Y)) -

We denote Conjecture 2.5 above by LGF g,],-

Note that we formulate the theorem and the conjecture in the case where
Amax = 0 in [CT09]. However, the theorem holds for an arbitrary Apax by
Proposition 2.1 (and the conjecture should also hold). Moreover, it suffices to
establish the conjecture when the residue field k of V is algebraically closed.
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In section 7 we will reduce the conjecture LGF¢ (1) (resp. LGF k., (1)) to
the conjecture LGF¢ (2) (resp. LGF k[,],(2)) by applying the proposition
below to the PBQ filtration which is introduced in section 5. The following
proposition is useful for attacking log-growth questions by induction.

PROPOSITION 2.6 Let 0 - L — M — N — 0 be an exact sequence of p-V-
modules over € (resp. K[x]o) and let Amax be the highest Frobenius slope of M
and L (resp. M, and Ly).

(1) Suppose that L* = (Sx_x,..(LV))* for \. Then the induced sequence

0— L/L* - M/M* — N/N* =0
is exact.

(2) Suppose that V(L) = (Sx_x

quence

(V(L)V)L for X. Then the induced se-

max

0—V(L)/V(IL)* = V(M)/V(M)» = V(N)/V(N)* =0
s exact.

PRrROOF. (1) Since
L/L» - M/M*» — N/N* =0

is right exact by [CT09, Proposition 3.6], we have only to prove the injectivity
of the first morphism. There is an inclusion relation

M c (Sx—x (]\4\/))L = S(Amafo)f(M)

max

by Theorem 2.3 and the equality
L)\ = (Sk_)\max (Lv))L = S()\mdxf)\)*(L)

holds by our hypothesis on L. Since the Frobenius slope filtrations are strict for
any morphism, the bottom horizontal morphism in the natural commutative
diagram
L/L* — M/M*
=l 3
L/S(mas—)— (L) —> M/S(5—0)— (M)

is injective. Hence we have the desired injectivity.

(2) The proof here is similar to that of (1) on replacing [CT09, Proposition 3.6]
by [CT09, Proposition 1.8]. O
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2.3 DWORK’S CONJECTURE

We recall Dwork’s conjecture. We have proved it in the case where M is of
rank < 2 [CT09, Corollary 7.3].

CONJECTURE 2.7 ([Dw73, Conjecture 2], [CT09, Conjecture 4.9]) Let M be a
©-V-module over K[x]o. Then the special log-growth is above the generic log-
growth polygon (with coincidence at both endpoints).

We denote Conjecture 2.7 above by LGFpy,. We will prove that the conjecture
LGFpy, follows from the conjectures LGF¢ and LGF ], in section 8. There
is also a version of Dwork’s conjecture without Frobenius structures, we denote
it by LGpy-
Let us recall the definition of the log-growth polygon: the generic log-growth
polygon is the piecewise linear curve defined by the vertices

Al —

. A —
(0,0), (dimg 2.\ dimg ~a2), -+ (dimg o, 370 A dime X,

M1 My T Mt =1 M,

A —
. r .M
-, (dimg M, ijl Aj dimg #),
n

where 0 = \; < --- < A, are breaks (i.e., M~ # M) of the log-growth
filtration of M,. The special log-growth polygon is defined in the same way
using the log-growth filtration of V(M).

REMARK 2.8 (1) The convention of André’s polygon of log-growth
[An08] is different from ours. His polygon at the generic fiber is

Z;Zl )\j dlmg M)‘;'
azis and the starting point of the polygon is (dimg M,0), and the same
at the special fiber. André proved the conjecture LGpy except the

coincidence of both endpoints in [An08].

below our polygon in the direction of the vertical

2) If the special log-growth polygon lies above the generic log-growth polygon

( P 9-9 polyg 9 9-9 polyg
in both conventions of André’s and ours, then both endpoints coincide with
each other. However even if this is the case, we cannot prove M,?‘ = M,?‘Jr

(resp. V(M) = V(M) ) for a break \.

3 CHOICES OF FROBENIUS

Let us recall the precise form of equivalence between categories of p-V-modules
with respect to different choices of Frobenius on &€ (resp. K[z]o) (see [Ts98a,
Section 3.4] for example). We will use it in the next section.

3.1 COMPARISON MORPHISM Yy, o,

Let o7 and o2 be Frobenius maps on & (resp. K[z]o) such that the restriction

of each o; to K is the given Frobenius on K. Let M be a p-V-module. We
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define an &-linear (resp. K[z]o-linear) morphism
Voy,00 1 01T M — 05 M

by
= R S
Doas(a®m)=a " (2(x) 01 ()" © V(5 )(m).
n=0 ’
Since M is solvable and |o2(x) — o1(x)| < 1, the right hand side converges in
o3 M. As a matrix representation, the transformation matrix is

H = Z 02(Gn) (02($) — 01 (x))n
n=0

n!

for the induced basis 1 ® e1,--- ,1 ® e,, where G is the matrix of connection,
Go =1 and G411 = GG, + %Gn for n > 0.

PROPOSITION 3.1 Let 01,02,03,0 be Frobenius maps of € (resp. K[z]o) as
above. Then we have the cocycle conditions:

(1) 1902,0'3 ° 1901702 = 1901,03'
(2) 190,0- = ido’*M'

PROPOSITION 3.2 Let M be a p-V-module pure of slope X over £ and let A be
the Frobenius matriz of M with respect to a basis. Suppose that |A—q 1|y < ¢~
for > X. Then the representation matrix H of the comparison morphism
Voy,0, With respect to the bases which are the pull-backs by o1 and oy Tespec-
tively, satisfies |H — 1|g < ¢*H.

PROOF. By replacing the Frobenius ¢ by ¢~*¢, we may assume that A = 0.
The assertion then follows from the fact that under these assumptions the
solution matrix Y at the generic point satisfies Y = 1 (mod (X —t)m"Og¢, [X —
t]). Here n is the least integer such that |m™| < ¢ *. O

3.2 EQUIVALENCE OF CATEGORIES

Let R be either £ or K[z]o and let o1 and o3 be Frobenius maps on R as in
the previous subsection. We define a functor

e : (¢-V-modules over (R, 02)) — (¢-V-modules over (R, 01))

01,02

by (M,V,¢) — (M,V,p o0V, ,). Here ¥, o, is defined as in the previous
section. The propositions of the previous subsection then give

THEOREM 3.3 ¥, ., is an equivalence of categories which preserves tensor
products and duals. Moreover, 97, preserves the Frobenius slope filtration

and the log-growth filtration of M (resp. V(M)) for a o-V-module M over &
(resp. K[z]o).
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4 BOUNDEDNESS AND SPLITTING OF THE FROBENIUS SLOPE FILTRATION

4.1 SPLITTING THEOREM

THEOREM 4.1 Suppose that the residue field k of V is perfect. A ¢-V-module
M over & is bounded if and only if M is a direct sum of pure p-V-modules,
that is,

M= 69;":1 S/\i (M)/SAZ—(M)

as @-V-modules, where A\ < Ay < --- < A are Frobenius slopes of M.

Since any pure ¢-V-module over £ is bounded by [CT09, Corollary 6.5]. Hence,
Theorem 4.1 above follows from the next proposition.

PROPOSITION 4.2 Suppose that the residue field k of V is perfect. Let 0 —
L - M — N — 0 be an exact sequence of p-V-modules over £ such that
both L and N are pure of Frobenius slope A and v, respectively. If one of the
conditions

(1) v=A<0;
2) v—A>1;
(3) M is bounded and 0 <v — X <1,

holds, then the exact sequence is split, that is, M = L& N as p-V-modules.

In the case (1) the assertion easily follows from the fact that, for a € £ with
lalo < 1, ao is a contractive operator on the p-adic complete field £. The rest
of this section will be dedicated to proving the assertion in cases (2) and (3).

