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Abstract. We show that on any abelian scheme over a complex
quasi-projective smooth variety, there is a Green current for the zero-
section, which is axiomatically determined up to ∂ and ∂̄-exact differ-
ential forms. On an elliptic curve, this current specialises to a Siegel
function. We prove generalisations of classical properties of Siegel
functions, like distribution relations and reciprocity laws. Further-
more, as an application of a refined version of the arithmetic Riemann-
Roch theorem, we show that the above current, when restricted to a
torsion section, is the realisation in analytic Deligne cohomology of
an element of the (Quillen) K1 group of the base, the corresponding
denominator being given by the denominator of a Bernoulli number.
This generalises the second Kronecker limit formula and the denomi-
nator 12 computed by Kubert, Lang and Robert in the case of Siegel
units. Finally, we prove an analog in Arakelov theory of a Chern class
formula of Bloch and Beauville, where the canonical current plays a
key role.
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1 Introduction

In this article, we show that on any abelian scheme over a complex quasi-
projective smooth variety, there is a Green current g for the the cycle given by
the zero-section of the abelian scheme, which is uniquely determined, up to ∂
and ∂̄-exact forms, by three axioms — see Theorem 1.1.
We proceed to show that this Green current is naturally compatible with iso-
genies (ie it satisfies distribution relations), up to ∂ and ∂̄-exact forms (see
Theorem 1.2.1), and that it intervenes in an Arakelov-theoretic generalization
of a formula of Bloch and Beauville (see [2, p. 249] for the latter), which is
proven here without resorting to the Fourier-Mukai transform. See Theorem
1.2.2. Furthermore, we show that if the basis of the abelian scheme is a point
(ie if the abelian scheme is an abelian variety), then g is a harmonic Green
current (see Theorem 1.2.3). The current g is also shown to be compatible
with products (see Theorem 1.2.5).
Finally, we show that the restriction of g to the complement of the zero-section
has a spectral interpretation. Up to a sign, it is given there by the degree
(g − 1) part of the analytic torsion form of the Poincaré bundle of the abelian
scheme. See Theorem 1.3.1 for this. In point 2 of the same theorem, we show
that the restriction of the higher analytic torsion form to torsion sections, which
never meet the zero-section, lies in the rational image of the Beilinson regulator
from K1 to analytic Deligne cohomology and we give a multiplicative upper
bound for the denominators involved. To prove Theorem 1.3.1, we make heavy
use of the arithmetic Riemann-Roch theorem in higher degrees proven in [22]
and to compute the denominators described in Theorem 1.3.2, we apply the
Adams-Riemann-Roch theorem in Arakelov geometry proven in [42].
If one specializes to elliptic schemes (i.e. abelian schemes of relative dimen-
sion 1) the results proven in Theorems 1.1, 1.2 and 1.3 one recovers many
results contained in the classical theory of elliptic units. In particular, on el-
liptic schemes the current g is described by a Siegel function and the spectral
interpretation of g specializes to the second Kronecker limit formula. The reci-
procity law for elliptic units (ie the analytic description of the action of the
Galois group on the elliptic units) is also easily obtained and (variants) of the
results of Kubert-Lang and Robert on the fields of definition of elliptic units
are recovered as a special case of the above denominator computations. Details
about elliptic schemes are given in section 5 where references to the classical
literature are also given. The reader will notice that even in the case of elliptic
schemes, our methods of proof are quite different from the classical ones.
The current g can also be used to describe the realisation in analytic Deligne
cohomology of the degree 0 part of the polylogarithm on abelian schemes in-
troduced by J. Wildeshaus in [45] (see also [25]). The fact that this should be
the case was a conjecture of G. Kings. His conjecture is proven in [26].
Here is a detailed description of the results.
Let (R,Σ) be an arithmetic ring. By definition, this means that R is an ex-
cellent regular ring, which comes with a finite conjugation-invariant set Σ of
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embeddings into C (see [19, 3.1.2]). For example R might be Z with its unique
embedding into C, or C with the identity and complex conjugation as embed-
dings.
Recall that an arithmetic variety over R is a scheme, which is flat and of finite
type over R. In this text, all arithmetic varieties over R will also be assumed
to be regular, as well as quasi-projective over R. For any arithmetic variety X
over R, we write as usual

X(C) :=
∐

σ∈Σ

(X ×R,σ C)(C) =
∐

σ∈Σ

X(C)σ.

Let Dp,p(XR) (resp. Ap,p(XR)) be the R-vector space of currents (resp. differ-
ential forms) γ on X(C) such that

• γ is a real current (resp. differential form) of type (p, p);

• F ∗
∞γ = (−1)pγ,

where F∞ : X(C) → X(C) is the real analytic involution given by complex
conjugation. We then define

D̃p,p(XR) := Dp,p(XR)/(im ∂ + im ∂̄)

(resp.
Ãp,p(XR) := Ap,p(XR)/(im ∂ + im ∂̄) ).

All these notations are standard in Arakelov geometry. See [44] for a com-
pendium. It is shown in [19, Th. 1.2.2 (ii)] that the natural map Ãp,p(XR) →

D̃p,p(XR) is an injection.
If Z a closed complex submanifold of X(C), we shall write more generally
Dp,p

Z (XR) for the R-vector space of currents γ on X(C) such that

• γ is a real current of type (p, p);

• F ∗
∞γ = (−1)pγ;

• the wave-front set of γ is included in the real conormal bundle of Z in
X(C).

Similarly, we then define the R-vector spaces

D̃p,p
Z (XR) := Dp,p

Z (XR)/D
p,p
Z,0(XR)

where Dp,p
Z,0(XR) is the set of currents γ ∈ Dp,p

Z (XR) such that: there exists a
complex current α of type (p− 1, p) and a complex current β of type (p, p− 1)
such that γ := ∂α + ∂̄β and such that the wave-front sets of α and β are
included in the real conormal bundle of Z in X(C).
See [24] for the definition (and theory) of the wave-front set.

Documenta Mathematica 20 (2015) 631–668



634 V. Maillot and D. Rössler

It is a consequence of [11, Cor. 4.7] that the natural morphism D̃p,p
Z (XR) →

D̃p,p(XR) is an injection.1 Thus the real vector space D̃p,p
Z (XR) can be identified

with a subspace of the real vector space D̃p,p(XR).
Furthermore, it is a consequence of [11, Th. 4.3] that for any R-morphism
f : Y → X of arithmetic varieties, there is a natural morphism of R-vector
spaces

f∗ : D̃p,p
Z (XR) → D̃p,p

f(C)∗(Z)(YR),

provided f(C) is transverse to Z. This morphism extends the morphism
Ãp,p(XR) → Ãp,p(YR), which is obtained by pulling back differential forms.
Fix now S an arithmetic variety over R. Let π : A → S be an abelian scheme
over S of relative dimension g. We shall write as usual A∨ → S for the dual
abelian scheme. Write ǫ (resp. ǫ∨) for the zero-section of A → S (resp. A∨ →
S) and also S0 (resp. S∨

0 ) for the image of ǫ (resp. ǫ∨). We denote by the symbol
P the Poincaré bundle on A ×S A∨. We equip the Poincaré bundle P with
the unique metric hP such that the canonical rigidification of P along the zero-
section A∨ → A×SA∨ is an isometry and such that the curvature form of hP is
translation invariant along the fibres of the map A(C)×S(C) A

∨(C) → A∨(C).

We write P := (P , hP) for the resulting hermitian line bundle. Write P
0

be
the restriction of P to A×S (A∨\S∨

0 ).
The aim of this text is now to prove the following three theorems.

Theorem 1.1. There is a unique class of currents gA ∈ D̃g−1,g−1(A∨
R) with

the following three properties:

(a) Any element of gA is a Green current for S∨
0 (C).

(b) The identity (S∨
0 , gA) = (−1)gp2,∗(ĉh(P))(g) holds in ĈH

g
(A∨)Q.

(c) The identity gA = [n]∗gA holds for all n > 2.

Here the morphism p2 is the second projection A ×S A∨ → A∨ and [n] :

A∨ → A∨ is the multiplication-by-n morphism. The symbol ĉh(·) refers to

the arithmetic Chern character and ĈH
•
(·) is the arithmetic Chow group. See

[19, 1.2] for the notion of Green current.
Supplement. The proof of Theorem 1.1 given below shows that if S is assumed
proper over SpecR, then the condition (b) can be replaced by the following
weaker condition :
(b)’ The identity of currents ddcg+ δS∨

0 (C) = (−1)gp2,∗(ch(P))(g) holds.
Here ddc := i

2π∂∂̄ and δS∨
0 (C) is the Dirac current associated to S∨

0 (C) in A∨(C).

Furthermore, ch(P) is the Chern character form of the hermitian bundle P. See
[20, Intro.] for this.
Remarks. (1) The condition (b) apparently makes the current gA dependent
on the arithmetic structure of A. We shall show in 1.2.4 below that this is not

1many thanks to J.-I. Burgos for bringing this to our attention

Documenta Mathematica 20 (2015) 631–668



On a Canonical Class of Green Currents . . . 635

the case. In particular, in defining gA, we could have assumed that R = C.
The settting of arithmetic varieties is used in Theorem 1.1 because it is the
natural one for property (b). Formula (15) gives a purely analytic expression
for gA. (2) It is tempting to try to refine Theorem 1.1 by using in property (b)
the arithmetic Chow groups defined by J.-I. Burgos (in [10]) rather than the
arithmetic Chow groups of Gillet-Soulé. One would then obtain a class of forms
with certain logarithmic singularities, rather than a class of currents. Such a
refinement does not seem to be easily attainable though, because of the lack of
covariant functoriality of the spaces of forms mentioned in the last sentence.
The next theorem gives some properties of the class of currents gA.
Let L be a rigidified line bundle on A. Endow L with the unique hermitian
metric hL, which is compatible with the rigidification and whose curvature
form is translation-invariant on the fibres of A(C) → S(C). Let L := (L, hL)
be the resulting hermitian line bundle. Let φL : A → A∨ be the polarisation
morphism induced by L.

Theorem 1.2. 1. Let ι : A → B be an isogeny of abelian schemes over S.
Then the identity ι∨∗ (gB) = gA holds.

2. Suppose that L is ample relatively to S and symmetric. Then the equali-
ties

(S∨
0 , gA) = (−1)gp2,∗(ĉh(P)) =

1

g!
√
deg(φL)

φL,∗(̂c1(L)
g)

are verified in ĈH
∗
(A∨)Q.

3. If S → SpecR is the identity on SpecR then any element of gA is a har-
monic Green current for S∨

0 (C), where A∨(C) is endowed with a conjuga-
tion invariant Kähler metric, whose Kähler form is translation invariant.

