
Documenta Math. 917

Equality of Two Non-Logarithmic Ramification

Filtrations of Abelianized Galois Group

in Positive Characteristic

Yuri Yatagawa

Received: Septeber 7, 2016

Revised: April 17, 2017

Communicated by Thomas Geisser

Abstract. We prove the equality of two non-logarithmic ramifica-
tion filtrations defined by Matsuda and Abbes-Saito of the abelianized
absolute Galois group of a complete discrete valuation field in positive
characteristic. We compute the refined Swan conductor and the char-
acteristic form of a character of the fundamental group of a smooth
separated scheme over a perfect field of positive characteristic by using
sheaves of Witt vectors.
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Introduction

Let K be a complete discrete valuation field with residue field FK and
GK = Gal(Ksep/K) the absolute Galois group of K. In [Se], the definition
of (upper numbering) ramification filtration of GK is given in the case where
FK is perfect. In the general residue field case, Abbes-Saito ([AS1]) have given
definitions of two ramification filtrations of GK geometrically, one is logarith-
mic and the other is non-logarithmic. In Saito’s recent work ([Sa1], [Sa2]) on
characteristic cycle of a constructible sheaf, the non-logarithmic filtration in
equal characteristic plays important roles to give an example of characteristic
cycle.
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Assume that K is of positive characteristic. Let H1(K,Q/Z) be the character
group of GK . In this case, Matsuda ([M]) has defined a non-logarithmic ramifi-
cation filtration ofH1(K,Q/Z) as a non-logarithmic variant of Brylinski-Kato’s
logarithmic filtration ([B], [K1]) using Witt vectors. In this paper, we prove
that the abelianization of Abbes-Saito’s non-logarithmic filtration {Gr

K}r∈Q≥1

is the same as Matsuda’s filtration {fil′mH1(K,Q/Z)}m∈Z≥1
by taking dual,

which enable us to compute abelianized Abbes-Saito’s filtration by using Witt
vectors. This is stated as follows and proved in Section 3:

Theorem 0.1. Let m ≥ 1 be an integer and r a rational number such that
m ≤ r < m+ 1. For χ ∈ H1(K,Q/Z), the following are equivalent:

(i) χ ∈ fil′mH1(K,Q/Z).

(ii) χ(Gm+
K ) = 0.

(iii) χ(Gr+
K ) = 0.

For m > 2, Theorem 0.1 has been proved by Abbes-Saito ([AS3]). The proof
goes similarly as the proof by Abbes-Saito (loc. cit.). The proof in this paper
relies on the characteristic form defined by Saito ([Sa1]) even in the exceptional
case where p = 2 and an explicit computation of the characteristic form.
Let X be a smooth separated scheme over a perfect field of positive character-
istic and U = X −D the complement of a divisor D on X with simple normal
crossings. The characteristic form of a character of the abelianized fundamen-
tal group πab

1 (U) is an element of the restriction to a radicial covering of a sub
divisor Z of D of a differential module of X . We compute the characteristic
form using sheaves of Witt vectors. By taking X andD so that the local field at
a generic point of D is K and using the injections defined by the characteristic
form from the graded quotients of {fil′mH1(K,Q/Z)}m∈Z≥1

and the modules
of characters of the graded quotients of {Gr

K}r∈Q≥1
, we obtain the proof of

Theorem 0.1.
This paper consists of three sections. In Section 1, we recall Kato and Mat-
suda’s ramification theories in positive characteristic. We give some comple-
ments to these theories to compute the refined Swan conductor ([K1]) and the
characteristic form for a character of the fundamental group of a smooth sep-
arated scheme over a perfect field of positive characteristic in terms of sheaves
of Witt vectors. In Section 2, we recall Abbes-Saito’s non-logarithmic ramifi-
cation theory in positive characteristic in terms of schemes over a perfect field.
We recall the definition of the characteristic form defined by Saito and show
that this characteristic form is computed with sheaves of Witt vectors. Section
3 is devoted to prove Theorem 0.1.
This paper is a refinement of a part of the author’s thesis at University of
Tokyo. The author would like to express her sincere gratitude to her supervisor
Takeshi Saito for suggesting her to refine the computation of characteristic form
using sheaves of Witt vectors, reading the manuscript carefully, and giving a
lot of advice on the manuscript. The research was partially supported by the
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Program for Leading Graduate Schools, MEXT, Japan and JSPS KAKENHI
Grant Number 15J03851.
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1 Kato and Matsuda’s ramification theories and complements

1.1 Local theory: logarithmic case

We recall Kato’s ramification theory ([K1], [K2]) and prove some properties
of graded quotients of some filtrations for the proof of Proposition 1.29 in
Subsection 1.3.
Let K be a complete discrete valuation field of characteristic p > 0. We re-
gard H1

ét(K,Z/nZ) as a subgroup of H1
ét(K,Q/Z) = lim−→n

H1
ét(K,Z/nZ). Let

Ws(K) be the Witt ring of K of length s ≥ 0. By definition, W0(K) = 0 and
W1(K) = K. We write

F : Ws(K) → Ws(K); (as−1, · · · , a0) 7→ (aps−1, · · · , ap0)

for the Frobenius. By the Artin-Schreier-Witt theory, we have the exact se-
quence

0 → Ws(Fp) → Ws(K)
F−1−−−→ Ws(K) → H1(K,Z/psZ) → 0. (1.1)

We define
δs : Ws(K) → H1(K,Q/Z) (1.2)

to be the composition

Ws(K) → H1(K,Z/psZ) → H1(K,Q/Z),

where the first arrow is the fourth morphism in (1.1).
Let OK be the valuation ring of K and FK the residue field of K. We write
GK for the absolute Galois group of K.

Documenta Mathematica 22 (2017) 917–952



920 Yuri Yatagawa

Definition 1.1 ([K1, Definition (3.1)]). Let s ≥ 0 be an integer.

(i) Let a = (as−1, . . . , a0) be an element of Ws(K). We define ordK(a) by
ordK(a) = min0≤i≤s−1{pi ordK(ai)}.

(ii) We define an increasing filtration {filnWs(K)}n∈Z of Ws(K) by

filnWs(K) = {a ∈ Ws(K) | ordK(a) ≥ −n}. (1.3)

The filtration {filnWs(K)}n∈Z in Definition 1.1 is first defined by Brylinski ([B,
Proposition 1]) and filnWs(K) is a submodule of Ws(K) for n ∈ Z (loc. cit.).
Let n ≥ 0 be an integer and put s′ = ordp(n). Suppose that s′ < s. Let V
denote the Verschiebung

V : Ws(K) → Ws+1(K); (as−1, · · · , a0) 7→ (0, as−1, · · · , a0).

Since (as−1, . . . , a0) = (as−1, . . . , as′+1, 0, . . . , 0)+V s−s′−1(as′ , . . . , a0), we have

filnWs(K) = filn−1Ws(K) + V s−s′−1filnWs′+1(K). (1.4)

Definition 1.2 ([K1, Corollary (2.5), Theorem (3.2) (1)]). Let δs be as in
(1.2).

(i) We define an increasing filtration {filnH1(K,Z/psZ)}n∈Z≥0
of

H1(K,Z/psZ) by

filnH
1(K,Z/psZ) = δs(filnWs(K)).

(ii) We define an increasing filtration {filnH1(K,Q/Z)}n∈Z≥0
ofH1(K,Q/Z)

by

filnH
1(K,Q/Z) = H1(K,Q/Z){p′}+

⋃

s≥1

δs(filnWs(K)), (1.5)

where H1(K,Q/Z){p′} denotes the prime-to-p part of H1(K,Q/Z).

Definition 1.3 ([K1, Definition (2.2)]). Let χ be an element of H1(K,Q/Z).
We define the Swan conductor sw(χ) of χ by sw(χ) = min{n ∈ Z≥0 | χ ∈
filnH

1(K,Q/Z)}.

We recall the definition of refined Swan conductor of χ ∈ H1(K,Q/Z) given
by Kato ([K2, (3.4.2)]). Let Ω1

K be the differential module of K over Kp ⊂ K.

Definition 1.4. We define an increasing filtration {filnΩ1
K}n∈Z≥0

of Ω1
K by

filnΩ
1
K = {(αdπ/π + β)/πn | α ∈ OK , β ∈ Ω1

OK
} = m

−nΩ1
OK

(log), (1.6)

where π is a uniformizer of K and m is the maximal ideal of OK .
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We consider the morphism

−F s−1d : Ws(K) → Ω1
K ; (as−1, · · · , a0) 7→ −

s−1
∑

i=0

ap
i
−1

i dai. (1.7)

The morphism −F s−1d (1.7) satisfies −F s−1d(filnWs(K)) ⊂ filnΩ
1
K . We put

grn = filn/filn−1 for n ∈ Z≥1. Then, for n ∈ Z≥1, the morphism (1.7) induces

ϕs
(n) : grnWs(K) → grnΩ

1
K .

Let δ
(n)
s : grnWs(K) → grnH

1(K,Q/Z) denote the morphism induced by
δs (1.2) for n ∈ Z≥1. For n ∈ Z≥1, there exists a unique injection
φ(n) : grnH

1(K,Q/Z) → grnΩ
1
K such that the diagram

grnWs(K)
ϕ(n)

s //

δ(n)
s ((PP

PP
PP

PP
PP

PP
grnΩ

1
K

grnH
1(K,Q/Z)

φ(n)

77♦♦♦♦♦♦♦♦♦♦♦

(1.8)

is commutative for any s ∈ Z≥0 by [M, Remark 3.2.12], or [AS3, §10] for more
detail. We note that grnΩ

1
K ≃ m−nΩ1

OK
(log) ⊗OK FK is a vector space over

FK .

Definition 1.5 ([K2, (3.4.2)], [M, Remark 3.2.12], see also [AS3, Définition
10.16]). Let χ be an element of H1(K,Q/Z). We put n = sw(χ). If n ≥ 1,
then we define the refined Swan conductor rsw(χ) of χ to be the image of χ by
φ(n) in (1.8).

In the rest of this subsection, we prove some properties of graded quotients of
filtrations.
For q ∈ R, let [q] denote the integer n such that q − 1 < n ≤ q.

Lemma 1.6. Let m and r ≥ 0 be integers.

(i) [m/pr] = [(m − 1)/pr] + 1 if m ∈ prZ and [m/pr] = [(m − 1)/pr] if
m /∈ prZ.

(ii) [[m/pr]/p] = [m/pr+1] = [[m/p]/pr].

Proof. (i) We put m = prq + a, where q, a ∈ Z and 0 ≤ a < pr. Then
[m/pr] = q. Further [(m− 1)/pr] = q + [(a− 1)/pr]. Since [(a− 1)/pr] = −1 if
a = 0 and [(a− 1)/pr] = 0 if 0 < a < pr, the assertion holds.
(ii) We put m = pr+1q′ + a′, where q′, a′ ∈ Z and 0 ≤ a′ < pr+1. Then
[m/pr] = pq′ + [a′/pr] and 0 ≤ [a′/pr] < p. Further [m/p] = prq′ + [a′/p] and
0 ≤ [a′/p] < pr. Hence we have [[m/pr]/p] = q′ = [m/pr+1] and [[m/p]/pr] =
q′ = [m/pr+1].
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Lemma 1.7. Let a be an element of Ws(K).

(i) ordK(F (a)) = p · ordK(a).

(ii) ordK((F − 1)(a)) = p · ordK(a) if ordK(a) < 0 and ordK((F − 1)(a)) ≥ 0
if ordK(a) ≥ 0.

(iii) For an integer n ≥ 0, we have F−1(filnWs(K)) = (F−1)−1(filnWs(K)) =
fil[n/p]Ws(K).

Proof. (i) We put a = (as−1, . . . , a0). Since F (a) = (aps−1, . . . , a
p
0), the assertion

holds.
(ii) Suppose that ordK(a) ≥ 0. Then, since both a and F (a) belong to
fil0Ws(K), we have (F −1)(a) ∈ fil0Ws(K). Hence we have ordK((F −1)(a)) ≥
0 by (1.3).
Suppose that ordK(a) < 0. We put ordK(a) = −n. Since both a and F (a)
belong to filpnWs(K), we have (F − 1)(a) ∈ filpnWs(K). Since ordK(F (a)) =
−pn < ordK(a) = −n, we have (F − 1)(a) /∈ filpn−1Ws(K). Hence we have
ordK((F − 1)(a)) = −pn.
(iii) By (i), we have F (a) ∈ filnWs(K) if and only if ordK(a) ≥ −n/p for
a ∈ Ws(K). Hence we have F−1(filnWs(K)) = fil[n/p]Ws(K). By (ii), we have
(F − 1)−1(filnWs(K)) = fil[n/p]Ws(K) similarly.