4.2 DESCENT OF SPLITTINGS

PROPOSITION 4.3 Let 0 - L — M — N — 0 be an exact sequence of o-
modules over £ such that L and N are pure and the two slopes are different.
Let &' be one of the following:

(i) &' is a p-adic completion of an unramified extension of &;

(i) &' is the p-adic completion of € @k K' for some extension K' of K as
a complete discrete valuation field with an extension o' of o such that,
if G is the group of continuous automorphisms of K' over K, then the

invariant subfield of K' by the action of G is K.

If the exact sequence is split over &', then it is split over £. The same holds
for ©-V-modules over &.
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PROOF. In each case we may assume that £ is the invariant subfield of £ by

the action of continuous automorphism group G. Let ey, -+ ,€,,€r41, ", €rts
be a basis of M over £ such that eq,--- ,e, is a basis of L. Put
_ A A
90(61;"' PECTAPN AN P aer—i-s)—(ela"' PECTAPN AN PR aer-i-s) 0 A )
22

where Aj; is of degree r and Ass is of degree s, respectively, and all entries
of A11,A1a and Ass are contained in £. By the hypothesis of splitting over &’
there exists a matrix Y with entries in £’ such that

Alla(Y) - YAQQ + A12 =0.

For any p € G, p(Y) also gives a splitting. Hence A110(Y — p(Y)) = (Y —
p(Y))Azz. By the assumption on slopes, p(Y) =Y. Therefore, all entries of YV’
are contained in £ and the exact sequence is split over £. O

DEFINITION 4.4 An extension &' (resp. K') of € (resp. K ) is allowable if &'
is a finitely successive extension of € (resp. K ) of type in (i) or (i) (resp. (ii))
of Proposition 4.3.

4.3 PREPARATIONS

In this subsection we assume that the residue field k of V is algebraically closed.
Moreover we assume that the Frobenius on & (resp. KJz]o) is defined by
o(x) = x9. For an element a = > apz™ in £ (resp. K[z]) we define the
subseries a(? by 3 ag,z?.

Ann A
(resp. K[xz]o) with A11 of degree r and Aag of degree s such that the matriz
satisfies the conditions:

LEMMA 4.5 Let be an invertible matriz of degree r + s over £

(i) A1 = Aﬁ) and Ay1 = P71 for a matriz P over € (resp. Klx]o) with
|Plo <1,

(i) Azp = ALY and |Ags — 140 < 1.

Suppose that Ag%) # 0. Then there exists an r X s matrix Y over & (resp.
K[x]o) with |Y]o < |A§%)|0 such that, if one puts B = A110(Y) — Y Ags + Aqa,

then |B@ |y < |A1%)|0. Moreover, there exists an r X s matriz Y over € (resp.
K|[z]o) such that if one defines B12 by

A Bz \ _ (1, Y A A 1, oY)
0 Ao 0 1 0 Ao 0 1, ’
(@) _
then B}y = 0.
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PrOOF. Take a matrix Y such that o(Y) = fPAS%). Such a Y exists since
the residue field k of V is perfect. Then |Y|p < |A§‘§)|0 and B = Aj10(Y) —
Y Ago+ Arp = Aj1 PAY — Y Agy + Ayy = Ay — A9 — Y Agy. Hence |[B@|y =
|YA§%) lo < |A§%)|O and we have the first assertion. Applying the first assertion

inductively on the value |A§%)|0, we have a desired matrix Y of the second
assertion since £ (resp. K[x]o) is complete under the norm | |o. O

We give a corollary of the preceding lemma for ¢-V-modules over £.

ProproSITION 4.6 Let 0 - L — M — N — 0 be an ezact sequence of p-V-
modules over €. Suppose that N is pure of Frobenius slope v and all Frobenius
slopes of L are less than v. Then there exist an allowable extension &' of £ and
a basis €1, ,€r, i1, erys of M ®g E with respect to the exact sequence
such that, if one fizes an element x’ in the ring Og: of integers of &' whose
image gives a uniformizer of the residue field of Og: and a Frobenius o’ on &’

with o’ (x') = 2%, then the Frobenius matriz A Are ) of M ®¢ &' with

0 A22

respect to o’ (here we use Theorem 3.3) has the following form:
(i) A = Aﬁ) and Ay; = P~ for a matriz |Ply < ¢,
(11) Aoy = Ag%) and |A22 — ql/15|0 < q_”,
(iii) A{% =0,
where al® s defined by using the parameter x'. Moreover, one can replaces the

inequality |Asa — ¢"1slo < ¢~ in (i) by the inequality |Ass — ¢”1slo < ¢7¥n
for a given 0 < n <1 (the extension & depends on n).

PROOF. Since k is algebraically closed, there is a uniformizer = of K such
that o(m) = 7. Let K,, be a Galois extension K (7'/™, () of K for a positive
integer m, where (,,, denotes a primitive m-th root of unity. Then ¢ on K
extends on K,,. If we choose a positive integer m such that m/log,|r| is a
common multiple of denominators of v and the highest Frobenius slope of L,
then v and the highest Frobenius slope of L are contained in log,|K,|. Hence
we may assume that v = 0 and all Frobenius slopes of the twist mpy, of the
Frobenius ¢y, of L are less than or equal to 0.

Ay Ai
Let A = ( 0 Ay
given exact sequence. Since any p-module over £ has a cyclic vector [Ts96,
Proposition 3.2.1], we may assume that Ass € GL4(Og) by v = 0. Then there
is a matrix X € GL4(Og/) such that X "1 As0(X) = 1, (mod mOg/) for some
finite unramified extension & over £ by [Ts98b, Lemma 5.2.2]. By applying
the existence of a cyclic vector again, we may assume that the all entries of
Frobenius matrix of LY are contained in mQOg by the hypothesis on Frobenius
slopes of L.

> be a Frobenius matrix of M with respect to the
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Now we fix a parameter 2’ of £ and change a Frobenius ¢’ on £’ such that
o'(x') = 2’9, The the hypothesis of the matrices Aj; and Ao are stable by

Theorem 3.3. If one replaces the basis (e1, -, er45) by (1, , €r45)A, then
the Frobenius matrix becomes ¢’(A). Since the hypothesis in Lemma 4.5 hold
in our Frobenius matrix A, we have the assertion. O

Now a variant of Proposition 4.6 for ¢-V-modules over K [z]o, which we use it
in section 6, is given.

ProrosiTiON 4.7 Let 0 - L — M — N — 0 be an ezxact sequence of o-
V-modules over K[x]o. Suppose that N, is pure of Frobenius slope v and all
Frobenius slopes of L, are less than v. Then there exist an allowable extension
K’ of K with an extension of Frobenius o’ and a basis ey, -+ ,€r,€ri1, " ,Eris
of M @ka, K’ [z]o with respect to the exact sequence such that the Frobenius

matriz ( Aél 2112 > of M @ ka1, K'[2]o with respect to o’ has the following
22

form:

(i) A = Ag’{) and A1 = P71 for a matriz |Plo < ¢,

(ii) A2 = ¢"1s,

(iii) A% =0
Proor. We may assume p = 0 and the highest Frobenius slope of L, is
contained in log, |/ 5| as in the proof of Proposition 4.6. Then N is a direct
sum of copies of the unit object (K[z]o,d,o)’s since k is algebraically closed.
In order to find the matrix P, we apply the isogeny theorem [Ka79, Theorem

2.6.1] and the existence of a free lattice over V[z] in [dJ98, Lemma 6.1] for LY.
The rest is again same as the proof of Proposition 4.6. O

LEMMA 4.8 Let v be a nonnegative rational number. Suppose that y € xK[z]
satisfies a Frobenius equation

y—q "ao(y) = f.
fora € K with |a] =1 and for f =3 faa™ € xK[x].

(1) Suppose that (@ =0. If f € K[z], \ {0}, theny € K[z], \ K[z],_, and
if f € K[z]a\ K[z]a= for A > v, theny € K[z]x \ K[z]a-.

(2) Let! be a nonnegative integer with q f 1. If f € K[z]o and |fi] > |¢" flo =
g Y|flo #0, then y € K[z], \ K[z],—.