4. The class gA is invariant under any change of arithmetic rings (R,Σ) →
(R′,Σ′).

5. Let B → S be another abelian scheme and let πA∨ : A∨ ×S B∨ → A∨

(resp. πB∨ : A∨ ×S B∨ → B∨) be the natural projections. Then

gA×SB = π∗
A∨(gA) ∗ π

∗
B∨(gB) (1)

6. The class of currents gA lies in D̃g−1,g−1
S∨
0 (C) (A∨

R).

7. Let T be a an arithmetic variety over R and let T → S be a morphism of
schemes over R. Let AT be the abelian scheme obtained by base-change
and let BC : AT → A be the corresponding morphism. Then BC(C) is
tranverse to S∨

0 (C) and BC∗
gA = gAT .

Documenta Mathematica 20 (2015) 631–668



636 V. Maillot and D. Rössler

Here ι∨ : B∨ → A∨ is the isogeny, which is dual to ι. For the notion of harmonic
Green current, see [8] and [29]. The pairing ∗ appearing in the equation (1) is
the ∗-product of Green currents. See [19, par. 2.2.11, p. 122] for the definition.
Recall that an S-isogeny between the abelian schemes A and B is a flat and
finite S-morphism A → B, which is compatible with the group-scheme struc-
tures. The symbol ĉ1(·) refers the first arithmetic Chern class; see [20, Intro.]
for this notion.
Theorem 1.2.1 generalizes to higher degrees the distribution relations of Siegel
units. See section 5 below for details. If the morphism S → SpecR is the
identity on SpecR and R is the ring of integers of a number field, then it is
shown in [29, Prop. 11.1 (ii)] that Theorem 1.2.3 implies Theorem 1.2.2. Still in
the situation where S → SpecR is the identity on SpecR, another construction
of a Green current for S∨

0 (C) is described in A. Berthomieu’s thesis [3]. The
current constructed by Berthomieu is likely to be harmonic (it is not proven
in [3], but according to the author [private communication] it can easily be
shown). The current constructed in [3] satisfies the identity in Theorem 1.3.1
by construction.
The last theorem relates the current gA to the Bismut-Köhler analytic torsion
form of the Poincaré bundle (see [6, Def. 3.8, p. 668] for the definition).
Let λ be a (1, 1)-form on A(C) defining a Kähler fibration structure on the
fibration A(C) → S(C) (see [6, par. 1] for this notion). With the form λ, one
can canonically associate a hermitian metric on the relative cotangent bundle
ΩA/S and we shall write ΩA/S for the resulting hermitian vector bundle. We
suppose that λ is translation invariant on the fibres of the map A(C) → S(C)
as well as conjugation invariant. We shall write

T (λ,P
0
) ∈ Ã((A∨\S∨

0 )R) :=
⊕

p>0

Ãp,p((A∨\S∨
0 )R)

for the Bismut-Köhler higher analytic torsion form of P
0

along the fibration

A(C) ×S(C) (A
∨(C)\S∨

0 (C)) −→ A∨(C)\S∨
0 (C).

For any regular arithmetic variety X over R, the (Beilinson) regulator map
gives rise to a morphism of groups

regan : K1(X) −→
⊕

p>0

H2p−1
D,an (XR,R(p)).

To define the space H2p−1
D,an (XR,R(p)) and the map regan, let us first write

H∗
D,an(X,R(·)) for the analytic real Deligne cohomology ofX(C). By definition,

Hq
D,an(X,R(p)) := Hq(X(C),R(p)D,an)

where R(p)D,an is the complex of sheaves of R-vector spaces

0 → R(p) → OX(C)
d
→ Ω1

X(C) → · · · → Ωp−1
X(C) → 0
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on X(C) (for the ordinary topology). Here R(p) := (2iπ)p R ⊆ C. We now
define

H2p−1
D,an (XR,R(p)) := {γ ∈ H2p−1

D,an (X,R(p)) | F
∗
∞γ = (−1)pγ}.

By construction, the regulator map K1(X) → ⊕p>0H
2p−1
D,an (X,R(p)) (see

[12] for a direct construction of the regulator and further references) fac-
tors through ⊕p>0H

2p−1
D,an (XR,R(p)) and thus gives rise to a map K1(X) →

⊕p>0H
2p−1
D,an (XR,R(p)). This is the definition of the map regan.

It is shown in [12, par 6.1] that there is a natural inclusion
H2p−1

D,an (XR,R(p)) →֒ Ãp−1,p−1(XR).
For the next theorem, define

N2g := 2 · denominator [(−1)g+1B2g/(2g)],

where B2g is the 2g-th Bernoulli number. Recall that the Bernoulli numbers
are defined by the identity of power series:

∑

t>1

Bt
ut

t!
=

u

exp(u)− 1
.

Theorem 1.3. 1. The class of differential forms Td(ǫ∗ΩA/S) ·T (λ,P
0
) lies

in Ãg−1,g−1((A∨\S∨
0 )R) and the equality

gA|A∨(C)\S∨
0 (C) = (−1)g+1 Td(ǫ∗ΩA/S) · T (λ,P

0
)

holds. In particular T (λ,P
0
)(g−1) does not depend on λ.

2. Suppose that λ is the first Chern form of a relatively ample rigidified line
bundle, endowed with its canonical metric. Let σ ∈ A∨(S) be an element
of finite order n, such that σ∗S∨

0 = ∅. Then

g · n ·N2g · σ
∗T (λ,P

0
) ∈ image(regan(K1(S))).

A the end of section 4.2 (see the end of the proof of Lemma 4.5), we give a
statement, which is slightly stronger than Theorem 1.3.2 (but more difficult to
formulate).
Theorem 1.3.1 can be viewed as a generalization to higher degrees of the second
Kronecker limit formula (see [31, chap. 20, par. 5, p. 276] for the latter).
Theorem 1.3.2 generalizes to higher degrees part of a classical statement on
elliptic units and their fields of definition. See section 5 below.
Remark. It would be interesting to have an analogue of Theorem 1.3.2, where
regan is replaced by the analytic cycle class cycan (see (3) below). If S ≃
SpecR and R is the ring of integers in a number field, then regan and cycan
can be identified but this is not true in general. In particular, this suggests
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that the Bernoulli number 12 = N2/2, which appears in the denominators of
elliptic units (see the last section) should be understood as coming from the
natural integral structure of the group K1(·)Q and not from the natural integral
structure of the corresponding motivic cohomology group

⊕
pH

2p−1
M (·,Z(p))Q.

Some of the results of this article were announced in [37].
We shall provide many bibliographical references to ease the reading but the
reader of this article is nevertheless assumed to have some familiarity with the
language of Arakelov theory, as expounded for instance in [44].
Acknowledgments. We thank J.-I. Burgos for patiently listening to our
explanations on the contents of this article and for his (very) useful comments
over a number of years. We also thank C. Soulé, G. Kings, as well as S. Bloch
and A. Beilinson for their interest. J. Kramer made several interesting remarks
on the contents of this article and his input was very useful. Many thanks
also to K. Köhler for his explanations on the higher analytic torsion forms of
abelian schemes. Finally, we are grateful to J. Wildeshaus for his feedback and
for answering many questions on abelian polylogarithms.
Notations. Here are the main notational conventions. Some of them have
already been introduced above. Recall that we wrote π : A → S for the
structure morphism of the abelian scheme A over S. We also write π∨ : A∨ → S
for the structure morphism of the abelian scheme A∨ over S. Write µ = µA :
A×SA → A for the addition morphism and p1 : A×A∨ → A, p2 : A×A∨ → A∨

for the obvious projections. We shall also also write p1, p2 : A × A → A and
p∨
1 , p

∨
2 : A∨ × A∨ → A∨ for more obvious projections. Recall that we wrote

ǫ (resp. ǫ∨) for the zero-section of A → S (resp. A∨ → S) and also that we
wrote S0 (resp. S∨

0 ) for the image of ǫ (resp. ǫ∨). Write ωA := det(ΩA/S) for
the determinant of the sheaf of differentials of A over S. We let ddc := i

2π∂∂̄.

2 Proof of Theorem 1.1

If M is a smooth complex quasi-projective variety, we shall write H∗
D(M,R(·))

for the Deligne-Beilinson cohomology of M . We recall its definition. Let M̄ be
a smooth complex projective variety, which contains M as an open subscheme.
We call M̄ a compactfication of M . Suppose furthermore that M̄\M is the
underlying set of a reduced divisor with normal crossings D. From now on,
we view M and M̄ as complex analytic spaces and we work in the category of
complex analytic spaces. Let j :M →֒ M̄ be the given open embedding. There
is a natural subcomplex Ω•

M̄
(log D) of j∗Ω•

M , called the complex of holomorphic
differential forms on M with logarithmic singularities along D. The objects of
Ω•

M̄
(log D) are locally free sheaves. We redirect the reader to [9, chap. 10] for

the definition and further bibliographical references. Write F pΩ•
M̄
(log D) for

the subcomplex
Ωp

M̄
(log D) −→ Ωp+1

M̄
(log D) −→ · · ·

of Ω•
M̄
(log D). Write f0

p : F pΩ•
M̄
(log D) → j∗Ω

•
M for the inclusion morphism.

Abusing notation, we shall identify Rj∗R(p) with the complex, which is the
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image by j∗ of the canonical flasque resolution of R(p). Similarly, we shall
write Rj∗Ω

•
M for the simple complex associated to the image by j∗ of the

canonical flasque resolution of Ω•
M ( the latter being a double complex). Write

fp : F pΩ•
M̄
(log D) → Rj∗Ω

•
M for the morphism obtained by composing f0

p

with the canonical morphism j∗Ω
•
M → Rj∗Ω

•
M . There is a natural morphism

of complexes R(p) → Ω•
M (where R(p) is viewed as a complex with one object

sitting in degree 0) and by the functoriality of the flasque resolution, we obtain
a morphism rp : Rj∗R(p) → Rj∗Ω

•
M . We now define the complex

R(p)D := simple
(
Rj∗R(p)⊕ F pΩ•

M̄ (log D)
up
−→ Rj∗Ω

•
M

)

where up := rp−fp. By definition, Deligne-Beilinson cohomology is now defined
by the formula

Hq
D(M,R(p)) := Hq(M,R(p)D).

Notice that by construction, Hq
D(M,R(p)) = Hq

D,an(M,R(p)) if M is compact
(so that D is empty). More generally, there is a natural "forgetful" morphism
of R-vector spaces Hq

D(M,R(p)) → Hq
D,an(M,R(p)) (what is forgotten is the

logarithmic structure) ; see [10, before Prop. 1.3] for this. It can be proven that
Deligne-Beilinson cohomology does not depend on the choice of the compacti-
fication M̄ . By its very definition, we have a canonical long exact sequence of
R-vector spaces

· · · → Hq−1(M,C) → Hq
D(M,R(p)) → Hq(M,R(p))⊕F pHq(M,C) → · · · (2)

where F pHq(M,C) is the p-th term of the Hodge filtration of the mixed Hodge
structure on Hq(M,C). Furthermore the R-vector space Hq

D(M,R(p)) has a
natural structure of contravariant functor from the category of smooth quasi-
projective varieties over C to the category of R-vector spaces (see [10, Prop.
1.3] for this). If we equip the singular cohomology spaces Hq(M,C) and
Hq

D(M,R(p)) with their natural contravariant structure, then the sequence (2)
becomes an exact sequence of functors.
If X is an arithmetic variety, then we define

Hq
D(XR,R(p)) := {γ ∈ Hq

D(X(C),R(p)) | F ∗
∞γ = (−1)pγ}.

