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ABSTRACT. Let k = F,(t), with ¢ odd. In this article we introduce
“definite” (with respect to the infinite place of k) Shimura curves over
k, and establish Hecke module isomorphisms between their Picard
groups and the spaces of Drinfeld type “new” forms of corresponding
level. An important application is a function field analogue of Gross
formula for the central critical values of Rankin type L-series coming
from automorphic cusp forms of Drinfeld type.
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INTRODUCTION

We present here a theory of “definite” quaternion algebras over the rational
function field k := Fy(t) with ¢ odd, “definite” means that the place oo at
infinity ramifies for the quaternion algebra in question. Following Gross [§],
we first give a geometric translation of Eichler’s arithmetic theory of definite
quaternion algebra by introducing the so-called “definite” Shimura curves. The
geometry of these curves is simple and easy to manipulate. Basing on Eichler’s
trace computation, one is lead (via Jacquet-Langlands) to an explicit Hecke
module isomorphism between the Picard groups of definite Shimura curves
and spaces of automorphic forms of Drinfeld type over the function field k.
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724 Fu-TsuN WEI AND JING YU

Automorphic forms of Drinfeld type are very useful tools for function fields
arithmetic (cf. [7], [12] and [I7] for more details and applications), which
can be viewed as an analogue of classical modular forms of weight 2. To
illustrate our approach to quaternion algebras over function field, we give an
application to the study of central critical values of certain L-series of “Rankin
type” in the global function field setting. These L-series include, among
others, L-series coming from elliptic curves over k with square free conductor
supported at even number of places and having split multiplicative reduction
at co. Having the extensive calculations done in [I2], we obtain in particu-
lar a function field analogue of Gross formula for the central critical values
of these L-series over “imaginary” quadratic extensions of k (with respect to o).

The structure of this article is modelled on [8]. Let D be a “definite” quaternion
algebra over k£ and let Ny be the product of finite ramified primes of D. We
introduce the definite Shimura curve X = Xy, over k (for maximal orders) in
§11 which is a finite union of genus zero curves. Also introduced are the Gross
points, which are special points on these curves associated to orders in imagi-
nary quadratic extensions of k. With a natural choice of basis on the Picard
group Pic(X), the Hecke correspondences can be expressed by Brandt matrices.

From the entries of Brandt matrices we introduce certain theta series. Taking
into account the Gross height pairing on the Pic(X) (defined in §I.2)), we then
have at hand a construction of automorphic forms of Drinfeld type for the
congruence subgroup I'o(Ny) of GL2(FF,[t]). The main theorem of this article
in §2.31 is:

THEOREM. There is a map ® : Pic(X) x Pic(X )Y — M™V(I'g(Ny)) such
that for all monic polynomials m of Fy[t]

Tn®(e,e) = ®(tye, ) = D(e, tme).

Here Pic(X)V is the dual group Hom(Pic(X),Z), M™% (To(No)) is the space
of Drinfeld type “new” forms for T'o(Ny), t,m are Hecke correspondences on X,
and T, are Hecke operators on MV (To(Ny)). Moreover, this map induces an
isomorphism (as Hecke modules)

(Pic(X) ®z C) @7, (Pic(X)Y ®z C) = M™™(T(Np)).

This theorem in fact tells us that all automorphic “new” forms of Drinfeld type
come from our theta series. The special case of our theorem when Ny is single
prime is also obtained in Papikian [10] §3, by a different geometric method
using Néron models of jacobians of Drinfeld modular curve Xo(Ny). In our
proof of the above theorem, we use the explicit construction of theta series
and claim the equality of the trace of the m-th Brandt matrix B(m) and the
trace of the Hecke operator T, on M™% (I'o(Np)) for each monic polynomial
m in Fy[t]. This claim is essentially the Jacquet-Langlands correspondence (cf.
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[9]) between automorphic representations of quaternion algebras over k and
automorphic cuspidal representations of GLs over k. Another crucial step
in the proof is to show that the Hecke module M™% (T'o(Ny)) is free of rank
one, which follows from the multiplicity one theorem (cf. [3]). For the sake of
completeness, we recall these results in Appendix.

Let D be an irreducible polynomial in F,[¢] such that K = k(v/D) is imaginary
and P is inert in K if the prime P divides Ny. For each ideal class A of
F,[t][VVD] = Ok, we construct in §24 an automorphic form g4 of Drinfeld
type with its Fourier coefficients worked out. In §3.I] we recall Rankin product
of L-series A(f,A,s) associated to Drinfeld type new form f for T'g(NNp)
and partial zeta function (4. In §3.2] we express the central critical value
A(f,A,0) as the Petersson inner product of f and g4. Furthermore, when f
is a ‘“‘normalized” Hecke eigenform and x is a character of ideal class group
Pic(Ok) of Ok, we give the twisted critical value A(f, x,0) explicitly in terms
of the Gross height of a special divisor class ey, on the definite Shimura curve
Xn,- This is our analogue of Gross formula.

Let E be an elliptic curves over k£ with conductor Ngoo and split multiplicative
reduction at co. From the work of Weil, Jacquet-Langlands, and Deligne, it is
well known that there exists a Drinfeld type cusp form fg such that

L(E/k,s+1) = L(fg,s).

Here L(E/k, s) is the Hasse-Weil L-series of E over k. After doing base change
to the quadratic field K, one gets

L(E/K,s+1) = A(f.1p,s)

where 1p is the trivial character of Pic(Og). Our formula can certainly be
applied to these elliptic curves. An example is given in §3.4

NOTATION

We fix the following notations:

k: the rational function field F,(t), ¢ = p’ where p is an odd prime.

S

the polynomial ring F[t].
oo : the infinite place, which corresponds to degree valuation vx.
oo : t7 1, a fixed uniformizer of co.
koo i Fg((t™1)), i.e. the completion of k at oc.
Ooo i Fy[[t71]], i.e. the valuation ring in k.
P : afinite prime (place) of k.
kp: the completion of k at the finite prime P.
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Ap: the closure of A in kp.
Ay the adele ring of k.
k [15 kp, the finite adele ring of k.
A: TlpAp.
oo+ a fixed additive character on ko: for y = >, a;ml, € koo, we define
Yoo (y) = exp (%\F : TI"]FQ/]FP(—%))-

We identify non-zero ideals of A with the monic polynomials in A by using the
same notation.

1 DEFINITE SHIMURA CURVES

Let D be a quaternion algebra over k ramified at oo (call D “definite”). Before
introducing the definite Shimura curve for D, we start with a genus 0 curve
Y over k associated with the quaternion algebra D, which is defined by the
following: the points of Y over any k-algebra M are

Y(M)={x€D®, M:xz+#0,Tr(x) = Nr(x) =0}/ M*,

where the action of M* on D ®; M is by multiplication on M, Tr and Nr are
respectively the reduced trace and the reduced norm of D. More precisely, if
D = k+ku+kv+kuv where u?2 = a, v2 = 8, o and § are in k>, and uv = —vu,
then Y is just the conic

ay? + 2% = apuw?

in the projective plane P2. The group D* acts on Y (from the right) by
conjugation. If K is a quadratic extension of k, Y (K) is canonically identified
with the set Hom (K, D) of embeddings: for each embedding f : K — D, let
y = ys be the image of the unique K-line on the quadric {z € D Q4 K :
Tr(z) = Nr(xz) = 0} on which conjugation by f(K*) acts by multiplication by
the character a — a/a. Note that y; is one of the two fixed points of f(K*)
acting on Y (K); another one is the image of the line where conjugation acts
by the character a — a/a.
Let Ny be the product of the finite ramified primes of D. Choose a maximal
A-order R of D. For any finite prime P let Rp := R®4 Ap, Dp := D Q4 kp,
and . .

R::R@)AA, D:=DR k.

DEFINITION 1.1. (cf. [2] and [§]) The definite Shimura curve Xn, is defined as
Xy, = (RX\@X x Y) /D*.
We will use the notation X instead of X, when Ny is fixed.

LEMMA 1.2. Xy, is a finite union of curves of genus 0.
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]fmoﬁ, Let g¢1,...,9, be representatives for the finite double coset space
R*\D*/D*, ie.

T
=1

Then each coset of X, has a representative (R*g;,y) mod D* and the map

XNO — H?:l YV/I—‘Z
(R*gi,y) —  ymodl;
is a bijection, where I'; = g{lléxgi N D> is a finite group for i = 1,....,.n. O

DEFINITION 1.3. Let K be an imaginary quadratic extension of k (i.e. oo is
not split in K). We call

z = (g,y) € Image| R*\D* x Y(K) = Xy, (K)

a Gross point on Xy, over K.

Let f: K — D be the embedding corresponding to y. Then
F(K)Ng~'Rg = f(04)

for some quadratic order Oq := A[v/d] where d is an element in A with d ¢ k2 .
In this case, we say x is of discriminant d. Note that the discriminant of a Gross
point is well-defined up to multiplying with elements in (Fy )2. Set X; :=Y/I';.
If the component g of a Gross point z is congruent to g; in ﬁx\ﬁx/ﬁx, then
x lies on the component X;(K) = (Y/I';)(K).