Let n ≥ 1 be an integer. By Lemma 1.7 (iii), the Frobenius F : Ws(K) →
Ws(K) induces the injection

F̄ : fil[n/p]Ws(K)/fil[(n−1)/p]Ws(K) → grnWs(K). (1.9)

By Lemma 1.6 (i), the domain of (1.9) is equal to grn/pWs(K) if n ∈ pZ and
it is 0 if n /∈ pZ.
By Lemma 1.7 (iii), the morphism F − 1: Ws(K) → Ws(K) induces the injec-
tion

F − 1: fil[n/p]Ws(K)/fil[(n−1)/p]Ws(K) → grnWs(K). (1.10)

Since [n/p] < n if n ≥ 1, the morphisms (1.9) and (1.10) are the same.

Lemma 1.8 (cf. [K1, Theorem (3.2), Corollary (3.3)]). Let n ≥ 1 be an integer.
Then we have the exact sequence

0 → fil[n/p]Ws(K)/fil[(n−1)/p]Ws(K)
F̄−→ grnWs(K)

ϕ(n)
s−−−→ grnΩ

1
K ,

where fil[n/p]Ws(K)/fil[(n−1)/p]Ws(K) is grn/pWs(K) if n ∈ pZ and 0 if n /∈ pZ.

Proof. As in the proof of [AS3, Proposition 10.7], the morphism ϕ
(n)
s factors

through

grnH
1(K,Z/psZ) ≃ filnWs(K)/((F − 1)(Ws(K))∩ filnWs(K)+ filn−1Ws(K)).

Since this factorization defines the injection φ(n) in (1.8) by [AS3, Proposition
10.14] and since the morphism F̄ (1.9) is equal to the morphism F − 1 (1.10),
the assertion holds.
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Definition 1.9. Let s ≥ 0 and r ≥ 0 be integers. We define an increasing
filtration {fil(r)n Ws(K)}n∈Z≥0

of Ws(K) by

fil(r)n Ws(K) = {a ∈ Ws(K) | ordK(a) ≥ −n/pr} = fil[n/pr]Ws(K). (1.11)

By (1.11), we have fil(0)n Ws(K) = filnWs(K) for n ∈ Z≥0.
For integers 0 ≤ t ≤ s, let prt denote the projection

prt : Ws(K) → Wt(K) ; (as−1, . . . , a0) 7→ (as−1, . . . , as−t). (1.12)

We put gr
(r)
n = fil(r)n /fil

(r)
n−1 for r ∈ Z≥0 and n ∈ Z≥1.

Lemma 1.10. Let r ≥ 0 and 0 ≤ t ≤ s be integers. Let prt : Ws(K) → Wt(K)
be as in (1.12). Let n ≥ 0 be an integer.

(i) prt(filnWs(K)) = fil(s−t)
n Wt(K).

(ii) (F − 1)−1(fil(r)n Ws(K)) = fil
(r)
[n/p]Ws(K).

Proof. (i) By (1.3), we have prt(filnWs(K)) = fil[n/ps−t]Wt(K). Hence the
assertion holds by (1.11).

(ii) By Lemma 1.7 (iii) and (1.11), we have (F − 1)−1(fil(r)n Ws(K)) =
fil[[n/pr ]/p]Ws(K). By Lemma 1.6 (ii) and (1.11), the assertion holds.

Let n ≥ 0 and 0 ≤ t ≤ s be integers. Since prt(filnWs(K)) = fil(s−t)
n Wt(K) by

Lemma 1.10 (i), we have the exact sequence

0 → filnWs−t(K)
V t

−−→ filnWs(K)
prt−−→ fil(s−t)

n Wt(K) → 0. (1.13)

Lemma 1.11. Let n ≥ 1 be an integer. Then the exact sequence (1.13) induces
the exact sequence

0 → grnWs−t(K)
V̄ t

−−→ grnWs(K)
prt−−→ gr(s−t)

n Wt(K) → 0,

where gr
(s−t)
n Wt(K) is equal to grn/ps−tWt(K) if n ∈ ps−tZ and 0 if n /∈ ps−tZ.

Proof. We consider the commutative diagram

0 // filn−1Ws−t(K)
V t

//

��

filn−1Ws(K)
prt //

��

fil
(s−t)
n−1 Wt(K) //

��

0

0 // filnWs−t(K)
V t

// filnWs(K)
prt // fil(s−t)

n Wt(K) // 0,

(1.14)

where the horizontal lines are exact and the vertical arrows are inclusions. By
applying the snake lemma to (1.14), we obtain the exact sequence which we

have desired. The last supplement to gr
(s−t)
n Wt(K) follows by Lemma 1.6 (i)

and (1.11).
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1.2 Local theory: non-logarithmic case

We recall a non-logarithmic variant, given by Matsuda ([M]), of Kato’s log-
arithmic ramification theory recalled in Subsection 1.1, and we consider the
exceptional case of Matsuda’s theory. We also consider the graded quotients of
filtrations. We keep the notation in Subsection 1.1.

Definition 1.12 (cf. [M, 3.1]). We define an increasing filtration
{fil′mWs(K)}m∈Z≥1

of Ws(K) by

fil′mWs(K) = film−1Ws(K) + V s−s′filmWs′ (K). (1.15)

Here s′ = min{ordp(m), s}.

The definition of {fil′mWs(K)}m∈Z≥1
in Definition 1.12 is shifted by 1 from

Matsuda’s definition ([M, 3.1]). Since filnWs(K) is a submodule of Ws(K) for
n ∈ Z, the subset fil′mWs(K) is a submodule of Ws(K) for m ∈ Z≥1.
By (1.15), we have

film−1Ws(K) ⊂ fil′mWs(K) ⊂ filmWs(K) (1.16)

for m ∈ Z≥1. Since min{ordp(1), s} = 0 for s ∈ Z≥0, we have

fil0Ws(K) = fil′1Ws(K). (1.17)

Definition 1.13 (cf. [M, Definition 3.1.1]). Let δs be as in (1.2).

(i) We define an increasing filtration {fil′mH1(K,Z/psZ)}m∈Z≥1
of

H1(K,Z/psZ) by

fil′mH1(K,Z/psZ) = δs(fil
′
mWs(K)).

(ii) We define an increasing filtration {fil′mH1(K,Q/Z)}m∈Z≥1
of

H1(K,Q/Z) by

fil′mH1(K,Q/Z) = H1(K,Q/Z){p′}+
⋃

s≥1

δs(fil
′
mWs(K)), (1.18)

where H1(K,Q/Z){p′} denotes the prime-to-p part of H1(K,Q/Z).

By (1.16), we have

film−1H
1(K,Q/Z) ⊂ fil′mH1(K,Q/Z) ⊂ filmH1(K,Q/Z) (1.19)

for m ∈ Z≥1. By (1.17), we have fil0H
1(K,Q/Z) = fil′1H

1(K,Q/Z).

Definition 1.14 (cf. [M, Definition 3.2.5]). Let χ be an element of
H1(K,Q/Z). We define the total dimension dt(χ) of χ by dt(χ) = min{m ∈
Z≥1 | χ ∈ fil′mH1(K,Q/Z)}.
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Definition 1.15. We define an increasing filtration {fil′mΩ1
K}m∈Z≥1

of Ω1
K by

fil′mΩ1
K = {γ/πm | γ ∈ Ω1

OK
} = m

−mΩ1
OK

,

where π is a uniformizer of K and m is the maximal ideal of OK .

Since mΩ1
OK

(log) ⊂ Ω1
OK

⊂ Ω1
OK

(log), we have

film−1Ω
1
K ⊂ fil′mΩ1

K ⊂ filmΩ1
K (1.20)

for m ∈ Z≥1.
We consider the morphism (1.7). The morphism (1.7) satisfies
−F s−1d(fil′mWs(K)) ⊂ fil′mΩ1

K for m ∈ Z≥1. We put gr′m = fil′m/fil′m−1

for m ∈ Z≥2. Then, for m ∈ Z≥2, the morphism (1.7) induces

ϕ′
s
(m)

: gr′mWs(K) → gr′mΩ1
K . (1.21)

Let δ
′(m)
s : gr′mWs(K) → gr′mH1(K,Q/Z) denote the morphism induced by

δs (1.2) for m ∈ Z≥2. If (p,m) 6= (2, 2), there exists a unique injection
φ′(m) : gr′mH1(K,Q/Z) → gr′mΩ1

K such that the diagram

gr′mWs(K)
ϕ′(m)

s //

δ′(m)
s ((PP

PP
PP

PP
PP

PP
gr′mΩ1

K

gr′mH1(K,Q/Z)

φ′(m)

77♦♦♦♦♦♦♦♦♦♦♦

(1.22)

is commutative for any s ∈ Z≥0 by [M, Proposition 3.2.3]. We note that
gr′mΩ1

K ≃ m−mΩ1
OK

⊗OK FK is a vector space over FK .
We consider the exceptional case where (p,m) = (2, 2).

Lemma 1.16. Let s ≥ 1 be an integer. Assume that p = 2. Then V s−1 : K →
Ws(K) induces an isomorphism gr′2K → gr′2Ws(K).

Proof. Since p = 2, we have s′ = min{ordp(2), s} = 1. Hence we have

fil′2Ws(K) = fil1Ws(K) + V s−1fil2K

= fil′1Ws(K) + V s−1fil2K

by applying (1.15) for the first equality and (1.4) and (1.17) for the second
equality. Since fil2K = fil′2K by (1.15), the assertion holds.

Proposition 1.17. Assume that p = 2. Let F
1/2
K ⊂ F̄K denote the subfield of

an algebraic closure F̄K of FK consisting of the square roots of FK .

(i) There exists a unique morphism

ϕ̃′(2)
s : gr′2Ws(K) → gr′2Ω

1
K ⊗FK F

1/2
K
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such that ϕ̃
′(2)
s (ā) = −da0 +

√

π2a0dπ/π
2 for every ā ∈ gr′2Ws(K) whose

lift in fil′2Ws(K) is a = (0, . . . , 0, a0) and for every uniformizer π ∈ K.

Here
√

π2a0 ∈ F
1/2
K denotes the square root of the image π2a0 of π2a0 in

FK .

(ii) There exists a unique injection φ̃′(2) : gr′2H
1(K,Q/Z) → gr′2Ω

1
K⊗FK F

1/2
K

such that the following diagram is commutative for every s ≥ 0:

gr′2Ws(K)
ϕ̃′(2)

s //

δ′(2)s ''PP
PP

PP
PP

PP
PP

gr′2Ω
1
K ⊗FK F

1/2
K

gr′2H
1(K,Q/Z).

φ̃′(2)

66❧❧❧❧❧❧❧❧❧❧❧❧❧❧

(1.23)

Proof. By Lemma 1.16, we may assume that s = 1.
(i) Let a be an element of fil′2K and π a uniformizer of K. Since p = 2,
we have fil′2K = fil2K by (1.15). Hence we have π2a ∈ OK by (1.3). Since

−d(fil′2K) ⊂ fil′2Ω
1
K , we have −da +

√

π2adπ/π2 ∈ gr′2Ω
1
K ⊗FK F

1/2
K . If a ∈

fil′1K, we have a ∈ OK by (1.3) and (1.17). Since −d(fil′1K) ⊂ fil′1Ω
1
K , we

have −da +
√

π2adπ/π2 = 0 in gr′2Ω
1
K ⊗FK F

1/2
K . For a, b ∈ fil′2K, we have

√

π2(a+ b) =
√

π2a+
√

π2b, since p = 2.

We prove that
√

π2adπ/π2 is independent of the choice of a uniformizer π of

K. Let u ∈ O×
K be a unit. Then, in gr′2Ω

1
K ⊗FK F

1/2
K , we have

√

(uπ)2ad(uπ)/(uπ)2 = u
√

π2audπ/(uπ)2 =
√

π2adπ/π2.