Before beginning with the proof of Theorem 1.1, we shall prove the following
key lemma.

Lemma 2.1. Let n > 2. The eigenvalues of the R-endomorphism [n]∗ of the
Deligne-Beilinson cohomology R-vector space H2p−1

D (A∨(C),R(p)) lie in the set
{1, n, n2, . . . , n2p−1}.

Proof. The existence of the exact sequence of functors (2) shows that we have
the following exact sequence of R-vector spaces

H2p−2(A∨(C),C) → H2p−1
D (A∨(C),R(p)) →
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→ H2p−1(A∨(C),R(p))⊕ F pH2p−1(A∨(C),C)

a and that the differentials in this sequence are compatible with the natural
contravariant action of [n]. Hence it is sufficient to prove the conclusion of
the lemma for the R-vector spaces H2p−2(A∨(C),C), H2p−1(A∨(C),R(p)) and
H2p−1(A∨(C),C). These spaces are more easily tractable and can be approxi-
mated by the Leray spectral sequence

Ers
2 = Hr(S(C),Rsπ∨(C)∗(K)) ⇒ Hr+s(A∨(C),K)

where K is R or C. Now notice that since [n] is an S-morphism, this spec-
tral sequence carries a natural contravariant action of [n], which is compatible
with the aforementionned action of [n] on its abutment. Consider the index
2p − 1. We know that [n]∗ acts on Rsπ∨(C)∗(K) by multiplication by ns.
This may be deduced from known results on abelian varieties using the proper
base-change theorem. Hence [n]∗ acts on Hr(S(C),Rsπ∨(C)∗(K)) by multipli-
cation by ns as well. Now the existence of the spectral sequence shows that
H2p−1(A∨(C),K) has a natural filtration, which consists of subquotients of the
spaces Hr(S(C),Rsπ∨(C)∗(K)), where r + s = 2p− 1. Since s 6 2p− 1, this
proves the assertion for the index 2p− 1. The index 2p − 2 can be treated in
an analogous fashion. �

Proof of uniqueness. Let gA and g
0
A be elements of D̃g−1,g−1(A∨

R) satisfying
(a), (b) and (c). Let κA := g

0
A − gA ∈ D̃g−1,g−1(A∨) be the error term.

Recall the fundamental exact sequence

CHg,g−1(A∨)
cycan−−−→ Ãg−1,g−1(A∨

R)
a
→ ĈH

g
(A∨) → CHg(A∨) → 0 (3)

(see [19, th. 3.3.5] for this). Here CHg,g−1(·) is Gillet-Soulé’s version of one of

Bloch’s higher Chow groups. The group ĈH
g
(A∨) is the g-th arithmetic Chow

group and CHg(A∨) is the g-th ordinary Chow group. By construction, there
are maps

CHg,g−1(A∨)
cyc
−−→ H2g−1

D (A∨
R ,R(g))

forgetful
−−−−−−→H2g−1

D,an (A
∨
R ,R(g))→Ãg−1,g−1(A∨

R)

whose composition is cycan. Here cyc is the cycle class map into Deligne-
Beilinson cohomology; the second map from the left is the forgetful map and
the third one is the natural inclusion mentioned before Theorem 1.3.
Now let n > 2. Let

V := image
(
H2g−1

D (A∨
R ,R(g))

forgetful
−−−−−−→ H2g−1

D,an (A
∨
R ,R(g))

)
(4)

be the image of the forgetful map from H2g−1
D (A∨

R ,R(g)) to H2g−1
D,an (A

∨
R ,R(g)).

By (b), we know that κA ∈ V . Furthermore V is invariant under [n]∗. In fact,
by Lemma 2.1, [n]∗ restrict to an injective morphism V → V , which is thus an
isomorphism, since V is finite dimensional. Now the projection formula shows
that the equation [n]∗[n]

∗ = n2g is valid in H2g−1
D,an (A

∨
R ,R(g)) and we conclude
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that that V is also invariant under [n]∗. The same equation [n]∗[n]
∗ = n2g now

shows that the eigenvalues of [n]∗ on V lie in the set {n2g, n2g−1, . . . , n}. In
particular, [n]∗ has no non-vanishing fixed point in V . Since [n]∗κA = κA by
(c), this proves that κA = 0.
Proof of existence. As very often, the proof of existence is inspired by the
proof of uniqueness. Let g ∈ D̃g−1,g−1(A∨

R) be a class of Green currents for S∨
0

satisfying (b). To see that there is such a g, pick any Green current g′ for S∨
0 (C),

such that F ∗
∞g

′ = (−1)g−1
g
′. This exists by [19, th.1.3.5]. Now a basic property

of the Fourier-Mukai transformation for abelian schemes (see [32, Lemme 1.2.5])
implies that (−1)gp2,∗(ch(P))(g) = S∨

0 in CHg(A∨)Q. Hence, looking at the
sequence (3), we see that there exists α ∈ Ãg−1,g−1(A∨

R) such that (a⊗Q)(α) =

(S∨
0 , g

′)− (−1)gp2,∗(ĉh(P))(g). If we define g := g
′ − α, we obtain the required

class of Green currents. Now fix n > 2 and let c := g − [n]∗g. We shall prove
below (see (6)) that

[n]∗p2∗(ĉh(P))(g) = p2∗(ĉh(P))(g).

This implies that c lies in the space V defined in (4) above. Now recall that
we proved that [n]∗ sends V on V and that 1 is not a root of the characteristic
polynomial of [n]∗ as an endomorphism of V . Hence the linear equation in x

x− [n]∗x = c

has a unique solution in V . Call this solution c0. By construction the current
g0 := g+ c0 satisfies the equation g0 − [n]∗g0 = 0. Now let m > 2 be another
natural number. We have seen above that g0 − [m]∗g0 lies in V . On the other
hand

[n]∗(g0 − [m]∗g0) = [n]∗g0 − [m]∗[n]∗g0 = g0 − [m]∗g0

hence g0−[m]∗g0 is a fixed point of [n]∗ in V . This implies that g0−[m]∗g0 = 0.
This proves that g0 satisfies (a), (b) and (c).

3 Proof of Theorem 1.2

3.1 Proof of 1.2.1

By the definition of the dual isogeny, there is a diagram

A×S B∨ ι× Id
> B ×S B∨ > B∨

A×S A∨

Id× ι∨
∨

> A∨

ι∨
∨

such that
(Id× ι∨)∗PA ≃ (ι× Id)∗PB
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and such that the outer square is cartesian. Here PA := P and PB is the
Poincaré bundle of B over S.
First notice that the arithmetic Riemann-Roch theorem [22] implies that

ĉh((ι× Id)∗(OA×SB∨)) = deg ι

in ĈH
•
(B ×S B∨)Q.

Now we compute

ι∨,∗pA2∗(ĉh(PA)) = pB2∗(ĉh(PB)ĉh((ι × Id)∗(OA×SB∨)))

= (deg ι) · pB2∗(ĉh(PB)). (5)

Here we used the projection formula for arithmetic Chow theory (see [19, Th.
4.4.3, 7.]) and the fact that the push-forward map in arithmetic Chow theory
commutes with base-change. We may now compute

ι∨∗ ι
∨,∗pA2∗(ĉh(PA)) = (deg ι) · pA2∗(ĉh(PA)) = (deg ι) · ι∨∗ p

B
2∗(ĉh(PB))).

In other words, we have

pA2∗(ĉh(PA)) = ι∨∗ p
B
2∗(ĉh(PB))). (6)

Furthermore, since ι∨ restricts to an isomorphism between the zero-sections,
the class of currents ι∨∗ (gB) consists of Green currents for S∨

0,A. All this shows
that gA − ι∨∗ (gB) lies inside the space V defined in 4. Recall that V is the

image of the forgetful map H2g−1
D (A∨

R ,R(g))
forgetful
−−−−−−→ H2g−1

D,an (A
∨
R ,R(g)). To

conclude, notice that for any n > 2, we have

[n]∗(gA − ι∨∗ (gB)) = gA − ι∨∗ (gB)

since [n] commutes with ι∨. It was shown just before the proof of existence in
the proof of Theorem 1.1 that [n]∗ leaves V invariant and has no non-vanishing
fixed points in V . Thus gA − ι∨∗ (gB) = 0.

3.2 Proof of 1.2.2

We shall prove the equivalent identities

(−1)g

g!
√
deg(φL)

φL,∗ (̂c1(L)
g) = p2,∗(ĉh(P))(g) (7)

and
p2,∗(ĉh(P))(k) = 0 (8)

if k 6= g.
For the equality (8), notice that in view of (5) and the fact that [n]∨ = [n], we
have

[n]∗(p2,∗(ĉh(P))) = n2g · p2,∗(ĉh(P)) (9)
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for any n > 2. On the other hand, since (Id× [n])∗P̄ = P̄⊗n, we have also

[n]∗(p2,∗(ĉh(P))) =
∑

k>0

nk+g · p2,∗(ĉh(P))(k) (10)

and comparing equations (9) and (10) as polynomials in n proves equation (8).
We now proceed to the proof of equation (7). Notice that the line bundle
µ∗L⊗p∗

1L
∨⊗p∗

2L
∨ on A×SA carries a natural rigidification on the zero section

A
(Id,ǫ)
−−−→ A×S A and that the same line bundle is algebraically equivalent to

0 on each geometric fibre of the morphism p2 : A×S A → A. Hence there is a
unique morphism φL : A → A∨, the polarisation morphism induced by L, such
that there is an isomorphism of rigidified line bundles

(Id× φL)
∗P ≃ µ∗L ⊗ p∗

1L
∨ ⊗ p∗

2L
∨. (11)

Furthermore, if we endow the line bundles on both sides of (11) with their nat-
ural metrics, this isomorphism becomes an isometry, because both line bundles
carry metrics that are compatible with the rigidification and the curvature
forms of both sides are translation invariant (in fact 0) on the fibres of the map
p2(C).
We shall now give a more concrete expression for

p2∗(ĉh(µ
∗L)ĉh(p∗

1L
∨
)ĉh(p∗

2L
∨
)).