1.1 AcTIONS ON (GROSS POINTS

Let a € K* where K := K ®gk and z = (g9,vy) be a Gross point of discriminant
d. Let f: K — D be the embedding corresponding to y. This induces a
homomorphism f : K — D and we define

za = (9f(a),y).
Note that x, is also of discriminant d, and it is easy to check that x = z, if
and only if a € O K* where Oy := O4 ®4 A. Hence O \K*/K* = Pic(Oq)
acts freely on the set Gy of Gross points of discriminant d.
The orbit space G4/ Pic(Oq4) is identified with the space of double cosets
RE/F(K),
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where f: K — D is a fixed embedding (if any exist) and

€:={geD: f(K)ng "Ry = f(Oa)}.
Note that
RNE/F(K™) = [ RE\ER/F(K})
P
where Ep := {gp € D} : f(Kp)ﬁgglRpgp = f(Oq,p)} and Oy p is the closure
of Ogin Kp := K ®, kp.
LEMMA 1.4. (cf. [16] or [17])
if P 1 N
#RF\ER/FKF) = yEEN,
1-{4£} if P| No.

Here {%} is the Fichler quadratic symbol, i.e.

1 if P*jd or dmod P € ((A/P)")%)
{ } =4-1 ifdmodP € (A/P)* — ((A/P)X)Q,
0 if Pld but P21d.

ol

Remark. The above lemma tells us that the number #(Gg) is equal to

I ({5}

where h(d) is the class number of Og.

There is a natural action of Gal(K/k) on Gross points in the following way: let
z = (g,y) be a Gross point and f, : K < D be the embedding corresponding
to y. Define

7 = (9,9)° = (9,Yo)

where o € Gal(K/k) and y,, corresponds to the embedding f,oo. If x is a Gross
point of discriminant d in X; then so is 7. Moreover, let a € O; \K > /K> =
Pic(O4) and o € Gal(K/k) one has

(27)a = (To(a))”

Therefore we have an action of Pic(Oq) x Gal(K/k) on the set G4 of Gross
points of discriminant d.
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1.2 HECKE CORRESPONDENCES AND (GROSS HEIGHT PAIRING

Let P be a prime of A. Let T be the Bruhat-Tits tree of PGLa(kp) as defined
in [T4]. The vertices are the equivalence classes of Ap-lattices L in k%, and two
such vertices [L] and [L'] are adjacent if there exists an integer r such that

PHLCL CPL.

This is a tree where each vertex has degree ¢d°¢¥ 4 1. For a vertex v, the
Hecke correspondence tp sends v to the formal sum of its ¢°8 ¥ + 1 neighbors
in the tree. Identifying PGLy(Ap)\ PGL2(kp) with the Bruhat-Tits tree, we
can write the Hecke correspondence for g € PGL2(Ap)\ PGL2(kp):

1 u P 0
tr(g) = Y < >g+< )g
deg(u)<deg P 0 P 0 1

Note that X, can be written as
(RX\@X/;&X) X Y/D*

and o
R\D*/k* = [['RI\DE /K.
P

When (P, Ny) =1,
RA\D}/kj =2 PGL2(Ap)\ PGLy(kp)
and so we have the Hecke correspondence tp on Xy, .

Now suppose P divides Ny, then RF\DJ/kj has two elements and define the
Atkin-Lehner involution

wp(g,y) = (g’ y)
where ¢’ is another double coset in RE\DF/kp.
From the construction, these correspondences commute with each other. There-

fore we can define Hecke correspondence ¢, for every non-zero ideal (m) of A
in the following way:

tmm' = tmtm if m and m’ are relatively prime,
tpe =tpetp —qi®Ptpe > for P4 Ny,

tpe = wh for P | No.

Note that X = Xy, = [[;-, X;, where n is the left ideal class number of R.
Consider the Picard group Pic(X), which is isomorphic to Z™ and is generated
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by the classes e; of degree 1 corresponding to the component X;. Then the
correspondences t,, induce endomorphisms of the group Pic(X). In fact, with
respect to the basis {es,...,e,}, these endomorphisms can be represented by
Brandt matrices.

Let {I1, ..., I,} be a set of left ideals of R representing the distinct ideal classes,
with [; = R. Let w; := #(R;)/(¢ — 1) where R; is the right order of I;,.
Consider M;; := I;lfi, which is a left ideal of R; with right order R;. Choose a
generator N;; € k of the reduced ideal norm Nr(M;;)(:=< Nr(b) : b € M;; >4)
of M;;. For each monic polynomial m in A, define

_ #{be Mj; : (Nx(b)/Ni;) = (m)}
(¢ = Dw;

Bij (m) :
and the m-th Brandt matriz

B(m) = (Bij (m)> € Mat, (Z).

1<ij<n

PROPOSITION 1.5. For all non-zero ideal (m) in A and i =1,2,...,n,
n
tmei = ZBij(m)ej.
j=1

Proof. From the definition of ¢,, and the recurrence relations of B(m) (cf. [16]),
we can reduce the proof to the case when m = P is a prime.
From the following bijection

RX\D* = {left ideals of R}
R*g > 1, = RgnD,

for any element g in D* we can identify the following set

{]A%X (1 u)g:degu<degP}U{f%X (P 0) g}
0 P 0 1

{left ideal I of R contained in I, with Nr(I) = P Nr(I,)}.

According to the definition of tp, tpe; = Zj oje; where oy is the number of left
ideals I of R equivalent to I; which are contained in I; with Nr(I) = P Nr(I;).
It is easy to see that a; = B;;(P) and so the proposition holds. O

with

We define the Gross height pairing < -,- > on Pic(X) with values in Z by
setting

<ej,ej >=0 if i # 7,
< €5, € >i= wy,

and extending bi-additively. Therefore Pic(X)Y := Hom(Pic(X),Z) can be
viewed as a subgroup of Pic(X) ®z Q with basis {€; := e;/w; : i = 1,...,n} via
this pairing. Since w;B;;(m) = w;B;;(m), one has the following proposition.
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PROPOSITION 1.6. For all classes e and €' in Pic(X), we have
<tme e >=< e, tme > .
Proof. Since w;B;;(m) = w;Bj;(m), we have
<tmei,e; >=<ej, tpe; > .
for all 7, j and the result holds. O

Let d € A with d ¢ k2,. Assume every prime factor P of Ny is not split in
K and P? does not divides d (i.e. the set G4 of Gross points of discriminant
d is not empty). For any prime P | Ny, one has wp(G4) = G4. Suppose
Py, ..., P. are primes dividing Ny and inert in K. We have in fact a free
action of Pic(O4) x []i_,(wp,) on Gq. Since wp, are of order 2 for all i,
Pic(Oq) x [[;—, (wp,) acts simply transitively on Gg.

Let a € A with a ¢ k2. Consider the rational divisor
wim Y g L
“n ~ 2u(d) ¢

a=df?,f monic zq€Gq

Here u(d) = #(0}). By calculation one has
1 h(d) d
deae) =5 > |mg- [Ta-{Fp
a=df?,f monic P|No

Let e, € Pic(X) ®z Q be the class of the divisor ¢,. It can be shown that

PROPOSITION 1.7. The class e, lies in Pic(X)Y, which is considered as a sub-
group of Pic(X) ®z Q.

Note that we can extend the Gross height pairing to Pic(X) ®z C which is
linear in the first term and conjugate linear in the second. In the next section
this pairing gives us a construction of automorphic forms of Drinfeld type.

2 AUTOMORPHIC FORMS OF DRINFELD TYPE AND MAIN THEOREM

2.1 AUTOMORPHIC FORMS OF DRINFELD TYPE

Consider the open compact subgroup Ko(Noo) :=[[p Ko,p x T'sc of GLa2(Ay),

where
IKOJD = {(a Z) S GLQ(AP) 1 cE NAP}
C

for finite prime P, and

[ := {(a b) € GL2(0x) i c € 7700(900}.
c d
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An automorphic form f on GLa(Ay) for Ko(Noo) (with trivial central charac-
ter) is a C-valued function on the double coset space

GLa(k)\ GL2(Ag)/Ko(Noo)k,.

Note that by strong approximation theorem (cf. [16]) we have the following
bijection

GLa(k)\ GLa(Ay)/Ko(Noo)kZ = To(N)\ GLa (ko) /Tock

where

Cc

To(N) = {(“ Z) € GLy(A) : ¢ = 0 mod N} .

Therefore f can be viewed as a C-valued function on I'o(NV)\ GLa(koo)/Tack -
From now on, we call f an automorphic form for To(N) if f is a function on
the space of double cosets I'g(IV)\ GL2(koo)/T'sokX. An automorphic form f
for To(N) is called a cusp form if for every goo € GLa(koo) and v € GLy(A)

o 06 7))
A\koo 0 1

Here du is a Haar measure with fA\k du =1 and h,, is a generator of the ideal
of A which is maximal for the property that

v ((1) h”f) 71 C To(NV).

Note that the coset space GLa(koo)/T ook can be represented by the two

disjoint sets
T
Ty = { <7T°° u) ir€Z,u€ koo/ngoooo}
0 1

o= (0 ez uer ol
0 1 Too 0

DEFINITION 2.1. An automorphic form f on GLa (ko) is of Drinfeld type if it
satisfies the following harmonic properties: for any goo € GLa(ko) we have

and

f<goo>:=f<goo<0 1>>=—f<goo>and ST flgwr) =0

Too 0 KEGL2(O00)/Tos
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Suppose a function f : (1) ‘f \ GL2 (ko) /TookZ — C is given. Recall the

Fourier expansion of f (cf. [18]): for r € Z and u € koo,

f < - 1) = £ Moo (M)

A€A

where

o o),
() = /A \kwf<0 1)%( ).

Here 9, is the fixed additive character on ko, in the notation table. Since
flg7s0) = f(g) for all oo € Too, f*(r,A) = 0 if deg A + 2 > r. Moreover, if f
satisfies harmonic properties, then

FHrA) = q TR [ (deg A+ 2, )

ifdegA+2<r.

