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ABSTRACT. We consider a W*-dynamical system (91, 7), which
models finitely many particles coupled to an infinitely extended heat
bath. The energy of the particles can be described by an unbounded
operator, which has infinitely many energy levels. We show existence
of the dynamics 7 and existence of a (3,7) -KMS state under very
explicit conditions on the strength of the interaction and on the inverse
temperature f.
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1 INTRODUCTION

In this paper, we study a W*-dynamical system (g, 7) which describes a
system of finitely many particles interacting with an infinitely extended bosonic
reservoir or heat bath at inverse temperature 8. Here, Mz denotes the W*-
algebra of observables and 7 is an automorphism-group on g, which is defined
by

(X)) = eFe X eTe X € My, t € R. (1)

In this context, ¢ is the time parameter. Lg is the Liouvillean of the dynamical
system at inverse temperature 3, @ describes the interaction between particles
and heat bath. On the one hand the choice of Lg is motivated by heuristic
arguments, which allow to derive the Liouvillean L from the Hamiltonian H of
the joint system of particles and bosons at temperature zero. On the other hand
we ensure that £g anti-commutes with a certain anti-linear conjugation 7, that
will be introduced later on. The Hamiltonian, which represents the interaction
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178 M.KOENENBERG

with a bosonic gas at temperature zero, can be the Standard Hamiltonian of the
non-relativistic QED, (see or instance [2]), or the Pauli-Fierz operator, which is
defined in [7, 2], or the Hamiltonian of Nelson’s Model. We give the definition
of these Hamiltonians in the sequel of Definition 11.

Our first result is the following:

THEOREM 1.1. Lg, defined in (16), has a unique self-adjoint realization and
7(X) € Mg for allt € R and all X € Mp.

The proof follows from Theorem 4.2 and Lemma 5.2. The main difficulty in
the proof is, that L is not semi-bounded, and that one has to define a suitable
auxiliary operator in order to apply Nelson’s commutator theorem.

Partly, we assume that the isolated system of finitely many particles is con-
fined in space. This is reflected in Hypothesis 1, where we assume that the
particle Hamiltonian H,; possesses a Gibbs state. In the case where H; is a
Schrédinger-operator, we give in Remark 2.1 a sufficient condition on the ex-
ternal potential V' to ensure the existence of a Gibbs state for H;. Our second
theorem is

THEOREM 1.2. Assume Hypothesis 1 and that Qg € dom(e~(B/2)(£o+Q)) " Then
there exists a (B, 7)-KMS state w? on Mg.

This theorem ensures the existence of an equilibrium state on g for the
dynamical system (Mg, 7). Its proof is part of Theorem 5.3 below. Here, Lo
denotes the Liouvillean for the joint system of particles and bosons, where the
interaction part is omitted. Qg is the vector representative of the (8, 7)-KMS

state for the system without interaction. In a third theorem we study the
condition ©f € dom(e~(#/D(£o+Q)).

THEOREM 1.3. Assume Hypothesis 1 is fulfilled. Then there are two cases,
1If0 < v < 1/2 and n, (14 B) < 1, then Q5 € dom(eP/2(Lo+Q)),
2. Ify=1/2 and (1 + B)(n, +1n,) < 1, then QF € dom(e=8/2(LotQ)),

Here, v € [0,1/2) is a parameter of the model, see (32) and 1,:17, are parame-
ters, which describe the strength of the interaction, see (32). In a last theorem
we consider the case where H; = —A,+ ©2¢? and the interaction Hamiltonian
is A\q ®(f) at temperature zero for A # 0. Then,

THEOREM 1.4. QF is in dom(e=P/2(Lo+ Q)Y for all B € (0, 00), whenever
207 A [IIKIY2 fllae,, < 1.

Furthermore, we show that our strategy can not be improved to obtain a result,
which ensures existence for all values of A, see (60).

In the last decade there appeared a large number of mathematical contribu-
tions to the theory of open quantum system. Here we only want to mention
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AN INFINITE LEVEL ATOM 179

some of them [3, 6, 8, 9, 10, 13, 14, 15], which consider a related model, in
which the particle Hamilton H,; is represented as a finite symmetric matrix
and the interaction part of the Hamiltonian is linear in annihilation and cre-
ation operators. In this case one can prove existence of a - KMS without any
restriction to the strength of the coupling. (In this case we can apply Theorem
1.3 withy =0 and n, = = 0). We can show existence of KMS-states for an infi-
nite level atom coupled to a heat bath. Furthermore, in [6] there is a general
theorem, which ensures existence of a (3, 7)-KMS state under the assumption,
that QF € dom(e~(¥/2)Q), which implies Q) € dom(e~(8/2(£o+Q)), In Remark
7.3 we verify that this condition implies the existence of a (8, 7)-KMS state in
the case of a harmonic oscillator with dipole interaction Aq - ®(f), whenever
(1+ B+ k| V2) £ < 1.

2 MATHEMATICAL PRELIMINARIES

2.1 FoOCK SPACE, FIELD- OPERATORS AND SECOND QUANTIZATION

We start our mathematical introduction with the description of the joint system
of particles and bosons at temperature zero. The Hilbert space describing
bosons at temperature zero is the bosonic Fock space Fp, where

Fy 1= Fy[Hpn) = @@@th, HE = ) Hpn-

sym

H,ph is either a closed subspace of L?(R?) or L?(IR? x {4}), being invariant un-
der complex conjugation. If phonons are considered we choose H,;, = L?(R3),
if photons are considered we choose H,, = L*(R? x {£}). In the latter case
g or " labels the polarization of the photon. However, we will write
(flg)m,, = [f(k)g(k)dk for the scalar product in both cases. This is

an abbrev1at10n for > p 4 f f(k,p) g(k,p) dk in the case of photons.

H;()Z) is the n-fold symmetric tensor product of H,n, that is, it contains all
square integrable functions f, being invariant under permutations 7 of the
variables, i.e., fu(ki,...,kn) = falkra),-..,kzmn)). For phonons we have
k;j € R?® and k; € R® x {£} for photons. The wave functions in Hj), are states
of n bosons.

The vector  := (1, 0, ...) € Fy is called the vacuum. Furthermore we denote
the subspace JF; of finite sequences with fbﬁ". On fbfi" the creation and
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180 M.KOENENBERG

annihilation operators, a*(h) and a(h), are defined for h € H,, by

(@ () £kt ) &)
n+1
= (n+1)""? Z (ki) fr(kr, ..o kict, ki, oo k),
i—1

(a’(h‘) fn+1)(k1a cees kn) (3)
= (n+1)1/2/an+1(k1,...,kzn+1)dkzn+1,

and a*(h) Q2 = h, a(h)Q = 0. Since a*(h) C (a(h))* and a(h) C (a*(h))*,
the operators a*(h) and a(h) are closable. Moreover, the canonical commuta-
tion relations (CCR) hold true, i.e.,

la(h), a(B)] = [a*(h), a*(B)] = 0, [a(h), a*(R)] = (h|h)n,,.
Furthermore we define field operator by
®(h) := 272 (a(h) + a*(h)),  h € Hpn.

It is a straightforward calculation to check that the vectors in F,/™ are analytic
for ®(h). Thus, ®(h) is essentially self-adjoint on Fp'™. In the sequel, we will
identify a*(h), a(h) and ®(h) with their closures. The Weyl operators W (h)
are given by W(h) = exp(i ®(h)). They fulfill the CCR-relation for the Weyl

operators, i.e.,
W(h)W(g) = exp(i/2Im (R ]g),,) W(g + h),

which follows from explicit calculations on F,/™. The Weyl algebra W (f) over
a subspace § of Hyy, is defined by

W (§) := clLH{W(g) € B(F3) : g € f}. (4)

Here, cl denotes the closure with respect to the norm of B(F;), and "LH"
denotes the linear hull.