We first make the calculation

p2∗(ĉh(µ
∗L)ĉh(p∗

1L
∨
)ĉh(p∗

1L)) = p2∗(ĉh(µ
∗L))

= p2∗(α
∗p∗

1ĉh(L)) = p2∗(p
∗
1ĉh(L))

where α : A×S A → A×S A is the p2-automorphism α := (µ, p2). Now notice
that for any n > 2,

p2∗(([n]× Id)∗([n]× Id)∗p∗
1ĉh(L)) = n2gp2∗(p

∗
1ĉh(L))

= p2∗(([n]× Id)∗p∗
1ĉh(L)) = p2∗(

∑

l>1

n2l(p1ĉh(L))
(l)).

Here we used the isometric isomorphism [n]∗L ≃ L
⊗n2

(recall that L is sym-
metric). We deduce that

p2∗(p
∗
1ĉh(L)) = p2∗(p

∗
1ĉh(L)

(g)) =
√
deg(φL)

Thus, using the projection formula, we see that

p2∗(ĉh(p
∗
1L)ĉh(µ

∗L)ĉh(p∗
1L

∨
)p∗

2ĉh(L
∨
)) =

√
deg(φL) ĉh(L

∨
)

which implies that

p2∗(ĉh(p
∗
1L)ĉh(P)) =

1√
deg(φL)

φL,∗ĉh(L
∨
).
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Now notice that in the proof of equation (7), we may assume without restriction
of generality that L is relatively generated by its sections, which is to say that
the natural morphism π∗π∗L → L is surjective. Indeed, for any n > 2, we have

1

g!
√
deg(φL⊗n)

φL⊗n,∗(̂c1(L
⊗n

)g) =
1

g!
√
deg(φL)

φL,∗([n]∗ĉ1(L)
g)

and for any k > 0,

[n]∗ĉ1(L)
k = n−2k[n]∗[n]

∗ĉ1(L)
k = n2g−2k ĉ1(L)

k. (12)

Hence

1

g!
√
deg(φL⊗n)

φL⊗n,∗(̂c1(L
⊗n

)g) =
1

g!
√
deg(φL)

φL,∗(̂c1(L)
g).

We may thus harmlessly replace L by L
⊗n

, where n is some large positive
integer. In particular, we may assume (and we do) that the morphism π∗π∗L →
L is surjective, since L is relatively ample. Now let E := π∗π∗L ⊗ L∨ and let

P •
0 : · · · → Λr(E) → Λr−1(E) → · · · → E → O → 0

be the associated Koszul resolution. Let

P •
1 : 0 → P → p∗1E

∨ ⊗ P → · · · → p∗1Λ
r−1(E)∨ ⊗ P → p∗1Λ

r(E)∨ ⊗ P → · · ·

be the complex P ⊗ p∗1(P
•
0 )

∨. All the bundles appearing in the complex P •
1

have natural hermitian metrics and we let ηP̄1
be the corresponding Bott-Chern

class. Notice the equalities

ηP̄1
= ĉh(Λ−1(E

∨
))ĉh(P) = ĉ top(E)T̂d

−1
(E)ĉh(P)

in ĈH
•
(A×SA

∨) (see [5, last paragraph]). Here Λ−1(E
∨
) is the formal Z-linear

combination
∑

r>0(−1)rΛr(E
∨
). Since rk(E) may be assumed arbitrarily large

(since we may replace L by some of its tensor powers), we see that we may
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assume that ηP̄1
= 0 in ĈH

•
(A×S A∨)Q. Thus we may compute

p2∗(ĉh(P)) = p2∗(ĉh[−p
∗
1Λ−1(E

∨
) +O]ĉh(P))

= −

rk(E)∑

r=1

(−1)rp2∗[ĉh(Λ
r(π∗

π∗(L)
∨))ĉh(p∗1L

⊗r

)ĉh(P)]

= −

rk(E)∑

r=1

(−1)rp2∗[ĉh(p
∗
1L

⊗r

)ĉh(P)]ĉh(Λr(π∗
π∗(L))

∨)

= −

rk(E)∑

r=1

(−1)r
1√

deg(φL⊗r )
φL⊗r,∗(ĉh(L

∨,⊗r

))ĉh(Λr(π∗
π∗(L))

∨)

= −
1√

deg(φL)
φL,∗

[ rk(E)∑

r=1

(−1)rr−g
(
[r]∗(ĉh(L

∨,⊗r

))ĉh(Λr(π∗
π∗(L))

∨)
)]

= −
1√

deg(φL)
φL,∗

[ rk(E)∑

r=1

(−1)rr−g
(
[
∑

s>0

r
2g−2sĉh(L

∨,⊗r

)(s)]ĉh(Λr(π∗
π∗(L))

∨)
)]

= −
1√

deg(φL)
φL,∗

[ rk(E)∑

r=1

∑

s>0

(−1)rrg−sĉh(L
∨
)(s)ĉh(Λr(π∗

π∗(L))
∨)

]
.

Now notice that the expression

[n]∗p2∗(ĉh(P)) = p2∗((Id× [n])∗ĉh(P))

= p2∗((Id× [n])∗(Id× [n])∗
∑

k>0

n−k ĉh(P)(k)) = p2∗(
∑

k>0

n2g−k ĉh(P)(k))

is a Laurent polynomial in n > 2. The equation (12) shows that the expression

[n]∗

(
−

1√
deg(φL)

φL,∗

[ rk(E)∑

r=1

∑

s>0

(−1)rrg−s ĉh(L
∨
)(s)ĉh(Λr(π∗π∗(L))

∨)
])

is also a Laurent polynomial in n > 2. We may thus identify the coefficients of
these polynomials. We obtain the following : if g + k is even, then

p2∗(ĉh(P))(k) =

−
1√

deg(φL)
φL,∗

[
ĉh(L

∨
)((g+k)/2)[

rk(E)∑

r=1

(−1)rrg−(g+k)/2 ĉh(Λr(π∗π∗(L))
∨)]

]

and
p2∗(ĉh(P))(k) = 0

if g + k is odd. Note that we have already proven the stronger fact that
p2∗(ĉh(P))(k) = 0 if k 6= g. Thus

p2∗(ĉh(P))(g) = −
1√

deg(φL)
φL,∗

[
ĉh(L

∨
)g[

rk(E)∑

r=1

(−1)r ĉh(Λr(π∗π∗(L))
∨)]

]
.
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Using furthermore that the left-hand side expression in the last equality is of
pure degree g in ĈH

•
(A∨)Q, we deduce that

p2∗(ĉh(P))(g) = −
1√

deg(φL)
φL,∗

[
ĉh(L

∨
)g[

rk(E)∑

r=1

(−1)r
(
rk(E)

r

)
]
]
.

Now notice that by the binomial formula
∑rk(E)

r=1 (−1)r
(
rk(E)

r

)
= (1−1)rk(E)−1 =

−1. This proves equation (7).

3.3 Proof of 1.2.3

Let Z be an analytic cycle of pure codimension c on A(C). In view of the
assumption on S, A(C) is a finite disjoint union of abelian varieties and so we
may (and do) choose a translation invariant Kähler form on A(C). A current g
on A(C) of type (c−1, c−1) is said to be a harmonic Green current for Z (with
respect to the Kähler form), if it satisfies the following properties : g is a Green
current for Z, the differential form ddc

g+δZ is harmonic and
∫
A(C)

g∧κ = 0 for
any harmonic form κ on A(C). Notice now that a differential form on A(C) is
harmonic if and only if it is translation invariant (see for instance [15, p. 648]).
Hence the concept of harmonic Green current is independent of the choice of
the translation invariant Kähler form.
The property (a) in Theorem 1.1 shows that gA is a Green current for S∨

0 (C)
and the property 2 in Theorem 1.2 shows that ddcg+ δS∨

0 (C) is harmonic. Let
now κ be a harmonic form of type (1, 1) on A(C). We know that κ is d-closed
and that [n]∗κ = n2 · κ for any n > 2. We may thus compute

∫

A(C)

gA∧κ =

∫

A(C)

[n]∗(gA∧κ) = n−2

∫

A(C)

[n]∗(gA∧[n]∗κ) = n−2

∫

A(C)

gA∧κ

and hence
∫
A(C)

gA ∧ κ = 0. Thus gA is harmonic.

3.4 Proof of 1.2.4

In the next section, we shall give an expression for gA, which depends only on
AC (see the formula (15)). This implies the assertion.

3.5 Proof of 1.2.5

The proof of 1.2.5 is postponed to the end of the proof of Theorem 1.3.1. See
the paragraph before subsection 4.2.

3.6 Proof of 1.2.6

This is a direct consequence of Theorem 1.1.1 and [11, Cor. 4.7 (i)] (thanks to
J.-I. Burgos for providing this proof).
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3.7 Proof of 1.2.7

We leave the proof that BC(C) is transverse to S∨
0 (C) to the reader. The

equation BC∗
gA = gAT follows from formula (15) for gA, which will be proved

in the next section, together with [11, Th. 9.11 (ii)] and the fact that the higher
analytic torsion forms of Bismut-Köhler are compatible with base-change.

4 Proof of Theorem 1.3

4.1 Proof of 1.3.1

This is the most difficult point to prove. We shall construct a class of currents
g
0
A which naturally restricts to the degree (g−1, g−1) part of the analytic tor-

sion and we shall prove that g0A satisfies the axioms defining gA. The arithmetic
Riemann-Roch theorem in higher degrees plays a crucial role here.

4.1.1 Definition of g
0
A

Let
V : 0 → OA → V0 → · · · → Vr → Vr+1 → · · ·

be a resolution of OA by π∗-acyclic vector bundles. Dualising, we get a resolu-
tion

V ∨ : · · · → V ∨
r+1 → V ∨

r → · · · → V ∨
0 → OA → 0

of OA on the left. The first hypercohomology spectral sequence of the complex
V ∨ ⊗ P for the functor p2,∗ provides an exact sequence

H : · · · → Rgp2∗(V
∨
r ⊗ P) → Rgp2∗(V

∨
r−1 ⊗ P) → . . .

→ Rgp2∗(V
∨
0 ⊗ P) → ǫ∨∗(ω

∨
A/S) → 0.