Hence the assertion holds.
(ii) Since p = 2 and fil′2K = fil2K, we have fil′2K ∩ (F − 1)(K) = (F − 1)(fil1K)

by Lemma 1.7 (iii). Hence it is sufficient to prove that Ker ϕ̃
′(2)
1 is the image

of (F − 1)(fil1K) in gr′2K.
Let a be an element of fil1K. By (1.3), we may put a = a′/π, where a′ ∈ OK .
Then we have

ϕ̃
′(2)
1 (ā2 − ā) = −ā′dπ/π2 +

√

ā′
2
dπ/π2 = 0. (1.24)

Conversely, let a ∈ fil′2K be a lift of an element of Ker ϕ̃
′(2)
1 . Since fil′2K = fil2K,

we can put a = a′/π2, where a′ ∈ OK , by (1.3). Suppose that ordK(a′) > 0,

that is a ∈ fil1Ws(K). Since ϕ̃
′(2)
1 (ā) = −(a′π−1)dπ/π2 = 0, we have a′π−1 = 0

in FK . Hence a ∈ fil0K = fil′1K, that is ā = 0 in gr′2K.
Assume that a′ ∈ O×

K is a unit. Since we have

ϕ̃
′(2)
1 (ā) = −da+

√

ā′dπ/π2 = 0, (1.25)
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we have
√
ā′ ∈ FK . Hence there exist a unit a′′ ∈ O×

K and an element b ∈ fil1K

such that a = (F − 1)(a′′/π) + b. By (1.24) and (1.25), we have ϕ̃
′(2)
1 (b̄) = 0.

Hence we have b ∈ fil′1K by the case where ordK(a′) > 0, which is proved
above. Therefore ā ∈ gr′2K is the image of an element of (F − 1)(fil1K).

Let m ≥ 2 be an integer. By abuse of notation, we write

φ′(m) : gr′mH1(K,Q/Z) → gr′mΩ1
K ⊗FK F

1/p
K (1.26)

for the composition of φ′(m) in (1.22) and the inclusion gr′mΩ1
K → gr′mΩ1

K ⊗FK

F
1/p
K if (p,m) 6= (2, 2) and φ̃′(2) in Proposition 1.17 (ii) if (p,m) = (2, 2).

Definition 1.18. Let χ be an element of H1(K,Q/Z). We put m = dt(χ) and
assume that m ≥ 2. We define the characteristic form char(χ) ∈ gr′mΩ1

K ⊗FK

F
1/p
K of χ to be the image of χ by φ′(m) (1.26).

By (1.22) and Proposition 1.17, we need F
1/p
K only in the case where p = 2 and

χ ∈ fil′2H
1(K,Q/Z)− fil1H

1(K,Q/Z).
In the rest of this subsection, we prepare some lemmas for the proof of Propo-
sition 1.29.

Definition 1.19. Let s ≥ 0 and r ≥ 0 be integers. We put r′ =
min{ordp(m), s+ r} and s′′ = max{0, r′ − r}. We define increasing filtrations

{fil′(r)m Ws(K)}m∈Z≥1
and {fil′′(r)m Ws(K)}m∈Z≥1

of Ws(K) by

fil′(r)m Ws(K) = fil
(r)
m−1Ws(K) + V s−s′′fil(r)m Ws′′(K), (1.27)

fil′′(r)m Ws(K) = fil
(r)
[(m−1)/p]Ws(K) + V s−s′′fil

(r)
[m/p]Ws′′(K). (1.28)

If r = 0, then we simply write fil′′mWs(K) for fil′′(0)m Ws(K).

If r = 0, since s′′ = s′ = min{ordp(m), s}, we have fil′(0)m Ws(K) = fil′mWs(K).
Further we have

fil′′mWs(K) = fil[(m−1)/p]Ws(K) + V s−s′fil[m/p]Ws′(K). (1.29)

Lemma 1.20. Let r ≥ 0 and 0 ≤ t ≤ s be integers. Let prt : Ws(K) → Wt(K)
be as in (1.12). Let m ≥ 1 be an integer.

(i) prt(fil
′
mWs(K)) = fil′(s−t)

m Wt(K).

(ii) We have the exact sequence

0 → fil′mWs−t(K)
V t

−−→ fil′mWs(K)
prt−−→ fil′(s−t)

m Wt(K) → 0. (1.30)

(iii) prt(fil
′′
mWs(K)) = fil′′(s−t)

m Wt(K).
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(iv) We have the exact sequence

0 → fil′′mWs−t(K)
V t

−−→ fil′′mWs(K)
prt−−→ fil′′(s−t)

m Wt(K) → 0. (1.31)

(v) fil′′(r)m Ws(K) = (F − 1)−1(fil′(r)m Ws(K)). Especially, fil′′mWs(K) = (F −
1)−1(fil′mWs(K)).

Proof. We put s′ = min{ordp(m), s}, r′ = min{ordp(m), s + r}, and s′′ =
max{0, r′ − r}.
(i) By (1.27), we have fil′(s−t)

m Wt(K) = fil
(s−t)
m−1 Wt(K) if t ≤ s − s′ and

fil′(s−t)
m Wt(K) = fil

(s−t)
m−1 Wt(K) + V s−s′fil(s−t)

m Wt−s+s′(K) if t > s − s′. By

Lemma 1.10 (i), we have prt(film−1Ws(K)) = fil
(s−t)
m−1 Wt(K) and, if t > s− s′,

we have prt(V
s−s′filmWs′(K)) = V s−s′fil(s−t)

m Wt−s+s′(K). Hence the assertion
holds by (1.15).
(ii) The assertion holds by (1.15) and (i).
(iii) The assertion holds similarly as the proof of (i) by (1.28) and (1.29).
(iv) The assertion holds by (1.29) and (iii).
(v) Since V s−s′′ and prs−s′′ commute with F − 1, the morphisms

V s−s′′ : Ws′′ (K) → Ws(K) and prs−s′′ : Ws(K) → Ws−s′′(K) in-

duce V s−s′′ : (F − 1)−1(fil(r)m Ws′′ (K)) → (F − 1)−1(fil′(r)m Ws(K)) and

prs−s′′ : (F − 1)−1(fil′(r)m Ws(K)) → (F − 1)−1(fil
(r+s′′)
m−1 Ws−s′′ (K)) respec-

tively.
We prove that fil′′(r)m Ws(K) ⊂ (F − 1)−1(fil′(r)m Ws(K)). By (1.11) and (1.28),

we have fil′′(r)m Ws(K) = fil[[(m−1)/p]/pr]Ws(K) + V s−s′′fil[[m/p]/pr]Ws′′ (K).

By (1.11) and (1.27), we have fil′(r)m Ws(K) = fil[(m−1)/pr]Ws(K) +

V s−s′′fil[m/pr]Ws′′ (K). Hence, by Lemma 1.6 (ii) and Lemma 1.7 (iii),

we have fil′′(r)m Ws(K) ⊂ (F − 1)−1(fil′(r)m Ws(K)).

We put An = fil(r)n Ws′′(K) and Bn = fil(r+s′′)
n Ws−s′′ (K) for n ∈ Z≥0. We also

put Cn = fil′(r)n Ws(K) and Dn = fil′′(r)n Ws(K) for n ∈ Z≥1. We consider the
commutative diagram

A[m/p]
V s−s′′

//

��

Dm

prs−s′′
//

��

B[(m−1)/p]
//

��

0

(F − 1)−1(Am)
V s−s′′

// (F − 1)−1(Cm)
prs−s′′

// (F − 1)−1(Bm−1),

where the left and right vertical arrows are the identities by Lemma 1.10 (ii), the
middle vertical arrow is the inclusion, and the lower horizontal line is exact.
Since the upper horizontal line is exact by Lemma 1.10 (i) and (1.28), the
assertion holds by applying the snake lemma.

Corollary 1.21. Let m ≥ 2 and 0 ≤ t ≤ s be integers.
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(i) The exact sequence (1.30) induces the exact sequence

0 → gr′mWs−t(K)
V̄ t

−−→ gr′mWs(K)
prt−−→ gr′(s−t)

m Wt(K) → 0.

(ii) The exact sequence (1.31) induces the exact sequence

0 → gr′′mWs−t(K)
V̄ t

−−→ gr′′mWs(K)
prt−−→ gr′′(s−t)

m Wt(K) → 0.

Proof. The assertion holds similarly as the proof of Lemma 1.11.

Let m ≥ 2 be an integer. By abuse of notation, let

ϕ′(m)
s : gr′mWs(K) → gr′mΩ1

K ⊗FK F
1/p
K

be the composition of ϕ
′(m)
s (1.21) and the inclusion gr′mΩ1

K → gr′mΩ1
K⊗FKF

1/p
K

if (p,m) 6= (2, 2) and ϕ̃
′(2)
s in Proposition 1.17 (i) if (p,m) = (2, 2).

Let r ≥ 0 be an integer. By Lemma 1.20 (v), the morphism F − 1: Ws(K) →
Ws(K) induces the injection

F − 1: gr′′(r)m Ws(K) → gr′(r)m Ws(K).

Especially, the morphism F − 1 induces the injection

F − 1: gr′′mWs(K) → gr′mWs(K).

Lemma 1.22 (cf. [M, Proposition 3.2.1, Proposition 3.2.3]). Let m ≥ 2 be an
integer. Then we have the exact sequence

0 → gr′′mWs(K)
F−1−−−→ gr′mWs(K)

ϕ′(m)
s−−−→ gr′mΩ1

K ⊗F F 1/p.

Proof. As in the proof of [M, Proposition 3.2.1] and Proposition 1.17 (ii), the

morphism ϕ
′(m)
s factors through

gr′mH1(K,Z/psZ) ≃ fil′mWs(K)/((F−1)(Ws(K))∩fil′mWs(K)+fil′m−1Ws(K)).

Since this factorization defines the injection φ′(m) by [M, Proposition 3.2.3] and
Proposition 1.17 (ii), the assertion holds.

Lemma 1.23. Let m ≥ 1 and r ≥ 0 be integers.

(i) fil′(r)m K = film/prK if m ∈ pr+1Z and fil′(r)m K = fil[(m−1)/pr]K if m /∈
pr+1Z.

(ii) fil′′(r)m K = fil[m/pr+1]K.
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Proof. (i) By (1.27), we have fil′(r)m K = fil(r)m K if m ∈ pr+1Z and fil′(r)m K =

fil
(r)
m−1K if m /∈ pr+1Z. Hence the assertion holds by (1.11).

(ii) By Lemma 1.20 (v), we have fil′′(r)m K = (F − 1)−1(fil′(r)m K). By (i)

and Lemma 1.7 (iii), we have fil′′(r)m K = film/pr+1Ws(K) if m ∈ pr+1Z and

fil′′(r)m K = fil[[(m−1)/pr]/p]Ws(K) if m /∈ pr+1Z. Hence the assertion holds by
Lemma 1.6.

Corollary 1.24. Let m ≥ 2 and r ≥ 0 be integers.

(i) Assume that r ≥ 1. Then gr
′(r)
m K = gr[m/pr]K if m ∈ pr+1Z or ordp(m−

1) = r, and gr
′(r)
m K = 0 otherwise.

(ii) gr
′′(r)
m K = grm/pr+1K if m ∈ pr+1Z, and gr

′′(r)
m K = 0 if m /∈ pr+1Z.

Proof. (i) Assume that m ∈ pr+1Z. Since r ≥ 1, we have m− 1 /∈ prZ. Hence

gr
′(r)
m K = fil[m/pr]K/fil[(m−2)/pr]K by Lemma 1.23 (i). By Lemma 1.6 (i), the

assertion holds in this case.
Assume that m /∈ pr+1Z. By Lemma 1.23 (i), we have gr

′(r)
m K =

fil[(m−1)/pr ]K/fil[(m−2)/pr]K if m−1 /∈ pr+1Z and gr
′(r)
m K = 0 if m−1 ∈ pr+1Z.

Suppose that m − 1 /∈ pr+1Z. By Lemma 1.6 (i), we have gr
′(r)
m K =

gr[(m−1)/pr]K if m− 1 ∈ prZ and gr
′(r)
m K = 0 if m− 1 /∈ prZ. If m− 1 ∈ prZ,

then we have m /∈ prZ, since r ≥ 1. Hence the assertion holds by Lemma 1.6
(i).