Let o : R* — [0, 00) be alocally bounded Borel function and dom(a) := {f €
Hpn = af € Hpn}. Note, that (af)(k) is given by «(k) f(k,p) for photons.
If dom(e) is dense subspace of H,n, o defines a self-adjoint multiplication
operator on Hp;. In this case, the second quantization dI'(«) of « is defined
by

(dF(O[) fn)(klv R kn) = (a(kl) + a(kQ) +ot O[(kn)) fn(klv AR kn)
and dI'(«) Q = 0 on its maximal domain.
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AN INFINITE LEVEL ATOM 181

2.2 HILBERT SPACE AND HAMILTONIAN FOR THE PARTICLES

Let H.; be a closed, separable subspace of L?(X, du), that is invariant under
complex conjugation. The Hamiltonian H,; for the particle is a self-adjoint op-
erator on H; being bounded from below. We set Hey + := He —inf o(Hey) + 1.
Partly, we need the assumption

HypOTHESIS 1. Let 8 > 0. There exists a small positive constant € > 0, and
Try,, {e” P9 Ha) < o0,
The condition implies the existence of a Gibbs state

Wl (A) = Z71 Try, {e PHaAY, AeB(Ha),

el
for Z = Try,, {e PH}.

REMARK 2.1. Let He = L?(R™,d" x) and Heyy = —A, + Vi + Va, where Vi is
a —A,-bounded potential with relative bound a < 1 and Va is in L} (R", d"z).

loc

Thus Hey is essentially self-adjoint on C2°(R™). Moreover, if additionally
/e_('ﬁ_e) V2(@) gn g < o0, (5)

then one can show, using the Golden-Thompson-inequality, that Hypothesis 1
1s satisfied.

2.3 HILBERT SPACE AND HAMILTONIAN FOR THE INTERACTING SYSTEM

The Hilbert space for the joint system is H := H¢; ® Fp. The vectors in ‘H are

sequences f = (fn)nen, of wave functions, f, € He ® Hf;,?, obeying

k, — fn(z, k,) € ’H}()Z) for p- almost every x
x = fuo(z, k,) € Hea for Lebesgue - almost every k,,,
where k,, = (k1,...,ky). The complex conjugate vector is f := (f,, JneN,-
Let Gj = {Gi}keRSv Hj = {H]i}kE]RL" and F = {Fk}kEIRS be fam-
ilies of closed operators on H¢ for 5 = 1,...,7. We assume, that
dom(F}), dom(Fy) D dom(Hell{i) and that

ko Gl (H)), FeHL'P, (FO)THLY € B(Ha)

are weakly (Lebesgue-)measurable. For ¢ € dom(H, 1/2 ) we assume that

el,+

ke (G o)(x), (H]¢)(@), (Frd)(x) € Hpn, (6)
k= (G o)), (H))* ¢)(x), (F)* ¢)(x) € Hpn, for z € X, (7)
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—

Moreover we assume for G = (GY,..., G"), H := (H',..., H") and F, that
[Gllw < o0, [[H[w < 00, [[Fllw,1/2 < o0,

where
G517 = /(a(k) + ak)™) (G Wa .y + G r.) dk

= —1/2 —1/2
IGI% = UGS NFW e = WFHGIL + 1 F7HL L.

We define for f = (fn)5%, € dom(Hell/j_) ® ]'—gm the (generalized) creation
operator

(a*(F) fn)(x’ 1{31,..., kn-l-l) (8)
n+1
= (TL+ 1)71/2 Z(Fkl fn)(l', kl,. cey kifl, kiJrl,. cey knJrl)
i=1

and a(F) fo(x) = 0. The (generalized) annihilation operator is
(@(F) fnra)(@; koo ko) 9)
= (n+41)"/2 /( v P ) (@ R Koy Kgr) dR

Moreover, the corresponding (generalized) field operator is ®(F) :=
2712 (a(F) + a*(F)). ®(F) is symmetric on dom(H%) @ F/™. The
bounds follow directly from Equations (8) and (9).

1/2 1/2
lelPIZ L e < [l I HE o - 1T ) 1§10)
* 1/2 — —1/2
@ EOHL 1B < [ 10 1B HZ W di - D) 17,
1/2
[ NBHZ e k- 113

For (Gy)?, (Hi)? € B(He1), the factor Hell can be omitted. The Hamiltoni-

ans for the non-interacting, resp. interacting model are
DEFINITION 2.2. On dom(H;) ® dom(dl'(a)) N ]_-gm we define
Hy:= H,;®1+ 1dl'(a), H = Hy + W, (11)

where W =  ®G)®H) + hc.+®(F) and ®G)®H) =

Z;Zl ®(G7)®(H?). The abbreviation "h.c.” means the formal adjoint operator

of ®(C) @(H).
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AN INFINITE LEVEL ATOM 183

We give examples for possible configurations:
Let v € R be a small coupling parameter.

» The Nelson Model:

He C L2(R3N), Hy = —A + V, Hpp = L*(R?) and a(k) = |k|. The form
factor is Fr = v S0_ e hev |k|=1/21]|k| < K], 2, € R® and HI, GI = 0.
» The Standard Model of Nonrelativistic QED:

He C LER3N), Hy = —A +V, Hpp = L*(R3 x {£}) and a(k) = |k|. The
form factors are

N
Fic = 49%207 Y2 3 (i, - e(k,p))e 7 ko 20k)) 7V 1] [k| < K]+ huc.,

v=1

Gy¥ = Hy" = 297 P ek, p) e R (2fk) TV AL K| < K]

fori =1,2,3, v=1,...,N, 2, e R3>and k = (k,p) € R3 x {£}. e;(k, +) €
R?3 are polarization vectors.

» The Pauli-Fierz-Model:

He C L2(R3N), Hy == —A + V, Hpp, = L2(R3) or Hpp = L2(R3 x {£}),
and a(k) = |k|. The form factor is Fj = VZf,V:ll[|k:| < klk -z, and
Gl =H]=0

3 THE REPRESENTATION 7

In order to describe the particle system at inverse temperature 5 we introduce
the algebraic setting. For § = {f € Hpn : o Y2f € Hy,} we define the
algebra of observables by

A = B(Her) @ W(J).

For elements A € 2 we define 70 (A) := eltHo Ae~itHo and
7 (A) = ettH Aem 1tH We first discuss the model without interaction.

3.1 THE REPRESENTATION 7y

The time-evolution for the Weyl operators is given by
eitﬁw(f) e—itH _ Wi(ette f).

For this time-evolution an equilibrium state w? is defined by

STV = (FI(L+ 208) )rns

where 05(k) = (exp(Ba(k)) — 1)_1. It describes an infinitely extended gas
of bosons with momentum density pg at temperature 3. Since w? is a quasi-

free state on the Weyl algebra, the definition of w? extends to polynomials of
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creation and annihilation operators. One has

Wia(f)) = wi@ () = wia(f)alg) = «f(a*(f)a*(g)) = 0,
Wi(a*(f)a(9)) = (gl 05 f -

For polynomials of higher degree one can apply Wick’s theorem for quasi-free
states, i.e.,

Wi @ (fom) 0™ (1) = D T wila™(f)a™ (), (12)
PeZs {ijleP
1>]

where a’* = a* or a%* = afor k=1,..., 2m. Z5 are the pairings, that is

PeZ, iff P= {Ql,...,Qm}, #@Q; = 2 and U;il Q; = {1,..., 2m}
The Araki-Woods isomorphism 7¢ : W(f) — B(Fp @ Fp) is defined by

T V()] = Wa(f) = expl(i Ds(1)),
®s(f) == B((1 + 05)* ) @1 + 1@ B(0)/* ).

The vector Q? = Q® 0O fulfills

W OV(f)) = (Qf | V()] Q7). (13)

3.2 THE REPRESENTATION 7¢

The particle system without interaction has the observables B(H,;), the states
are defined by density operators p, i.e., p € B(He), 0 < p, Tr{p} = 1. The
expectation of A € B(H,;) in p at time ¢ is

Tr{peitHel AefitHel}.