PROOF. Since the residue field k of V is algebraically closed, we may assume
that @ = 1. Formally in K[x],

y=>_ > (@) (fa)2""

m=0
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is a solution of the equation.

(1) If ¢™n = ¢™'n/, then m = m’ and n = n’ because ¢ /n,n’. Hence,
y # 0. By considering a subseries >~ _, (q")™ o™ (f)xd" ™ for f, # 0,y is of
log-growth equal to or greater than v. Moreover, we have

(@)™ 0™ (f)l/ (@™ n+1)" = |ful/(n+1/¢™)"

Hence, if f € K[z],, then y is exactly of log-growth v. Suppose f € K[z]x \
K[xz]x—. Since for each m,n

(g™ ™™ (fa)l/ (@M1 + 1) = | ful /(@™ P 4 1/g™ M)A,

the log-growth of y is exactly A.

(2) There exists z € zK[z]o with |z]o < |¢”flo = ¢7¥|f|o such that, if g =
f—z+qvo(z) =3, gnr", then ¢(@ = 0 and g; # 0 by the same construction
of the proof of Lemma 4.5. The assertion now follows from (1). O

4.4 PROOF OF PROPOSITION 4.2

Replacing K by an extension, we may assume that k is algebraically closed
and that A =0, » > 0 and v € log,|K*| by Proposition 4.3 (see the beginning
of proof of Proposition 4.6). We may also assume o(x) = x? by Theorem 3.3.

Ay Ag
Let A = ( 0 Ag
which is compatible with the given extension (i.e., the (1, 1)-part (resp. (2,2)-
G G2
the connection, respectively. The commutativity of Frobenius and connection
(the relation (FC) in section 2.2) gives the relation

) be a Frobenius matrix of M with respect to the basis

part) corresponds to L (resp. N)) and let G = < be the matrix of

1° %Au + Gr1A12 + Gi2Ass = qz7 ' (A110(G12) + A120(Ga22))

of the (1,2)-part of the matrix. We may assume that
20 Ay = Ag’{), |A11 — 1,)o < ¢! and hence |G11]op < ¢~! (r is rank of L);
3° Agy = Ag%), |A2a — ¢"14|0 < ¢ 1 and |Gazlo < ¢~ ! (s is rank of N);

40 A% =

1 1

by Proposition 4.6 Note that both inequalities |G11]o < ¢~ and |G11]o < ¢~
above follow from the relation (FC) in section 2.2 for L and N, respectively.
When v # 1, we will first prove A12 = 0 and then prove Gi2 = 0. When v =1,
we will first prove Gi2 = 0 and then prove A;2 = 0. Hence, we will have a
splitting in all cases.
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4.4.1 'THE CASE WHERE v > 1

Suppose v > 1 (and A = 0). Assume that A;2 # 0. By 4° we have
|d%z412|0 > |qA12lo = ¢ | A12]o. Then |G11412]0 < ¢ 1 A12]o < |%A12|0 and
|q.Tq_1A120’(G22)|0 < q_1|A12|0 < |di:nA12|0' On the other hand, |G12A22|0 <
lgz97 1 A110(G12)]o by v > 1 since Aq; (resp. Agz) is a unit matrix (resp. a
unit matrix times ¢*) modulo mOg¢ (resp. ¢"mO¢) by 2° (resp. 3°). So we

have J
d—A12 = q:L'qilAllo'(Glg) (modqilogQ‘d—iAlz‘omOg)
X

But, on comparing the z-adic order of both sides, this is seen to be impossible
by 2°, 3° and 4°. Hence A;2 = 0. Now the commutativity of Frobenius and
connection (the relation 1°) is just

G222 = gz ' A110(G12).

Since any morphism between pure ¢-modules with different Frobenius slopes
are 0, we have G123 =0 by v > 1.

4.4.2 THE CASE WHERE 0 <v <1

Suppose 0 < v < 1 (and A = 0). Assuming that A5 # 0, we will show the
existence of unbounded solutions on the generic disk by applying Lemma 4.8
(2). This is a contradiction to our hypothesis of boundedness of M, and thus
we must have A12 = 0. Since v # 1, we again have G15 = 0 by the slope reason.
Therefore, the extension is split.

Assume that A;jp = Zn Alg,nl'n 7é 0. Since |G12A22|0 = q_VlGlglo,
|q:Cq71A110'(G12>|0 = q71|G12|0, and |%A12|0 > q71|A12|0 by 30, 2° and our
hypothesis, respectively, the formula 4° gives estimates

5° q71|A12|0 < q7Y|G12lo = |G12Aazlo = |%A12|0 < |Ai2]o.

We also claim that

6° there is a positive integer m with ¢ /m such that |$$—mm/112|0 =
| A12]o

by 1°. Indeed, let I be an integer such that |Aj2;| = |Ai2|lo. When [ > 0, we

put m = [. Then the coefficient of % dd—;lAlg in the 0-th term z° is A1, and we
have |%dd—;lA12|0 = |A12,] = |A12]o. When | < 0, we put m = ¢~' + 1 (remark
that any sufficient large power of ¢ can be replaced by ¢~!). Then the coefficient
m . . —1—-1
of %%Alg in the I —m(= —q_l)—th term 2!~ is (=™ m ni ) Aqa
am . m — l — 1 .
and we have |5 L Ay5]g = |A12,| = |A12]o since (—1)™ ( m ) is a
p-adic unit.

In proving the assertion, we will consider the following two cases for Ajs:
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(i) |%A12|0 > q7"|Azo-
(11) |%A12|0 < q7U|A12|0. (Hence we have |G12|0 < |A12|0 by 50)

In order to prove the existence of unbounded solutions above, let us reorganize
the matrix representation by using changes of basis of M, a change of Frobenius
and an extension of scalar field. Let us consider the induced ¢-V-module
M, = M ®¢ &]X — t]o over the bounded functions &[X — t]o at the generic
disk. Since L, and N, are pure, we have bounded solution matrices Y1; of L
and Yso of N, that is,

A1 (t)o(Yi1) = Ynur(An)

d
L: d_XYH =Y17(Gn1)
Y11 € 1, + q(X — t)Mat,.(Og, [ X —1])
A;z(t)(f(yzz) = Ya27(A22)
N: d_XYZQ = Y527 (Ga2)
Yoo € 15+ q(X — t)Mat4(Og, [X —t])

by 2° and 3°. Note that 7(f) = 3. L(L-f)t)(X — )" for f € &€ and

n nl\dzn
it is an isometry. Consider a change of basis of M, by the matrix Y ! =

y-1 ) . .

( 101 Y0_1 ) Then the new Frobenius matrix and the new connection
22

matrix are as follows:

AT = YAo(Y)~! = ( An(t) Yir(Ap)o(Yas) ™! )

0 Aga(t)
0 Yi17(Gr2)Ysy' )

T d yv— -1 _
GYd—XY1+YGY1<O h

Let us put A7, = >3, A7 (X —1)" (resp. GT,) to be the (1,2)-part of the
Frobenius matrix A” (resp. G7), and define Bf, = ), Al (X —1)" by the
subseries of positive powers. Then we have

n>0

8° |BT2lo = [Ai2]o

9° |GT2lo = [7(G12)|o = [G12lo-

by 6° and Y = 1,4, (mod ¢(X — t)O¢, [X —1]).

Now we consider a change of Frobenius. At first our Frobenius on £ is given
by o(x) = 9. Hence the induced Frobenius on the generic disk is given by
o(X —t)=((X —1t)+1t)?—t9. Let us replace o by the Frobenius ¢ defined by
o(X —t) = (X —t)4. Note that

10° o(X —t)—d(X —t) = gt H(X —t) (modp(X —1)%Og,[X —1]).