(ii) By Lemma 1.23 (ii), we have gr
′′(r)
m K = fil[m/pr+1]K/fil[(m−1)/pr+1]K. Hence

the assertion holds by Lemma 1.6 (i).

We note that if r = 0 and if m ∈ pZ then gr
′(r)
m K = gr′mK = filmK/film−2K.

1.3 Sheafification: logarithmic case

Let X be a smooth separated scheme over a perfect field k of characteristic
p > 0. Let D be a divisor on X with simple normal crossings and {Di}i∈I

the irreducible components of D. The generic point of Di is denoted by pi for
i ∈ I. We put U = X−D and let j : U → X be the canonical open immersion.
For i ∈ I, let OKi denote the completion ÔX,pi of the local ring OX,pi at pi

and Ki the fractional field of OKi called local field at pi.
Let ǫ : Xét → XZar be the canonical mapping from the étale site of X to the
Zariski site of X . We use the same notation j∗ for the push-forward of both
étale sheaves and Zariski sheaves. We consider the exact sequence

0 → Ws(Fp) → Ws(OUét
)

F−1−−−→ Ws(OUét
) → 0

of étale sheaves on U for s ∈ Z≥0. Since R1(ǫ ◦ j)∗Ws(OUét
) = 0, we have an

exact sequence

0 → j∗Ws(Fp) → j∗Ws(OU )
F−1−−−→ j∗Ws(OU ) → R1(ǫ ◦ j)∗Z/psZ → 0 (1.32)
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We write

δs : j∗Ws(OU ) → R1(ǫ ◦ j)∗Z/psZ (1.33)

for the fourth morphism in (1.32).
Let V be an open subset of X . Since we have the spectral sequence Ep,q

2 =
Hp

Zar(V,R
q(ǫ ◦ j)∗Z/p

sZ) ⇒ Hp+q
ét (U ∩ V,Z/psZ) and E1,0

2 = E2,0
2 = 0, the

canonical morphism

H1
ét(U ∩ V,Z/psZ) → Γ(V,R1(ǫ ◦ j)∗Z/psZ)

is an isomorphism. By the exact sequence (1.32), the morphism δs (1.33)
induces an isomorphism

j∗Ws(OU )/(F − 1)j∗Ws(OU ) → R1(ǫ ◦ j)∗Z/psZ.

If Di ∩ V 6= ∅ and if a ∈ Γ(U ∩ V,Ws(OU )), let a|Ki denote the image of a by

Γ(U ∩ V,Ws(OU )) → Ws(Ki).

Similarly, if Di ∩ V 6= ∅ and if χ ∈ H1
ét(U ∩ V,Z/psZ), let χ|Ki denote the

image of χ by

H1
ét(U ∩ V,Z/psZ) → H1(Ki,Z/p

sZ).

Definition 1.25. Let R =
∑

i∈I niDi, where ni ∈ Z≥0 for i ∈ I, and let
ji : SpecKi → X denote the canonical morphism for i ∈ I.

(i) We define a subsheaf filRj∗Ws(OU ) of Zariski sheaf j∗Ws(OU ) to be
the pull-back of

⊕

i∈I ji∗filniWs(Ki) by the morphism j∗Ws(OU ) →
⊕

i∈I ji∗Ws(Ki).

(ii) We define a subsheaf filRR
1(ǫ ◦ j)∗Z/p

sZ of R1(ǫ ◦ j)∗Z/p
sZ to be the

image of filRj∗Ws(OU ) by δs (1.33).

(iii) We define a subsheaf filRj∗Ω
1
U of j∗Ω

1
U to be Ω1

X(logD)(R).

We consider the morphism

−F s−1d : j∗Ws(OU ) → j∗Ω
1
U ; (as−1, . . . , a0) 7→ −

s−1
∑

i=0

ap
i
−1

i dai. (1.34)

Let R =
∑

i∈I niDi, where ni ∈ Z≥0 for i ∈ I. Then (1.34) induces the
morphism

filRj∗Ws(OU ) → filRj∗Ω
1
U .

Let R′ =
∑

i∈I n
′
iDi, where n

′
i ∈ Z≥0 such that n′

i ≤ ni for i ∈ I. Then we have
filR ⊃ filR′ and put grR/R′ = filR/filR′ . Then the morphism (1.34) induces the
morphism

ϕ(R/R′)
s : grR/R′j∗Ws(OU ) → grR/R′j∗Ω

1
U . (1.35)
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If R = R′+Di for some i ∈ I, then we simply write ϕ
(R,i)
s for ϕ

(R,R′)
s and grR,i

for grR/R′ .

Let 0 ≤ t ≤ s be integers. We put [R/pj] =
∑

i∈I [ni/p
j]Di. We consider the

projection

prt : j∗Ws(OU ) → j∗Wt(OU ) ; (as−1, . . . , a0) 7→ (as−1, . . . , as−t). (1.36)

Since we have prt(filRj∗Ws(OU )) = fil[R/ps−t]j∗Wt(OU ) by (1.11) and Lemma
1.10 (i), we have the exact sequence

0 → filRj∗Ws−t(OU )
V t

−−→ filRj∗Ws(OU )
prt−−→ fil[R/ps−t]j∗Wt(OU ) → 0. (1.37)

Lemma 1.26. Let R =
∑

i∈I niDi and R′ =
∑

i∈I n
′
iDi, where ni, n

′
i ∈ Z≥0

and n′
i ≤ ni for every i ∈ I. Then the exact sequence (1.37) induces the exact

sequence

0 → grR/R′j∗W s−t(OU )
V̄ t

−−→ grR/R′j∗Ws(OU ) (1.38)

prt−−→ gr[R/ps−t]/[R′/ps−t]j∗Wt(OU ) → 0.

Especially, if R = R′ +Di for some i ∈ I, we have the exact sequence

0 → grR,ij∗W s−t(OU )
V̄ t

−−→ grR,ij∗Ws(OU )

prt−−→ gr[R/ps−t]/[(R−Di)/ps−t]j∗Wt(OU ) → 0.

Proof. The assertion holds similarly as the proof of Lemma 1.11. In fact, we
consider the commutative diagram

0 // filR′j∗Ws−t(OU )
V t
//

��

filR′j∗Ws(OU )
prt//

��

fil[R′/ps−t]j∗Wt(OU ) //

��

0

0 // filRj∗Ws−t(OU )
V t

// filRj∗Ws(OU )
prt // fil[R/ps−t]j∗Wt(OU ) // 0,

(1.39)

where the horizontal lines are exact and the vertical arrows are inclusions.
Then this diagram induces the sequence (1.38). By taking stalks of (1.39), the
exactness of (1.38) follows.

Let R =
∑

i∈I niDi and R′ =
∑

i∈I n
′
iDi, where ni, n

′
i ∈ Z≥0 and n′

i ≤ ni for
every i ∈ I. We consider the morphism

F̄ : gr[R/p]/[R′/p]j∗Ws(OU ) → grR/R′j∗Ws(OU ) (1.40)

induced by the Frobenius F : j∗Ws(OU ) → j∗Ws(OU ). Since
F−1(filRj∗Ws(OU )) = fil[R/p]j∗Ws(OU ) by Lemma 1.7 (iii) and similarly
for R′, the morphism (1.40) is injective.
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We consider the morphism

F − 1: gr[R/p]/[R′/p]j∗Ws(OU ) → grR/R′j∗Ws(OU ) (1.41)

induced by F−1: j∗Ws(OU ) → j∗Ws(OU ). If R = R′+Di for some i ∈ I, then
the morphisms (1.40) and (1.41) are the same, since [R/p] ≤ R′ with respect
to product order.

Lemma 1.27. Let A be a smooth ring over k. Let t1, . . . , tr be elements of A
such that (t1 · · · tr = 0) is a divisor on SpecA with simple normal crossings
whose irreducible components are {(ti = 0)}ri=1. Let a be an element of FracA.
Assume that aptn1

1 · · · tnr
r ∈ A, where n1, . . . , nr are integers such that 0 ≤ ni <

p for i = 1, . . . , r. Then we have a ∈ A.

Proof. Since aptn1
1 · · · tnr

r ∈ A, the valuation of aptn1
1 · · · tnr

r in A(ti) is non-
negative for i = 1, . . . , r. Since the normalized valuation of ap in FracA(ti) for
i = 1, . . . , r is divided by p and 0 ≤ ni < p for i = 1, . . . , r, the valuation of
a in FracA(ti) for i = 1, . . . , r is non-negative. Since A is factorial, we have
A[1/t1 · · · tr] ∩

⋂r
i=1 A(ti) = A. Hence the assertion holds.

Lemma 1.28. Let F , G, and H be sheaves of abelian groups on X and let Fi,
Gi, and Hi be subsheaves of F , G, and H respectively for i = 1, 2, 3. Assume
that F3 = F1 ∩F2, H3 = H1 ∩H2, and that G3 ⊂ G1 ∩ G2. If we have an exact
sequence 0 → F → G → H → 0 and if this exact sequence induces the exact
sequence 0 → Fi → Gi → Hi → 0 for i = 1, 2, 3, then we have G3 = G1 ∩ G2.

Proof. We consider the commutative diagram

0

��

0

��

0

��
0 // F3

//

��

G3
//

��

H3
//

��

0

0 // F1 ⊕F2
//

��

G1 ⊕ G2
//

��

H1 ⊕H2
//

��

0

0 // F // G // H // 0,

(1.42)

where the bottom vertical arrows are defined by the difference. Since F3 =
F1 ∩ F2 and H3 = H1 ∩H2, the left and right vertical columns are exact. By
applying the snake lemma to the lower two lines, we have G3 = G1 ∩ G2.

Proposition 1.29. Let R =
∑

i∈I niDi, where ni ∈ Z≥0 for i ∈ I. Let s ≥ 0
be an integer and let i be an element of I such that ni ≥ 1. We put R′ = R−Di.
Then we have the exact sequence

0 → gr[R/p]/[R′/p]j∗Ws(OU )
F̄−→ grR,ij∗Ws(OU )

ϕ(R,i)
s−−−−→ grR,ij∗Ω

1
U ,
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where gr[R/p]/[R′/p]j∗Ws(OU ) is gr[R/p],ij∗Ws(OU ) if ni ∈ pZ and 0 if ni /∈ pZ.

Proof. We may assume that s ≥ 1, I = {1, . . . , r}, and that i = 1. Let
j1 : SpecK1 → X be the canonical morphism. We consider the commutative
diagram

0 // gr[R/p]/[R′/p]j∗Ws(OU )
F̄ //

��

grR,1j∗Ws(OU )
ϕ(R,1)

s //

��

grR,1j∗Ω
1
U

��
0 // j1∗(gr[n1/p]/[(n1−1)/p]Ws(K1))

F̄ // j1∗grn1
Ws(K1)

ϕ(n1)
s // j1∗grn1

Ω1
K1

,

(1.43)

where we put gr[n1/p]/[(n1−1)/p] = fil[n1/p]/fil[(n1−1)/p] and the vertical arrows
are inclusions. Since the lower line is exact by Lemma 1.8, it is sufficient to
prove that the left square in (1.43) is cartesian.
If n1 /∈ pZ, then the assertion holds since gr[R/p]/[R′/p]j∗Ws(OU ) = 0 and
gr[n1/p]/[(n1−1)/p]Ws(K1) = 0 by Lemma 1.6 (i).
Assume that n1 ∈ pZ. Then we have gr[R/p]/[R′/p]j∗Ws(OU ) =
gr[R/p],1j∗Ws(OU ) and gr[n1/p]/[(n1−1)/p]Ws(K1) = grn1/pWs(K1) by Lemma
1.6 (i).
We prove the assertion by induction on s. Suppose that s = 1. Since the
assertion is local, we may assume that X = SpecA is affine and that Di = (ti =
0) for i ∈ I, where ti ∈ A for i ∈ I. Further we may assume that the invertible
OD1 -modules grR,1j∗OU and gr[R/p],1j∗OU are gererated by c0 = 1/tn1

1 · · · tnr
r

and c1 = 1/t
n1/p
1 t

m′
2

2 · · · tm
′
r

r respectively, where m′
i = [ni/p] for i ∈ I−{1}. Let

k(D1) denote the functional field of D1. We identify grn1
K1 with k(D1) · c0

and grn1/pK1 with k(D1) · c1.
Let ā be an element of k(D1) such that F̄ (āc1) = āpcp1 ∈ grR,1j∗OU . Since
(āpcp1/c0) · c0 ∈ grR,1j∗OU = OD1 · c0, we have āpcp1/c0 ∈ OD1 . Since cp1/c0 =

t
n2−pm′

2
2 · · · tnr−pm′

r
r and 0 ≤ ni − pm′

i < p for i ∈ I − {1}, we have ā ∈ OD1

by Lemma 1.27. Hence we have āc1 ∈ OD1 · c1 = gr[R/p],1j∗OU . Hence the
assertion holds if s = 1.
If s > 1, we put F = j1∗grn1

Ws−1(K1), F1 = grR,1j∗Ws−1(OU ), F2 =
j1∗grn1/pWs−1(K1), and F3 = gr[R/p],1j∗Ws−1(OU ). Since the canonical mor-

phisms F1 → F and F3 → F2 are injective and both F̄ : F3 → F1 and
F̄ : F2 → F are injective, we may identify Fi with a subsheaf of F for i = 1, 2, 3.
We also put G = j1∗grn1

Ws(K1), G1 = grR,1j∗Ws(OU ), G2 = j1∗grn1/pWs(K1),

and G3 = gr[R/p],1j∗Ws(OU ). We further put H = j1∗(gr
(s−1)
n K1), H1 =

gr[R/ps−1]/[R′/ps−1]j∗OU , H2 = j1∗(gr
(s−1)
n1/p

K1), and H3 = gr[R/ps]/[R′/ps]j∗OU .