2.1.1 EXAMPLE: THETA SERIES

Fix a definite quaternion algebra D = D(y,) where Ny is the product of finite
ramified primes of D. Let R be a maximal order and n be the class number.
With representatives of left ideal classes fixed in §I.2] we have introduced for
each (7, 7), the ideal M;; of D and chose a generator N;; of the fractional ideal
Nr(M;;). For 1 <4,j <nand (z,y) € kX X koo, define

Byloa) = 3 nlCpatt) - e (),

N;;
beM;;

where ¢ is the characteristic function of O. It is easy to obtain the following
properties:
(1)

0:(x,y) = Z B;j()‘)wOO(Ay)

AeA,deg A\ +2<v ()

where for each A € A,
B;J(A) = #{b S Mij : Nr(b)/Nl] — )\}

(2) O;j(x,y+ h) = 0;(x,y) for h € A.
(3) 0;j(ax, Bx +y) = 0;(x,y) for « € O, B € Oo.

Basing on Poisson summation formula, we have the following transformation
law for 6,; (cf. Appendix B):
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a

PROPOSITION 2.2. Let (z,y) € kX X koo and v = Z) € SL2(A). Suppose
c

Voo (€Z) > Voo (cy + d) and ¢ =0 mod Ng. Then for 1 <i,j <n,

x ay +b — v (cy-+d)
0, : veoleytd) L g (1. y).
’ ((cy+d)2 cy—f—d) ! &9)

For goo € GLa(kwo), write goo as vy (g 31/> Yoo Zoo, Where v is in T'g(Ny), (z,y)

is in kX X koo, Yoo 18 In s, and 2o is in kX . We introduce the theta series
©;; for M;;:

©ij(9oc) Lqve) Z 0ij(x, ey)

ecFy

N E D SR DI ® DEE)

mEA monic, X
deg m42<voo (2) ecly

The last equality follows from B;;(0) = 1 and for each monic polynomial m € A,
(q— Dw; - Biy(m) = > _ Bij(em).
€€l
The transformation law of §;; tells us that

LEMMA 2.3. ©;; is a well-defined Q-valued function on the double coset space
To(No)\ GLa (koo ) /T ook -

Proof. Let goo be an element in GLo (ko). Suppose

r1 Y1 T2 Y2
oo = M1 Voo,1%21 = 72 V0,222,
( 0 1 ) ( 0 1 )

where for i = 1,2, v; € To(No), (@i, Yi) € koo X kX, Voo,i € o, 2z € kX. We
need to show that

q—Uoo(xl) . Z Hij(x17€y1) = q_Uoo(CC2) . Z Hij(x27€y2)
e€Fy eeFy

_ b
Set v = 7, 1’71 = <a
c d

Voo (€Z1) > Voo (cy1 + d) and

-1 -1
), Z = 21 22, and Yoo = You,1V00,2- Then one has
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dety-z ay1+b
(cyt1+d)12 cyfid L 0) (eyr +d 0
0 1 C;Cj_d 1 0 cy1 +d

T
_ 2 Y2 Yooz
0 1

Therefore voo (22) = Voo (1) — 2000 (cy1 + d), and the properties of ;; implies

detvy -z ay; +b
05 (w2, €y2) z‘j( L e )

(cyr +d)2’ ecyl +d

for each € € IFqX. Hence the transformation law of ;; in Proposition 2.2 shows

q—Uoo(iC2) . Z gij(x% €y) _ q—voo(:cl) . Z gij(detfy -y, edety - y1)

ecFy ecFy
— Voo (T
= ¢ (o). E 0ij(x1,€y1)
EEF;

O

The Fourier coefficients of ©;; can be easily read off from Brandt matrices: for
each r € Z and )\ € A with deg A + 2 < r the Fourier coefficients

¢ "Bij(m) if (A\) =(m) #0,

0 \) =
q " Jw; if A=0.

Therefore O (r 4+ 1,A) = ¢~ '0j;(r, ) for all A € A with deg A +2 <.

In fact, ©;; are of Drinfeld type for all 1 <i,j < n. To show the harmonicity
of ©;;, by [0] Lemma 2.13, it is enough to prove that for all go, € GL2(koo)

0ij(9goo) = —0i5(goo)-

Let 75, € kX and u € koo. Choose ¢,d € A with ¢ = 0 mod Ny, (¢,d) = 1,
Voo(u+ 2) > 7 +1, and find a,b € A with ad — bc = 1. Then for ¢ € Z with
¢ <17+ 1 the following two matrices:

¢ _ Tt
Tso u 0 1 and d b 2 N
0 1 Moo O —c a 0
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represent the same coset in GL3(koo)/T'sokZ. Using this fact for £ = r and
¢ =r + 1 one obtains

~ ™o 1= oy
®ij e’} —q 1@1']' o
0 1 0 1

* a
= Z 0;;(1 —r+2degc, N)?ﬁoo(/ﬁz)-
deg p+2=1—r+2degc

Set u, = —% + emy, for € € Fy. From the identity

a 1 aue +b

¢ cRerl,  cuc+d’
and summing over all € we get:

~ Vs m g;r auc+b
q_1 O, 00 _ @i’ c cue+d
(=18 0 1 2 Oy 0 1

eEF;

« a
= q Z 0,1 —T+2degc,u)woo(uz).
deg pu+2=1—r+2degc

1—r
W?:% g:j: ig and [ ¢ b Tt ue
0 1 c d 0 1

represent the same coset in GLa (ko) /T ook . Thus one has

~ [t ~ (7%, u ATl u+en?,
i —0; =) 0 :
0 1 0 1 ceF 0 1

From the Fourier expansion of (:)i]- and O;; we have that for A € A with
degA+2<r,

Note that

O5;(r+1,)) — 05(r,\) = (¢ — 1)0};(r + 1, 1),
and for deg A\ +2 =r +1,
O;;(deg A+ 2, ) = —O7;(r + 1, \).

Therefore é;"j (r,A) = =05;(r, A) for A € A with A # 0 and r > deg A + 2.

To compute ©7;(r, 0), note that

~ m 0 a
@ij<0 1) = Z eij(rv)‘)

deg A<r—2

= 050+ Y —ey(rN.
A#£0,deg A<r—2
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On the other hand, for any e € F* and £ > 0 the following two matrices

7_‘,lfdegN —£ € ¥
pdegNo+t o\ (0 1 (< —1 ST e
0 1) \7ee 0O —t!Nyg  €(t*No+1) 0 1

represent the same coset in GLa(koo)/T ook, Therefore

- deg No+¢ 3
Oij (FOO ) = Z O (deg No + £ + 1, A)woo(AtgLN)
0 1 deg A<deg No+£—1 0
* 1 *
= ) Oj(deg No+L+1, N > O5(deg No+L+1, ).
deg A<deg No+0—2 97 Lgeg A—deg No+0—1
This gives
©7;(deg No + £,0) =
= (ez‘j(degNo+e+1,0)+(1+q) > O5(degNo+L+1,))
A#0,deg A<deg No+£—2
1
—— > ©;;(deg No +€+1,>\)>
a- deg A=deg No+{—1

= —@fj(deg No+4, 0)+

deg No+£ 0 deg No+£+1 0
q0i; | " —0, ™
0 1 0 1

Using the fact that M;; is discrete and cocompact in Doy = D ®p, koo, it can
be deduced that for sufficiently large s one has

s s+1
40 ms, 0 — 0, mEd 0 .
0 1 0 1

Thus from the equality (:)Z*j (r+1,0) — (:)fj(r, 0) = (¢ — 1)©;(r + 1,0) for all
r € Z one has

1

@:j (Ta 0) - 76;}' (Ta 0)

Comparing the Fourier coefficients we obtain éij = —0;; and hence ©;; is of
Drinfeld type for any 1 <i,j <n.
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2.2 HECKE OPERATORS

Let f be an automorphic form on GLg (ko) for I'g(IN). For each prime P of A,
the Hecke operator Tp is defined by:

u P 0

Tofto) = % 1|1 ") 9+ g) iPEN,
degu<deg P 0o P 0 1

(ST N SR { R ) if P|N.
degu<deg P 0 P

Note that the Fourier coefficients of Tp f are of the form:
(Tpf)*(r.A) = ¢ - f*(r + deg(P), PA) + f*(r — deg(P), ) if P{N,
(Tp)*(r, A) = 18P . f*(r + deg(P), PA) if PIN.

Here f*(r7,,%) =0 if P{ \. Since Tp and Tp/ commute,we can define Hecke
operators T), for monic polynomial m in A as follows:

T = Ty Lo if m and m’ are relatively prime,
TPZ = TPE—ITP — qug PTpZ—z for P Jf N,
Tpe =T for P| N.

We point out that if f is of Drinfeld type, then so is T,,f for any monic
polynomial m (cf. [7] Section 4.9).

When T, acts on 0,5, we get:

PROPOSITION 2.4. For any monic polynomial m in A,
T @'L] = ZBM elj = ZBEJ

Proof. The second identity will follow from the first, as
w]-@ij = wz@ﬂ and '(UzBie(m) = szh(m)

Note that the Hecke operators T, satisfy the same relations as the matrices
B(m). Moreover, from the recurrence relations of Brandt matrices (cf. [16])
we have

Z Bit(P)Byi(m) = Bij(mP) + ¢ By;(m/P) if Pt Ny,
Z Biy(P)Byj(m) = Bij(mP) if P | No.
Comparing the Fourier coefficients the result holds. O
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Remark. Let En, := > O;; (which is independent of the choice of 7). For
j=1
r € Z and X € A with deg A + 2 < r the Fourier coefficients are

Ene (1 A) = ¢ "o (M),

where

U()\)NO _ Z qdegm7

m|X monic
(m,Ng)=1

and
“ 1
Ny (1 0) =" Z W
w;’
Jj=1
Moreover, from Proposition 2.4 we have

TmSNg = o(m)NOENO

for all monic polynomials m in A. This tell us that the function €y, , which is
an analogue of Eisenstein series, generates a one-dimensional eigenspace for all
Hecke operators. We point out that suppose Ny = Hle P;, by comparing the
Fourier coefficients one gets

4
EN, (9oo) = E(goo) + Z(*l)i Z E <<le ~(~).Pj¢ ?) goo>

=1 1<51<...<g: <4

for goo € GLa(koo) where E is the improper Fisenstein series introduced in [6].