Since p is a compact, self-adjoint operator, there is an ONB (¢,,), of eigenvec-
tors, with corresponding (positive) eigenvalues (py)n. Let

o(x, y) = Zp}lﬂ () Pn(y) € Het @ Her- (14)
n=1

For ¢ € He we define o9 := [ o(z, y) ¥ (y) du(y). Obviously, o is an operator

of Hilbert-Schmidt class. Note, @1 := o has the integral kernel o(z, y). It
is a straightforward calculation to verify that

Tr{pe't Mt A"t Hay = (e Fl o[ (A1) e F0 )y em.,
where Lo = Hy®1—1®H,;. This suggests the definition of the representation

7 B(Het) = B(Ha @ Het), A= A®1.
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AN INFINITE LEVEL ATOM 185

Now, we define the representation map for the joint system by
7w A = BK), T 1= Te QTy,

where K := He @ Het @ Fpy @ Fp. Let Mg := 7[A]” be the enveloping W*-
algebra, here [2]" denotes the commutant of 7[2], and 7 [2A]” the bicommutant.
We set D := U; @ U; ® C, where C is a subspace of vectors in ]_-gm ® ]_-gm’
with compact support, and Uy := U2 ; ran 1[H.; < n]. On D the operator Lo,
given by

Ly = Lag®14+1®Ls, onk,
Ly = dl'(la)®1 —1®dl(a), on F,® Fyp,

is essentially self-adjoint and we can define
(X) = eltho Xe i tho c My, X €My, tER,
It is not hard to see, that
a[f2(A)] = 2(x[4]), Ac, teR
On K a we introduce a conjugation by
T($1@ ¢2 @91 @) = d2 @ 1 @ P2 @ 1.

It is easily seen, that J Ly = —Ly J. In this context one has 9)?’5 =JIMs T,
see for example [4]. In the case, where H,; fulfills Hypothesis 1, we define the

vector representative Qfl € He ® Hep of the Gibbs state wfl as in (14) for
p= e BHe z—1

THEOREM 3.1. Assume Hypothesis 1 is fulfilled. Then, Qg = Qfl ® Q? s a
cyclic and separating vector for Mgs. e=P/2L0 is g modular operator and J is
the modular conjugation for QOB , that is

XQF € dom(e™P/240), T X QOf = B2k x*f (15)
for all X € Mg and Lo Qg = 0. Moreover,
Wi (X) == (X Q0 )k, X eMy

is a (19, B)-KMS-state for Mg, i.e., for all X,Y € My exists Fp(X,Y,"),
analytic in the strip Sg = {z € C : 0 < Imz < B}, continuous on the closure
and taking the boundary conditions

F3(X,Y, 1) = w
Fs(X, Y, t +if) = w

For a proof see [14].
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4 THE LIOUVILLEAN Lg

In this and the next section we will introduce the Standard Liouvillean Lq for
a dynamics 7 on Mg, describing the interaction between particles and bosons
at inverse temperature 3. The label ) denotes the interaction part of the
Liouvillean, it can be deduced from the interaction part W of the corresponding
Hamiltonian by means of formal arguments, which we will not give here. In
a first step we prove self-adjointness of Lo and of other Liouvilleans. A main
difficulty stems from the fact, that L5 and the other Liouvilleans, mentioned
before, are not bounded from below. The proof of self-adjointness is given
in Theorem 4.2, it uses Nelson’s commutator theorem and auxiliary operators
which are constructed in Lemma 4.1. The proof, that 7,(X) € Mz for X € Mg,
is given in Lemma 5.2. Assuming Qg € dom(e P/2(£0+@)) we can ensure
existence of a (7, 3)-KMS state w’(X) = (Q% | X QP) - [|Q°||=2 on Mg, where
0F = e‘ﬂ/2(£°+Q)Qg. Moreover, we can show that e ?%£e is the modular
operator for Q7 and conjugation 7. This is done in Theorem 5.3.

Our proof of 5.3 is inspired by the proof given in [6]. The main difference is
that we do not assume, that @ is self-adjoint and that Qg € dom(e~#9). For
this reason we need to introduce an additional approximation () of @), which
is self-adjoint and affiliated with 913, see Lemma 5.1.

The interaction on the level of Liouvilleans between particles and bosons is
given by @ , where

Q = D3(G) Bp(H) + hoc. + Ba(F), Pp(G)Ps(H) =Y _ 0s(G7) Dp(H).

j=1

For each family K = { K}, of closed operators on He; with || K|y, 1/2 < 0o we
set

®s(K) = (a*((1 + 05)/?K)®1 + 1®a*(gyf > K*)) + h.c..

Here, Kj, acts as Ky ® 1 on He ® Her. A Liouvillean, that describes the
dynamics of the joint system of particles and bosons is the so-called Standard
Liouvillean

Lod = (Lo+Q—Q7)e, ¢€D, (16)

which is distinguished by J Lo = —Lg J. For an operator A, acting on K, the
symbol A7 is an abbreviation for J A.J. An important observation is, that
[Q, Q7] = 0 on D. Next, we define four auxiliary operators on D

LY = (Hatr ®1 +10Ha ) ®@1+10 Ly, +1 (17)
LP =HS +(HS ) +al@Lia+c

L® = HY  +Har)” +c11@Lpa+ 02

LYW = Hayy @1+ (HS ) +a11® Lyq+co,
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AN INFINITE LEVEL ATOM 187
where Ly, is an operator on F; ® F and Hg 4 acts on K. Furthermore,

Lo =dl(1+a)®1+1@dlI(1+a)+1,
Lo =Hatr®1+10Hay HS, = Har®1+Q.

Obviously, Et(f), 1 = 1, 2, 3, 4 are symmetric operators on D.

LEMMA 4.1. For sufficiently large values of ¢1, co > 0 we have that E,(f), 1=
1, 2, 3, 4 are essentially self-adjoint and positive. Moreover, there is a constant
c3 > 0 such that

et 1L oll < 1L ol S es IV @ll, ¢ € dom(LEY). (18)

Proof. Let a,a’ € {l, r} and K;, i = 1, 2 be families of bounded operators
with || K;llw < co. Let &;(K;) = ®(K;) ® 1 and ®,(K;) := 1 ® ®(K;). We
have for ¢ € D

H (pa(nKl) Dy (U/K2) )

| < const|[Lya¢l (19)
[@a(nF) o] <

const | (Leta) (L 1) .

where n, ' € {(1+05)'/2, QE/Q}. Note, that the estimates hold true, if ®,(nK;)

or ®,(nF) are replaced by @a(nKi)J or <I>a(77F)‘7. Thus, we obtain for suffi-
ciently large ¢; > 1, depending on the form-factors, that

IQ¢ll + 1Q7 ¢l < 1/2||(Leta + 1 Lya) ¢ (20)

By the Kato-Rellich-Theorem ( [17], Thm. X.12) we deduce that £5 is self-
adjoint on dom(Lesq + ¢1 L7,4), bounded from below and that Lo + ¢1 Lf,a

is ﬁgi)—bounded for every ¢c; > 0 and ¢ = 2, 3, 4. In particular, D is a core of
£ The proof follows now from || LS ¢|| < [[(Lerater Lr.a) ol < e1 L5 ¢l
for ¢ € D. O

THEOREM 4.2. The operators
Lo, Lo =1L+Q-Q7, Lo+Q, Lo—Q7, (21)

defined on D, are essentially self-adjoint. Every core of E,(ll) is a core of the
operators in line (21).