Now endow the vector bundles Vr with conjugation-invariant hermitian metrics.
The line bundle ωA/S is endowed with its L2-metric. This metric does not
depend on the choice of λ. This follows from the explicit formula for the
L2-metric on Hodge cohomology given in [38, Lemma 2.7]. The arithmetic
Riemann-Roch [22] in higher degrees applied to P and p2 is the identity

(−1)g ĉh(
∑

r>0

(−1)rRgp2∗(V
∨

r ⊗ P))−
∑

r>0

(−1)rT (λ, V
∨

r ⊗ P)+

+

∫

p2

Td(Tp2) ch(P)ηV̄ ∨

= p2,∗(T̂d(Tp2)ĉh(P))−

∫

p2

ch(P)R(Tp2)Td(Tp2)

in ĈH
•
(A∨)Q. Here ηV̄ ∨ is the Bott-Chern secondary class of V

∨
, where OA

has index 0. We have identified λ with p∗1λ.
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Notice first that

[

∫

p2

ch(P)R(Tp2)Td(Tp2)]
(g−1)

= [

∫

p2

ch(P)R(Tπ)Td(Tπ)](g−1)

= [π∨,∗(ǫ∗(R(Tπ)Td(Tπ)))

∫

p2

ch(P)](g−1) = 0

where we used (7).
Write T (H) for the homogenous secondary class in the sense of Bismut-Burgos-
Litcanu (see [11, sec. 6]) of the resolution H. By its very definition, −T (H)(g−1)

is a class of Green currents for S∨
0 (C) and it is shown in [11, Th. 10.28] that

[ĉh(
∑

r>0

(−1)rRgp2∗(V
∨

r ⊗ P))](g) = (S∨
0 ,−T (H)(g−1)) (13)

in ĈH
g
(A∨)Q and equation (7) shows that

[p2,∗(T̂d(Tp2)ĉh(P))](g) = [p2,∗(T̂d(Tπ)ĉh(P))](g)

= [p2,∗(ĉh(P))π∨,∗(ǫ∗(T̂d(Tπ)))](g) = p2,∗(ĉh(P))(g)

hence we are led to the equality

p2,∗(ĉh(P))(g) = (−1)g(S∨
0 ,−T (H)(g−1))−

∑

r>0

(−1)rT (λ, V
∨

r ⊗ P)(g−1)

+ [

∫

p2

Td(Tp2) ch(P)ηV̄ ∨ ](g−1). (14)

This motivates the definition:

g
0
A := −T (H)(g−1) + (−1)g+1

∑

r>0

(−1)rT (λ, V
∨

r ⊗ P)(g−1)

+(−1)g[

∫

p2

Td(Tp2) ch(P)ηV̄ ∨ ](g−1) (15)

Lemma 4.1. The class of currents g0A does not depend on the resolution V , nor
on the metrics on the bundles Vr, nor on the translation invariant Kähler form
λ.

Proof. We first prove that the class of currents g0A does not depend on V and
that it does not depend on the hermitian metrics or on the bundles Vr .
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Suppose that there is a second resolution V ′ dominating V :

0 0 0 0

V ′ : 0 > OA

∨
> V ′

0

∨
> · · · > V ′

r

∨
> V ′

r+1

∨
> · · ·

V : 0 > OA

Id
∨

> V0
∨

> · · · > Vr
∨

> Vr+1

∨
> · · ·

Q : 0
∨

> Q0

∨
> · · · > Qr

∨
> Qr+1

∨
> · · ·

0
∨

0
∨

0
∨

By assumption the complex Q is exact and we assume that its objects are π∗-
acyclic. We endow everything with hermitian metrics. We shall write H′ for
the exact sequence

H′ : · · · → Rgp2∗(V
′,∨
r ⊗ P) → Rgp2∗(V

′,∨
r−1 ⊗ P) → . . .

hfill→ Rgp2∗(V
′,∨
0 ⊗ P) → ǫ∨∗(ω

∨
A/S) → 0.

In order to emphasize the dependence of g0A on the resolution V together with
the collection of hermitian metrics on the Vr, we shall write g

0
V
:= g

0
A,V

instead

of g0A. Recall that η
V

∨ is the Bott-Chern secondary class of the sequence V
∨
,

with OA sitting at the index 0. We shall accordingly write η
V

′,∨ for the Bott-

Chern secondary class of the sequence V
′,∨

, with OA sitting at the index 0.
By definition, we have

(−1)g(g0
V
− g

0
V

′) = (−1)g+1T (H)(g−1)

−
∑

r>0

(−1)rT (λ, V
∨

r ⊗ P)(g−1) + [

∫

p2

Td(Tp2) ch(P)ηV̄ ∨ ](g−1)

− (−1)g+1T (H
′
)(g−1) +

∑

r>0

(−1)rT (λ, V
′,∨

r ⊗ P)(g−1)

− [

∫

p2

Td(Tp2) ch(P)ηV̄ ′,∨ ](g−1).

Let now
Cr : 0 → Q∨

r ⊗ P → V ∨
r ⊗ P → V

′,∨
r ⊗ P → 0

be the natural exact sequence. All the bundles appearing on Cr are endowed
with natural hermitian metrics. By the symmetry formula [4, Th. 2.7, p. 271],

Documenta Mathematica 20 (2015) 631–668



650 V. Maillot and D. Rössler

we may compute

T (H)− T (H
′
) = c̃h(Rgπ∗(Q

∨ ⊗ P))−
∑

r>0

(−1)rc̃h(Rgπ∗(Cr)).

On the other hand, the anomaly formula [6, Th. 3.10, p. 670] tells us that

∑

r>0

(−1)rT (λ, V
∨

r ⊗ P)−
∑

r>0

(−1)rT (λ, V
′,∨

r ⊗ P)

=
∑

r>0

(−1)rT (λ,Q
∨

r ⊗ P) + (−1)g
∑

r>0

(−1)rc̃h(Rgπ∗(Cr))

−

∫

p2

∑

r>0

(−1)r Td(Tp2)c̃h(Cr)

and

∑

r>0

(−1)rT (λ,Q
∨

r ⊗ P) =

∫

p2

Td(Tp2)c̃h(Q
∨
⊗ P)− (−1)g c̃h(Rgπ∗(Q

∨ ⊗ P)).

Furthermore the symmetry formula [4, Th. 2.7, p. 271] again implies that

∫

p2

Td(Tp2)ηV̄ ′,∨ ch(P)−

∫

p2

Td(Tp2)ηV̄ ∨ ch(P)

= −

∫

p2

Td(Tp2)c̃h(Q
∨
⊗ P) +

∫

p2

∑

r>0

(−1)r Td(Tp2)c̃h(Cr).

Putting everything together, we see that

(−1)g(g0
V
− g

0
V

′)

=
[
− (−1)g c̃h(Rgπ∗(Q

∨ ⊗ P)) + (−1)g
∑

r>0

(−1)r c̃h(Rgπ∗(Cr))

− (−1)g
∑

r>0

(−1)rc̃h(Rgπ∗(Cr)) +

∫

p2

∑

r>0

(−1)r Td(Tp2)c̃h(Cr)

−

∫

p2

Td(Tp2)c̃h(Q
∨
⊗ P) + (−1)g c̃h(Rgπ∗(Q

∨ ⊗ P))

+

∫

p2

Td(Tp2)c̃h(Q
∨
⊗ P)−

∫

p2

∑

r>0

(−1)r Td(Tp2)c̃h(Cr)
](g−1)

= 0.

Homological algebra tells us that there always exists a resolution dominating
simultaneously two other ones. Furthermore, we might assume that this reso-
lution satisfies the above conditions of π∗-acyclicity (see [30, chap XX, par. 3,
proof of Th. 3.5, p. 773]). Hence we have proven that g

0
V

does not depend on
V and that it does not depend on the hermitian metrics on the bundles Vr.
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We shall now prove that g
0
A does not depend on the choice of λ. So let λ′

be another Kähler fibration, which is translation invariant on the fibres. To

emphasize the dependence of g0A on λ, let us write g
0
A := g

0,λ. Write H
λ

(resp.

H
λ′

) for the sequence H together with the hermitian metrics induced by λ
(resp. λ′).
We compute as before

(−1)g(g0,λ − g
0,λ′

)

= (−1)g+1T (H
λ
)(g−1) −

∑

r>0

(−1)rT (λ, V
∨

r ⊗ P)(g−1)

+ [

∫

p2

Td(Tp2, λ) ch(P)ηV̄ ∨ ](g−1)

− (−1)g+1T (H
λ′

)(g−1) +
∑

r>0

(−1)rT (λ′, V
∨

r ⊗ P)(g−1)

− [

∫

p2

Td(Tp2, λ
′) ch(P)ηV̄ ∨ ](g−1).

We compute

T (H
λ′

)− T (H
λ
) = −

∑

r>0

(−1)r c̃h(Rgπ∗(V
∨
r ⊗ P), λ′, λ)

and by the anomaly formula [6, Th. 3.10, p. 670]

∑

r>0

(−1)rT (λ′, V
∨

r ⊗ P)−
∑

r>0

(−1)rT (λ, V
∨

r ⊗ P)

= (−1)g
∑

r>0

(−1)r c̃h(Rgπ∗(V
∨
r ⊗ P), λ′, λ)

−

∫

p2

∑

r>0

(−1)rT̃d(λ′, λ) ch(V
∨

r ⊗ P).

Now notice that by the Leibniz formula (see [42, 6.2, (7)] for details)
∫

p2

(
Td(Tp2, λ)− Td(Tp2, λ

′)
)
ch(P)ηV̄ ∨ = −

∫

p2

ddc(T̃d(λ′, λ)) ch(P)ηV̄ ∨

= −

∫

p2

T̃d(λ′, λ)ddc(ch(P)ηV̄ ∨)

=
∑

r>0

(−1)r
∫

p2

T̃d(λ′, λ) ch(V
∨

r ⊗ P)−

∫

p2

T̃d(λ′, λ) ch(P).

Now, by the projection formula, since λ and λ′ are translation invariant, we
have ∫

p2

T̃d(λ′, λ) ch(P) = ǫ∨,∗(T̃d(λ′, λ))

∫

p2

ch(P)
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and by the formula (7) we have [ǫ∨,∗(T̃d(λ′, λ))
∫
p2

ch(P)](g−1) = 0. Assembling

everything, we get that g
0,λ − g

0,λ′

= 0. �

4.1.2 End of proof of 1.3.1

We keep the notation of the last subsection. By construction, the class of
currents g

0
A has the property that

g
0
A|A∨(C)\S∨

0 (C) = (−1)g+1T (λ,P
0
)(g−1) (16)

in Ãg−1,g−1(A∨\S∨
0 ) and contemplating equation (13), we see that the elements

of g0A are Green currents for S∨
0 . Looking at the equation (14) we see that g

0
A

satisfies (a) and (b) in Theorem 1.1.
Now we want to prove that

g
0
A = [n]∗g

0
A (17)

for all n > 2.
Fix n > 2. We claim that to prove equation (17), we may assume that ker [n]A is
a constant diagonalisable subgroup-scheme of A. Indeed, both sides of equation
(17) depend on A∨

C only. In proving equation (17), we thus may (and do) replace
R by its fraction field Frac(R). We may also assume without restriction of
generality that S is connected, hence integral (since S is regular by assumption).
Now let S′ be the normalisation of S in the composite of the field extensions
of the function field κ(S) of S, which are defined by the residue fields of the
n-torsion points in the generic fibre Aκ(S) of A. Then b : S′ → S is finite (see
[23, II, 6.3.10]) and étale (see [39, Cor. 20.8, p. 147]). Since [n]A is étale,
the group scheme of n-torsion points on AS′ is then a constant group scheme.
If we again replace S′ by a finite étale cover, we may assume that Γ(S′,OS′)
contains the n-th roots of 1 and the group scheme of n-torsion points on AS′

then become diagonalisable (and constant).
Now, by the projection formula the pull-back morphism b∗ : Ãg−1,g−1(A∨

R) →

Ãg−1,g−1(A∨
S′,R) is injective. Furthermore, since an étale finite morphism is a

local isomorphism in the category of complex manifolds, we have b∗([n]∗g0A) =
[n]∗(b

∗
g
0
A). For the same reason, we also have b∗g0A = g

0
AS′

.