Similarly as Fi, we may identify Gi and Hi with subsheaves of G and H respec-
tively for i = 1, 2, 3.
By the induction hypothesis, we have F3 = F1 ∩ F2. If n1 /∈ psZ, then H2 =
H3 = 0 by Lemma 1.6 (i) and (1.11). If n1 ∈ psZ, then we have H3 = H1 ∩H2

by Lemma 1.6 (i), (1.11), and the induction hypothesis. By the commutativity
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of (1.43), we have G3 ⊂ G1 ∩ G2. Since exact sequences in Lemma 1.11 and
Lemma 1.26 in the case where t = 1 are compatible with the inclusions of
sheaves above, the assertion holds by Lemma 1.28.

Lemma 1.30. Let f : F → G be a surjection of sheaves of abelian groups on
X. Let g : G → H be a morphism of sheaves of abelian groups on X. We
put Γ = (Z≥0)

r, where r > 0 is an integer, and let 1i ∈ Γ be the element
whose i-th component is 1 and the others are 0 for i = 1, . . . , r. Let {filnF}n∈Γ

and {filnH}n∈Γ be increasing filtrations of F and H respectively with respect
to product order. Assume that

⋃

n∈Γ filnF = F and
⋃

n∈Γ filnH = H. We
put filnG = f(filnF) for n ∈ Γ, which define an increasing filtration of G.
If g(filnG) ⊂ filnH for every n ∈ Γ and if the morphism filn+1iG/filnG →
filn+1iH/filnH induced by g is injective for every n ∈ Γ and i = 1, . . . , r, then
we have filnG = g−1(filnH) for every n ∈ Γ.

Proof. Let n ∈ Γ be an element. We prove that the morphism G/filnG →
H/filnH is injective. Since F =

⋃

n∈Γ filnF and f is surjective, we have
G =

⋃

n∈Γ filnG and hence G/filnG = lim−→n′
filn′G/filnG, where n′ runs through

the elements of Γ greater than n with respect to product order. Since
H =

⋃

n∈Γ filnH, we have H/filnH = lim−→n′
filn′H/filnH, where n′ runs

through the elements of Γ greater than n. Hence it is sufficient to prove that
filn′G/filnG → filn′H/filnH is injective for every n′ ∈ Γ such that n′ ≥ n. We
prove this assertion by induction on n′.

If n′ = n, the assertion holds since filn′G/filnG = 0 and filn′H/filnH = 0. For
n′ > n, take i such that n′ − 1i ≥ n. We consider the commutative diagram

0 // filn′−1iG/filnG //

��

filn′G/filnG //

��

filn′G/filn′−1iG //

��

0

0 // filn′−1iH/filnH // filn′H/filnH // filn′H/filn′−1iH // 0,

where the horizontal lines are exact. By the induction hypothesis, the left
vertical arrow is injective. Since the right vertical arrow is injective, the middle
vertical arrow is injective. Hence the assertion holds.

Proposition 1.31. Let R =
∑

i∈I niDi, where ni ∈ Z≥0 for i ∈ I. Let
ji : SpecKi → X be the canonical morphism for i ∈ I.

(i) The subsheaf filRR
1(ǫ ◦ j)∗Z/p

sZ is equal to the pull-back of
⊕

i∈I ji∗filniH
1(Ki,Q/Z) by the morphism R1(ǫ ◦ j)∗Z/p

sZ →
⊕

i∈I ji∗H
1(Ki,Q/Z).

(ii) Let R′ =
∑

i∈I n
′
iDi, where n′

i ∈ Z≥0 and ni − 1 ≤ n′
i ≤ ni for i ∈ I.

Then there exists a unique injection φ
(R/R′)
s : grR/R′R1(ǫ ◦ j)∗Z/p

sZ →
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grR/R′j∗Ω
1
U such that the following diagram is commutative:

grR/R′j∗Ws(OU )

δ(R/R′)
s ))❙❙

❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

ϕ(R/R′)
s // grR/R′j∗Ω

1
U

grR/R′R1(ǫ ◦ j)∗Z/psZ.
φ(R/R′)
s

66♠♠♠♠♠♠♠♠♠♠♠♠♠

(1.44)

Proof. Let i be an element of I such that ni ≥ 1. Since the kernel of

δ
(R,i)
s is the image of F − 1 (1.41) and the morphisms F̄ (1.40) and F − 1

(1.41) are the same, the kernel of δ
(R,i)
s is equal to the kernel of ϕ

(R,i)
s by

Proposition 1.29. Since δ
(R,i)
s is surjective, there exists a unique injection

φ
(R,i)
s : grR,iR

1(ǫ ◦ j)∗Z/p
sZ → grR,ij∗Ω

1
U such that the diagram (1.44) for

R′ = R−Di is commutative.
(i) Let i be an element of I such that ni ≥ 1. We consider the commutative
diagram

grR,iR
1(ǫ ◦ j)∗Z/psZ //

φ(R,i)
s

��

ji∗grni
H1(Ki,Q/Z)

φ(ni)

��
grR,ij∗Ω

1
U

// ji∗grni
Ω1

Ki
,

where the lower horizontal arrow is the inclusion and φ(ni) is as in (1.8). Since
the left vertical arrow is injective as proved above, the upper horizontal arrow
is injective. Hence the assertion holds by applying Lemma 1.30 to the case
where F = j∗Ws(OU ), G = R1(ǫ ◦ j)∗Z/psZ, and H =

⊕

i∈I ji∗H
1(Ki,Q/Z).

(ii) Let J be the subset of I consisting of i ∈ I such that n′
i 6= ni. We consider

the commutative diagram

grR/R′j∗Ws(OU )
ϕ(R/R′)

s //

δ(R/R′)
s

��

grR/R′j∗Ω
1
U

��
grR/R′R1(ǫ ◦ j)∗Z/psZ //

⊕

i∈J ji∗grni
H1(Ki,Q/Z)

⊕φ(ni)

//
⊕

i∈J ji∗grni
Ω1

Ki
,

where φ(ni) is as in (1.8) for i ∈ J . By (i), the left lower horizontal arrow is
injective. Since grni

Ω1
Ki

is the stalk of grR/R′j∗Ω
1
U at the generic point of Di

for i ∈ J , the kernel of the canonical morphism filRj∗Ω
1
U → ⊕

i∈J ji∗grni
Ω1

Ki

is the intersection of filR−Dij∗Ω
1
U for i ∈ J . Hence the right vertical arrow

is injective. Since the right lower horizontal arrow is injective, the kernel of

ϕ
(R/R′)
s is equal to that of δ

(R/R′)
s . Since δ

(R/R′)
s is surjective, the assertion

holds.

Definition 1.32. Let χ be an element of H1
ét(U,Q/Z). We define the Swan

conductor divisor Rχ of χ by Rχ =
∑

i∈I sw(χ|Ki)Di.
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Definition 1.33. Let χ be an element of H1
ét(U,Q/Z). Assume that

sw(χ|Ki) > 0 for some i ∈ I. Let ps be the order of the p-part of χ. We
put Z = Supp(Rχ). We define the refined Swan conductor rsw(χ) of χ to be
the image of the p-part of χ by the composition

Γ(X, filRχR
1(ǫ ◦ j)∗Z/psZ) → Γ(X, grRχ/(Rχ−Z)R

1(ǫ ◦ j)∗Z/psZ)
φ
(Rχ/(Rχ−Z))
s (X)−−−−−−−−−−−→ Γ(X, grRχ/(Rχ−Z)j∗Ω

1
U ) = Γ(Z,Ω1

X(logD)(Rχ)⊗OX OZ).

By the construction of φ
(Rχ/(Rχ−Z))
s , the germ rsw(χ)pi of rsw(χ) at the generic

point pi of Di contained in Z is equal to rsw(χ|Ki). This implies that rsw(χ)
in Definition 1.33 is none other than the refined Swan conductor of χ in the
sense of [K2, (3.4.2)].

1.4 Sheafification: non-logarithmic case

We recall the definition of the radicial covering S1/p of a scheme S over a
perfect field k of characteristic p > 0. We consider the commutative diagram

S1/p

��

// S
FS

//

��

S

��
Spec k

F−1
k

// Spec k
Fk

// Spec k,

where the left square is the base change over k by the inverse F−1
k of Fk. The

symbols FS and Fk denote the absolute Frobenius of S and Spec k respectively.
We define the radicial covering S1/p → S as the composition of morphisms in
the upper line.
We keep the notation in Subsection 1.3.

Definition 1.34. Let R =
∑

i∈I niDi, where ni ∈ Z≥1 for i ∈ I, and let
ji : SpecKi → X denote the canonical morphism for i ∈ I. Let r ≥ 0 be an
integer.

(i) We define subsheaves fil
′(r)
R j∗Ws(OU ) and fil

′′(r)
R j∗Ws(OU ) of Zariski

sheaf j∗Ws(OU ) to be the pull-back of
⊕

i∈I ji∗fil
′(r)
ni

Ws(Ki) and
⊕

i∈I ji∗fil
′′(r)
ni

Ws(Ki) by the morphism j∗Ws(OU ) → ⊕

i∈I ji∗Ws(Ki)
respectively.

If r = 0, then we simply write fil′Rj∗Ws(OU ) and fil′′Rj∗Ws(OU ) for

fil
′(0)
R j∗Ws(OU ) and fil

′′(0)
R j∗Ws(OU ) respectively.

(ii) We define a subsheaf fil′RR
1(ǫ ◦ j)∗Z/p

sZ of R1(ǫ ◦ j)∗Z/p
sZ to be the

image of fil′Rj∗Ws(OU ) by δs (1.33).

(iii) We define a subsheaf fil′Rj∗Ω
1
U of j∗Ω

1
U to be Ω1

X(R).
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Similarly as in the logarithmic case, we consider the morphism −F s−1d (1.34).
Let R =

∑

i∈I niDi, where ni ∈ Z≥1 for i ∈ I. Then −F s−1d (1.34) induces
the morphism

fil′Rj∗Ws(OU ) → fil′Rj∗Ω
1
U .