Proof. We restrict ourselves to the case of L. We check the assumptions
of Nelson’s commutator theorem ([17], Thm. X.37). By Lemma 4.1 it suf-

fices to show | Loél| < const || LYo and [(Loo| L5 6) — (LD ¢l Loo)| <
const || (5511))1/%”2 for ¢ € D. The first inequality follows from Equation (20).
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To verify the second inequality we observe
[(Lao| L o) = (LB o|Lq o)l (22)
<al(Q0]L1a0) — (L1.40|Q0)|
+a(Q76|Lrad) ~ (L1a0|Q70)|
+[(£701Q0) —(Q0] £0)| + [(£10]Q76) — (@76 £50)|

where we used, that [Hng, (Hng)J] = 0. Let K; € {G;, H;} and n, 0/ €

{02, (1 + 0)*/?}. We remark, that

[@a(n Kl)@a’(nl Ka), Lya] = iP@a(i(1 + a)nKl)(I)a’U(n/ K>) (23)
B K B (i (1 + )y )
[(I)a(nF)a ‘nya] = iq)a(i (1 + O‘)UF)'

Hence, for ¢ € dom(ﬁ,(f)), we have by means of (10) that
(6] [@a(nEy) @, <n K»), Lra)o)| < const || £/20]? (24)
(¢ ][®a a6 )| < const || LY20]|[|(Lera)/20).

Thus, (24) is bounded by a constant times |[(£5”)1/2¢]|2. The essential self-
adjointness of Lg follows now from estimates analog to (23) and (24), where
L, is replaced by L in (23) and in the left side of (24). For Lo+@Q and Lo—Q7

one has to consider the commutator with L',,(lg) and £¢(14), respectively. O

REMARK 4.3. In the same way one can show, that H is essentially self-adjoint
on any core of Hy := He + dU(1 + @), even if H is not bounded from below.

5 REGULARIZED INTERACTION AND STANDARD FORM OF Mig

In this subsection a regularized interaction Q) is introduced:
Qn = {@B(éN)%(ﬁN) + h.c.} + Dy(Fy). (25)

The regularized form factors G N H ~, Fx are obtained by multiplying the
finite rank projection Py := 1[H < N] from the left and the right. Moreover,
an additional ultraviolet cut-off 1[ac < N], considered as a spectral projection,
is added. The regularized form factors are

Gn(k) := 1[a < N]PyG(k) Py,  Hy(k) := 1ja < N] Py H(k) Py,
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AN INFINITE LEVEL ATOM 189

LEMMA 5.1. 1) Qn is essentially self-adjoint on D C dom(Qn). Qn is affiliated
with Mg, i.e,. Qn 1s closed and

X/QNCQNX/, VX’EQﬁ’B.
i) Lo+ Qn, Lo — TQNT and Lo+ Qn — TQNJT converges in the strong
resolvent sense to Lo+ Q, Lo — TJQJT and Lo+ Q — TQJT, respectively.

Proof. Let Qn be defined on D. With the same arguments as in the proof of
Theorem 4.2 we obtain

1Qndl < ClLsadll, [(QNO|Lrad) — (Lsad|Qno)| < C||(Lsa)?9)

2
)

for ¢ € D and some constant C' > 0, where we have used that ||Fy|, < oo.
Thus, from Theorem 4.2 and Nelson’s commutator theorem we obtain that D
is a common core for Qy, Lo+ Qn, Lo — Q%, Lo+ QN — Q% and for the
operators in line (21). A straightforward calculation yields

Jm Qné =Qé,  lim JONTé =TQT6  VéED.

Thus statement ii) follows, since it suffices to check strong convergence on the
common core D, see [16, Theorem VIIL.25 a)].

Let Ny := dI'(1) ®1+1®dI'(1) be the number-operator. Since dom(Ny¢) D D
and Ws(f)7 : dom(N;) — dom(Ny), see [4], we obtain

Qn(A®10Ws(f)7é = (Av1aWs(f)7Qne (26)
for A € B(He), f € fand ¢ € D. By closedness of Qn and density arguments
the equality holds for ¢ € dom(Qn) and X € Mg instead of A ® 1 @ Ws(f).
Thus Q is affiliated with 95 and therefore '@~ € My for t € R.

O
LEMMA 5.2. We have for X € Mg andt € R
T(X) = eMEotQ) X oit(Lo+Q) - £0(x) = (it(Lo=Q7) X (it(Lo=Q7)  (97)
Moreover, 7,(X) € Mg for all X € Mg and t € R, such as
EQ(t) — it (Lo+Q) p—itLo _ ,itLg efit([:ngJ) € Ms.

Proof. First, we prove the statement for (), since @y is affiliated with 2ig
and therefore "9~ € My, We set

7A_tN(X) _ eit(Lo +QnN) )(e—it(ﬁo-i-QN)7 %t(X) _ eit(ﬁo +Q) Xe—it(ﬁo-i-Q)
(28)
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On account of Lemma 5.1 and Theorem 4.2 we can apply the Trotter product
formula to obtain

FV(X) = w-limy, -, o0 (€' wlo gt %QN)HX (e7 wQnN =i %L")n

= w-limy, 00 72 (ei% Qv .79 (ei%QN Xefi%QN) e eii%QN).
n

3

Since ¢! =9V, X € M and since 70 leaves My invariant, 77V (X) is the weak
limit of elements of Mg, and hence 77V (X) € M. Moreover,

#1(X) = w-limy o0 7 (X) € M.
For En(t) := e't(Lo+@n)e=itLo ¢ B(K) we obtain
eit(Lo+Qn) =it Lo _ s-lim,, o0 (ei % Logi QN)n e—itLo

= s-limy, o0 70 (ei% QN (ei% QN) T, (ei% vy e Mpg.

3o

By virtue of Lemma 5.1 we get Eg(t) := e/t(FotQ@ e itlo =
w-limy & 0o En(t) € 9.  Since J leaves D invariant and thanks to
Lemma 5.1, we deduce, that D is a core of JQnJ. Moreover, we have
e HOX = Je@N T ¢ M. Since we have shown, that 7N leaves M invariant,
we get

7N (X) = w-limy, o0 (€75 (F0FQN) i%(—Q%))nX (e—i%(—cz@ e~ (LotQn)yn
= w-limy, o0 7 (6775 Q¥ . N (e H Q% X e wQ) ... ¢l %Q%)

i
n n

=N (X).
Thanks to Lemma 5.1 we also have
(X)) = w-limy, 00 7Y (X) = w-limn o0 77 (X) = 7(X). (29)

The proof of 72(X) = eit(£o=Q7) x ¢it(£0=Q7) follows analogously. Using the
Trotter product formula we obtain

eit(L0+QN) e—itﬁo = slim, o (ei% L‘,oei%QN)n e_itﬁo

= slim, o0 72 (ei%QN)T% (ei%QN) T (ei%QN)

t
n

= slim, o (ei%([:“*QNj)ei%QN)" e~it(Lo=QnT)

eit(Lo+QN—TQNT) ,—it(Lo—Qn7)
By strong resolvent convergence we may deduce E(t) = eit£e ¢=#(£o=Q7) [

Let C be the natural positive cone associated with J and Qg and let Dﬁ%"“ be
the 7-analytic elements of Mg, (see [4]).
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THEOREM 5.3. Assume Hypothesis 1 and Qg € dom(e #/2(L0+Q)), Let QF =
e B/2(Lo+Q O Then

TP = Qﬁ, 08 — eﬁ/Q(CU’QJ)Qg, (30)
LoQF =0, JX0P = P2Lax0f VX emy
Furthermore, QP is separating and cyclic for Mg, and QF € C. The state w”
is defined by
W (X) = (1977227 1X QF), X € Mg
is a (1, B)-KMS state on Mg.

Proof. First, we define Q(z) = e~* £+t QF for z € € with 0 < Rez < /2.
Since Qg € dom(e=P/2(£o+@))  Q(z) is analytic on Sgjp i ={z€C :0 <
Re(z) < a} and continuous on the closure of Sg/5, see Lemma A.2 below.

» Proof of 7Q(3/2) = Q(8/2):

We pick ¢ € U,enranl[|Lo] < n]. Let f(z) = (#|TQ(Z)) and
g(z) = (e (B/2=2) Lo gy| g=%(Lo+ Q) Qg ). Both f and g are analytic on Sg/»
and continuous on its closure. Thanks to Lemma 5.2 we have Eg(t) € Mg,
and hence

f(it) = (@1 T Eq(t)Qg) = (¢|e /> Eq(t)* Q7)) = g(it), t € R.