Since |#d’§—:1G{2|0 < |n|7YGi2lo and |p™/n| < |p| for all n > 1, the matrix
H of comparison transform 9% (M) in section 3.1 satisfies the congruence

relation
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#o= et (§ 7ETOR) ) o0 - g s
11° =t -
= 1T+s+qtq1<8 (G}f(t)) >(Xt)

(mod pg'o8alG1lo (X — )20, [X — t])

by 9° and 10°. Our Frobenius matrix of M, with respect to the Frobenius & is

= . An(t) Afy + An(H) Hiz
A=A"H =
( 0 Ano(t)

by the definition of the equivalence (Theorem 3.3), where Hyp = > Hizpn(X —
t)" is the (1,2)-part of H. If we put Ajp = Y A12,(X — )" to be the (1,2)-
part of A and put Bio = . A12.,(X —1)", then

12° there is a positive integer m with ¢ /|m such that |A121m|0 >
q~"|Bizlo.

Indeed, in the case (1) for A12, since 121'1211 = A71—2,1 +A11(t)H1271 and |H1211|0 <
q_1|012|0, we have |Av1271|0 = |A‘{271|0 = |%A12|0 by 5° and 11°. On the other
hand, |Bialo < max{|B,lo, [Hiz2lo} < max{|Ais|o, |p||G12lo} < ¢”|4& A12]o by
5°, 8° and 11° because of our hypothesis (i), |- A12]o > ¢7[A12]o. Hence we
can take m = 1. In the case (ii), we take a positive integer m such as 6°. Since
|G12]0 < |A12]o by the hypothesis (ii), we have |Biz|o < max{|BT,|o, |Hizlo} =
|A12|0 by 8° and 11°.

By Proposition 2.1 we may replace & by the p-adic completion £ of the

maximally unramified extension of £&. Then we may assume that ZH =1, and
Ass = ¢”1, since the solutions of both (1, 1)-part and (2, 2)-part is 1 modulo ¢

by 2° and 3°. The solution matrix of M, ®g¢, 6/}‘} has a form Z = ( 10T Z112 )

satisfying /T|X:t5(Z) = ZA and Z12|x=¢ = 0. In particular, Z;5 satisfies the
relation
0(Z12) = q" Z12 + Bia.

On applying Lemma 4.8 (2) to Z12, one sees that one of entries of Z12 must be
exactly of log-growth v by 12°. Hence the non-vanishing of A;o implies that
M is unbounded.

This completes the proof for the case 0 < v < 1.

4.4.3 'THE CASE WHERE v =1

Suppose that v = 1. Suppose that G12 # 0. Let us develop G2 = Zn Gianz”
and let m be the least integer such that |Gi2 | = |G12]o- If A2 # 0, we have
|-L A15]o > g Ay2]o by 4°. So the relation 1° induces a congruence
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d
13° %AH +qG12 = qxq_la-(Gu) (mOd q1+10gq‘G12‘0m05)

by 2° and 3°. This congruence 13° also holds when A5, = 0.

Suppose that m < —1. The least power of x which should appear in the right
hand side of the congruence 13° above is gm + ¢ — 1. Since gm + ¢ — 1 < m,
this is precluded by 4°.

Suppose that m = —1. Then

(G12) = 3 ~ (e Gr) ()X — 1)
14° o n=0 1y
=3 (G T st at(1 V] + mOe))(X — )"

Let us calculate the solution matrix of M, by using 7° as in the previous case.
Y—l
By changing a basis of M, by the invertible matrix ¥ = ( bl Yo,l ) as
2
before, our differential equation becomes

d (1 zZ\_(1 Zz 0 Y117(Gi2)Yay!
ax\o 1 /) \o 1 0 0 '

in Z, that is, diXZ = Y11T(G12)Y2;1. Since all the coefficients of all the power
series which appear on the entries of Y11T(G12)}/251 do not vanish modulo
g 8lG2lomO, by 7° and 14°, at least one of entries of Z is exactly of log-
growth 1. This contradicts to our hypothesis of boundness of M. Hence,
m # —1.

Suppose that m > 0. Then we have

Gia = *(]711'71 (SC%Alg + O'(ZL'C%A12> + 0'2(56%1412) + - )
(mod g8 G12lomOy)

by 4° and 13°. The case where A;3 = 0 is impossible since G12 # 0. If
Ao # 0, then we have a solution exactly of log-growth 1 on the generic disk by
the similar construction in the case m = —1. This contradicts our hypothesis.
Therefore, we have G2 = 0 in any case.

Now we prove A1 = 0. Suppose that A12 # 0. Then the relation 1° is

d _

aAu + G11A12 = g2 114120(022)-

This is impossible by 2°, 3° and 4°. Hence, A;5 = 0.

This completes the proof of Proposition 4.2. O

REMARK 4.9 There is another proof of Proposition 4.2: one can reduce Propo-
sition 4.2 to the case where q = p, that is, the Frobenius o is a p-Frobenius.
Then, in the proof of the case 0 < v < 1, it is enough to discuss only in the
case |%A12|0 = |A12|0.
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5 PBQ ¢-V-MODULES

5.1 DEFINITION OF PBQ ¢-V-MODULES

DEFINITION 5.1 (Definition of “PBQ” p-V-modules)

(1) A o-V-module M over & is said to be pure of bounded quotient (called
PBQ for simplicity) if M/M" is pure as a @-module.

(2) A p-V-module M over K[x]o is said to be pure of bounded quotient (called
PBQ for simplicity) if the generic fiber M, of M is PBQ as a ¢-V-module
over .

The notion “PBQ” depends only on the Frobenius slopes of the bounded quo-
tient of the generic fiber of p-V-modules. As we saw in Theorem 4.1, the
bounded quotient of the generic fiber always admits a splitting by Frobenius
slopes when it has different slopes.

EXAMPLE 5.2 (1) A bounded p-V-module M over £ is PBQ if and only if
M is pure as a p-module. In particular, any @-V-module M over &£ of
rank 1 is PBQ.

(2) Any o-V-module M over £ of rank 2 which is not bounded is PBQ [CT09,
Theorem 7.1].

(3) Let us fix a Frobenius on o with o(x) = x%. Let M be a ¢-V-module over
K[x]o with a basis (e1,ea,e3) such that the Frobenius matriz A and the
connection matrix G are defined by

1 —¢"%¢ —qu 0 Z il Z z? 1
A= 0 q1/2 0 , = n=0 n=0
0 0 q 0 0 0
0 0 0

Then M,, is not bounded and M is not PBQ. Indeed, the K [x]o-submodule
L generated by ey is a p-V-submodule of M such that the quotient (M /L),
is bounded and (M/L), is not pure. On the other hand the dual M of
M is PBQ.

PROPOSITION 5.3 Any quotient of PBQ ¢-V-modules over £ (resp. K[xz]o) is
PBQ.

PRrROOF. Let M be a PBQ ¢-V-module over £ and let M’ be a quotient of M.

The assertion follows from that the natural morphism M/M° — M’/(M')° is
surjective by [CT09, Corollary 3.5]. O
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5.2 EXISTENCE OF THE MAXIMALLY PBQ ¢-V-SUBMODULES OVER &

PROPOSITION 5.4 Suppose that the residue field k of V is perfect. Let M be
a ©-V-module over £ with highest Frobenius slope Ayax and let N’ be a o-V-
submodule of M /S, ..— (M). Then there is a unique p-V-submodule N of M
such that N is PBQ and the natural morphism N/N°® — M/S,...— (M) gives
an isomorphism between N/N® and N'. When N’ = M/S\ M), we call
the corresponding N the mazimally PBQ submodule of M.

max*(

PRrOOF. First we prove the uniqueness of N. Let N7 and Ny be a PBQ sub-
module of M such that both natural morphisms Ny /Ny — M/Sy .. — (M) <
N5 /NY give isomorphisms with N’. Let N be the image of Ny & Ny —
M (a,b) = a+b. Then N is PBQ by Proposition 5.3. Since N1/NY® No/NY —
N/NV is surjective by [CT09, Proposition 3.6], the natural morphism N/N° —
M/S,,..— (M) gives an isomorphism with N'. If N (resp. N3) is not N, then
the quotient N/Np (resp. N/Nz) has a bounded solution at the generic disk
whose Frobenius slope is different from Ay ax. But this is impossible because
N is PBQ. Hence N = Ny = No.