For each non-zero ideal N of A, recall the Petersson inner product, which is a
non-degenerate pairing on the finite dimensional C-vector space S(I'g(V)) of
automorphic cusp forms of Drinfeld type for T'g(NV),

(f.9) = /GO(N)f 7.

Here Go(N) = I'o(N)\ GL2 (ko) /TsokZ . The measure on Go(N) is taken by
counting the size of the stablizer of an element (cf. [7] §4.8). More precisely,
let T be a congruence subgroup and e € GLa (ks )/Tock,. We denote Stabr(e)
the stabilizer of e in I'; which is a finite subgroup in I'. One takes the measure
d([e]) of each double coset [e] in T\ GLa (koo )/T'ookX where

#(Z(I))
#(Stabr(e))’

Here Z(T') is the subgroup of scalar matrices in I'. When I" = T'y(IV), for f and
g in S(To(N)),

d([e]) =

(fg)= D flegle)d(e).

[e]€Go(N)
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DEFINITION 2.5. An old form is a linear combinations of forms

(60

for goo € GLa(koo), where f is an automorphic cusp form of Drinfeld type for
To(M), M|N, M # N, and d|(N/M). An automorphic cusp form f of Drinfeld
type for T'o(NV) is called a new form if for any old form f’ one has

(f.f")=0.
If f is a new form which is also a Hecke eigenform, then f is called a newform.

It is known that the dimension of Drinfeld type cusp forms for I'g(Ny) is equal
to the genus of the Drinfeld modular curve Xo(Np) (cf. [7]). Let S™¥(T'q(Np))
be the space of new forms for T'g(Ny) and hy, be the number of left ideal classes
of the maximal order R. As in the classical case, we can deduce that

[T ™" = 1)+ 52 TTa - 0=,

P|No ¢+1 P|No

1
=71

hn,

From the genus formula of Xo(Np) in [5], the dimension of S™¥(T'o(Ny)) is
equal to hy, — 1.

In the next subsection we will give our main theorem, which is essentially a
construction of the space S™%(I'y(Np)) of new forms for T'g(Np) via the theta
series ©;;.

2.3 MAIN THEOREM

Consider the definite Shimura curve X = Xy, introduced in §Il Recall the
height pairing

<e e >= Z a;a;
where e € Pic(X) with e = Y, ase; and € € Pic(X)Y with €/ =Y, alé;.

Let M (T'o(No)) be the space of automorphic forms of Drinfeld type for T'o(Np).
Define ® : Pic(X) x Pic(X)Y — M (Ty(Ng)) by

Ple,e) = ¢? Z a;a;0;;
2%

for any e € Pic(X) with e = >, ae; and ¢’ € Pic(X)Y with ¢/ = )", ajé;. Then
for r € Z and u € ko, we have the following Fourier expansion

d(e,e) <7r(f)>° ?) =g "t (dege -dege’ + Z < e, tme > Z woo(emu))

m monic, X
degm<r—2 ecly
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Since
<tme, e >=< e, tye >
for any monic polynomial m € A, by Proposition 2.4 one has
T (®(e,€")) = P(tme, €') = (e, tme’).
In fact, the image of ® is in MW (I'g(Ny)) := SV (['y(Ng)) & CEn,. To see

this, we need the following claim.

CramM: for any monic m in A, consider ¢, as in End(Pic(X)) and restrict T,
to the subspace M™% (T'y(Np)). We have

Trit, = TrT,,.

This claim tells us that the C-algebra T¢ generated by all ¢, is isomorphic to
the C-algebra generated by all Hecke operators Ty,. Moreover, Pic(X) ®z C
and M™V(Io(Ny)) are isomorphic as T¢-modules.

According to multiplicity one theorem, which will be recalled in the Ap-
pendix §A2 M™V(T'o(Np)) is a free rank one Tc-module. More precisely,
M"¥(Ty(No)) is generated by the element f whose Fourier coefficients are

f*(rv )‘) = qir+2 : Tr(Tm)
for all 0 # X € A, (A\) = (m), deg A+ 2 < r. Therefore Pic(X) ®z C is also a
free rank one Tc-module. This shows

dime M™% (T'y(Ny)) = dime [(Pic(X) ®z C) ®1. (Pic(X)Y @z C)|.

Moreover, since

i < e, tmé; > = Tr(B(m)) = Tr(tm),

i=1

we get > o ®(e; &) = f, which generates M"™(To(Ny)). This
also tells us that Z?zl e; ® é is a generator of the cyclic Tc-module
(Pic(X) ®z C) @1, (Pic(X)Y @z C).

The above argument gives us the main result:

THEOREM 2.6. There is a map ® : Pic(X) x Pic(X)V — M2V (To(No))
satisfying that for r € Z and u € ks

<I>(e,e’) (WSO ?) = q*”r2 (dege ~dege’ + Z < e, tyme > Z woo()\u)>,

ey (N)=(m)
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and for all monic polynomials m in A
T ®(e,e') = ®(tme,e) = B(e, time).
Moreover, this map induces an isomorphism
(Pic(X) ®z C) @1, (Pic(X)Y ®z C) =2 M™¥(T'o(No))
as Tc-modules.

Remark. 1. When Ny is a prime, M™% (T'g(Ny)) = M (T'o(No)) and so the theta
series ©;; gives us a construction of all automorphic forms of Drinfeld type for
['o(No). This case was proven by Papikian [I0] via a geometric approach.

2. Since the theta series ©;; are Q-valued, the map ® in Theorem 2.6 in fact
induces an isomorphism

(Pic(X) ®z Q) @1, (Pic(X)" ©z Q) = M"(I'o(No), Q)

where Tq is the Q-algebra generated by t,, for all monic m in A and
M™% (Tg(Np), Q) is the space of Q-valued functions in M™*¥(T'y(Ny)).

3. The CrLAIM above is essentially Jacquet-Langlands correspondence over the
function field k, which will be recalled in the Appendix ATl

2.4 EXAMPLE: THE FUNCTION g4

Having Theorem 2.6, we exhibit automorphic forms of Drinfeld type with nice
arithmetic properties. Let D € A — k%, be a square-free element with the
quadratic Legendre symbol (%) # 1 for all P | Ny. Let K be the imaginary
quadratic field k(v/D) and Ox be the integral closure of A in K. Recall that
in §I77] one has a free action of Pic(Ox) on the set Gp of Gross points of
discriminant D in the definite Shimura curve X = Xp,:

GD X PiC(OK) — GD
(x, A) — 4.

Suppose a Gross point x of discriminant D in X is given. For each ideal class
A in Pic(Ok), denote e4 to be the divisor class (z4) in Pic(X). Define

ga= Y. D(es ean).

BePic(Ok)

We have a nice formula for the Fourier coefficients of g4 in terms of Hecke
actions: for monic m € A with degm + 2 <r,

—r+2
g;(r, m) =4q T2 Z < es,tmeas >,
BePic(Ok)

—r+2

92(7"70) =q 'hOK-
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Here ho, = #Pic(Ok). Note that ga is independent of the choice of the
Gross point z.

From now on we assume D is irreducible with (%) = —1 for all primes P | Ny.
According to Dirichlet’s theorem there exists a monic irreducible polynomial
(@ prime to Ny and €9 € IFqX - IB% such that deg No@QD is odd and ¢y NyQ =
1 mod D. Then there exists j € D with j2 = ¢ NoQ so that D = K + Kj and
jlaj=aforac K.

Let 0 = (VD) be the different of O, which is a prime ideal in Og. Since

e0No@ = 1 mod D, one has (%) = 1. From the reciprocity law we get

(%) = 1 and so the prime ideal (Q) is split in K. Suppose (Q) = qq and set

R:i={a+fBj:acd,Bed g ,a—pe 0}

Here O, is the localization of Ok at 0. It is clear that R is an A-lattice in D
containing 1. In fact, R is a maximal A-order and K N R = Ok. To show R is
an A-order, let a1 + 817 and as + P25 be two elements in R. Then

(a1 + Brj)(ag + B2j) = (10 + B1B260NoQ) + (1 B2 + Brdiz)j.
For i = 1,2, write §; as a; + §; with §; € Op. Then
arag + B1PaeoNoQ = ar (o2 + ) + (6152 + S1d2 + 6102)e0 NoQ.
Since ag €071 = A+ \/FA, one has
as + ag € A.

Hence

10 + B acoNo@ €02 NVD 0y =0 L.
Similarly,

a1fBe + Braz €072 N \/57100 =0 1qg7 L
From the condition that g /Ng@ = 1 mod D, one can check that

arag + f1B2e0NoQ — (a1 B2 + Braz) € Oy.

Therefore R is an A-order. The discriminant of R is (No)?, which can be
checked locally. This implies that R is maximal.