Lemma 4.2. There is an isometric isomorphism

[n]∗OA ≃
⊕

M∈A∨[n](S)

M

where the left-hand side is endowed with its L2-metric and the direct summands
on the right-hand side are endowed with the metric induced by the Poincaré
bundle.

Proof. Let us denote by FA : Db(A) → Db(A∨) the Fourier-Mukai trans-
formation. If X is a scheme, the category Db(X) is a full subcategory of the

Documenta Mathematica 20 (2015) 631–668



On a Canonical Class of Green Currents . . . 653

category D(X) derived from the category of sheaves in OX -modules. Its ob-
jects are the complexes with a finite number of non-zero homology sheaves, all
of which are coherent. The functor FA is given by the formula

K• 7→ Rp2,∗(p
∗
1K

• ⊗ P).

It can be proven that in our situation, there is a natural isomorphism of functors

FA∨ ◦ FA(·) ≃
(
([−1]∗(·))⊗ ω∨

A

)
[−g]

(here we have identified A with (A∨)∨) and

FA ◦ [n]∗(·) ≃ [n]∗ ◦ FA(·).

See [32] for this. Now we compute

FA∨ ◦ FA([n]∗(OA)) ≃ [n]∗(OA)⊗ ω∨
A[−g] ≃ FA∨ ◦ [n]∗(FA(OA))

≃ FA∨([n]∗
(
ǫ∨∗ (ǫ

∨,∗(ω∨
A))[−g]

)
) ≃ πA,∗(PA|A×Sker [n]A∨ )⊗ ω∨

A[−g]

and we thus obtain a canonical isomorphism

[n]∗OA ≃
⊕

M∈A∨[n](S)

M. (18)

Now we make a different computation. Let G be a finite group such that
GS ≃ ker [n]A. Let L := Γ(S,OS). If χ : G → L∗ is a character of G
we let ([n]∗OA)χ be the locally free subbundle of [n]∗OA which is the largest
subbundle S of [n]∗O such that the action of G on S is given by multiplication
by χ. Since GL is a diagonalisable group scheme over L, this gives a direct sum
decomposition

[n]∗OA = ⊕χ([n]∗OA)χ. (19)

Now we use the equivariant form of Bismut’s relative curvature formula (see
[7]). Let a ∈ G be any non-zero element. Since the fixed point scheme of a on
A is empty, we get

cha([n]∗(OA)) = 0. (20)

Here cha(·) is the equivariant Chern character form associated to the action of
a. See [7] for details. The non-equivariant relative curvature formula gives

ch([n]∗(OA)) = rk([n]∗OA). (21)

From the equations (20) and (21) and the fact that rk([n]∗OA) = #G, we
deduce (by finite Fourier theory) that all the ([n]∗OA)χ are of rank 1 and that
c1(([n]∗OA)χ) = 0, where ([n]∗OA)χ is endowed with the metric induced by
[n]∗OA.
A completely similar computation using the relative geometric fixed point for-
mula (see [1]) shows that each line bundle ([n]∗OA)χ is actually a torsion line
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bundle. Notice also that since G acts by isometries on OA, the direct sum
decomposition (19) is an orthogonal direct sum.

Now notice that since [n] is finite and flat there is an isometric equivariant
isomorphism

ǫ∗([n]∗OA) ≃ O
G

A

where OG
A is endowed with the G-action induced by the action of G on itself.

This shows that there exist isometric rigidifications ǫ∗(([n]∗OA)χ) ≃ OS .

Summing up the discussion of the previous paragraphs, we see that there exists
an isometric isomorphism of vector bundles

[n]∗OA = ⊕χ([n]∗OA)χ (22)

where the direct sum is orthogonal and where each ([n]∗OA)χ is a torsion line
bundle, which is isometrically rigidified and which carries a hermitian metric,
whose curvature form vanishes.

Now consider the isomorphism of vector bundles

⊕

χ

([n]∗OA)χ ≃
⊕

M∈A∨[n](S)

M (23)

induced by the isomorphisms (18) and (22).

We shall need the

Claim. Let M and L be torsion line bundles on A. If there is a non-zero
morphism of line bundles (without rigidification) L → M then L and M are
isomorphic.

This follows from the fact that the Picard functor of A/S is representable by
a scheme, which is separated over S, together with the fact that a non-trivial
torsion bundle on an abelian variety has no global sections. Details are left to
the reader.

The claim shows that the isomorphism (23) send each ([n]∗OA)χ into exactly
one M ∈ A∨[n](S) and that this morphism is an isomorphism of line bundles.
After possibly rescaling the isomorphism ([n]∗OA)χ ≃ M by an element of
Γ(S,O∗

S), we obtain an isomorphism ([n]∗OA)χ ≃ M of rigidified line bundles.
Since both ([n]∗OA)χ and M are endowed with the unique metrics, whose
curvature form is translation invariant on the fibres of A(C)/S(C) and which are
compatible with the given rigidifications, this implies that this is an isometric
isomorphism. This completes the proof of the lemma. �
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As at the beginning of the proof of assertion 1 in Theorem 1.2, we have a
diagram

A×S A∨ [n]× Id
> A×S A∨ > A∨

A×S A∨

Id× [n]
∨

> A∨

[n]
∨

such that

(Id× [n])∗P ≃ ([n]× Id)∗P

and such that the outer square is cartesian. Write q := p2◦([n]×Id). To clarify
further computations, write R•p2,∗(V

∨ ⊗ P) for H. We now compute

(−1)g[n]∗g0A = [n]∗
[
(−1)g+1T (R•p2,∗(V

∨ ⊗ P)) (24)

−
∑

r>0

(−1)rT (λ, V
∨

r ⊗ P) +

∫

p2

Td(Tp2) ch(P)ηV̄ ∨

]

= (−1)g+1T (R•q∗(V
∨ ⊗ (Id× [n])∗P)) (25)

−
∑

r>0

(−1)rT (λ, V
∨

r ⊗ (Id× [n])∗P)

+

∫

q

Td(Tq) ch((Id× [n])∗P)ηV̄ ∨

= (−1)g+1T (R•q∗(V
∨ ⊗ ([n]× Id)∗P)) (26)

−
∑

r>0

(−1)rT (λ, V
∨

r ⊗ ([n]× Id)∗P)

+

∫

q

Td(Tq) ch(([n]× Id)∗P)ηV̄ ∨

In view of Lemma 4.1, we may replace V by [n]∗V A and λ by [n]∗λA in the
string of equalities (27) without changing its truth-value. Thus
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(−1)g[n]∗g0A = (−1)g+1T (R•q∗(([n]× Id)∗(V ∨ ⊗ P)))

−
∑

r>0

(−1)rT ([n]∗λ, ([n]× Id)∗(V
∨

r ⊗ P))

+

∫

q

Td(Tq)([n]× Id)∗(ch(P)ηV̄ ∨)

(∗)
= (−1)g+1T (R•p2,∗(([n]× Id)∗(O) ⊗ V ∨ ⊗ P))

−
∑

r>0

(−1)rT (([n]× Id)∗(O)⊗ V
∨

r ⊗ P)

+

∫

p2

Td(Tp2)([n]× Id)∗(1) ch(P)ηV̄ ∨

(∗∗)
=

∑

τ∈A∨(S)

[
(−1)g+1T (R•p2,∗((Id× (τ ◦ π))∗(P)⊗ V ∨ ⊗ P))

−
∑

r>0

(−1)rT ((Id× (τ ◦ π))∗(P)⊗ V
∨

r ⊗ P)

+

∫

p2

Td(Tp2) ch((Id× (τ ◦ π))∗(P)⊗ P)ηV̄ ∨

]

=
∑

τ∈A∨(S)

[
(−1)g+1τ∗(T (R•p2,∗(V

∨ ⊗ P)))− τ∗[
∑

r>0

(−1)rT (V
∨

r ⊗ P)]

+ τ∗[

∫

p2

Td(Tp2)(P)ηV̄ ∨ ]
]

= (−1)g
∑

τ∈A∨(S)

τ∗g
0
A.

The equality (*) is justified by the following

Proposition 4.3. The equality

T ([n]∗λ, ([n]× Id)∗(V
∨

r ⊗ P)) = T (([n]× Id)∗(O)⊗ V
∨

r ⊗ P)

is verified for any r.

Proof. (of Proposition 4.3). This is a direct consequence of [35, Intro., Th.
0.1]. �

For the equality (**), we used Lemma 4.2. We may now compute

[n]∗[n]
∗
g
0
A = n2g

g
0
A = [n]∗(

∑

τ∈A∨(S)

τ∗g
0
A) = n2g[n]∗g

0
A

i.e.
g
0
A = [n]∗g

0
A.
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We have thus proven that g
0
A satisfies the conditions (a), (b), (c) in Theorem

1.1. Thus g
0
A = gA and looking at equation (16), we see that we have almost

concluded the proof of Theorem 1.3.1. To finish, we quote [27], where it is

shown that T (λ,P
0
) = Td−1(ǫ∗Ω)γ for some real differential form γ of type

(g − 1, g − 1) on A∨\S∨
0 . From the above, we see that γ = (−1)g+1

gA and we
are done.
Proof of Theorem 1.2.5.
We revert to the hypotheses of the introduction and of Theorem 1.2.5 (in
particular, we do not suppose anymore that for some n > 2, the group scheme
ker [n] is the constant group scheme).
To verify the equation gA×SB = π∗

A∨ (gA) ∗ π∗
B∨(gB), it is sufficient to check

that the class of currents π∗
A∨(gA) ∗ π∗

B∨(gB) satisfies the axioms (a), (b), (c)
in Theorem 1.1.
The fact that the elements of π∗

A∨(gA) ∗ π∗
B∨(gB) are Green currents for the

unit section of A∨×S B∨ follows immediately from the definitions. This settles
(a).
To verify (b), we consider the commutative diagram

A× B ×A∨ × B∨

A×A∨ <
qAA∨

A×A∨ × B∨

pAA∨B∨

<
A∨ × B × B∨ rBB∨

>

pA∨BB∨

>
B × B∨

A∨ × B∨

pA∨B∨

∨ rA∨B∨<qA∨B∨ >

where the morphisms are the obvious ones. Notice that in this diagram, the
square is cartesian. We compute

(−1)gA×BpA∨B∨,∗(ĉh(PA×B))
gA×B

= (−1)(gA+gB)
pA∨B∨,∗(ĉh(PA×B))