Now we prove the existence of N. We use the induction on the dimension of
M. Let f: M — M/MP° be a natural surjection. Since M /MY is bounded,
M/Sy,,..— (M) is a direct summand of M/M° by the maximality of slopes by
Theorem 4.1. Put L = f~*(N'). If L is PBQ, then one can put N = L. If L is
not PBQ, then L is a proper submodule of M and there is a PBQ submodule
L' of L such that L'/(L")? = L/S\,..— (L) = N’ by the induction hypothesis.

O

COROLLARY 5.5 Suppose that the residue field k of V is perfect. Let M be a
©-V-module over . Then there is a unique filtration 0 = Py(M) C Pi(M) C
<o C P.(M) = M of o-V-modules over € such that P;(M)/P;_1(M) is the
mazimally PBQ submodule of M/P,_1(M) for any i = 1,---,r. We call
{P;(M)} the PBQ filtration of M.

5.3 EXISTENCE OF THE MAXIMALLY PBQ ¢-V-SUBMODULES OVER K [x]

THEOREM 5.6 Suppose that the residue field k of V is perfect. Let M be a
©-V-module over K[z]o. Then there is a unique ¢-V-submodule N of M over
K(z]o such that the generic fiber Ny, of N is the mazimally PBQ submodule of
the generic fiber M, of M. We call N the mazimally PBQ submodule of M.

PrOOF. The proof of uniqueness of the maximally PBQ submodules is same
to the proof of Proposition 5.4.

We prove the existence of the maximally PBQ submodules by induction on the
rank of M. If M is of rank 1, then the assertion is trivial. For general M,
if M is PBQ, then there is nothing to prove. Suppose that M is not PBQ.
Then there is a direct summand L,, of M, /Mg such that L,, is pure with the
Frobenius slope which is less than the highest slope Apax of M by Theorem
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4.1. Consider the composite of natural morphisms M — M, /M,? — Ly It
is not injective by Lemma 5.7 below. Put M’ to be the kernel. Then M’ is
a ¢-V-submodule of M such that M /Sy, (M;) = M,/S,..(M,). By the
induction hypothesis there is a maximally PBQ submodule N of M’ which
becomes the maximally PBQ submodule N of M. O

LEMMA 5.7 Suppose that the residue field k of V is perfect. Let M be a ¢-
module over K[x]o such that the highest Frobenius slope of the generic fiber
M, of M is Amax. Suppose that there exists an injective K [x]o-homomorphism
f: M — Ly which is p-equivariant, i.e., oo f = f oy for a pure ¢-module L,
over £. Then the Frobenius slope of Ly is Amax.

ProoOF. In [dJ98, Corollary 8.2] A.J. de Jong proved this assertion when L, is
a generic fiber of a rank 1 pure ¢-V module L over K[z]o. (Indeed, he proved
a stronger assertion.) We give a sketch of the proof which is due to [dJ98,
Propositions 5.5, 6.4 and 8.1]. Our £ (resp. &, resp. g, resp. ET introduced
below) corresponds to I' (resp. I'¢, resp. I's, resp. I'y.) in [dJ98]. We also
remark that €' is the extended bounded Robba ring R4 in [Ke08, 2.2].

We may assume that the residue field k& of V is algebraically closed and all
slopes of M are contained in the value group of logq|K *|. We may also assume
that o(x) = 27 by Theorem 3.3. Let us define K-algebras

an € K, sup,|an| < 00, |a,| = —o0 (n — —o0),

£ = Z anz™ | {n|lan| > a}is a well-ordered set with respect to
neQ the order < for any o € R.

g = Zanzneg |an|n™ — 0 (n — —o0) for some0 < 7 < 1.
neQ

Both € and &' are discrete valuation fields such that both ring of integers have
a same residue field

an € k, {n|ay, # 0}is a well-ordered set
with respect to the order <.

E(x9) = Z anz"”

neQ

which includes an algebraic closure of k((«)) [Ke01], and that the p-adic com-
pletion of £ is £. £ is naturally an £-algebra and ¢ naturally extends to € by

o>, ana™) =3, o(an)z?. Put
gh=¢&tne.

Then €1 is stable under o and the K-derivation d/dx. We also denote by Og:

the ring of integer of Et.
By explicit calculations we have the following sublemmas.
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SUBLEMMA 5.8 For 0 < nn < 1 and for Zanz" € ET, let us consider a
neQ
condition:

(*)n :  sup,|an| max{n”, 1} <1.

If f and g in et satisfy the condition (x),, then so are f+g and fg. Moreover,
if f =Y, anx™ satisfies the condition (x), and |ag| =1, then so is f~1.

Note that, if n < p, then the condition (%), implies the condition (x),.

SUBLEMMA 5.9 (1) Let A =1+ B be a square matriz such that 1 is the unit
matriz and all entries of B contained in m"Og; for a positive integer n.
Suppose that all entries of A satisfy the condition (x), in Sublemma 5.8.
Then there is a matric Y =1+ Z with Ac(Y) =Y such that all entries
of Z are contained in m"Og, and satisfy the condition (*)ya.

(2) Let C be a matriz such that all entries are contained in m"Og; for a
nonnegative integer n and satisfy the condition (x),. Then there is a
matriz Z satisfying o(Z)—Z = C such that all entries of Z are contained
in m"Og and satisfy the condition (%)ya.

PRrOOF. (1) follows from (2) by considering a congruence equation Ao (Y) =
Y (mod m'Og; ) inductively on I.

(2) Since the residue field k of V is perfect, o is bijective. Put C =
>, Cna™ = C_- 4 Cy + C4, where they are subseries of negative powers,
a constant term, and subseries of positive powers, respectively. The series
Zo =30 22, 07H(Cp)a™ " converges and all entries of Z_ satisfies the
condition (%)y¢, and the equation o(Z_) — Z_ = C_ holds. Since k is al-
gebraically closed, there is a matrix Zy over V with |Zy| < |Cp| such that
0(Zy) — Zy = Cy. The series Zy = —> 2 0(C}) converges and satisfies
0(Zy)—Zy =Cy. Hence, Z = Z_ + Zy + Z is the desired solution. O

If NT is a ¢-V-submodule of M QK []o E over ET, then there is a ¢-V-
submodule N of M over K [z]o with N ® k[, £7 = N by [dJ98, Proposition
6.4]. Hence, the induced morphism M ® g, £ t L, is also injective. More-
over, since et ®et € — £ is injective (the similar proof of [dJ98; Proposition
8.1] works), the induced morphism M ® gy, et = L, ®¢ £ is again injective.
Let A1 < -+ < Ar(= Amax) be Frobenius slopes of M,,. One can prove that
there exists an increasing filtration 0 = M, - M, c---C M, =M QK [«]o et
of p-modules over E' such that (]\Z/J\Z,l) ®zi £is pure of slope A\._;+1. This
existence of filtration of opposite direction corresponds to Proposition 5.5 in
[dJ98]. Indeed, since the residue field k((z?)) includes an algebraic closure

of k((x)), there is a basis of M ®@kq, ET such that the Frobenius matrix of
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M @k [, E' has a form

g1
+ (a square matrix with entries in m”Og)
g1
by Dieudonné-Manin classification of p-modules and the density of Ein €.
Here ¢* is a element of K with logq|q)‘| = —\, 1 is the unit matrix with a certain
size (the first matrix is a diagonal matrix), and n is sufficiently large. One can
find a basis of M ® gy, ET such that the Frobenius matrix of M QK []o Efis

a lower triangle matrix
g1 0

* g1
by Sublemmas 5.8 and 5.9. Hence, one has a filtration of opposite direction.

Since M is pure of slope A\, = Amax and the inclusion M; C L, ®¢ € is ¢-
equivariant, the slope of L, must be Apax. O

COROLLARY 5.10 Suppose that the residue field k of V is perfect. Let M be a -
V-module over K[x]o. Then there is a unique filtration 0 = Po(M) C Py (M) C
<« C P.(M) = M as o-V-modules over K[xz]o such that Py(M)/P;—1(M) is
the mazimally PBQ submodule of M/P;_1(M) for any i =1,---,r. We call
{P;(M)} the PBQ filtration of M.