By Lemma A.1, f and g are equal, in particular in z = /2. Note that ¢ is
any element of a dense subspace.

» Proof of QO € dom(e?/? (£0=Q7)) and Q(8/2) = €B/2(£o=Q7) Qp:

Let ¢ € Upenranl[|Ly — Q7| < ] We set g(z) =
(eLe=Q) gle=2Lo QY Since Eqg(t)! = e'tFo=@7)e=itlo ¢ coin-
cides for z = it with f(z) := (¢ | T Q(Z)). Hence they are equal in z = /2.
The rest follows since ¢8/2(£0=Q7) jg self-adjoint.

» Proof of Lo Q(8/2) = 0:

Choose ¢ € Upenranl[|Lol < n] We define g¢(z) :=
<6726Q¢|ez(507QJ)Q€) and f(z) = (¢|Qz)) for z in the closure
of Sg/p. Again both functions are equal on the line z = it, t € R.

Hence f and g are identical, and therefore Q(8/2) € dom(e ?/?£@) and
e BI2La O(B/2) = Q(B/2). We conclude that Lg Q(3/2) = 0.

» Proof of 7 X*Q(B/2) = e #/2£2 X Q(B/2), VX € Mp:
Fore A € MG we have, that

T A*Q(—it) = J A* Eg(t) Q5 = e P/2%0 B (t)* AQ)
— o~ (B/2—it) Lo ,—it(Lo+Q) 4 Qg

— e—(,@/Q—it)Eo T_t(A) e—it(ﬁo—i-Q) QOB
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Let ¢ € U,enranl[|Lo] < n]. We define f(z) = (¢|J A*Q(Z)) and
g(z) = (e B/27DLo ¢ |1, (A)Q(2)). Since f and g are analytic and equal
for z = it, we have JA*Q(B/2) = 7,5/2(A)Q(B/2). To finish the proof we
pick ¢ € U, enranl{|Lg| < n], and set f(z) = (¢|7.(A)Q(B/2)) and
g(z) = (e #2¢ | AQ(B/2)). For z = it we see

g(it) = (ple™"@ Ae™EQ(B/2)) = (¢|7-(A) QB/2)) = f(it).

Hence AQ(B/2) € dom(e=#/2£@) and JA*Q(B/2) = e P/2L2 AQ(B/2).
Since MM3F"* is dense in the strong topology, the equality holds for all X € Miz.

» Proof, that Q7 is separating for Ms:
Let A € MG"*. We choose ¢ € [, cxranl][(Lo + Q)| < n]. First, we have

T A*Q(B/2) = Tig/2(A)QB/2).

Let f4(2) = (9|7 (A)UB/2)) and g4(z) = (2(£o+@) ¢ | Ae=(B/2+2)(LotQ) ()
for —3/2 < Rez < 0. Both functions are continuous and analytic if —3/2 <
Rez < 0. Furthermore, fy(it) = g4(it) for t € R. Hence fy = g4 and for
z = —-0£/2

(@] T A"Q(B/2)) = (e P2EtDp| AQf).

This equation extends to all A € Mg, we obtain AQg S dom(e‘fg/2 (L‘H‘Q)),
such as e F/2(£o+Q) AQOB = JAQB/2) for A € Mp. Assume
A*Q(B/2) = 0, then

e P2 (LOJFQ)AQg = 0 and hence AQg = 0. Since Qg is separating, it follows
that A = 0 and therefore A* = 0.

» Proof of O € C, and that Q7 is cyclic for Mg:
To prove that ¢ € C it is sufficient to check that (¢|AJAQL) > 0 for all
A € Mg. We have

(Q(8/2)| ATAQG) = (TAQ(5/2) 1A )
= (e B/2ALo+Q) AQT | AQSY > 0.

The proof follows, since every separating element of C is cyclic.
» Proof, that w? is a (1, 3)-KMS state:
For A, B € Mg and z € Sg we define

Fs(A, B, z) = c(e_iE/MQA*QB |eiz/2£QBQB>,
where ¢ := ||Q7|| 2. First, we observe

F3(A, B, t) = c(e /220 A* QP | /22 BOPY = ¢ (QF |An(B)Q?)
= WP (A7 (B))
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and

S
™
=)
3
2
I
o

(1e(BQP | AQP) = ¢ (TAQP | T (B*)QP)
= c(e PP AP | e P2 Lar(B)OP)
(

— (e @B+ /2L g* (B |ei (iB+t)/2£QBQﬂ>

€
= Fp(A, B,t+if).

The requirements on the analyticity of Fz(A, B, -) follow from Lemma A.2. O

6 PRrROOF OF THEOREM 1.3
For s, := (sp,..., $1) € R™ we define
QN (s,) == Qn(sn) - QN(51), Qn(s) = e Qe se R (31)

At this point, we check that Qn (s n)Qg is well defined, and that it is an analytic
vector of Ly, see Equation (25). The goal of Theorem 1.3 is to give explicit
conditions on H,; and W, which ensure Qg € dom(e#/2(Lo+@)) et

n, = / UGN Bray) + 1N Brep) 2+ da(k) ™) di (32)
b= RO HE oy + 1P T lagc)C + o(h) )

The idea of the proof is the following. First, we expand e~ #/2(£o+Qn)eLo i g
Dyson-series, i.e.,

e*ﬁ/?(ﬁo“rQN)eﬁU (33)

n

B/2

oo
=1+ Z(fl)"/ e~ SnkoQesn Fo . ems1boQ et Lo ds,,.
n=1

Under the assumptions of Theorem 1.3 we obtain an upper bound, uniform in
N, for

(g | et (34)

=1+ (-1)" /A (QF |e*nFoQuesn £o . ems1FoQ et Lol ds .
n=1

n

B

This is proven in Lemma 6.4 below, which is the most important part of this
section. In Lemma 6.1 and Lemma 6.2 we deduce from the upper bound for
(34) an upper bound for ||e~(3/2(Lo+@MQP| which is uniform in N. The

proof of Theorem 1.3 follows now from Lemma 6.3, where we show that Qg €
dom(e~(A/2)(£o+@)),
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LEMMA 6.1. Assume

1/n
limsup sup < 1.

n— oo 0<z<ﬂ/2H NG

Qnl(s,) ds,,

for all N € N. Then Qg € dom(e~(Fot@N)) 0 < x < /2 and
eTHETONO) = Qi+ > (1" | Quls )% ds,. (35)
n=1 o

In this context AT = {(s1,...,8,) €ER" : 0 < s, <...<s1 < 2} isa
simplex of dimension n and sidelength x.

Proof. Let ¢ € ranl[|Lo + Qn| < k] and 0 < = < /2 be fixed. An m-fold
application of the fundamental theorem of calculus yields

(et glefo0fy = (610 + 3 (-1)" [ Qnls,)fds, )
n=1

Ag

(=1 /A o (e Bk Qg et £o Qi (s, 1) Qg ) dis (36)

Since Lo Q) = 0 we have for "(Smi1) = (Sm — Sm41,---, S1 — Smy1) that

e QN (81m11)2% = Qv Qn ({81 11))0%,

We turn now to the second expression on the right side of Equation (36), after
a linear transformation depending on s,,4+1 we get

(71)m+1/ <e—sm+1(£o+QN)¢|QN/ QN(zm)di£m>dSm+1.
O m

T—Sm41

Since [|em+1 (Lot QN) g|| < /2 ||¢||, and using that Qn(r,,) 2 is a state
with at most 2m bosons, we obtain the upper bound

const |6 /(2m) @m + 1) sup H/ QN(zm)dizmH.

o<a<p/2lJap

Hence, for m — oo we get

(emolbot@mlg | OfY) = <¢|Q§ +> (0" [ Qnls.) d§n>-
n=1

Ag

Since |y, ran1{|Lo + Qn| < k] is a core of e~ #(£o+@N) | the proof follows
from the self-adjointness of e~#(£o+@n), O
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LEMMA 6.2. Let 0 < = < (/2. We have the identity
) Q Vdr,, d 37
|QN( ) 0 > T A8y ( )
ATI m

For m = n it follows

Qn(s,) ds,,

2
</Qn\<Q§|QN<§2,,)Qg>\d§2n, (38)
B

Ao

Proof. Recall Theorem 3.1 and Lemma 5.1. Since J is a conjugation we have
(plY) =(TY|T ¢), and for every operator X, that is affiliated with Mg, we
have J X QF = e=8/2L0 X*QF . Thus,

/ / % 1 Qu(s,) 98 Yy dr, ds,, (39)

/ / (e P20 Qn(s,)" Qf | e 7220 Qun(r,,)" Qf ) dr,, ds,,

Since Ly Qg = 0 we have

e PLOQN(r ) Q% = Qn(B—11) - Qn(B —1m) Q.