Let = be the Gross point in the definite Shimura curve X = Xy, which
corresponds to the trivial ideal R and the embedding K < D. Then zx is
of discriminant D. Using this particular Gross point we can get an explicit
formula for the Fourier coefficients of g4 .
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Note that there is a one-to-one correspondence between the irreducible com-
ponents of X and the left ideal classes of R. Let a € A, b € B. Then Ra and
Rab are representatives of the left ideal classes of R corresponding to e4 and
eas respectively. Therefore

<ep,tmeqan >= q_%#{b € b~ 'Rba := (Nr(b))/ Nr(a) = (m)}.

Assume Nyd and a are relatively prime. Then
b 'Rba = {a+8j:acvla,feco b tbgla,a— (1) ®s e 0,}.

We can express the Fourier coefficients of g4 in terms of sums of the counting
numbers

ra((N) := #{a € A : a integral with Nr(a) = ()},
for ideals () of A, by the following proposition:

PROPOSITION 2.7. Suppose D € A — k2, is irreducible with (%) = —1 for all
primes P | No. Then for any monic polynomial m in A,

> <entuens >= s | 2ral(mD)a — Dhoy
BEePic(Ok)
D
+ Z ra((uNo —mD))(t(p, D) +1)(1 — 5uNo(uN07mD)) Z (;) 1 .
HEA,uF#0 cln

deg(uNg)<deg(mD)

Here t(p, D) = 1 if D divides p and O otherwise, and 6, is the norm residue
symbol of z for z € k% : 0, =1 if z € Nr(KZ2) and —1 otherwise.

Proof. Let a € A which is a proper ideal of Og and prime to Ngd. Fix
a generator A9 of Nr(a) = aa. Given B € Pic(Ok). Let b € B. For
b=a+pj€b 'Rba,ie.acdta, Bco g lblba, a— (—1)7® b3 € Oy,
define:

(1) ¢:= (B)oqb~"ba € [q]BA,
(2) v:= —Nr(a)D)\;* € A4,

(3) = —eo Nr(B)DQN; ' € A.

Here [q] € Pic(Ok) is the ideal class containing q. Then c¢ is integral and

Nr(a 4 34) = Nr(a) — egNoQ Nr(B) = (—v + Nou) D~ \o.

Thus (Nr(a + 8j)) = (mXg) if and only if v = Nop — emD for a uniquely
determined € € F'.
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Since § = 0 if and only if b = a € a, one has

#{b € b Rba : Nr(b) = (mAo)}
= #{b=a+Bjcb 'Rba: B #0,Nr(b) = (mo)}
+#{a € a: Nr(a) = (mAo)}.

It can be shown that #{a € a : Nr(a) = (mXo)} = (¢ — 1)ra((mD)). Note
that 8 # 0 if and only if p # 0. In this case, § is uniquely determined by the
integral ideal ¢ up to multiplying elements in O.

Conversely, given 0 # 1 € A and € € F and set v = Nopu — emD. The number
of elements a € 97 1a with Nr(a) = —vD~1)\g is rq5, (Nop — emD). Here

Tax,(A) := #{a € a: Nr(a) = Ao} for A € A.

In the case of 74, (Nop—emD) # 0, choose an element o € 9~ a with Nr(a) =
—vD7!)\g. Let ¢ be an integral ideal which lies in a class differing from the
ideal class A[q] by a square [b]? in the class group Pic(Ok) and with ideal norm
(1). Then

c-b'bag o = (B)
for some 3 € K*. Suppose we can find 3 so that u = —eo Nr(8)DQM; ' € A.
Since €gNo@ = 1 mod D, the equality emAg = Nr(a) — egNgQNr(8) € A
implies

at f € Oy.

Choose £ € {0,1} and replace b by bd’ so that a—(—1)°"% ()3 € O,. Therefore
b= a+ Bj € b-1Rba with Nr(b) = em)o. Note that if 8 is not in O, (i.e.
D { p), then ¢ is uniquely determined. If 8 € O, (i.e. D | u), then we have
two choices +3. The existence of 3 is equivalent to that —ey 'DuQ=1xg is
in Nr(K*). Since Nr(v/D) = —D and (e; 'pQ ' \o) = Nr(cq~'a), we have
ealqul)\O € Nr(K*) if and only if 5651%2*1)\0 = 1. Therefore combining the
above arguments we have

> #{b=a+Bjcb 'Rba: B #0,Nr(b) = (mo)}

BePic(Ok)

=Y > rar®op—emD) - (t(n, D) + 1) - Ryapgy (1)

0F#PEA ccF X

1+,
()
2

HQ™ Ao

Here Ry 4(q13((1)) is the number of integral ideals ¢, which lie in a class differing
from the class A[q] by a square in the class group Pic(Og) and with ideal norm
(). Following the proof of Lemma 3.4.9 in [I2] one has

LEMMA 2.8. For0# pe A,
14+6 1 —1y 1 D 1+6 1 —1y
R . Q0 _ Dy & Q1N
(1)) 5 qf1§ (C) 5

clp
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Since 5651%2*1)\0 = 1if and only if dnypun, = —1, with Lemma 2.6 we have

> #{b=a+Bjcb 'Rba: B #0,Nr(b) = (mo)}

BePic(Ok)

1 —dnguro 1 D
=3 3 rano(Nop —emD) (i1, D) + 1) - 5 =2 37 (
0F#pEA ccF ) clp

1 = 0uNo(uNo—mD D
= 37 ral(uNo — mD))(t(u, D) +1) - —1ReltommD) 57 (2],
HEA, u#0 (;‘u
deg(uNg)<deg(mD)
Therefore
1
> <es tmeas >= 2r.4((mD))(q — 1)hoy
BePi 2(¢-1)
ic(Ok)
D
+ Z TA((ILLNO - mD))(t(u, D) + 1)(1 - 5;LN0(;LN0—77‘LD)) Z ? .
HEA, u#0 (;‘u

deg(uNg)<deg(mD)

3 SPECIAL VALUES OF L-SERIES

3.1 RANKIN PRODUCT

To an automorphic cusp form f of Drinfeld type for I'o(/N) one can attach an
L-series L(f,s): let m be an effective divisor of k, which can be written as
div(A)o + (r — deg A)oo for a nonzero polynomial A (= A(m)) in A, with

div(\)o:= Y ordp(M)P.

finite prime P

Denote

fr(m) = /A " (”%2 1‘) Yoo (—Au)du = f*(r +2, ).

The L-series L(f, s) attached to f is

L(f,s) = Z f*(m)g~ 8™ Res > 1.

m>0

Let D € A — k% be a square-free element. Consider the imaginary field K =
k(v/D). Let Ok be the integral closure of A in K and Pic(Og) be the ideal
class group of Og. Given an ideal class A € Pic(Ok) and a polynomial X in
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A. The number of integral ideals a in the class A with Ng /. (a) = (A) leads to
the partial zeta function attached to A:

Cal(s):= Z ra(m)g~dee™s Res > 1.

m>0
Here for each effective divisor m = div(A)g + (rr — deg A)oo,
ra(m) := #{a € A : a integral with Ng/,(a) = (A)}.

Let f be an automorphic cusp form of Drinfeld type for I'o(N). For each ideal
class A € Pic(Og), we are interested in the Rankin product:

L(f,A,8) =Y fr(m)ra(m)q 5™* Re(s) > 1.

m>0

To study the analytic continuation and the functional equation of L(f, A, s),
consider the function A(f, A, s) which is defined by:

AGFA.S) LWN:P) (25 + 1)L(f, A, s) when deg D is odd,
I, 8) =
1Jr(Z%L(N’D)(Qs +1)L(f,A,s) when degD is even.

Here L(V-P)(5) is the following L-series indexed by effective divisors supported
outside oo

1 D
LD = L 3 (E)q Re(s) > 1,

¢—1 deA,(d,N)=1
where (%) denotes the Legendre symbol for the polynomial ring A. Note that

O PR | (IR C PR

prime ideals P|N
where Lp(s) is the Dirichlet L-series:
N 1 D —sdegd
deA,d#0

It is known that Lp(s) can be extended to a polynomial in ¢—* with the func-
tional equation (cf. [I]):

LD(25 4 1) — qs(72degD+2)7% degD+%LD(_2S)

if deg D is odd, and

1 1-2s .
+4q qdegD(2s—§)LD(25)
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if deg D is even.
When f is a new form and D is irreducible, Riick and Tipp ([12]) prove the
following functional equation of A(f, A, s):

A(f, A s) =~ (%) qP72Aea D=2 NN (f, A, —5)

when deg D is odd, and

D .
,!(f,.A,S) (N) q(6—2degD—2degN)‘s/!(f“A, 5)
when deg D is even.

3.2 CENTRAL CRITICAL VALUES OF A(f, A, s)

We are interested in the special value of A(f,A,s) at s = 0. Note that if
(%) =1, then A(f, A, s) has a zero at s = 0. We focus here on the special case

when (%) = —1 for all primes P | Ng. Adapting Rankin’s method (cf. [12]),

we can establish the following theorem.

THEOREM 3.1. Let f be a Drinfeld type new form for T'o(Ny) and let D be an
irreducible polynomial in A — k2, with (%) = —1 for all primes P | Ng. One
has

% when deg D is odd,
2

(f7 gﬂ)

2g3degD when deg D is even.
q2

A(f,A,0) =

Here (-,-) is the Petersson inner product and g4 1is the Drinfeld type automor-
phic form for To(Ny) canonically attached to A in §27.