(gA+gB)=(−1)(gA+gB)
pA∨B∨,∗(ĉh(PA×B))

= (−1)(gA+gB)
pA∨B∨,∗(ĉh(p

∗
AA∨B∨q

∗
AA∨PA) · ĉh(p∗A∨BB∨r

∗
BB∨PB))

= (−1)(gA+gB)
rA∨B∨,∗(pA∨BB∨,∗(ĉh(p

∗
AA∨B∨q

∗
AA∨PA) · ĉh(p∗A∨BB∨r

∗
BB∨PB)))

= (−1)(gA+gB)
rA∨B∨,∗(pA∨BB∨,∗(ĉh(p

∗
AA∨B∨q

∗
AA∨PA)) · ĉh(r∗BB∨PB))

= (−1)(gA+gB)
rA∨B∨,∗(r

∗
A∨B∨(qA∨B∨,∗(ĉh(q

∗
AA∨PA))) · ĉh(r∗BB∨PB))

= (−1)(gA+gB)
rA∨B∨,∗(ĉh(r

∗
BB∨PB)) · qA∨B∨,∗(ĉh(q

∗
AA∨PA))

= (−1)gAπ∗
A∨(ĉh(PA)) · (−1)gBπ

∗
B∨(ĉh(PB)) = π

∗
A∨((S∨,A

0 , gA)) · π∗
B∨((S∨,B

0 , gB))

= (S∨,A×B

0 , π
∗
A∨(gB) ∗ π

∗
B∨(gB))

Here we have used the projection formula repeatedly, as well as the fact that
direct images in arithmetic Chow theory are compatible with base-change. We
also used Theorem 1.2.2. (in the second equation before last) and the definition
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of the intersection product in arithmetic Chow theory (in the last equation).
This settles (b).
To verify (c) we revert to the hypothesis made at the beginning of this sub-
section. In particular, we suppose that for some n > 2, the scheme ker [n] is
the constant group scheme in A. As explained at the beginning of this subsec-
tion, this does not restrict generality. First notice that by the definition of the
symbols [n]∗ and [n]∗, we have

[n]∗[n]∗gA =
∑

τ∈A∨[n](S)

τ∗(gA)

and thus by Theorem 1.1(c),

[n]∗gA =
∑

τ∈A∨[n](S)

τ∗(gA) (27)

Of course, similar equations hold for gB. Notice also that equation (27) implies
that [n]∗gA = gA, as can be see by applying [n]∗ to both sides of equation
(27) (see the calculation made after Proposition 4.3). Thus the equation (27)
is actually equivalent to the equation [n]∗gA = gA.
Now we may compute

[n]∗A∨×B∨(π∗
A∨ (gA) ∗ π

∗
B∨(gB)) = π∗

A∨([n]∗A∨(gA)) ∗ π
∗
B∨([n]∗B∨(gB))

= π∗
A∨(

∑

τ∈A∨[n](S)

τ∗(gA)) ∗ π
∗
B∨(

∑

τ∈B∨[n](S)

τ∗(gB))

=
∑

τ∈A∨[n](S)×B∨[n](S)

τ∗
(
π∗
A∨(gA) ∗ π

∗
B∨(gB)

)

which settles (c). Here we used in the first line the fact that the ∗-product is
naturally compatible with finite étale pull-back.

4.2 Proof of 1.3.2

We shall apply the Adams-Riemann-Roch theorem in Arakelov geometry
proven in [42, Th. 3.6]. Let M be the rigidified hermitian line bundle on

A corresponding to σ. By assumption, there is an isomorphism M
⊗n

≃ OA

of rigidified hermitian line bundles. Let k, l be two positive integers such that
k = l (mod n). Let Ω := ΩA/S . The theorem [42, Th. 3.6] implies that the
identity

ψk(R•π∗M)− ψk(T (λ,M))

= θk(ǫ∗Ω)−1R•π∗(M
⊗k

)− ch(θk(ǫ∗Ω)−1)T (λ,M
⊗k

) (28)

holds in K̂0(S)[
1
k ] and that the identity

ψl(R•π∗M)− ψl(T (λ,M))

= θl(ǫ∗Ω)−1R•π∗(M
⊗l
)− ch(θl(ǫ∗Ω)−1)T (λ,M

⊗l
) (29)
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holds in K̂0(S)[
1
l ]. Here the symbols ψ∗(·) refer to the Adams operations

acting on arithmetic K0-theory; see [42, sec. 2 and before Th. 3.6] for the
exact definition. For the definition of the symbol θ∗(·), see [42, sec. 2]. In the
following computations, we shall need the following properties of these symbols.
Define φt(·) to be the additive operator, which sends a differential form η of
type (r, r) to the differential form tr · η. It is proven in [42, Prop. 4.2] that
θk(ǫ∗Ω) is a unit in K̂0(S)[

1
k ] and we have

ch(θk(ǫ∗Ω)) = krk(Ω) Td(ǫ∗Ω
∨
)φk(Td

−1
(ǫ∗Ω

∨
)) (30)

(and similarly for l instead of k). See [42, Lemma 6.11] for this. Secondly, if
η ∈ Ã(SR), then we have

ψk(η) = k · φk(η)

in K̂0(S). In view of the fact that θk(ǫ∗Ω) is a unit in K̂0(S)[
1
k ], we get the

equation

ch(θk(ǫ∗Ω))ψk(R•π∗M)− ch(θk(ǫ∗Ω))ψk(T (λ,M))

= R•π∗(M
⊗k

)− T (λ,M
⊗k

)

in K̂0(S)[
1
k ] from equation (28). Similarly, we get

ch(θl(ǫ∗Ω))ψl(R•π∗M)− ch(θl(ǫ∗Ω))ψl(T (λ,M)) = R•π∗(M
⊗l
)− T (λ,M

⊗l
)

in K̂0(S)[
1
l ]. Since k = l (mod n), we obtain the equation

ch(θk(ǫ∗Ω))ψk(R•π∗M)− ch(θk(ǫ∗Ω))ψk(T (λ,M))

= ch(θl(ǫ∗Ω))ψl(R•π∗M)− ch(θl(ǫ∗Ω))ψl(T (λ,M))

in K̂0(S)[
1
kl ]. In view of equation (30) and of the fact that Rrπ∗M = 0 for all

r > 0, this translates to the equation

kg Td(ǫ∗Ω
∨
)φk(Td

−1
(ǫ∗Ω

∨
))ψk(T (λ,M))

= lg Td(ǫ∗Ω
∨
)φl(Td

−1
(ǫ∗Ω

∨
))ψl(T (λ,M))

in K̂0(S)[
1
kl ]. Recall that in [27] it is shown that T (λ,M) = Td−1(ǫ∗Ω)γ,

where γ is a real differential form of type (g−1, g−1) on S. So we may rewrite

kg+1 Td(ǫ∗Ω
∨
)φk(Td

−1
(ǫ∗Ω

∨
))φk(Td−1(ǫ∗Ω))φk(γ)

= lg+1 Td(ǫ∗Ω
∨
)φl(Td

−1
(ǫ∗Ω

∨
))φl(Td−1(ǫ∗Ω))φl(γ) (31)

Furthermore

Lemma 4.4. We have Td−1(ǫ∗Ω
∨
⊕ ǫ∗Ω) = 1.
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Proof. We may (and do) assume that R = C. Consider the relative Hodge
extension

0 → R0π∗(Ω) → H1
dR(A/S) → R1π∗(OA) → 0 (32)

where H1
dR(A/S) := R1π∗(Ω

•
A/S) is the first relative de Rham cohomology

sheaf. The sequence (32) is the expression of the filtration on R1π∗(Ω
•
A/S),

which comes from the relative Hodge to de Rham spectral sequence. This
spectral sequence is the first hypercohomology spectral sequence of the relative
de Rham complex Ω•

A/S and it degenerates by [13, Prop. 5.3]. The relative
form of the GAGA theorem shows that there is an isomorphism of holomor-
phic vector bundles H1

dR(A/S)(C) ≃ (R1π(C)∗C)⊗C OS(C) (see [14, p. 31])
and via this isomorphism we endow H1

dR(A/S)(C) with the fibrewise Hodge
metric, whose formula is given in [38, before Lemma 2.7]. Since the metric on
H1

dR(A/S)(C) is locally constant by construction, the curvature matrix of the
hermitian vector bundle H1

dR(A/S)(C) ≃ (R1π(C)∗C)⊗C OS(C) vanishes. Now
the formula in [38, Lemma 2.7] shows that in the sequence (32), the L2-metric
on the first term corresponds to the induced metric and the L2-metric on the
end term corresponds to the quotient metric. We now view the sequence (32)
as a sequence of hermitian vector bundles with the metrics described above.
Using [36, Th. 3.4.1], we see that the secondary class T̃d of the sequence (32)
is ddc-closed. Thus

Td(R1π∗(OA, L
2)⊕ R0π∗(Ω, L

2)) = Td((H1
dR(A/S),Hodge metric)) = 1.

Now notice that by relative Lefschetz duality for Hodge cohomology (see [13,
Lemme 6.2]) and Grothendieck duality, there is an isomorphism of OS-modules
φλ : R1π∗(OA)

∼
−→ R0π∗(Ω)

∨, which is dependent on λ. To describe it, let
S = SpecC. Under the Hodge-de Rham splitting of the sequence (32), the
morphism φλ is given by the formula

ω 7→ ω ∧ λg−1 7→

∫

A

(ω ∧ λg−1) ∧ (·)

(notice that this formula does actually not depend on the splitting). Now com-
paring the last formula with the formula for the Hodge metric in [38, before
Lemma 2.7], we see that, up to a constant factor, φλ induces an isometry be-
tween R1π∗(OA, L

2) and the dual of the hermitian vector bundle R0π∗(Ω, L
2).

To complete the proof, notice that since the volume of the fibres of π(C) is
locally constant (by the assumption on λ), the natural isomorphism of vec-
tor bundles R0π∗(Ω, L

2) ≃ ǫ∗Ω is an isometry up to a locally constant factor.
Hence the Chern forms of R0π∗(Ω, L

2) and ǫ∗Ω are the same. This completes
the proof. �

Together with Lemma 4.4, we see that (31) gives the identity

k2g Td(Ω
∨
)γ = l2g Td(Ω

∨
)γ

or in other words
(k2g − l2g)T (λ,M) = 0 (33)
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in K̂0(S)[
1
kl ].

We shall now show that equation (33) implies the identity

2g · n ·N2g · T (λ,M) = 0 (34)

in K̂0(S). For this consider the following combinatorial lemma.