Next, we introduce new variables for r, namely y; := 8 — rp—i4+1. Let D;"/Q =
fy €eR™: -2 < ym <...< y1 < B} Thus the right side of Equation
(3977 equals

[ [ (atlent)@nty, ) 0 sy,
;/2 D;n/z
= / . 1[Zm > 6 —rzxz Zm+1] <QOB ’QN(gner) Qg>d§n+m
i

The second statement of the Lemma follows by choosing n = m. O

LEMMA 6.3. Assume supNeNHe_I(L""_QN)QgH < oo then Qg €
dom(e~*(£0tQ)) gnd

lle —2(Lo+Q) Qﬁ z(Lo+QN) Qﬁ”

I'< sup fle™
Ne

Proof. For f € C§°(R) and ¢ € K we define ¢y = f(Lo + @n) ¢. Obviously,
for g(r) = e™*" f(r) € C°(R) we have e (Lot @n) gy = g(Ly + Qn) b
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Since Ly + Qn tends to Ly + @ in the strong resolvent sense as N — oo, we
know from [16] that limy —, oo ¥n = f(Lo + Q) ¢ =: ¢ and

lim e~ (0@ gy = Tim g(Lo+Qn)¢ = g(Lo+ Q)¢ = e 0T Dy,
— 00

N—o0

Thus,
(e (Eot@) 4| )| = lim (em#(Lot@m)y | Q)|
< sup Hef:b (£0+QN)Qg|| ||1/)H,
NeN

Since {f(Lo+Q)p €K : ¢ €K, f € C(R)} is a core of e~?(£0+@) we obtain
Q5 € dom(e~*(LotQ)), O

LEMMA 6.4. For some C > 0 we have

A

Jcali@n(s,)90)| ds,
B
(8Cﬂ2)1/2 )n

< const (n+ 1)% (1 +6)" (8ﬂ1 + m

where n, and 1, are defined in (32).

Proof of 6.4. First recall the definition of Qn and Qn(s,,) in Equation (25)
and Equation (31), respectively. Let

[oedionts) 0] ds, = [ 5 a(s0) ds,.
AT AR

B

The functions J, (3, s) clearly depends on N, but since we want to find an upper
bound independent of N, we drop this index. Let Wi = ®(G)®(H) + h.c.,
Wy := ®(F) and W := W; + W,. By definition of wg in (3.1), see also (13),
we obtain

Jn(ﬂv §n) = wg((e_ﬂsn o Weﬁano) T (e_BSI fo WeﬂSl HO))

)™ Z W?(Tﬂ{el {efﬁHel (e*ﬁ sn Ho W) oBsn Ho) o
ke{l,2}n

. (e—ﬂsl Hy Wn(l) eﬂsl Ho)})

By definition of w? it suffices to consider expressions with an even number of
field operators. In the next step we sum over all expression, where n; times
W1 occurs and 2ns times W5. The sum of ny and ns is denoted by m. For
fixed ny and ny the remaining expressions are all expectations in w? of 2m field
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operators. In this case the expectations in w? can be expressed by an integral

over R?™ x {£1}?™ with respect to v, which is defined in Lemma A.4 below.
To give a precise formula we define

M(my, mg) = {ke€{1,2}" : #x1({i}) = m;, i=1,2}.

Thus we obtain

L s = (@Y 3 / (k3 ® A7 51,) (40)

(n1, np)eN? REM (n1,2n2)
ni+2n2=n m:i=mni+ na

Try L {e—(B—B(S1 - SQm))HELIQWe—B (s2m—1—s2m) Her | | e P (81 —82) Hey Il} ,

Of course I; depends on k,,, X T,,,, namely for x(j) = 1, 2 we have

where (m, 7), (m/, 7') € {(kj,7;) : j=1,...,m}. For k(j) = 1 we have that

Ii(m, +,m', =) = G*(m)H(m') + H*(m)G(m')
Li(m, —, m/,4+) = G(m)H*"(m') + H(m)G*(m'
ILim, +,m', +) = G*(m)H*(m') + H*(m)G*(m')
Ii(m, —, m/, =) = G(m)H(m') + H(m)G(m)

Lim, +) = F'(m)
Lm,-) = F(m).

In the integral (40) we insert for (m, 7) and (m’, 7’) in the definition of I; from
left to I‘lght ka, Tomsy -« - s 1{31, T1-

For fixed (ko,,,To,,) the integrand of (40) is a trace of a product of 4m oper-
ators in H¢;. We will apply Holder’s-inequality for the trace, i.e.,

2m 2m
| Trye,, {Azm Bam -+ A1 B < [ 1Bjllseen - ] Tra (A7 375

j=1 j=1

In our case p; := (s;_1 — 8;) L fori=2,....2mand p; := (1 — 81 + S21n) "
and
(=P et Ii(m, 7, !, 7)), K(j) =

1
(A<, B‘) = a1 _ . :
P et e B Lmr), k() = 2
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We define

m (k) = max {|G(k)llsee.r 1HE) 5.0}
n2(k) = max {||F (k) H, e, 177 (k) Hy s }-

By definition of B; we have

n
1Bl B3, < {772( (41)

Furthermore,
_ v .
Tosg (AP = Tow, {0 BT Y
4 B
< He_eHEL Hfl];1||;7)'[jel TrHez {e—(ﬂ—e) HEl}pj , k(]) -9

Let Eys := inf 0(H.;). The spectral theorem for self-adjoint operators implies

-1 -1 -1
—eHep rypi v ||Ps —ep, T _ ¥ -y Y ,—€p;  (Egs —1)
||ec e Hel’+||7_zel < sup e P T(r — Ege +1)7 < e Vple P BesT )
r>FEys

Inserting this estimates we get

Try l{e*(ﬁ —B(s1— szm))HeZIQ’me*ﬁ (s2m—1 = s2m) Her |, =B (51— 52) Hey Il}

2m
< Cu(s,) [T 1B)llse¢.)
Jj=1

where
Cu(s,) == (1— 51 + 8,)" " H(Sz = Siy1)” " (42)
and
_Jo, k(i) =1
@ {1/2, k(i) = 2 (43)

Now, we recall the definition of v». Roughly speaking, one picks a pair of

variables (k;, k;) and integrates over d, x; coth(8/2a(k;)) dk;dk;. Subsequently

one picks the next pair and so on. At the end one sums up all 2(72nm")1!!

and all 4™ combinations of 7 ,,. Inserting Estimate (41) and that

pairings

/ o (K)o (k) coth(8/2a(k)) dks < (1+ B~/ 2n1/2,

we obtain

1+ n1 ny (2m)127
|1 (8, 8)| < —— > > ()™ (Cn,) T Cnl(s)
(nl,nz)GNg KREM(ny, 2ng)
ny 4 2ng=n Mi=n1+n2
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By Lemma A.3 below and since (2m)!/(m!)? < 4™ we have

[ Kod1an(s99)]ds,

B

n (8ﬂ1)n1 (SC/QQ)WQ
(TL + 1)(1—2w)n2—2

<comst(148)" Y (

(n1,ng)ENZ
ny+2ns=n

ni

This completes the proof. O

7 THE HARMONIC OSCILLATOR

Let L*(X, dp) = L*(R) and Hey =: Hyse := — A +02%¢? be the one dimensional
harmonic oscillator and H,, = L*(R?). We define

H = H,s. + ®(F) + H, H = dr(|k|), (44)

where ®(F) = q - ®(f), with A (|k|7Y/2 + [k|V/?) f € L2(R?).