For R′ =
∑

i∈I n
′
iDi, where n′

i ∈ Z≥1 such that n′
i ≤ ni for i ∈ I, we put

gr′R/R′ = fil′R/fil
′
R′ . Then the morphism −F s−1d (1.34) induces the morphism

ϕ′(R/R′)
s : gr′R/R′j∗Ws(OU ) → gr′R/R′j∗Ω

1
U . (1.45)

For R′ =
∑

i∈I n
′
iDi, where n′

i ∈ Z≥1 such that ni − 1 ≤ n′
i ≤ ni for i ∈ I, we

put D(R/R′) = R − R′ ⊂ D. If p 6= 2 or there is no i ∈ I such that (ni, n
′
i) =

(2, 1), let ϕ̃
′(R/R′)
s : gr′R/R′j∗Ws(OU ) → gr′R/R′j∗Ω

1
U ⊗O

D(R/R′)
O

D(R/R′)1/2 be

the composition

gr′R/R′j∗Ws(OU )
ϕ′(R/R′)

s−−−−−→ gr′R/R′j∗Ω
1
U → gr′R/R′j∗Ω

1
U ⊗O

D(R/R′)
O

D(R/R′)1/2 .

Otherwise, as in the proof of Proposition 1.17 (i), there exists a unique mor-
phism

ϕ̃′(R/R′)
s : gr′R/R′j∗Ws(OU ) → gr′R/R′j∗Ω

1
U ⊗O

D(R/R′)
O

D(R/R′)1/p (1.46)

such that locally ϕ̃
′(R/R′)
s (ā) = −∑s−1

i=0 ap
i−1

i dai +
∑

(ni,n′
i)=(2,1)

√

t2i a0dti/t
2
i

for every ā ∈ gr′R/R′j∗Ws(OU ) whose lift is a = (as−1, . . . , a0) ∈ fil′Rj∗Ws(OU )

and for every local equation ti of Di for i ∈ I such that (ni, n
′
i) = (2, 1).

If R = R′ +Di for some i ∈ I, then we simply write gr′R,i for gr′R/R′ , ϕ̃′(R,i)

for ϕ̃′(R/R′), and similarly for gr′′R/R′ , gr
′(r)
R/R′ , and gr

′′(r)
R/R′ .

Lemma 1.35. Let R =
∑

i∈I niDi, where ni ∈ Z≥1 for i ∈ I, and let r ≥ 0

be an integer. Then we have fil
′′(r)
R j∗Ws(OU ) = (F − 1)−1(fil

′(r)
R j∗Ws(OU )).

Especially, we have fil′′Rj∗Ws(OU ) = (F − 1)−1(fil′Rj∗Ws(OU )).

Proof. Let ji : SpecKi → X be the canonical morphism for i ∈ I. Since F − 1
is compatible with the canonical morphism j∗Ws(OU ) →

⊕

i∈I ji∗Ws(Ki), the
assertions hold by Lemma 1.20 (v).

Lemma 1.36. Let r ≥ 0 be an integer. Let R =
∑

i∈I niDi and R′ =
∑

i∈I n
′
iDi,

where ni, n
′
i ∈ Z≥1 such that n′

i = ni/p
r if ni ∈ pr+1Z and n′

i = [(ni − 1)/pr]
if ni /∈ pr+1Z for every i ∈ I.

(i) fil
′(r)
R j∗OU = filR′j∗OU .

(ii) fil
′′(r)
R j∗OU = fil[R/pr+1]j∗OU .

Proof. The assertions hold by Lemma 1.23.
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Corollary 1.37. Let the notation be as in Lemma 1.36. Let i be an element
of I such that ni ≥ 2.

(i) Assume that r ≥ 1. Then gr
′(r)
R,i j∗OU = grR′,ij∗OU if ni ∈ pr+1Z or

ordp(ni − 1) = r, and gr
′(r)
R,i j∗OU = 0 otherwise.

(ii) gr
′′(r)
R,i j∗OU = gr[R/pr+1],ij∗OU = gr[R′/p],ij∗OU if ni ∈ pr+1Z, and

gr
′′(r)
R,i j∗OU = 0 if ni /∈ pr+1Z.

Proof. Since [R/pr+1] = [R′/p] by Lemma 1.6, the assertions hold by Corollary
1.24 and Lemma 1.36.

Let R =
∑

i∈I niDi and R′ =
∑

i∈I n
′
iDi, where ni, n

′
i ∈ Z≥1 and n′

i ≤ ni for
every i ∈ I. Let 0 ≤ t ≤ s be integers. Since we have prt(fil

′
Rj∗Ws(OU )) =

fil
′(s−t)
R j∗Wt(OU ) by Lemma 1.20 (i), we have the exact sequence

0 → fil′Rj∗Ws−t(OU )
V t

−−→ fil′Rj∗Ws(OU )
prt−−→ fil

′(s−t)
R j∗Wt(OU ) → 0. (1.47)

Similarly, since prt(fil
′′
Rj∗Ws(OU )) is fil

′′(s−t)
R j∗Wt(OU ) by Lemma 1.20 (iii), we

have the exact sequence

0 → fil′′Rj∗Ws−t(OU )
V t

−−→ fil′′Rj∗Ws(OU )
prt−−→ fil

′′(s−t)
R j∗Wt(OU ) → 0. (1.48)

Lemma 1.38. Let R =
∑

i∈I niDi and R′ =
∑

i∈I n
′
iDi, where ni, n

′
i ∈ Z≥1

and ni − 1 ≤ n′
i ≤ ni for every i ∈ I. Let 0 ≤ t ≤ s be integers.

(i) The exact sequence (1.47) induces the exact sequence

0 // gr′R/R′j∗Ws−t(OU )
V̄ t
// gr′R/R′j∗Ws(OU )

prt// gr
′(s−t)
R/R′ j∗Wt(OU ) // 0.

(ii) The exact sequence (1.48) induces the exact sequence

0 // gr′′R/R′j∗Ws−t(OU )
V̄ t
// gr′′R/R′j∗Ws(OU )

prt// gr
′′(s−t)
R/R′ j∗Wt(OU ) // 0.

Proof. The assertions hold similarly as the proof of Lemma 1.26.

Let r ≥ 0 be an integer. By Lemma 1.35, the morphism F − 1: j∗Ws(OU ) →
j∗Ws(OU ) induces the injection

F − 1: gr
′′(r)
R/R′j∗Ws(OU ) → gr

′(r)
R/R′j∗Ws(OU ).

Especially, the morphism F − 1 induces the injection

F − 1: gr′′R/R′j∗Ws(OU ) → gr′R/R′j∗Ws(OU ).
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Lemma 1.39. Let R =
∑

i∈I niDi, where ni ∈ Z≥1 for i ∈ I. Let s ≥ 0 be an
integer and let i be an element of I such that ni ≥ 2. Then we have the exact
sequence

0 → gr′′R,ij∗Ws(OU )
F−1−−−→ gr′R,ij∗Ws(OU )

ϕ̃′(R,i)
s−−−−→ gr′R,ij∗Ω

1
U ⊗ODi

O
D

1/p
i

.

Proof. We may assume that s ≥ 1, I = {1, . . . , r}, and that i = 1. Let
j1 : SpecK1 → X be the canonical morphism. We consider the commutative
diagram

0 // gr′′R,1j∗Ws(OU )
F−1

//

��

gr′R,1j∗Ws(OU )
ϕ′(R,1)

s //

��

gr′R,1j∗Ω
1
U ⊗OD1

O
D

1/p
1

��

0 // j1∗gr
′′
n1
Ws(K1)

F−1
// j1∗gr

′
n1
Ws(K1)

ϕ′(n1)
s // j1∗(gr

′
n1
Ω1

K1
⊗FK1

F
1/p
K1

),

(1.49)

where FK1 denotes the residue field of K1 and the vertical arrows are canonical
injections. By Lemma 1.22, the lower horizontal line is exact. Hence it is
sufficient to prove that the left square in (1.49) is cartesian.
We prove the assertion by induction on s. Suppose that s = 1. If n1 /∈ pZ,
then we have gr′′n1

Ws(K1) = 0 and gr′′R,1j∗OU = 0 by Corollary 1.24 (ii) and
Corollary 1.37 (ii). Hence the assertion holds in this case.
Assume that n1 ∈ pZ. By (1.15), we have gr′n1

K1 = filn1K1/filn1−2K1. By
Corollary 1.24 (ii), we have gr′′n1

K1 = grn1/pK1. Since the assertion is a local
property, we may assume that X = SpecA is affine and that Di = (ti = 0) for
i ∈ I, where ti ∈ A for i ∈ I. Further we may assume that the invertible O2D1 -
module gr′R,1j∗OU is generated by c0 = 1/tn1

1 · · · tnr
r , and that the invertible

OD1 -module gr′′R,1j∗OU is generated by c1 = 1/t
n1/p
1 t

m′
2

2 · · · tm
′
r

r , where m′
i =

[ni/p] for i ∈ I−{1}. Let R(2D1) denote the stalk of O2D1 at the generic point
of 2D1 and let k(D1) denote the functional field of D1. Then we may identify
gr′n1

K1 with R(2D1) · c0 and gr′′n1
K1 with k(D1) · c1.

Let ā be an element of k(D1) such that (F − 1)(āc1) ∈ gr′R,1j∗OU . Since

we have (F − 1)(āc1) = ((āpcp1 − āc1)/c0) · c0 ∈ gr′R,1j∗OU = O2D1 · c0, we
have (āpcp1 − āc1)/c0 ∈ O2D1 . Since c1/c0 = t

n1−n1/p
1 t

n2−m′
2

2 · · · tnr−m′
r

r and
n1 − n1/p ≥ 1, we have (āpcp1 − āc1)/c0 = āpcp1/c0 in OD1 . Since cp1/c0 =

t
n2−pm′

2
2 · · · tnr−pm′

r
r and 0 ≤ ni − pm′

i < p for i ∈ I − {1}, we have ā ∈ OD1 by
Lemma 1.27. Hence we have āc1 ∈ OD1 · c1 = gr′′R,1j∗OU . Thus the assertion
holds if s = 1.
If s > 1, we put F = j1∗gr

′
n1
Ws−1(K1), F1 = gr′R,1j∗Ws−1(OU ), F2 =

j1∗gr
′′
n1
Ws−1(K1), and F3 = gr′′R,1j∗Ws−1(OU ). Since the canonical morphisms

F1 → F and F3 → F2 are injective and both F − 1: F3 → F1 and F − 1: F2 →
F are injective, we may identify Fi with a subsheaf of F for i = 1, 2, 3. We
also put G = j1∗gr

′
n1
Ws(K1), G1 = gr′R,1j∗Ws(OU ), G2 = j1∗gr

′′
n1
Ws(K1), and
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G3 = gr′′R,1j∗Ws(OU ). Further we put H = j1∗gr
′(s−1)
n1 K1, H1 = gr

′(s−1)
R,1 j∗OU ,

H2 = j1∗gr
′′(s−1)
n1 K1, and H3 = gr

′′(s−1)
R,1 j∗OU . Similarly as Fi, we may identify

Gi and Hi with subsheaves of G and H respectively for i = 1, 2, 3.
By the induction hypothesis, we have F3 = F1 ∩F2. If n1 /∈ psZ, then we have
H2 = H3 = 0 by Corollary 1.24 (ii) and Corollary 1.37 (ii). If n1 ∈ psZ, then
we have H3 = H1 ∩ H2 by Corollary 1.24, Corollary 1.37, and the case where
s = 1 in the proof of Proposition 1.29. By the commutativity of (1.49), we
have G3 ⊂ G1 ∩G2. Since exact sequences in Corollary 1.21 and Lemma 1.38 in
the case where t = 1 are compatible with the inclusions of sheaves above, the
assertion holds by Lemma 1.28.

Proposition 1.40. Let R =
∑

i∈I niDi, where ni ∈ Z≥1 for i ∈ I. Let
ji : SpecKi → X be the canonical morphism for i ∈ I.

(i) The subsheaf fil′RR
1(ǫ ◦ j)∗Z/p

sZ is equal to the pull-back of
⊕

i∈I ji∗fil
′
ni
H1(Ki,Q/Z) by the morphism R1(ǫ ◦ j)∗Z/p

sZ →
⊕

i∈I ji∗H
1(Ki,Q/Z).

(ii) Let R′ =
∑

i∈I n
′
iDi, where n′

i ∈ Z≥1 such that ni−1 ≤ n′
i ≤ ni for i ∈ I.