EXAMPLE 5.11 Let M be a ¢-V-module over K[x]o which is introduced in
Ezample 5.2 (3). If Pi(M) is a p-V-submodule of M over K[z]o generated
by e1 and e3, the sequence 0 = Po(M) C Pi1(M) C Po(M) = M is the PBQ
filtration of M.

6 LOG-GROWTH AND FROBENIUS SLOPE FOR HPBQ ¢-V-MODULES OVER
Klz]o

6.1 LoOG-GROWTH FOR HPBQ ¢-V-MODULES

DEFINITION 6.1 (1) A ¢-V-module M over K[z]o is horizontal of bounded
quotient (HBQ for simplicity) if there is a quotient N of M as a ©-V-
module over K[x]o such that the canonical surjection induces an isomor-
phism MU/M,? = N, at the generic fiber.

(2) A ¢-V-module M over K[xz]o is horizontally pure of bounded quotient
(HPBQ for simplicity) if M is PBQ and HBQ.

EXAMPLE 6.2 (1) A bounded ¢-V-module M over K[z]o is HBQ. A bounded
©-V-module M over K[xz]o is HPBQ if and only if M, is pure as a ¢-
module.
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(2) Let M be a p-V-module M over K[x]o of rank 2 which arises from the
first crystalline cohomology of a projective smooth family E of elliptic
curves over Specklz]. Then M is HBQ if and only if either (i) E is
a non-isotrivial family over Speck[z] and the special fiber Eq of E is
ordinary or (i) E is an isotrivial family over Speck[x]. In the case (i)
M is HPBQ, but in the case (ii) M is HPBQ if and only if E is an
isotrivial family of supersingular elliptic curves.

(3) Let M be a p-V-module over K[xz]o which is introduced in Example 5.2
(3). Then M is HBQ but is not HPBQ. The dual M" of M is HPBQ.

PROPOSITION 6.3 Let M be a ¢-V-module over K[x]o. Then M is HBQ if
and only if
dimg V(M) /V (M) = dimg M, /M.

Moreover, when M is HBQ, the natural pairing M ®x Solo(M) — K[z]o
induces an isomorphism

M, /M) =V (M)/V(M)’ @k £
as ¢-V-modules.

PROOF. Suppose that M is HBQ. Let N be the quotient as in Defi-
nition 6.1 (1). Since N, is bounded, we have V(N)° = 0 by Christol’s
transfer theorem (see [CT09, Proposition 4.3]) and dimg V(M)/V(M)° >
dimg V(N)/V(N)? = rankgp,), N = dimg M, /M. On the other hand, one
knows an inequality dimg V(M)/V(M)° < dimg M, /M) by [CT09, Proposi-
tion 4.10]. Hence, we have an equality dimg V(M)/V(M)° = dimg M, /M,).

Now we prove the inverse. The natural pairing M ®@x Solo(M) — K[z]o in-
duces the surjection M — V(M)/V(M)° @k K[z]o. If dimg V(M)/V(M)°? =
dimg M, /M), we have an isomorphism M, /M, = V(M)/V(M)° @k £ since
V(M)/V(M)° @k & is bounded. O

Since any quotient of bounded ¢-V-modules over £ is again bounded, the
proposition below follows from the chase of commutative diagrams.

PROPOSITION 6.4 Any quotient of HBQ ¢-V-modules over K[x]o is HBQ. In
particular, any quotient of HPB(Q modules is HPB(Q).

PrROOF. We may assume that the residue field of V is algebraically closed and
g mex € K. Since M is HBQ, there is a surjection M — V(M)/V(M)° @
K|[z]o by Propoition 6.3 whose kernel is denoted by L. Then MS =L, If
f: M — N be the given surjection, N/f(L) is a quotient of V/(M)/V(M)° @k
K[z]o and hence a direct sum of copies of (K[z]o, ¢, d) for some ). Since f
gives a surjection from MS to NS by [CT09, Proposition 3.6], we have

dimg V(N)/V(N)? > rankgq,g, N/ f(L) = N, /N};.
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On the other hand, dimgx V(N)/V(N)? < dimg N, /N, by [CT09, Proposition
4.10]. Hence dimg V(N)/V(N)? = dimg N, /N)). The rest follows from Propo-
sition 5.3. O

Note that the notion PBQ is determined only by the generic fiber. On the
other hand, for "HPBQ”, the bounded quotient is horizontal.

THEOREM 6.5 Let M be a ¢-V-module M over K|x]o which is HPBQ. Then
the conjecture LGF ga, (see 2.5) holds for M.

PROOF. We have only to prove the conjecture LGF g, (2) for M.
Then the property of Frobenius slopes implies the conjecture the conjecture
LGF kg, (1) for M. We may assume that the residue field of V' is alge-
braically closed and all Frobenius slopes of V(M) are contained in the valued
group log,[K | by Proposition 2.1. We may also assume that our Frobenius
o is defined by o(x) = 29 by Theorem 3.3. Let us denote by Apax the high-
est Frobenius slope of M, (= the highest Frobenius slope of V(M)). Let
0=My C My -+ C M, =M be a filtration of M as ¢-V-modules over
K[x]o such that M;/M;_1 (i =1,--- ,r) is irreducible (i.e., it has no nontrivial
¢-V-submodule over K[z]o). We will prove the induction on r. If » = 1, then
M = (K[z]o, ¢*m*<0,d) and the assertion is trivial.

Now suppose r > 1. We may also assume dimg V(M)/V(M)? =
1, hence M,/M,_; = (K[z]o,q*0,d). Indeed, suppose that s =
dimg V(M)/V (M) > 1. By our assumption, there is a (-V-submodule L’
over K[z]o such that the highest Frobenius slope of L’ is Apax with multi-
plicity 1 (note that L’ is M,_411). Take the maximally PBQ submodule L
of IL’. Then L is HPBQ such that the highest Frobenius slope is Apax with
multiplicity 1. Since both highest Frobenius slopes of L and M/L are Apax, the
assertion follows from the induction hypothesis by Propositions 2.6 and 6.4.
Since all Frobenius slopes of (Z\L_l),7 are less than Apax, one can take a basis
e1, -+ ,es of M such that the Frobenius matrix A = ( /(1)1 q)ﬁax ) (A; is
the Frobenius matrix of M, _;) satisfies (i) all entries of A; are contained in
K[x]onxz?K 2] and (ii) all entries of B are contained in z K [z]o\x?K [22]U{0}
by Proposition 4.7. Moreover B # 0 by Lemma 6.6 below since M is PBQ. Let
G be the matrix of connection of M. Then the identification

d
%ny}

is given by f +— (f(e1), -+, f(es)). The inclusion relation in Theorem 2.3 for
the solution space is

Sol(M) = {y € Ax(0,17)

SOL\(M) D) S)\_,\max (SOl(M))

Then it is sufficient to prove the inclusion is equal for all A. The @-module is a
direct sum of 1-dimensional p-spaces, on which ¢ acts by ¢°c for some rational
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number § such that Aya.x — 0 is a Frobenius slope of M, by our assumption of
K. Let f € Soly(M) with ¢(f) = ¢°f. Then the restriction of f on M,_; gives
a (i, L)-equivariant morphism

Mrfl — (AK(Oa 17)5 q760-7 d)

The kernel L of f is a ¢-V-module over K[z]o and f is a solution of M/L of
log-growth A.

Suppose that L # 0. Then the length of M/L is smaller than M and M/L
is HPBQ by Proposition 6.4. Counsidering f as a solution of M/L, we have
6 < XA — Amax by the hypothesis of induction.

Suppose that L = 0. The Frobenius relation ¢(f) = ¢° f is equivalent to

a0 (f(er), - fles)) = (flex), -, fles))A.

By the assumption of A; we have f(e;) € Ax(0,17) Nx?K [z9]. Let us focus
on the s-th entry, then it is

¢ 0(f(es)) = ¢ fles) + (fler), -+, fles—1))B.