3.2.1 REVIEW OF RANKIN’S METHOD
Given A € Pic(Ok). Choose ag € A~! and \g € k such that N (ag) = (Ao)
Recall the counting number

Tao, Mo ()\) = #{,LL €y NK/k(‘LL) = )\0)\}

Note that 74, x,(A) = T'ao—l’Ao—l(A), and for effective divisor m = div(\)g +
(degm — deg A\)oo we have

ra(m) = q—% Z Tag,ho (EA)-

EEF;

We consider the following theta series 6gq,.5, (introduced in [I1]) defined on
kX X koot
'

Oao,x0 (oo ) = Z Tag,Mo (Moo (Au).

deg A\ +2<r
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It satisfies the following transformation law:
-

T au+b d\ o (cutd
Faa.20 ((Cu+ d)?’ qurd) = O (5) 40T a0 (o )

Cc

Here § is the local norm symbol at oo, i.e. §, = 1if z € kX is a norm of an
element in Ko, = koo (v/D) and —1 otherwise.

for all v = (“ Z) e TV (N) := To(N)NSLy(A) with veo (em7.) > Voo (cu+d).

Viewing 6,.), as a function on
H. .= 1 A \ kY kso / 0% O 7
0 1 0o 1 0 1

T

q = 7 [T U —r(s s
L(f, A, ) —Z[ > f-eao,%(() 1>q <+1>+2]
UET o0 O

1= 1 r=2 Ooo /7T,

one can write

B QL]-/ f(h)em),)\o (h)q_T(§+1)+2§dh.
_ H.

For every monic polynomial M in A, the canonical map
Heo — G(M) =TV (M)\ GLa (koo ) /Tock,
is surjective. Following [12], we consider the “Eisenstein series”

mou d ) .
E, 00 = - 6(; Voo (cu+d)(2s+1)
( 0 1) S (8)ora

c,d€A,c=0 mod D
Voo (emT0) > Voo (cutd)

N7l, Nu
0 1

g Tt B when deg D is odd,

e eitrisen [NTL N :
(( yr-d *0+1>.q—7<s+1)+25Es Teo YN hen deg D is even.

2
0 1

Then 0y, 1,Hs can be viewed as a function on G(ND). By [12] Proposition
2.2.2 and Proposition 2.3.2

q T
A - _9 .
(:4,9) 2(¢—1) /G(ND) IO
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Given M € A. Let F(M) be the space of functions on G(M). The trace map
from F(ND) to F(N) is given by

f— Tr¥P flg) = > f(vg).

~er{V (ND)\TEV (V)

Set @, := TrN" (04, 2, Hs). Then

. q
A= 3G [

From the harmonicity of f one has

8

__ 7 T
A(f,.A,s) B 4((1 - 1) /G(N) fFs

where for g € GLa (ko ),

Fg) =~ (0y(0) = Bs@)) - —— 3 (Be(g8) — Bo(98))-

q+1 BEGL3(000)/Too)
B#1L
Note that F depends on the choice of ag and Ag.

3.2.2 PROOF OF THEOREM 3.1

Let U be the average map from functions F on G(N) to functions on Go(V):

1 e 0
v(F =— F .
(o) = =5 > <<0 1) )
e€lFy
Define
\I/A = \I/(Fo)
Note that ¥ 4 now depends only on A.

Taking the formulas in Proposition 2.7.2 and Proposition 2.7.5 in [12] and
specializing at s = 0 we deduce that for any A € A with degA+2 <r

3 — (_1)degD
4

W (r,\) = g TR 20, (D)) (g — 1)Lp(0)

S m((uNAD))(tm,DHl)(la,tN(uN_wﬂz(B)].

C
HEA,u#0 C‘H
deg(pN)<deg(AD)

Moreover, one has
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PROPOSITION 3.2.

q / —
1 f-U,.
2(¢—1) Jaon

Let N = Ny. Note that Lp(0) = ho,. Comparing the Fourier coeflicients of
W 4 with that of g4 we obtain

A(f,A,0) =

\Il g z9eD+s =2, (4 —1)-2 when deg D is odd,
A=A
gl g 2deeD. (g—1) when deg D is even.

Therefor Theorem 3.1 holds. O

3.3 A FUNCTION FIELD ANALOGUE OF GROSS FORMULA

Now given a character x : Pic(Ox) — C*, define

A(f,X,S) = Z X(A)A(f,A,S)

A€Pic(Ok)

When x is the trivial character and f is a newform which is “normalized” so
that the Fourier coefficient f*(0) = 1, one has

A(f,X,S) = L(f75)L(f ®eED, S)

where ep is the following quadratic character on divisors of k:

D -1 ifdegD i
ep(P) = <—> and ep(o0) = it deg D is even,
r 0 if deg D is odd;

and L(f ® ep, s) is the twisted L-series of f by ep:

L(f@ED,S) = Z f*(m)ED(m)q—degms.

m>0

From the definition of A(f, x,s) and Theorem 3.1 one has

Afx0 = Y A TR oeD b ol
A€Pic(Ox) %%ﬁ if deg D is even.
Note that
Z X(A) g = Z Z X(A) ' ®(es, eas)
AEPic(Ox) A€Pic(Ox) \BePic(Ox)
= q)(ewex)
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where ® is the map in Theorem 2.6 and
ey = Z x(Aea.
A€Pic(Ox)

Suppose [ is a normalized newform. Then from Theorem 2.6 f corresponds to
a particular element ey € Pic(X) ®z R such that

[ =®(es,e5).

Let ef, be the projection of e, to the e-isotypical component in the
space Pic(X) ®z C with respect to the Gross height pairing. Then the f-
eigencomponent of ®(e,,e,) is equal to

Plefy,ex) = Plegy,erx) =<efy,erx > f.

The last equality holds as f is normalized (i.e. f*(0) = 1) and the Fourier
coefficient ®(ef,y,ef,)*(0) =< efy,ef >. Therefore we obtain

THEOREM 3.3. Let f be an automorphic cusp form of Drinfeld type for T'o(Np)
which is also a normalized newform. Then

%- <efy,efy > if degD is odd,
A(f7XaO) = q
%. < efx:s€fx > if deg D is even.
q2

Remark. 1. If x is non-trivial, then dege, = 0 and so ®(ey, ey ) is a cusp form.
2. When ¥ is trivial, then
Z tmey = 2ep

monic m|Ng

where ep is the divisor class introduced in Proposition 1.7.

3. The special case when Ny is a prime and deg D is odd, the above formula
coincides with the result in [I0] §4 (be aware of the different choices of measures
for the Petersson inner product).

4. When irreducible D € A — k2, satisfies (NQO) =1, the derivative of A(f, x, )

at s = 0 is given by Néron-Tate height of Heegner points on the Drinfeld
modular curve Xo(Ny), and an analogue of Gross-Zagier formula has been
proved by Riick and Tipp in the case D is irreducible (cf. [12]).

3.4 EXAMPLE AND APPLICATION TO ELLIPTIC CURVES

Let E be a non-iso-trivial elliptic curve over k (i.e. E is not defined over the
constant field Fy). From the work of Weil, Jacquet-Langlands, and Deligne,
one knows that there exists an automorphic cusp form fg such that

L(E/k,s+1)=L(fg,s).
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Here L(E/k,s) is the Hasse-Weil L-series of E over k. Suppose the conductor
of E is Ngoo, and E has split multiplicative reduction at oco. Then the
automorphic form fg is of Drinfeld type for T'g(Ng), which is a normalized
newform (cf. [7]).

Consider the Hasse-Weil L-series L(F /K, s) of E over the imaginary quadratic
field K = k(v/D) where D € A with (£) = —1 for all primes P | Ny. One has

L(E/K,s+1)=L(fg,s)L(fe ® D, s)

where L(fg,®ep,s) is the twisted L-series of fg by the quadratic character
ep. Since
L(fE,s)L(fr ®ep,s) = A(fE, 1D, )

where 1p is the trivial character on Pic(Og), from Theorem 3.3 we obtain a
formula for the special value of L(E/K,s) at s = 1 when D is irreducible.

Now, let k = F3(t) (i.e. ¢ = 3). Let E be the following elliptic curve over k:
E:y? =24+ 4+ )2 + 22 = 2(x + 1) (x + 7).

The conductor of E is (¢)(t + 1)(t — 1)co. More precisely, E has split multi-
plicative reduction at (¢) and oo, and has non-split multiplicative reduction at
(t+1)and (t—1). Let Ng = t(t+1)(t—1) =3 —t. Let fr be the normalized
Drinfeld type cusp form for I'(Ny) associated to E. Since the L-series L(E/k, s)
of E over k is a polynomial in ¢~ of degree (deg Ny + 1) — 4 with constant
term 1, this implies that L(E/k,s) = L(fg,s — 1) = 1.

Let D=1t —t—1and K = k(v/D). Then

DY_(D\_(D\__,

t) \t+1) \t-1) 7
The twist Ep of E by D is the following elliptic curve over k:

y? = 2% + (t* + 1) Da2? + * D%z
The conductor of Ep is (D)?(t)(t + 1)(t — 1)oc?, and the L-series L(Ep/k,s)
is

1+q°+4¢72° +108¢ % + 243¢75° + 2187¢ 7.

Since L(E/K,s) = L(E/k,s) - L(Ep/k, s), we have

L(E/K,s) =1+ q ° +4q % 4 108¢ 5% 4 243¢~ % + 21874~ "*
and L(E/K,1) = 2.

On the other hand, from a formula of Gekeler (cf. [I3] Theorem 1.1) we imme-
diately get

(fe, fB) = 32.
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We point out that our choice of the measure is twice of the one in [I3]. Such
computation can be also checked via the algorithm in [I5].