H,s. is the harmonic oscillator, the form-factor F' comes from the dipole ap-
proximation.

The Standard Liouvillean for this model is denoted by L,s.. Now we prove
Theorem 1.4.

Proof. We define the creation and annihilation operators for the electron.
@1/2q _ ’i@_l/Qp A @1/2(] 4 i@_l/Qp
= 7 , = NG ;

D(c) = c1q+ cap, forc=c; +iceeC, ¢; €R. (46)

A*

These operators fulfill the CCR-relations and the harmonic- oscillator is the
number-operator up to constants.

(4, A] =1, [A*, A" = [A, Al =0, H,e = OA* A+ ©/2, (47)
(Hpse, A] = —O A, [Hopse, A*] = O A*. (48)

The vector ) := (%)1/4 e=©9" /2 ig called the vacuum vector. Note, that one
can identify J[C] with L*(R), since LH{(A*)" Q|n € N°} is dense in L?(IR).
It follows, that w3 is quasi-free, as a state over W(C) and

W (W(c)) = (2)7" Tra, {e " W(e)} = exp (—1/4 coth(86/2) ),
(49)
where Z = Try,, {e #™} is the partition function for H,.
First, we remark, that Equation (31) is defined for this model without reg-
ularization by Py := 1[Hel < N]. Moreover we obtain from Lemma 6.2,
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that

Q(én)Qg d§2n

2
< / ‘<Qg |Q(§2n) Qg>‘ d§2n = hQ’H(ﬁa )‘)
A%n

(50)
To show that Qf € dOm(e*ﬁ/Q(ﬁoJrQ)) is suffices to prove, that
S o han(B, )2 < co. We have

Ab/a

—B\ 2n
hon(B, \) = ( ﬂz> / w[gSC((efﬁSzn Hezqeﬁ52n Hel) (51)
NG

(e*ﬁsl Hei [ oBs1 Hel))

qge
Wi (e P a(fy el oty (e P a(f)ef 1 1)) ds,y,.
Moreover, we have
efﬁsiHelqeﬁsiHel _ (2@)71/2(673951- A* + eﬁ@siA)
eI g(f) el = 97 (q* e ) afe? I p)). (52)

Inserting the identities of Equation (52) in Equation (51) and applying Wick’s
theorem [5, p. 40] yields

han (B, A)z(mf"/ﬁn 2. 1 Kowllsi =51, 8)

1 PeZy {i,j}eP

> I Esllsk —sil, B) ds,

P'€Zy {k, 1}eP

2n
— (ﬂ >\> / Z H Kosc(|5i - Sj|, ﬂ) Kf(|sk - 5l|5ﬂ) d§2n’

|
(2n)t Jio, 1p2n P,P'€Zy (i jleP
{k,1}epP’
(53)
where for £ < [ and ¢ < j, such as
Kpllsk = ail, 8) = wille™® T a(f) el ) (P Ha(f) el i)

Kosc(lsi — sjl, B) o= wge(e Poiflar gefoifler gmfsiHler g efo Her),

The last equality in (53) holds, since the integrand is invariant with respect to
a change of the axis of coordinates.

We interpret two pairings P and P’ € 2 as an indirected graph G = G(P, P’),
where My, = {1,..., 2n} is the set of points. Any graph in G has two kinds
of lines, namely lines in L,s.(G), which belong to elements of P and lines in
L¢(@), which belong to elements of P’.

Let G(A) be the set of undirected graphs with points in A C Ma,, such that for
each point "i" in A, there is exact one line in L;(G), which begins in "i", and
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exact one line in Lys.(G), which begins with "i". G.(A) is the set of connected
graphs. We do not distinguish, if points are connected by lines in L¢(G) or by
lines in Lys.(G).

Let

Py = {P P ={Ay,..., Ay}, 0 £ A; C Mo,
k
AiﬂAj = @fOI”L' 7& j, U Az = Mgn}
i=1
be the family of decompositions of Ms,, in k disjoint set. It follows

h2n(6; ) (ﬁ)\)' Z / Kosc(|si - Sjla ﬁ)

(2n)
GEG(May,) Y Man {u}eLosc<G)
{k, 1} GLf(G)

Kf(|8k - Sl| B)ds.,,

k
> 7 4u 8)

k=1 {A1,...,Ax}€Pr (G1,...,Gp) a=1
Ga€Gc(Aa)

k
> > I 7@ Aa 5),

k=1 A, AR CMap, (Gi,..., Gp) a=1
{A1,..., AL }EPL Go€Gc(AL)

(54)
where

(Gaa Aaa ﬁ / H Kosc(lsi - Sjla B)Kquk - 5l|a ﬁ) ds. (55)

Aa {i,7}€Losc(Ga)
(k.1 eLy(G.)

an ds means, fil ds;, fil ds;, fil dsj,., where A, = {j1,..., jm} and
H#A, = m.

From the first to the second line we summarize terms with graphs, having con-
nected components containing the same set of points. From the second to the
third line the order of the components is respected, hence the correction factor
% is introduced. Due to Lemma 7.2 the integral depends only on the number
of points in the connected graph, i. e. J(G, A, ) = J(#A, B). Moreover,
Lemma 7.2 states that 3#4-J(#A, B) < (2|||k|~Y? fll2 (© B)"1)#A(C B + 1).
To ensure that G.(A,) is not empty, #A, must be even. For (my,..., my) € N*
with mq 4+ ---+ mp = n we obtain

- 1= (2n)! . (56)

(2mq)! -+ (2my)!
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Let now be A, C My, with #A, = 2m, > 2 fixed. In G, are #A, lines in

2 .
Lyse(Gy), since such lines have no points in common, we have ( 7,”;21& choices.

Let now be the lines in Loy (G,) fixed. We have now ((2m, — 2)(2ma —4)---1)
choices for m, lines in L¢(G,), which yield a connected graph. Thus

> 1= (o, 2 em - 4)-1) = EE e

1 9Ma 2
Ga€Ge(As), Ma Ma

For #A, = 2 exists only one connected graph. We obtain for hs,

han (B, A 2nzk' > H 2ma,2£aﬂ> (58)

k=1 (M ,eees my)ENF a=1
my+...+mg=n

2n
B - . 1 Cﬂ +1)
< O AN Y =Y H om

k=1 (m1,..., mp)ENK a=1
mi+...+mp=n

2n C 1)/2 n 1 k
< ORIV AN Y Led s )/k!ZMZW) '

k=1

Since the >." _ 1 L can be con51dered as a lower Riemann sum for the integral

f1m+1 ~Ldr, we have S < In(n +1). Thus,

2n k
han(B ) < <2@*1|||k:|*1/2f||x>2"2(W*”/,f!l“("“’) (59)

k=1
< OTHIR[TVE SN (0 + 1)@,

Since 2|A| [||k|*/2 f|| < © the series S o7 han (3, A)!/2 converges absolutely for
all 8 > 0. It follows, that

,ﬁ/2(£o+Q)Qﬁ _ Qﬁ + Z/ Q )Q dS
n=1
exists. O

Conversely, Equation (58) and Lemma 7.2 imply

ﬂ /\2 2 n
J(2n, B) p*" (6 fsmh(|k|,6/2)smh(5®/2) dk)

> 2n —

Hence for every > 0 exists a A € R, such that hon, (8, A) > % Thus
2211 h’2n(ﬂv )‘>1/2 = 00

REMARK 7.1. We can therefore not extended Theorem 1.4 to an existence proof
for all X > 0.
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LEMMA 7.2. Following statements are true.