Lemma 4.5. Let G be an abelian group, written additively. Let c > 1 and let
α ∈ G. Suppose that for all k, l > 0 such that k = l (mod n), we have

(lc − kc) · α = 0

in G[ 1kl ]. Then

order(α) | 2 · n · c · [
∏

p prime,
p∤n, (p−1)|c

p]

Proof. Rephrasing the hypotheses of the lemma, we find that for any k, l > 0
such that k = l (mod n), there exist integers a, b > 0 (depending on the couple
(k, l)) such that:

kalb(lc − kc) · g = 0. (35)

For any (k, l) as above, we will denote by γ the integer such that l = k + γn.
In what follows, p will be a prime dividing order(α) and we will write δp (or in
short δ if no confusion can occur) the positive valuation vp(order(α)).
We deduce from equation (35) that:

pδ | kalb(lc − kc).

From now on, k and l will be chosen such that k, l 6= 0 (mod p), this implying
in particular that the classes of k and l in Z/pδZ are invertible. We thus get:

pδ | (lc − kc)

or equivalently:
(l/k)c = 1 (mod pδ)

in (Z/pδZ)∗. We will denote by C ⊂ (Z/pδZ)∗ the set of the classes (l/k) with
l and k as above. The restriction of the map ϕ : x 7→ xc to C is then identically
equal to 1. In what follows, in order to bound δ, we determine the set C. We
must distinguish between two cases.

Case 1. The prime p doesn’t divide n.
Taking k = n, we have (l/k) = (k + γn)/k = 1 + γ for all the integers γ
satisfying (1 + γ) ∧ p = 1. We deduce from this that necessarily:

C = (Z/pδZ)∗.

We now need the following well-known group isomorphisms, which we recall for
the sake of the exposition (the group laws are multiplicative on the left-hand
side and additive on the right-hand side):
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• If p 6= 2, (Z/pδZ)∗ ≃ Z/pδ−1(p− 1)Z.

• If p = 2, (Z/2Z)∗ ≃ {0}, (Z/4Z)∗ ≃ Z/2Z and for δ > 3, (Z/2δZ)∗ ≃
(Z/2Z)× (Z/2δ−2Z), the projection on the first factor being the obvious
reduction map to (Z/4Z)∗ ≃ Z/2Z.

Let’s then discuss the two subcases p 6= 2 and p = 2 separately.
If p 6= 2, the restriction of ϕ to C = (Z/pδZ)∗ ≃ Z/pδ−1(p− 1)Z is equal to 1
identically. On the righten side, ϕ is the multiplication by c the class of c in
Z/pδ−1(p− 1)Z. One must then have c = 0, and thus:

(p− 1)pδ−1 | c,

i.e. the two conditions p− 1 | c and δp 6 1 + vp(c).
If p = 2, using the same argument as above, the discussion falls into three
different subsubcases:

• δ2 = 1, no condition.

• δ2 = 2, we find that 2 | c.

• δ2 > 3, we get that 2 | c and 2δ2−2 | c, i.e. δ2 6 2 + v2(c).

Summing up those three subsubcases, we finally conclude that if c is odd then
δ2 = 1 and if c is even then δ2 6 2 + v2(c).

Let’s now come to the:

Case 2. The prime p divide n.
Let’s define β := vp(n) > 1 and n′ := n/pβ and let’s suppose in addition that
δ > β.
We compute in (Z/pβZ)∗

l/k = (k + γn)/k = 1 + γn/k = 1 + (γn′/k)pβ = 1

and thus the set C is contained in the kernel K of the reduction morphism:

(Z/pδZ)∗ −→ (Z/pβZ)∗.

The integer n′ being prime to p, its class in (Z/pδZ) is invertible and one can
take k = n′. We find that for any integer γ:

l/k = 1 + γn/n′ = 1 + γpβ

in (Z/pδZ)∗, this implying the set equality:

C = K.

We are thus left to determine K. Again, we will distinguish between two
subcases:
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If p 6= 2 we have:

#K = #(Z/pδZ)∗/#(Z/pβZ)∗ = pδ−1(p− 1)/pβ−1(p− 1) = pδ−β

from which we deduce first that K ≃ Z/pδ−βZ and then immediately that
pδ−β | c, i.e.

δ 6 β + vp(c) = vp(n) + vp(c).

If p = 2, the discussion now falls into five different subsubcases.

• β = 1 and δ2 = 1, no condition.

• β = 1 and δ2 = 2, we find that 2 | c, i.e. c is even.

• β = 1 and δ2 > 3, then we get 2 | c and 2δ2−2 | c, i.e. δ2 6 2+ v2(c) with
c being necessary even.

To summarize those three first cases let’s write that when β = 1, if c odd
then δ2 = 1 and if c is even then δ2 6 2 + v2(c).

• β = 2 and δ2 = 2, no condition.

• In all other cases, the kernel K is contained in (Z/2δ2−2Z) and as a
consequence is cyclic. We thus get:

#K = #(Z/2δ2Z)∗/#(Z/2βZ)∗ = 2δ2−1/2β−1 = 2δ2−β

and so 2δ2−β | c, from which we deduce:

δ2 6 β + v2(c) = v2(n) + v2(c).

In conclusion of the subcase p = 2, we find that:

δ2 6 v2(n) + v2(c) + w2,

with w2 = 1 if v2(n) = 1 and c is even, and w2 = 0 otherwise.

Putting everything together, we have finally proven that:

order(α) | F2 ×
∏

p prime, p 6=2,
p doesn’t divide n, (p−1)|c

p1+vp(c) ×
∏

p prime,

p 6=2, p|n

pvp(n)+vp(c)

where the F2 factor is given by the following rules:

• if n and c are odd then F2 = 2,

• if n is odd and c is even then F2 = 22+v2(c),

• if n is even then F2 = 2v2(n)+v2(c)+w2 ; with w2 = 1 if v2(n) = 1 and c is
even, and w2 = 0 otherwise.
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The lemma’s statement is then a direct consequence of this (more precise)
assertion. �
In view of Lemma 4.5, the set of identities (33) implies that the order of T (λ,M)

in K̂0(S) divides 2 · n · 2g · [
∏

p prime, p∤n, (p−1)|2g p].
Now use the notations of the last lemma. It is shown in [40, Appendix B] that
the equality

2 · denominator[(−1)
c+2
2 Bc/c] = 2 ·

∏

p prime,
(p−1)|c

pordp(c)+1 (36)

holds if c is even. This proves the identity (34) .
To conclude the proof of Theorem 1.3.2, recall that there is an exact sequence

K1(A
∨)

−2regan−−−−−→ ⊕p>0Ã
p,p(A∨

R)
a
→ K̂0(A

∨) → K0(A
∨) → 0

(see [21, Th. 6.2 (i)] for this).

5 The case of elliptic schemes

In this last section, we shall consider elliptic schemes and compare the conclu-
sions of Theorems 1.1, 1.2 and 1.3 with classical results on elliptic units.
So suppose that A is of relative dimension 1, i.e. that A is an elliptic scheme
over S. Suppose also that the structural morphism S → SpecR is the iden-
tity on SpecR. Let σ ∈ Σ be an embedding of R into C. There exists an
isomorphism of complex Lie groups

A(C)σ := (A×R,σ C)(C) = C/(Z+ Z · τσ) (37)

where τσ ∈ C lies in the upper half plane.

Proposition 5.1. (a) The restriction of gA∨ to A(C)σ = C/(Z+ Z · τσ)\{0}
is given by the function

φ(z) = φA,σ(z) := −2log|e−z·η(z)/2sigma(z)∆(τσ)
1
12 |

(b) Endow C/(Z+Z·τσ) with its Haar measure of total measure 1. The function
φ then defines an L1-function on C/(Z+ Z · τσ) and the restriction of gA∨ to
A(C)σ is the current [φ] associated with φ.

Here ∆(•) is the discriminant modular form, sigma(z) is the Weierstrass sigma-
function associated with the lattice [1, τσ] and η is the quasi-period map asso-
ciated with the lattice [1, τσ], extended R-linearly to all of C (see [43, I, Prop.
5.2] for the latter).
Proof. The formula (a) follows from Theorem 1.3.1 and the formula for the
Ray-Singer analytic torsion of a flat line bundle on an elliptic curve given in
[41, Th. 4.1].
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For statement (b), notice that there exists a Green form η of log type along 0
(see [19, Th. 1.3.5, p.106]). In this situation η is a real-valued C∞ function on
A(C)σ\{0}, which is locally and hence globally L1 on A(C)σ (because A(C)σ
is compact). By definition the current [η] associated with η is a Green current
for 0 and by [19, Lemma 1.2.4], there exists a C∞ real-valued function f on
A(C)σ , such that gA∨ |A(C)σ = [η] + [f ] = [η + f ]. Now by construction the
restriction of gA∨ to A(C)σ\{0} is given by the current associated with the
restriction to A(C)σ\{0} of the locally L1-function η + f . Since η + f and φ
are both C∞ on A(C)σ\{0}, they must actually coincide on A(C)σ\{0}. This
proves (b). �

The distribution relations for gA∨ (i.e. Theorem 1.1.3) imply that the function
φ(z) has the property that

∑

w∈C/(Z+Z·τσ),
n·w=z

φA,σ(w) = φA,σ(z).

for any n > 2 and z ∈ C/(Z + Z · τσ)\{0}. This also follows from the more
precise distribution relations given in [28, Th. 4.1, p. 43].
Now suppose that R is a Dedekind ring. We suppose given z ∈ A(S), whose
image is disjoint from the unit section and such that n · z = 0. Let zσ ∈
C/(Z + Z · τσ) be the element corresponding to z. We compute from the
definition that N2 = 24. Theorem 1.3.2 now implies that there exists u ∈ R∗,
which does not depend on σ ∈ Σ, such that

log|σ(u)| = 24 · n · φA,σ(zσ) (38)

In particular the real number

exp(24 · n · φA,σ(zσ))

is an algebraic unit. If R is the ring of integers of a number field, n has at
least two distinct prime factors and Σ = {σ, σ̄} then (38) is also a consequence
of [28, Th. 2.2, p. 37]. Notice that (38) overlaps with part of the reciprocity
law for elliptic units, if A

Frac(R)
is assumed to have complex multiplication by

the ring of integers of an imaginary quadratic field (see [31, chap. 19, par. 3,
Th. 3]). Special instances of elliptic units were first (implicitly) constructed by
Eisenstein in his analytic proof of cubic and quartic reciprocity laws (cf. [18]
and [16], [17]). For a thorough historical discussion of Eisenstein’s contribution
and additional references, see [33, §8].
Remark. Our proof of the fact that the real number exp(24 · n · φA,σ(zσ)) is
an algebraic unit shows that 24 naturally comes from a Bernoulli number via
von Staudt’s theorem. Indeed, von Staudt’s theorem is the main tool in the
proof of (36). The proof of the fact that the number exp(24 · n · φA,σ(zσ)) (in
fact even the number exp(12 ·n ·φA,σ(zσ))) is an algebraic unit, which is given
in [28, Th. 2.2, p. 37], does not seem to establish such a link.
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