The only remaining term is the Gross height of the corresponding point ey, in
Pic(Xn,) ®z Q. Let D be the definite quaternion algebra over k ramified at
(t), (t+1), and (¢ — 1). Then

D=k+ka+kB+ kap

where a? = —1, 82 = Ny = t3—t, and o = —af. Let R = A+ Aa+AB+ Aag,
which is a maximal order in D. The cardinality of R* is 8, and the class number
(of left ideal classes of R) is 4. We choose the following representatives of left
ideal classes of R:

I, = R,
I, = At+ Ata+ AB+ AaB,

Iy = A(t+1)+At+1)a+ AB+ AaB,
I, = A{t—1)+A(t—1a+ AB+ AaB.

Note that these ideals are in fact two-sided, and the norm form on each of them
can be easily written down. We calculate the following Brandt matrices:

01 0 0 0 010 0 0 01
B(t) = 100 0 B(t+1) = 0 0 01 B(i—1) = 0 010
0 0 01 1 0 0 0 01 00
0 01 0 01 00 10 0 0

Since we have T} fr = fg, Tiv1fe = —fE, Tt-1fe = — fE, and the Gross height
< epp,ers >= f5(0) = 1, the corresponding point ey, in Pic(Xy,) ®z Q can
only be

£[1/4,1/4,—1/4,—1/4].

The class number of Ok (= A[v/D]) is 1. Choose the Gross point  in the first
component of Xy, corresponding to the embedding K — D which maps VD
to o+ 8. Then e; = [1,0,0,0] in Pic(Xp,) ®z Q. Therefore

< €fp,1psCfr,lp >=< ECfp,Cq >2= (4 : 1/4)2 =1

and

(f,[EB) _ 32 _
e D) S €fplp) Cfplp 2= g = L(E/K,1).

Appendix
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A JACQUET-LANGLANDS CORRESPONDENCE AND MULTIPLICITY ONE THE-
OREM

Let w be a Hecke character on k*\A; . Let D be a quaternion algebra over k
and set Dy, =D Q@ Ar. We embed Ay, into Dy, by a — 1 ®a. A C-valued
function f on D*\DJ is called an automorphic form on D (for X) with
central character w if f is a function on the double coset space

D*\DY, /K

for an open compact subgroup X of @gk satisfying that for all ¢ in @gk and a
in A

flag) = @(a)f(g)-
Suppose D = Matz (k). Then D* = GLa(k) and Dy = GL2(Ay). f is called a
cusp form if for all g in GLo(Ay)

[ (DS

We denote Ay(w) to be the space of automorphic cusp forms on GL2(Ay) with
central character .

We recall Jacquet-Langlands correspondence in §A.1] and use newform theory
to explain the claim in §.3 In §A.2] we use multiplicity one theorem to show
that the space M™V(T'o(Np)) in §23)is a free Tc-module of rank one.

A.1 JACQUET-LANGLANDS CORRESPONDENCE

Let D = Dy, be a definite quaternion algebra over k where Ny is the product
of finite ramified primes of D. Let A’(cw) be the space of automorphic forms
on ng with central character w. Jacquet-Langlands correspondence describes
the connection between A’(w) and Ag(w):

([9] Chapter 3, Theorem 14.4 and Theorem 16.1) If an irreducible admissible
representation p' = ®yp., is a constituent of A'(w) and pp is infinite dimen-
stonal for all finite primes P which are prime to Ny, then there exist an irre-
ducible admissible representation p(=: p'’L) which is a constituent of Ag(w)
so that

L(s,@' ®p) = L(s,@' @ p')

for all Hecke characters w’.

Note that p = ®,p, where p, = pl, for finite primes v not dividing No. More-
over, for the ramified primes v of D, p, is determined from p., via theta corre-
spondence.

Conversely, suppose p = Qyp, 18 a constituent of Ag(w). If for every ramified
primes v of D the representation p, is special or supercuspidal, then there is a
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constituent p' = ®p!, of A'(w) such that p, = pl/F. In particular, pl, is one
dimensional for ramified prime v if and only if p, is special.

Let R be a fixed maximal order of D. From Jacquet-Langlands correspondence
one has an isomorphism ¥ between

{ C-valued non-constant functions on R*\D* /D*}

and
{Drinfeld type new forms on I'g(No)\ GL2(koo)/Tock }

which satisfies
\Il(tmf) = Tm\Il(f)

for all non-constant functions f on R*\'D*/D* and monic polynomials m in
A. We briefly recall the argument in the following and refer the reader to [9]
for further details.

Fix w = ®,w@, to be the TRIVIAL Hecke character on k* \A,f Let v be a prime
of k, O, be the valuation ring in k,, and 7, a uniformizer in O,. Recall that an
irreducible admissible infinite-dimensional representation (p,, V;) of GLa(ky)

with central character @, has conductor v<®) if wﬁ(”ov is the largest ideal of
0, such that the space of elements u € V,, with
Pv(gy)u = u for all g, € KS(U)

is non-empty. In fact, it is one dimensional. Here

KW = { <“ b) € GLy(0,) 1 c € wg<v>oy} .
c d

It is known that

0 if p, is an unramified principal series,
c(v) =141 if p, is an unramified special representation,

> 2 if p, is supercuspidal or ramified.

Let (p,V) = . (pv, Vi) be a constituent of Ag(w). The conductor of p is:
H ,Uc('u).
v

The space of elements f € V with

plg)f = f for all g € JT %™
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is one dimensional, and called the space of new-forms of p. Any new-form f of
p is a Hecke eigenform, i.e. T, f = a, f for all v where a, € C.
Recall that L(s, p) = [, L(s, p»), where

_s —1 . .
L(s, pu) = (1 — Xv,1(T0)q 6ngU) . (1 — Xo.2(m)q sdegv)
if py is an unramified principal series (Xo,1, Xv,2);
L(Sa pv) = (]. — Xy(ﬂy)q*(5+1/2) degy)*l
. . . . ] 1o s
if p, is an unramified special representation sp(x,| - |v' s Xol v /" );

L(s,py) =1

if p, is supercuspidal or ramified. Here x,,1, Xov,2, and X, are unramified
characters of k) with xy1-Xv2=1= X%. It is known that

@ = q% degﬂ(Xv,l(Wv) +Xv,2(7r7j)) if p, = ﬂ(Xv,l;XvQ)a
v . N 1/2 —1/2
Xo(T0) if py 2 sp(Xol o' Xol - |0 77)-
1/2 —1/2

Suppose p = ®ypy is of conductor Nooo and pee = sp(] - |ob 5|+ |oo’~). Then
new-forms of p are functions on

GL2(k)\ GLa(Ag)/XKo(Nooo) k.
From the bijection in §2.1]
GLQ(k‘)\ GL2 (Ak)/KO(NOOO)k’;:O = FO(NO)\ GLQ(/COO)/FOO]C;:O,

new-forms of such p can be viewed as newforms of Drinfeld type for I'o(Ny). In
fact, the space S™*%(I'o(Np)) of Drinfeld type new forms for T'g(Ny) is spanned
by the new-forms of such p with conductor Nyoo.
. . ~ 1/2 ~1/2

Since p is of conductor Nyoo, pp = sp(xp| - |p ", xp| - |p /") for all P | Ny
where y p is an unramified character of k5 with x% = 1. By Jacquet-Langlands
correspondence we can find an irreducible constituent (p’, V') = ®,,p., of A’(w)
so that p = p"'L'. In this case, p’s = xp o Nr for P | Ny and p/ is the trivial
representation. Therefore we can find a subspace of elements f/ € V' which
are non-constant functions on

DN\D* /R,

This subspace is also one dimensional, called the space of new-forms of p’. Any
new-form f’ of p’ is also a Hecke eigenform, i.e. t,f' = a., f', where a} appears
in the local factor L, (s, p}). Since for any place v

L(s, py) = L(s, pl,),
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we have a, = al,.

In fact, the space of non-constant functions on DX\®X /RX is generated by
new-forms such that p’ = ®,p}, where p/ is trivial and for P | Ny, p’» = xpoNr
for an unramified character xp of kj with x% = 1. By taking congugate, we
identify functions on D*\D*/R* with functions on R*\D*/D*. From the
dimension formula at the end of §2.21 we have a bijective map ¥ from

{ C-valued non-constant functions on R*\D* /D*}

to
{Drinfeld type new forms on I'g(No)\ GL2(koo)/Tock }

so that for each monic polynomial m in A,
‘Il(tmf) = Tm‘ll(f)'

Since constant functions on R*\D* /D> are eigenfunctions of t,, with eigen-
value o(m)y,, we extend ¥ by mapping constant functions into the one
dimensional subspace CEy, of M™¥(T'g(F)).

Consider the definite Shimura curve X = Xy,. We have a canonical bijection
between components of X and ideal classes of R and this gives the canonical
isomorphism

{ (C-valued) functions on R*\D* /D*} = Hom(Pic(X),C) = Pic(X)" @z C.
Therefore one has:

THEOREM A.1. W : Pic(X)Y ®z C = MV (T'y(No)) is an isomorphism so that
Ut f) =TV (f) for any monic polynomial m in A. Moreover,

Tr(ty) = Tr(Th)

and so the C-algebra Tc generated by Hecke correspondences t,, on X is iso-
morphic to the C-algebra generated by Hecke operators T, on M"*¥(T'o(Ny)).

A.2 MULTIPLICITY ONE THEOREM

Let @ : A,f/kX be a Hecke character. Let p1 = ®,p1,, and pa = ®,p2,, be two
irreducible admissible representations which are constituents of Ag(w). The
multiplicity one theorem (cf. [3]) tells us that p; = ps if and only if

Pl = P2,

for all place v.