J(G, A, B) = J(#A,8), G € Ge(4)
J#A, B) < @IIIKIT2 fl2(©8))F - (CB + 1)

. | (k) A
J(#A, 8) > (© /Sinh(|k| B/2)sinh(© 5/2) dk)

3

where #A = 2m and C = (1/2) m

Proof of 7.2. A relabeling of the integration variables yields

ﬂaAmgm/’ Koollts — tal, B) Kp(|ts — ta], B) -

[0,1]2m
o Kosc(|t2m—1 - t2m|a 6) dt

for K; = Supseqo,1) Kf(s, B). We transform due to s; 1= ¢; — t;i41, i <
2m — 1 and So,,, = tom, hence —1 < s; < 1, ¢ = 1,..., 2m, since integrating
a positive function we obtain

([ Bt )" ([ astst mas) "

- sup Ky(s, B).
s€[0,1]

We recall that

/J%M%BMS@wl/lmﬁﬁigmgwm%2@W)l

and

' _ cosh(B |s| [k] — BIk[/2) | f(k)|?
/_le(ISI, B) ds —/ / ESNGIE dk ds

_, [fR)P
=2 [ gk

Using coth(z) < 1+ 1/z and using convexity of cosh, we obtain

sup K5, ) < (1/2) [ 1102 an + 5 [

s€[0,1]

Due to the fact, that ¢ — Ky (¢, 8) and ¢ — K,sc(t, §) attain their minima at
t = 1/2, we obtain the lower bound for J(#A, f). O
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REMARK 7.3. In the literature there +4s one criterion for Qg €
dom(eA/2(Lo+Q)) " to our knowledge, that can be applied in this situa-
tion [6]. One has to show that ||e=?/2Q Q5| < oo. If we consider the case,
where the criterion holds for )\, then the expansion in A converges,

o0 2n
PO = 30 S )
n=0

-y _( ) Konel0. 8 K50, 5"

n!2n

_i (2n)2 2 ((coth(© 5/2) / ) coth(8[k|/2) dk)"
n=0
i (AB)*(40)~ /|f |2d’€

Obviously, for any value of X # 0, there is a § > 0, for which ||e=P/2@ Qg” <
oo is not fulfilled.
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A

LEMMA A.l. Let f,g : {z € €C : 0 < Re(z) < a} = C continuous and
analytic in the interior. Moreover, assume that f(t) = g(t) for t € R. Then

f=g
Proof of A.1. Let h : {z€ C : |Im(z) < a} — C defined by

h(z) = {f(Z) " o(z), en{z€C:0<Im(z) <o}

f(Z)—g(Z), on{zeC: —a < Im(z) < 0} (61

Thanks to the Schwarz reflection principle h is analytic. Since h(t) = 0 for all
teR, wegeth = 0. Hence f =gon {z€ C : 0 < Re(z) < a}. Since both
f and g are continuous, we infer that f = g on the whole domain. O

LEMMA A.2. Let H be some self-adjoint operator in H, o > 0 and ¢ €
dom(e®f). Then ¢ € dom(e*H) for = € {z € C : 0 < Re(z) < a}.
2z — e* ¢ is continuous on {z € C : 0 < Re(z) < a} and analytic in the
nterior.
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Proof of A.2. Due to the spectral calculus we have
[emessdiolBag) < [+ o) Bag) = F < ox.

Thus ¢ € dom(e* ™). Let ¢ € H and f(2) = (¢|e* ¢). There is a sequence

{¢n} with ¢, € U,,en ran 1[|H| < m] and limy, o0 tPn = 9. We set fr(2) =
(P, | €7 ¢). Tt is not hard to see that f,, is analytic, since v, is an analytic
vector for H, and that |f,(z)] < C1 ||| and lim, e fn(2) = f(2). Thus
f is analytic and hence z — e*¢ is analytic. Thanks to the dominated
convergence theorem the right side of

||€Z"H¢) o €ZH¢||2 g /(SQRezns + eQRezs o ez’nerzs o eis+zns)d<¢ | IES ¢> (62)

tends to zero for lim,,_,o0 2, = 2. This implies the continuity of z — e*H¢. O

LEMMA A.3. We have for ny +ng > 1

const C™2
C.(8)ds, <
Ar (§) Sn (nl i n2)| (n + 1)(1—2'7) no—2

Proof of A.83. We turn now to the integral

n—1

Cu(s)ds, = / (1 — 851+ 8,)~ " H (s; — si41)” % ds,,. (64)
AT AT

i=1

We define for k = 1,..., 2n, a change of coordinates by s = r; — Z?:z rj,
the integral transforms to

/ (1= (rg+-4m) ™ H r; Ydr, (65)
" i=2
S N CRINERNIE | .
Tn—l =9
2712

L1 — a)™'I(1 — v)
I(n1 + 2n2(1—7))

where 2" = {reR?” : 0< r; <1, 70 +---+ rop, < 7} and T2 1 :=
{re R 1 :0< <1, ro+ 4 1m < 1}. From the first to the second
formula we integrate over dry. The last equality follows from [11, Formula
4.635 (4)], here I denotes the Gamma-function.

From Stirling’s formula we obtain

@m)Y227 =27 < D(z) < (21)YV227 " Y2+l 1 > 1. (66)
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Since n1 + no > 1 get

P(ni+n2+1) 5 (M1 + 2(1 — y)ng\ —(1=27)n2
< (n+1 (—) : 67
T(ny +2(1 —v)n2) (n+1) e (67)
Note that I'(nq + no + 1) = (n1 + no)!. O

LEMMA A4, Let (1 4+ a(k)™Y2) f1,...,(1 + a(k)™Y2) forn € Hpn and o €
{+,—}*. Leta™ = a* anda™ = a

B a”2m (e=02m S2m a(k) fom) -+ a% (e a(k) fl))

/fazm k2m7 7_2m> A ffl (klv Tl) l/(dEQm & dIQm)v

where v(dk,,, @ drs,,) is a measure on (R3)*™ x {+, —}>™ for phonons, re-
spectively on (R3 x {£})*™ x {+, —}*™ for photons, and

Wdkyy ®dry) < S S I1 (5k s, coth(B a(k )/2)) dks, .

PEZom re{+,—}?m {i > j}eP
(68)

for ft(k, 1) = f(k)1[r = +] and f(k, 1) := f(k)1[r = —].

Proof of A.4. Since w? is quasi-free, we obtain with a* := ¢* and a™ := a

wJBc (a02m (e—azm s2m a(k) f2m) RS (6—01 s1 (k) fl))

_ Z H w? (aai (eiai s; a(k) fz) ai (efaj s; a(k) fj))a

PeZ; {i,5epP
1>7

see Equation (12). For the expectation of the so called two point functions we
obtain:

Wi (at (e ® fiyat (e ®) 1) = 0 = W (ale™*® fi)a(e W 1)),
such as

e (ss —s5)a(k)

W? (a-i-(emsioz(k)fi)a—(e—lsja(k?)fj)) = /fl(k) f](k/’) de
e(Btzsj—ws;)o(k)
w? (a— (ezsia(k) fi)at (e—sza(k) f])) = /fj fz W dk
Hence it follows

w}é (adzm (67627" Som a(k) f2m) gl (6701 s1 (k) fl))

B /fﬁ’"(kzm, Tom) -+ f7 (R, 1) v(dksy, © dTyy,),
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where ft(k, 7) := f(k)1[r = +] and f~(k, 7) := f(k)1[r = —].
v(d*P™E @ d?™7) is a measure on (R?)?™ x {+, —}*™, which is defined by

Z Z H 67', —T 5k¢,kj (69)

PeZapm 1Te{+,—}?2m {i>j}eP

5 e® (5 — s5) (ki) 5 e(B—z(si—s;)) alki)
( mt TgBatk) — 1 T OmT T galh) — 1 ) ~am
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