Since the highest Frobenius slope of M,_; is less than Ay .x, the log-growth
of the restriction of f on M,_; is of log-growth less than Ay.x + J, and
so is (f(e1), -+, f(es—1))B. Since f is injective, (f(e1),- -, f(es—1))B €
Ag(0,17) \ 22K [z7] is not 0. Hence, f(es) is exactly of log-growth Apax + ¢
by Lemma 4.8 (1). This provides an inequality Apmax + 9 < A, and we have
0 <A — Amax-
Therefore, f € Sx_a,.,(Sol(M)). This completes the proof of Theorem 6.5.
O

max

LEMMA 6.6 Let 0 - L — M — N — 0 be an exact sequence of ©-V-modules
over K[z]o. If the exact sequence is split as p-modules, then it is split as
w-V-modules.

A B Gi. H

0 A, ) and G = 0 Gy
Frobenius and connection, respectively. We should prove that B = 0 implies
H = 0. Tt is sufficient to prove the assertion above as Ak (0,17 )-modules with
Frobenius and connection. Solving the differential modules L and N, we may
assume that A; and As are constant regular matrices and G; = G3 = 0. Then
the horizontality of Frobenius structure means he relation

Proor. Let A = ( be the matrices of

HAy; = qxqflAla(H).

Then we have H = 0 by comparing the z-adic order of both sides. O
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6.2 EQUISLOPE ¢-V-MODULES OVER K [z]o

DEFINITION 6.7 A ¢-V-module M over K|x]o is equislope if there is an in-
creasing filtration {Sx(M)}rer of ¢-V-module over K[x]o such that Sx\(M)®E
gives the Frobenius slope filtration of the generic fiber M, of M. We also call
{SA(M)}rer the Frobenius slope filtration of M.

By [KaT79, 2.6.2] (see [CT09, Theorem 6.21]) we have

PROPOSITION 6.8 A ¢-V-module M over K[x]o is equislope if and only if both
the special polygon and generic polygon of Frobenius slopes of M coincides with
each other.

COROLLARY 6.9 Any subquotients, direct sums, extensions, tensor products,
duals of equislope ©-V-modules over K[z]o are equislope.

PROPOSITION 6.10 Let M be an equislope p-V-module over K [x]o.
(1) M is HBQ. In particular, if M is PBQ, then M is HPBQ.
(2) If V(M)/V(M)° is pure as a p-module, then M is HPBQ.

PRrROOF. (1) We may assume that the residue field of V is algebraically closed
and all slopes of M, is contained in the value group log,|K*| of K* by Propo-
sition 2.1. Let us take a ¢-V-submodule L such that its generic fiber L, is M,?.
Such an L exists by Lemma 6.11 below. Since (M/L), = M,/L,, is bounded,
M is HBQ by definition.

(2) The assertion follows from (1) and Proposition 6.3. ]

LEMMA 6.11 Let M be an equislope p-V-module over K[z]o. Suppose that the
residue field of V is algebraically closed and all slopes of M, are contained in
the valued group 1ogq|KX|. The map taking generic fibers gives a bijection from
the set of p-V-submodules of M to the set of p-V-submodules of M,.

PROOF. Since the functor from the category p-V-module over K[z]o to the
category ¢-V-module over £ is fully faithful, it is sufficient to prove the surjec-
tivity [dJ98, Theorem 1.1].

We may assume that o(z) = 2% by Theorem 3.3. We use the induction on
the number of Frobenius slopes of M in order to prove the existence of a
submodule N over K[z]o for a given submodule N,, over £. Suppose that M
is pure of slope A\. There are a basis e1,--- , e, of M such that the Frobenius
matrix is ¢*1, since M is bounded. Let N, be a p-V-submodule of M,, over
& which is generated by (e1,---,e,)P for P € Mat,4(€) with s = dim¢ N,,.
Since N, is a ¢-submodule, there is a B € GL4(€) such that ¢*o(P) = PB.
Since rank(P) = s, there is a regular minor @ of P of degree s such that
o(Q) = QB. If one puts R = PQ™! € Mat,4(€), then o(R) = R. Hence,
R € Mat,s(K). Since (e1,---,e,)R is a basis of N, such that (e1,---,e,)R
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are included in M, the submodule N is given by the K [z]o-submodule of M
generated by (e1,--- ,e,)R.

Let A1 be the first slopes of M,. By the induction hypothesis there are a -
V-submodule N; of Sy, (M) such that the generic fiber (N1), of Ny is N, N
Sx, (M) and a ¢-V-submodule Ny of M/Sy, (M) such that the generic fiber
of Ny is N, /(Sx, (M) N N,) = N,,/(N1),. Let N3 be the inverse image of Ny
by the surjection M/N1 — M/Sx,(M). Since the intersection of N, /(N1)y

and Sy, (M;)/(N1)y is 0 in M, /(N1)n, (N3), is a direct sum of N,/(N1),

and S\(M,)/(N1),. By applying the fully faithfulness of the functor from the
category of ¢-V-modules over K[z]o to the category of ¢-V-modules over &€
[dJ98, Theorem 1.1], there is a direct summand Ny of N3 as ¢-V-module over
K[z]o such that the generic fiber of Ny is N, /(N1),. Then the inverse image
N of Ny by the surjection M — M/Nj is our desired one. O

THEOREM 6.12 The conjecture LGF g7, (see 2.5) holds for any equislope
and PBQ ©-V-module over K[z]o.

PRrROOF. The assertion follows from Theorem 6.5 and Proposition 6.10 (1). O

7 LOG-GROWTH FILTRATION AND FROBENIUS FILTRATION AT THE GENERIC
POINT

7.1 THE LOG-GROWTH OF PBQ ¢-V-MODULES OVER &

THEOREM 7.1 The conjecture LGF¢ (see 2.4) holds for any PBQ ¢-V-module
over &.

PROOF. Let M be a PBQ ¢-V-module over £ such that Apax is the highest
Frobenius slope of M, and let us consider a ¢p-V-module M, = M ®¢ E[X —t]o
over the &-algebra E[X — t]o of bounded functions on the generic disk. Then
M, is equislope since {(Sx(M)),} gives a Frobenius slope filtration of M.
Moreover, since M is PBQ, Solg(M, Ag, (¢t,17)) is a pure ¢-module. Hence
V(M,)/V(M,)? is pure, and M, is HPBQ by Proposition 6.10 (2). Applying
Theorem 6.5 to M., we have

dimg M/M?» = dimg, Soly(M, Ag, (t,17)) = dimg, V (M,)/V (M,)*
= dimg, V(M) — dimg, (Sx-x,.. (V(MY)))*

dimg Mv — dimg (S)\_Amax (Mv))

dimg Mv/(S)\_,\max (]\4\/))L

for any A\. Hence, M* = (Sy_,,..(M"))* by Theorem 2.3. Therefore, the
conjecture LGF¢ holds for M. O
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7.2 RATIONALITY OF BREAKS OF LOG-GROWTH FILTRATIONS

THEOREM 7.2 Let M be a ©-V-module over £ and let X\ be a break of log-
growth filtration of M, i.e., M*~ D M**. Then X is rational and M> = M .
In other words, the conjecture LGF¢ (1) (see 2.4) holds for any ¢-V-modules
over E.

ProOOF. We may assume that the residue field k of V is perfect by Proposition
2.1. Suppose that Apax be the maximal Frobenius slope of M. If M is PBQ),
then M» = (Sx_»,. . (MV)*+ = SOumac—A)— (M) for any A by Theorem 7.1.
Then we have

max

MM = Upsa S — (M) = Upsa Sy (M) = Sia,—n— (M) = M.

max

If A is a break of log-growth filtration, then

Srmax—A (M) = S(x a4 (M) = MA™ 2 MY =S5, 2y (M)

and A is also a Frobenius slope filtration. Hence A is rational.