Then there exists a unique injection φ
′(R/R′)
s : gr′R/R′R1(ǫ ◦ j)∗Z/psZ →

(gr′R/R′j∗Ω
1
U )|D(R/R′)1/p = gr′R/R′j∗Ω

1
U⊗O

D(R/R′)
OD(R/R′)1/p such that the

following diagram is commutative:

gr′R/R′j∗Ws(OU )

δ′(R/R′)
s ((❘❘

❘❘
❘❘

❘❘
❘❘

❘❘
❘

ϕ̃′(R/R′)
s // (gr′R/R′j∗Ω

1
U )|D(R/R′)1/p

gr′R/R′R1(ǫ ◦ j)∗Z/psZ.
φ′(R/R′)
s

55❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦

(1.50)

Proof. Let i be an element of I such that ni ≥ 2. By Lemma 1.39, the kernel

of δ
′(R,i)
s is equal to the kernel of ϕ̃

′(R,i)
s . Since δ

′(R,i)
s is surjective, there exists

a unique injection φ
′(R,i)
s : gr′R,iR

1(ǫ ◦ j)∗Z/psZ → gr′R,ij∗Ω
1
U ⊗ODi

O
D

1/p
i

such

that the diagram (1.50) for R′ = R−Di is commutative.
(i) Let i be an element of I such that ni ≥ 2. We consider the commutative
diagram

gr′R,iR
1(ǫ ◦ j)∗Z/psZ //

φ′(R,i)
s

��

ji∗grni
H1(Ki,Q/Z)

φ′(ni)

��

gr′R,ij∗Ω
1
U ⊗ODi

O
D

1/p
i

// ji∗(gr
′
ni
Ω1

Ki
⊗FKi

F
1/p
Ki

),

where FKi is the residue field of Ki, the lower horizontal arrow is the inclusion,
and φ′(ni) is as in (1.26). Since the left vertical arrow is injective as proved

Documenta Mathematica 22 (2017) 917–952



942 Yuri Yatagawa

above, the upper horizontal arrow is injective. Hence the assertion holds by
Lemma 1.30 similarly as the proof of Proposition 1.31 (i).
(ii) Let J be the subset of I consisting of i ∈ I such that n′

i 6= ni. Since

gr′ni
ji∗Ω

1
Ki

⊗FKi
F

1/p
Ki

is the stalk of gr′R/R′j∗Ω
1
U ⊗O

D(R/R′)
OD(R/R′)1/p at the

generic point of D
1/p
i for i ∈ J , the assertion holds similarly as the proof of

Proposition 1.31 (ii).

Definition 1.41. Let χ be an element of H1
ét(U,Q/Z). We define the total

dimension divisor R′
χ of χ by R′

χ =
∑

i∈I dt(χ|Ki)Di.

We note that we have Supp(R′
χ −D) = Supp(Rχ) by (1.17).

Definition 1.42. Let χ be an element of H1
ét(U,Q/Z). Assume that

dt(χ|Ki) > 1 for some i ∈ I. Let ps be the order of the p-part of χ. We
put Z = Supp(R′

χ −D). We define the characteristic form char(χ) of χ to be
the image of the p-part of χ by the composition

Γ(X, fil′Rχ
R1(ǫ ◦ j)∗Z/psZ) → Γ(X, gr′R′

χ/(R
′
χ−Z)R

1(ǫ ◦ j)∗Z/psZ)

φ
′(R′

χ/(R′
χ−Z))

s (X)−−−−−−−−−−−−→ Γ(X, gr′R′
χ/(R

′
χ−Z)j∗Ω

1
U ⊗OZ OZ1/p)

= Γ(Z1/p,Ω1(R′
χ)⊗OX OZ1/p).

2 Abbes-Saito’s ramification theory and Witt vectors

2.1 Abbes-Saito’s ramification theory

We briefly recall Abbes-Saito’s non-logarithmic ramification theory ([Sa1, Sec-
tion 2, Subsection 3.1]).

Definition 2.1 ([Sa1, Definition 1.12]). Let P be a scheme. Let D be a Cartier
divisor on P and X a closed subscheme of P . We define the dilatation P (D·X)

of P with respect to (D,X) to be the complement of the proper transform of
D in the blow-up of X along D ∩X .

Let X be a smooth separated scheme over a perfect field k of characteristic
p > 0. Let D be a divisor on X with simple normal crossings and {Di}i∈I the
irreducible components of D. We put U = X −D. Let R =

∑

i∈I riDi be a
linear combination with integral coefficients ri ≥ 1 for every i ∈ I. Let Z be
the support of R−D.
We put P = X×kX . Let ∆: X → P be the diagonal and pri : P → X the i-th
projection for i = 1, 2. We identify D ⊂ X with closed subschemes of P by the
diagonal. We put P (D) =

⋂2
i=1 P

(pr∗i D·X), where the intersection is taken in
the blow-up of P along D ⊂ P .

Let D
(D)
i be the inverse image of Di by P (D) → P . Then D(D) =

∑

i∈I D
(D)
i is

a divisor on P (D) with simple normal crossings. The diagonal ∆ is canonically
lifted to the closed immersion X → P (D) and we identify X with a closed
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subscheme of P (D) by the lift. We define P (R) to be the dilatation of P (D)

with respect to (
∑

i∈I(ri − 1)D
(D)
i , X). Let T (R) ⊂ D(R) be the inverse image

of Z ⊂ D by P (R) → P . Then the complement P (R) −D(R) is U ×k U ([Sa1,
Lemma 2.4.3]) and T (R) is TX(−R)×X Z ([Sa1, Corollary 2.9]), where TX =
SpecS•Ω1

X denotes the tangent bundle of X and TX(−R) = SpecS•Ω1
X(R).

Let G be a finite group and V → U aG-torsor. We consider the open immersion
U ×k U = P (R) −D(R) → P (R). The quotient (V ×k V )/∆G of V ×k V by the
diagonal action of G is finite étale over U ×k U . Let Q(R) be the normalization
of P (R) in the finite étale covering (V ×kV )/∆G → U×kU . Then the canonical
lift X → P (R) of the diagonal is canonically lifted to X → Q(R).

Definition 2.2 ([Sa1, Definition 2.12]). Let V → U be a G-torsor for a finite
group G and R =

∑

i∈I riDi a linear combination with integral coefficients
ri ≥ 1 for every i ∈ I.

(i) We say that the ramification of V over U at a point x on D is bounded
by R+ if the finite morphism Q(R) → P (R) is étale on a neighborhood of
the image of x by the lift X → Q(R).

(ii) We say that the ramification of V over U along D is bounded by R+ if
the finite morphism Q(R) → P (R) is étale on a neighborhood of the image
of the lift X → Q(R).

Lemma 2.3. Let V → U be a G-torsor for a finite group G and R =
∑

i∈I riDi

a linear combination with integral coefficients ri ≥ 1 for every i ∈ I. Let pi be
the generic point of Di for i ∈ I. Then the following are equivalent:

(i) The ramification of V over U at pi is bounded by R+ for every i ∈ I.

(ii) The ramification of V over U along D is bounded by R+.

Proof. Since Q(R) → P (R) is an isomorphism outside of the inverse image of
D, the assertion holds by the purity of Zariski-Nagata.

In [Sa1], the notion of the bound of ramification of V over U is defined for
R =

∑

i∈I riDi of rational coefficients ri ≥ 1. The next proposition relates the
ramification of G-torsor to the ramification of local field.

Proposition 2.4 ([Sa1, Proposition 2.27]). Assume that D is irreducible. Let
K be the local field at the generic point p of D. Let {Gr

K}r∈Q>0 be the ramifi-
cation filtration of the absolute Galois group GK of K ([AS1, Definition 3.4]).

Let r ≥ 1 be a rational number and let Gr+
K =

⋃

s>r

Gs
K denote the closure of

the union of Gs
K for s > r. For a G-torsor V → U for a finite group G, the

following are equivalent:

(i) The ramification of V over U at p is bounded by rD+.

(ii) Gr+
K acts trivially on the finite étale K-algebra L = Γ(V ×U K,OV×UK).
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We note that the filtration {Gr
K}r∈Q>0 is decreasing.

We recall the characteristic form defined in [Sa1, Subsection 2.4]. Let W (R) be
the largest open subscheme of Q(R) étale over P (R). We define a scheme E(R)

over T (R) to be the fiber product T (R) ×P (R) W (R). Then there is a unique
open sub group scheme E(R)0 of a smooth group scheme E(R) over Z such that
for every x ∈ Z the fiber E(R)0 ×Z x is the connected component of E(R) ×Z x
containing the unit section ([Sa1, Proposition 2.16]). Further E(R)0 is étale
over T (R).
Assume that the ramification of V over U along D is bounded by R+. Then,
we say that the ramification of V over U along D is non-degenerate at the
multiplicity R if the étale morphism E(R)0 → T (R) is finite. We note that this
condition is satisfied if we remove a sufficiently large closed subscheme of X
of codimension ≥ 2. Assume that the ramification of V over U along D is
non-degenerate at the multiplicity R. Then the exact sequence 0 → G̃(R) →
E(R)0 → T (R) → 0 defines a closed immersion G̃(R)∨ → T (R)∨ of commutative
group schemes to the dual vector bundle defined over Z1/pn

, where n ≥ 0 is an
integer.

Definition 2.5 ([Sa1, Definition 2.19]). Let V → U be a G-torsor for a finite
group G. Assume that the ramification of V over U along D is bounded by
R+ and non-degenerate at the multiplicity R. We define the characteristic
form CharR(V/U) to be the morphism G̃(R)∨ → T (R)∨ = (T ∗X×X Z)(R) over
Z1/pn

for a sufficiently large integer n ≥ 0.

Proposition 2.6 (cf. [Sa1, Corollary 2.28.2]). Let the notation be as in Propo-
sition 2.4. Let OK be the valuation ring of K and FK the residue field of
K. We put N (r) = mr

K̄
/mr+

K̄
, where mr

K̄
= {a ∈ K̄ | ordK(a) ≥ r} and

m
r+
K̄

= {a ∈ K̄ | ordK(a) > r}. Let r > 1 be a rational number. Assume that
the ramification of V over U along D is bounded by R+ and non-degenerate at
the multiplicity rD. Then the following are equivalent:

(i) The characteristic form CharrD(V/U) defines the non-zero mapping by
taking the stalk at the generic point of D.

(ii) Gr
K acts non-trivially on L.

Proof. The assertion holds by [Sa1, Corollary 2.28.2] and its proof.

2.2 Valuation of Witt vectors

We keep the notation in Subsection 2.1. In this subsection, we assume that X
is a smooth affine scheme SpecA over k and that D is an irreducible divisor
defined by π ∈ A. We put U = SpecB and R = rD, where r ≥ 1 is an integer.
Let J ⊂ A be the kernel of the multiplication A ⊗k A → A. Following the
construction of P (R) recalled in the previous section, we have

P (R) = Spec(A⊗k A)[J/(π
r ⊗ 1), ((1⊗ π)/(π ⊗ 1))−1].
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The divisor D(R) is defined by π ⊗ 1.
We put P (R) = SpecA(r). Let Â denote the completion of the local ring OX,p

at the generic point p of D and Â(r) the completion of the local ring OP (R),q at

the generic point q of D(R) respectively. Let u : Â → Â(r) and v : Â → Â(r) be
the morphisms induced by the first and second projections P → X respectively.
We put K = Frac Â and L(r) = Frac Â(r).

Lemma 2.7. Let FK be the residue field of K. Let a = a′πn ∈ K be an element,
where n is an integer and a′ ∈ Â× is a unit. Let r ≥ 1 be an integer.

(i) If n = 0 and if r = 1, then we have ordL(r)(v(a)/u(a)) = 0.

(ii) If n /∈ pZ or r = 1, then ordL(r)(v(a)/u(a)− 1) = r − 1.

(iii) If n ∈ pZ and if r > 1, then ordL(r)(v(a)/u(a) − 1) ≥ r. Further if a′ is
not a p-power in FK , the equality holds.

Proof. We put w = (v(π)− u(π))/u(π)r and w′ = (v(a′)− u(a′))/u(π)r. Then
we have v(π)/u(π) = 1 + u(π)r−1w and v(a′)/u(a′) = 1 + u(a′)−1u(π)rw′.
Hence we have

v(a)/u(a)− 1 (2.1)

=

{

(1 + u(a′)−1u(π)rw′)(1 + u(π)r−1w)n − 1 (n ≥ 0)

(1 + u(π)r−1w)n
(

(

1 + u(a′)−1u(π)rw′
)

−
(

1 + u(π)r−1w
)−n

)

(n < 0).