Fix w to be trivial. Choose two irreducible admissible representations p; =
®up1,o and p2 = Qypa, of conductor Nooo which are constituents of Ag(w)
satisfying

P1oo = P20 2sp(] - |42 13
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and p1 p and pe p are unramified special representations for P | No. Let f;
and fo be new-forms of p; and py respectively. Then Tpf; = ap,;fi; where
ap; € C for i = 1,2 and all prime P in A. If ap; = apy for all P, then
Lp(s,p1,p) = Lp(s, p2,p) and so

p1,Pp = p2.p

for all P. By multiplicity one theorem we have p; = p2 and so f1, fo are
linearly dependent.

Recall that M™W(T'g(Np)) = S™V(T'o(Ng)) ® CEn,. for T'o(Fp). As a Te-
module, the space M™¥(I'g(Nop)) is a direct sum (@;Cf;) & CEp, of one di-
mensional submodules and each f; is a new-form of an irreducible admissible
representation p; = ®,p;,, which is a constituent of Ay(w) with
piso = sp(| - |7 ] 177
and p; p is an unramified special representation for P | Ny. According to
multiplicity one theorem, each pair of these one dimensional submodules are
non-isomorphic. Therefore M™% (T'4(Ny)) is a cyclic Tc-module, which is gen-
erated by En, + >, fi- Viewing T¢ as a subring of Endc (M“"W(FO(]\TO)))7 we
have
dime Te < dime M"Y (To(No)).-

Therefore

PROPOSITION A.2. The space M™% (T'o(Ny)) is a free Tc-module of rank one.

B TRANSFORMATION LAW OF THETA SERIES

Fix a definite quaternion algebra D = D(y,) where Ny is the product of finite
ramified primes of D. Let R be a maximal order and n be the class number.
In this section we deduce the transformation law of the theta series 6;; for
1 <4,j < n introduced in §ZTI1 Recall that for each (i,7), theta series 6;; is
a function on k% X koo:

bue) = 3 o o) v )
beM,; ij i

where ¢, is the characteristic function of O, and v is the fixed additive
character on k.

B.1 FOURIER TRANSFORM

Let Doo = D % koo, For a, 5 € kX with ve () > veo(B) — 2, let

<I>a75 i D — C
W Goo( Nr(w)a) Yoo (Nr(w)).
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Define [,]] : Doo X Doy = C* by [w,w*] := oo ( Tr(ww*)). The Fourier
transform of ®, g is given by:

a.p(w™) ::/ O, g(w)[w, w*]dw, for all w* in ke

oo

where dw is a Haar measure on D,.

We define

S(a, B, dw) = /:D Poo (N1 (w) ) Yoo (Nr(w) B) duw.
Then @, ;(w*) is equal to
) (Ne(w) ).
More generally, take h € kX, p € Doo. For o, f € k2 with veo (@) > veo(8) — 2,
let W g(w) := @q,5(p + hw). Then V7, 5(w*) is equal to

S(a, B, dw)doo (Nr(w”)

*

oo (Tr(=50)).

w* .«

* =1
q4yw(h) . S(a,ﬁ,dw)¢w(Nr( h )@)wm(Nr(%)F

B.2 POISSON SUMMATION
Let Op_ be the maximal order of Do,. For ve(a) > voo(8) — 2, we have
S(a B, duw) = —¢2= O . duw(O_.).

For the pair (i,5), 1 < 4,7 < n, we choose Haar measure dw with
dw(Do /M;;) = 1 and denote the integral S(«, 3, dw) by S(«, 8, M;;). Then

S(a7 B7 Ml]) = _q2vm(ﬁ)7deg(NO) . qQUOQ(NU)-
Let Mij be the dual lattice of M;;, i.e.,
M;j = {w € Do : Tr(wp) € A for all u € My}
We apply the Poisson summation formula
D Wasl) = D Wisn)
HEMi; preM;;
and get

PROPOSITION B.1. Let o, § € kX, with veo (@) > Voo (S) —2, h € kL, p € Deo.
Then

Y doo(Ne(p+ hp)ar) oo (Nx(p + hu) 5)

neM;j

0=, B, M) D e (Ne(5)

n* EMij

%)%(Nr(%)‘l)wm(Tr(p‘,f* ))-

DOCUMENTA MATHEMATICA 16 (2011) 723-765



THETA SERIES AND FUNCTION FIELD ANALOGUE ... 761

Let x € kX, y € koo, M C Do a discrete A-lattice, Njs € k such that Ny - A
is the fractional ideal of A generated by Nr(u) for p € M. For h € A with
h # 0, p € M, define “partial theta” series:

N 2
0@y, M Narshop) = D, duo (%) Ve ( NLQL >
pneEM,p=p mod hM

Note that 6;;(x,y) = 6(z, y, M;;, Ni;,1,0), and

G(m,y,M, NM,h,P) = Z ¢00(Nr(P+ hﬂ)a)woo(Nr(P‘i’ hﬂ)ﬂ)
pneM

where o = NM s 8= NM -

PROPOSITION B.2. Let x,y € kX, voo(x) > V00 (y), 0 £ h € A, Kk € Mij. Then

x ~
0 —,— M;j, N "Ny ' b,k
(y2 y J 0 )
xt? x
- S( Noh Z T/)oo TI‘ ) (N N Mzg;szahap)'

peMU/hMu
Proof. By Proposition B.1 we have
9(1'; Y, Mz]a Nz]a ha P)
= gt=Mg M;; Ne(E
g"= 8 (0, 5, M) 3 o (Ne(E)

w*EM;;

*

)%(Tr( —PEY).

w*
)woo(Nr(F) h

@ —_
p? B

Multiply this by woo(Tr(%)) for k € Mij and sum over p € M;;/hM;;, we
obtain

S (W) 0wy, Miy, Ny )

pGMij/hMij
wro—1
¢S, 5, Mi) Y {%(Nr( ) ) e (e () )
p* €M
P *
> (T (Ek—))] }
pPEM;;/hM;;
Since
P . 0 if u* — K ¢ hM,j,
> e E—p) =9 "
pEM,; /hM;; q- vo(R) jf W — K € hM;;.
The proposition follows by replacing x with Nio, and y with Nio O
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B.3 TRANSFORMATION LAW

Let (z,y) € kX X koo. Suppose a matrix v = (a Z) € GLy(A) is given such
c
that cy +d # 0. We define

o (2,y) = xz(ad —bc) ay+b
7 7y T (Cy+d)2’cy+d

b

LEMMA B.3. Suppose v = <a € SL2(A), ¢ =0 mod Ny, veo(x) > Voo (y),
c

and Voo (cx) > voo(cy + d). Let 1 <i,j5,<mn. Then

Nz wt? —Nyj(ey+d) - o2y _
Oij(vo(z,y) = S(—4—, jdy , Mij) I'S(NljaN_ljaMij) '

KEM;j/dM;
Proof. Put u = y%, v = ’71 Then
U b 1
0i;(vo(z,y) = 9(m7 p + m;Mij;Nija 1,0)
du 1
= 0 b M., Ny, d,
Z ((c—dv)Q’ +c dv J J 'i)
KEM;j; /dM;;
Nr(k)b du -1
= 0 M;;,N;:,d, k).
Z dec ( Nijd) ((dvfc)Q’dvfc’ i) Nij» d, )
KEM;j; /dM;;

Since Voo (€x) > Voo (cy + d), we have voo(du) > voo(dv — ¢) and

0ij(vo (2,y)) = S(Nijut®, Nyj(v = ¢/d), M)~ - Y {ww( Ny;d )

KEMij/dM”’

du d
Z %o(Tr(pﬁ)) ( z 1;\70 M”’N 1N01,d,p)].

No’
PEMm /szJ

Since —¢/Ny € A, we have
-\ -1
Oij(vo (z,y) = S(Nyut®, Nij(v —c/d), Ms;)

du dv -~ _
~Z~ H(NO Ny’ s Mij, Nij lNol,d,p)
ﬂGMij/dMij
Nr(k)b  Tr(pk) Nr(p)cNij
(U + — .
Z ‘X’( Nijd d d )

KEM;;/dM;;
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Note that cN;;p € M;;. Replacing x by x + cN;;p the last summand equals to

Nr(k)b
N;;d

+ aTr(pr) + NijacNr(p).

Since a Tr(pk) + N;jacNr(p) € A, we have

~ Nr(x)b
byro () = SONyul Ny(w—c/d) i)™ [ 3 v (SR,
KEM,;/dM;; K
u-ov —1p7—1
-G(FO,FO,MM,NM Ny, 1,0).
Recall that u = y—%, v = _71 By Proposition B.2 we have
Nijat? —Nij(cy+d) ~ -1 oty -1
0;; = S(—= Y M;;) - S M;;
J (g © ($7y)) ( y2 I dy ) 1]) (Nwa Nw, U)
Nr(x)b
HEMq,j/dMij
O
Note that
Nijzt? —Nij(cy+d) - Y 9
2 2 M;;) - = L M) = voo(cy+d)+2degd'
S( y2 ) dy ) J) S(Nijv Nija ]) q
By standard argument we get > T/)oo(N]\r;E;)ib) = ¢2deed  Since
HEMq,j/dMij

0ij(x,y) = 0;j(z,y + h) for any h € A, we can drop the assumption voo(x) >
Voo (y) and obtain the transformation law of ;;:

a

THEOREM B.4. For1<i,j<n. Letx € kX, Yy € koo, 7 = (
C

Z) € SLy(A).

Assume voo(€x) > Voo (cy + d), and ¢ = 0 mod Ny. Then

0ij(y o (z,y)) = g 2= g, (2, y).
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