For a general M, we use the induction on the length of the PBQ filtration of M.
Let L be the maximally PBQ submodule of M and suppose N = M/L. Then
we have the assertion by Proposition 2.6 (1), the PBQ case and the induction
hypothesis on L and N. a

PROPOSITION 7.3 Suppose that the residue field of V is perfect. Let M be a -
V-module over K[z]o and let X be a break of log-growth filtration of V (M), i.e.,
V(M)A 2 V(M)**, and let {P;(M)} be the PBQ filtration of M. Suppose that
the conjecture LGF k[q, (2) (see 2.5) holds for all P;(M)/P;_1(M). Then X
is rational and V(M)* = V(M)**. In particular, the conjecture LGF k.1, (2)
implies the conjecture LGF g4, (1) for any o-V-modules over K[z]o.

PROOF. The proof is similar to that of Theorem 7.2 by replacing Proposition
2.6 (1) by Proposition 2.6 (2). O

8 TOWARD DWORK’S CONJECTURE LGFp,,

8.1 THE COMPARISON AT THE SPECIAL POINT AND DWORK’S CONJECTURE
LGFpy

THEOREM 8.1 The conjecture LGF g[a, (2) (see 2.5) implies the conjecture
LGFpy, (see 2.7), that is, the special log-growth polygon lies above the generic
log-growth polygon (and they have the same endpoints).

The theorem above follows from the proposition below by Proposition 2.1.
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PROPOSITION 8.2 Suppose that the residue field k of V is perfect. Let M be a
©-V-module over K[z]o and let {P;(M)} be the PBQ filtration of M. Suppose
that the conjecture LGF ka1, (2) (see 2.5) holds for all Pi(M)/P;_1(M). Then
the special log-growth polygon of M lies above the generic log-growth polygon of
M (and they have the same endpoints).

ProoF. For the PBQ ¢-V-modules arising from the PBQ filtration of M,
the log-growth polygons at the generic (resp. special) fiber coincides with the
Newton polygon of Frobenius slopes of the dual at the generic (resp. special)
fiber under the suitable shifts of Frobenius actions by Theorem 7.1 (resp. our
hypothesis). The assertion follows from Proposition 2.6, Lemma 8.3 below
and the fact that the special Newton polygon of Frobenius slopes is above the
generic Newton polygon of Frobenius slopes and they have the same endpoints.

O

LEMMA 8.3 Let 0 = L — M — N — 0 be an exact sequence of ©-V-modules
over K[z]o such that the induced sequences

0 — Ly/Ly — M, /M) — Ny/N;) - 0
0 — V(L)/V(L)» — V(M)/V(M)* — V(N)V(N> — 0
on both the generic fiber and the special fiber are exact for any .

(1) If the special log-growth polygon lies above the generic log-growth polygon
(the endpoints might be different) for both L and N, then the same holds
for M.

(2) If the special log-growth polygon and the generic log-growth polygon have
the same endpoints for both L and N, then the same holds for M.

(3) Suppose that the special log-growth polygon lies above the generic log-
growth polygon for both L and N. Then both the special and the generic
log-growth polygons coincide with each other for M if and only if the same
hold for L and N.

ProOOF. Let r be the rank of M. Let \; < Ay < -+

< A, be breaks of
log-growth filtration of M,, with multiplicities, and put bo(M;,) =

0 and
bj(Mp) =M+ -+ A

for 1 < 5 < r. Then the generic log-growth polygon of M is a polygon which
connects points (0, bo(My)), (1,b1(My)),-- -, (r,b.(M,)) by lines. We also de-
fine b;(V(M)) for the special log-growth of M. Then the exactness for any A
implies the equality

<1< < k<
b;(M,) = min {bi(Ln)+bk(Nn) 0<i<rankL, 0 <k <rankN, }

i+k=j
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for all 0 < 5 < r, and the same holds for the special log-growth. The special
log-growth polygon lies above the generic log-growth polygon for M if and only
if b;(M,;) < b;(V(M)) for all j, the special log-growth polygon and the generic
log-growth polygon have the same endpoints for M if and only if b,.(M,) =
b-(V(M)), and both the special and the generic log-growth polygons coincide
with each other for M if and only if b;(M,) = b;(V(M)) for all j. Hence we
have the assertions. O

REMARK 8.4 If L is supposed to be HPBQ in the short exact sequence of the
previous lemma, then the induced sequences are automatically exact for all \:
in fact one has Theorems 7.1 and 6.5 and can apply Proposition 2.6.

REMARK 8.5 If one assumes that the conjecture LGF ga, (2) (see 2.5) for
any PBQ ©-V-module over K[z]o of rank < r, then the proofs of Proposition
7.3 and Theorem 8.1 works for any p-V-module over K[z]o of rank < r.

8.2 DWORK’S CONJECTURE IN THE HBQ CASES

LEMMA 8.6 Let M be a HBQ -V-module over K[x]o and let N be a ©-V-
submodule of M over K[z]o which is PBQ. Then N is HPBQ. In particular,
suppose that the residue field of V is perfect and let {P;(M)} be the PBQ
filtration of M, then Py(M)/P;—1(M) is HPBQ for all i.

PROOF. We have dimg V(M)/V(M)? = dimg M, /M, and
dimg V(M/N)/V(M/N)® = dimg (M/N),/(M/N)) by Proposition 6.3
since the quotient M/N is HBQ by Proposition 6.4. Comparing the in-
duced exact sequence 0 — N,/N) — M,/M,) — (M/N),/(M/N)) — 0
at the generic point by Theorem 7.1 and Proposition 2.6 (1) to the corre-
sponding right exact sequence at the special point, we have an inequality
dimg V(N)/V(N)° > dimg N,)/N)). On the contrary, we know the inequality
dimg V(N)/V(N)? < dimg Nn/NS by [CT09, Proposition 4.10]. Hence,
dimg V(N)/V(N)® = dimg N, /N9 and N is HPBQ.

The rest follows from the first part and Proposition 6.4. O

THEOREM 8.7 Let M be a HBQ ¢-V-module over K[xz]o. Then the conjecture
LGF k[q], (1) (see 2.5) and the conjecture LGFpy, (see 2.7) hold for M.

PrOOF. The assertions follows from the similar arguments of Theorems 7.2
and 8.1, respectively, by using Theorem 6.5 and Lemma 8.6. O

8.3 WHEN DO THE GENERIC AND SPECIAL LOG-GROWTH POLYGONS COIN-
CIDE?

THEOREM 8.8 Let M be a o-V-module over K[x]o. The special log-growth
polygon and the generic log-growth polygon coincide with each other if and only
if M is equislope.
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PrOOF. We may assume that the residue field of V is algebraically closed by
Proposition 2.1. Let {P;(M)} be the PBQ filtration of M (Theorem 5.6). Each
condition (i) the coincidence of special and generic log-growth polygons or (ii)
equislope implies that P;(M)/P,_1(M) is HPBQ and M/P;(M) is HBQ for all
i by Propositions 6.3, 6.4, and Lemma 8.6 for (i) and by Corollary 6.9 and
Proposition 6.10 (1) for (ii). Then we can apply Lemma 8.3 (3) inductively on
t by Remark 8.4 and Theorem 8.7. Hence it is sufficient to prove the assertion
when M is HPBQ by Corollary 6.9. Then the coincidence of the log-growth
filtration and the Frobenius slope filtration both at the special point (Theorem
8.7) and at the generic point (Theorem 7.1) implies our desired equivalence.
a

EXAMPLE 8.9 (1) Let M be a ¢-V-module over K[z]o such that M, is
bounded. Then there is a @-module L over K such that M =2 L@ K[z]o
by Christol’s transfer theorem (see [CTO09, Proposition 4.3]). Hence, M
s equislope.

(2) Let M be a o-V-module over K[z]o of rank 2 such that M, is not
bounded. Then we have identities M = (Sx_,.... (M) and V(M)* =
(Srapax V(ML for any X [CT09, Theorem 7.1], where Amax is the
highest Frobenius slope of M,. Hence the special log-growth polygon and
the generic log-growth polygon coincide with each other if and only if M
s equislope.
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