Suppose that n = 0 and r = 1. Then we have v(a)/u(a) = 1 + u(a′)−1u(π)w′.
Since u(π) = π ⊗ 1 is a uniformizer of Â(r), the assertion (i) holds.
Suppose that n /∈ pZ. Then we have ordL(r)(v(a)/u(a)− 1) = r − 1.
Assume that n ∈ pZ. Suppose that n = 0. Then we have ordL(r)(v(a)/u(a)−
1) ≥ r, and the equality holds if w′ is a unit in Â(r).
Suppose that n 6= 0. We put n = ps

′

n′, where s′ = ordp(n) ≥ 1. Then

we have ordL(r)(v(a)/u(a) − 1) ≥ min{r, ps′(r − 1)}. If r = 1, then we have
r > ps

′

(r − 1) = 0 = r − 1. Since w ∈ Â(r)× is a unit, the assertion holds if
r = 1.
If r > 1, then ps

′

(r − 1) ≥ r. Further the equality holds only if (p, r, s′) =
(2, 2, 1). Hence we have ordL(r)(v(a)/u(a) − 1) ≥ r. Further, if (p, r, s′) 6=
(2, 2, 1) and if w′ is a unit in Â(r), the equality holds. If (p, r, s′) = (2, 2, 1),
then we have ordL(r)(v(a)/u(a)− 1) = r if and only if u(a′)−1w′ 6= n′wp.
Assume that a is not a p-power in FK . Then the elements π and a′ are p-
independent over Kp. Hence the images in Â(r)/u(π)Â(r) of w and w′ form a
part of a basis of the FK -vector space π−rΩ1

A⊗AFK , since T (R) is TX(−R)×X

D. Hence w′ is a unit in Â(r) and u(a′)−1w′ 6= n′wp. Thus the assertions (ii)
and (iii) follow.

Let s ≥ 0 be an integer and put Z[T, S]d = Z[Td, . . . , Ts−1, Sd, . . . , Ss−1] for
an integer d such that 0 ≤ d ≤ s − 1. We define polynomials Qd(T, S) ∈
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Z[T, S]d[1/p] for 0 ≤ d ≤ s− 1 inductively by the relation

s−1
∑

i=d

ps−1−i(Ti(1 + Si))
pi−d

=

s−1
∑

i=d

ps−1−iT pi−d

i +

s−1
∑

i=d

ps−1−iQpi−d

i . (2.2)

It is well-known in the theory of Witt vectors that Qd is an element of Z[T, S]d.
For elements x = (xs−1, . . . x0) and y = (ys−1, . . . , y0) of Ws(A) for a ring A,
we put x′ = (x′

s−1, . . . , x
′
0), where x′

i = xi(1 + yi) for i = 0, . . . , s− 1. Then we
have

x′ − x = (Qs−1(x, y), Qs−2(x, y), . . . , Q0(x, y)). (2.3)

Lemma 2.8 (cf. [AS3, Lemma 12.2]). Let the notation be as above.

(i) Qd(T, S) belongs to the ideal of Z[T, S]d generated by (Si)d≤i≤s−1 for
d = 0, . . . , s− 1.

(ii) Qd(T, S) −
∑s−1

i=d T pi−d

i Si belongs to the ideal of Z[T, S]d generated by
(SiSj)d≤i,j≤s−1 for d = 0, . . . , s− 1.

(iii) If we replace Ti by T ps−1−i

i in Qd(T, S), the polynomial Qd(T, S) is
homogeneous of degree ps−1−d as a polynomial of multi-value T for
0 ≤ d ≤ s− 1.

Proof. The assertions (i) and (ii) are the same as (i) and (ii) in [AS3, Lemma
12.2] respectively.
We prove (iii) by induction on d. If d = s − 1, we have Qs−1 = Ts−1Ss−1.
Hence the assertion holds.
If d < s− 1, we have

Qd = pd−s+1

(

s−1
∑

i=d

ps−1−iT pi−d

i

(

(1 + Si)
pi−d − 1

)

−
s−1
∑

i=d+1

ps−1−iQpi−d

i

)

.

By the induction hypothesis, the polynomial Qi(T, S) is homogeneous of degree

ps−1−i for T for d+1 ≤ i ≤ s−1 with Tj replaced by T ps−1−j

j for i ≤ j ≤ s−1.

Hence Qi(T, S)
pi−d

is homogeneous of degree ps−1−d for T for d+1 ≤ i ≤ s−1
with the same replacement of Tj for i ≤ j ≤ s − 1. Hence the assertion
holds.

Lemma 2.9. Let a = (as−1, . . . , a0) be an element of Ws(K) and put b =
(bs−1, . . . , b0) ∈ Ws(L

(r)), where bi = v(ai)/u(ai) − 1 if ai 6= 0 and bi = 0
if ai = 0 for 0 ≤ i ≤ s − 1. Let m ≥ 1 be an integer and assume that
a ∈ fil′mWs(K). Let r ≥ 1 be an integer.

(i) If (m, r) = (1, 1), then pi ordL(r)(Qd(u(a), b)) ≥ −m + 1 for every 0 ≤
d ≤ s− 1.
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(ii) If r > 1, then pi ordL(r)(Qd(u(a), b)) > −m+ r for every 0 < d ≤ s− 1,
and ordL(r)(Q0(u(a), b)) ≥ −m+ r.

Proof. We put s′ = min{ordp(m), s}. Let a′ = (a′s−1, . . . , a
′
0) be an element

of Ws(K) such that a′i = 0 if pi ordK(ai) = −m and a′i = ai if p
i ordK(ai) ≥

−(m − 1) for 0 ≤ i ≤ s − 1. We note that if s′ ≤ i ≤ s − 1 then a′i = ai by
(1.15). Let a′′ = (a′′s′−1, . . . , a

′′
0) be an element of Ws′ (K) such that a′′i = 0 if

pi ordK(ai) ≥ −(m − 1) and a′′i = ai if p
i ordK(ai) = −m for 0 ≤ i ≤ s′ − 1.

Then we have a = a′ + V s−s′(a′′). Let b′ ∈ Ws(L
(r)) and b′′ ∈ Ws′(L

(r)) be
the elements defined from a′ and a′′ respectively similarly as b defined from
a. Since we have Q(u(a), b) = (Qs−1(u(a), b), . . . , Q0(u(a), b)) = v(a) − u(a)
and similarly for a′ and a′′ by (2.3), we have Q(u(a), b) = Q(u(a′), b′) +
V s−s′(Q(u(a′′), b′′)). Since filnWs(L

(r)) is a submodule of Ws(L
(r)) for n ∈ Z,

the assertions for a hold if the assertions for a′ and a′′ hold. Hence we prove
the assertions for a′ and a′′.

By the definitions of a′ and a′′, we have ordL(r)(u(a′i)) ≥ −(m − 1)/pi for
0 ≤ i ≤ s − 1 and ordL(r)(u(a′′i )) ≥ −m/pi for 0 ≤ i ≤ s′ − 1. If r > 1,
then we have ordL(r)(b′i) ≥ r − 1 for 0 ≤ i ≤ s − 1 and ordL(r)(b′′i ) ≥ r for
0 ≤ i ≤ s′ − 1 by Lemma 2.7 (ii) and (iii). If (m, r) = (1, 1), then we have
s′ = 0 and ordL(r)(b′i) ≥ r − 1 for 0 ≤ i ≤ s− 1 by Lemma 2.7 (ii). Hence, by
Lemma 2.8 (i) and (iii), we have

pd ordL(r)(Qd(u(a
′), b′)) ≥ −(m− 1) + pd(r − 1) ≥ −m+ r. (2.4)

Further we have

pd ordL(r)(Qd(u(a
′′), b′′)) ≥ −m+ pdr ≥ −m+ r. (2.5)

If r > 1, then the equality holds in the right inequality in (2.4) only if d = 0
and so in (2.5). Hence the assertions hold.

Lemma 2.10. Let the notation be as in Lemma 2.9. Let m ≥ 2 be an in-
teger and assume that a ∈ fil′mWs(K). Then we have ordL(m)(Q0(u(a), b) −
∑s−1

i=0 u(ai)
pi

bi) > 0.

Proof. We put s′ = min{ordp(m), s}. Let a′ = (a′s−1, . . . , a
′
0) and a′′ =

(a′′s′−1, . . . , a
′′
0) be as in the proof of Lemma 2.9. We have a = a′ +

V s−s′(a′′). Let b′ ∈ Ws(L
(m)) and b′′ ∈ Ws′(L

(m)) be the elements de-
fined from a′ and a′′ respectively similarly as b defined from a. Since
Q(u(a), b) = Q(u(a′), b′)+V s−s′Q(u(a′′), b′′) as in the proof of Lemma 2.9 and
∑s−1

i=0 u(ai)
pi

bi =
∑s−1

i=0 u(a′i)
pi

b′i+
∑s′−1

i=0 u(a′′i )
pi

b′′i , it is sufficient to prove the
assertion for a′ and a′′.

As in the proof of Lemma 2.9, we have ordL(m)(u(a′i)) ≥ −(m − 1)/pi for
0 ≤ i ≤ s− 1 and ordL(m)(u(a′′i )) ≥ −m/pi for 0 ≤ i ≤ s′ − 1. Further we have
ordL(m)(b′i) ≥ m− 1 for 0 ≤ i ≤ s− 1 and ordL(m)(b′′i ) ≥ m for 0 ≤ i ≤ s′ − 1.
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Hence, by Lemma 2.8 (ii) and (iii), we have

ordL(m)(Q0(u(a
′), b′)−

s−1
∑

i=0

u(a′i)
pi

b′i) ≥ −(m− 1) + 2(m− 1) = m− 1 > 0.

Further we have

ordL(m)(Q0(u(a
′′), b′′)−

s′−1
∑

i=0

u(a′′i )
pi

b′′i ) ≥ −m+ 2m = m > 0.

Hence the assertion holds.

2.3 Calculation of characteristic forms

Let X be a smooth separated scheme over a perfect field k of characteristic
p > 0. Let D be a divisor on X with simple normal crossings and {Di}i∈I the
irreducible components of D. We put U = X − D and let j : U → X denote
the canonical open immersion. Let Ki be the local field at the generic point of
Di for i ∈ I and let OKi be the valuation ring of Ki for i ∈ I.
Let χ be an element of H1

ét(U,Q/Z). In this subsection, we prove the equality
of the characteristic form char(χ) of χ and the characteristic form CharR(V/U)
of the Galois torsor V → U corresponding to χ.
Let pi : P

(R) → X be the morphism induced by the i-th projection for i = 1, 2.
Let u : p−1

1 OX → OP (R) and v : p−1
2 OX → OP (R) be the canonical morphisms

of sheaves on P (R) by abuse of notation. Let L
(R)
i be the fractional field of

the completion of the local ring OP (R),qi
, where R =

∑

i∈I riDi is a linear
combination with integer coefficients ri ≥ 1 for every i ∈ I and qi is the generic

point of the pull-back D
(R)
i of D

(D)
i by P (R) → P (D). If D = D1 is irreducible,

then we simply write L(r1) for L
(R)
1 as in the previous section.

We first consider the tamely ramified case.

Lemma 2.11. Assume that the order n of χ is prime to p and regard χ as an
element of H1

ét(U,Z/nZ). We put G = Z/nZ. Let V → U be the G-torsor
corresponding to χ. Let R =

∑

i∈I riDi be a linear combination with integral
coefficients ri ≥ 1 for every i ∈ I.

(i) The ramification of V over U along D is bounded by D+.

(ii) The characteristic form CharR(V/U) is the zero mapping.

Proof. (i) By Lemma 2.3, we may assume that D = D1 is irreducible. Since the
assertion is local, we may assume that X = SpecA is affine and D is defined by
an element of A. Since G1

K1
is the inertia group of GK1 ([AS1, Proposition 3.7

(1)]), we may assume that k contains a primitive n-th root of unity by Lemma
2.3 and Proposition 2.4. Since ordL(r1)(v(a)/u(a)) = 0 for every unit a ∈ O×

K1

by Lemma 2.7 (i), the assertion holds.
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(ii) Let Z be the support of R−D. By (i) and Proposition 2.4, the ramification
group Gri+

Ki
acts trivially on Li = Γ(V ×U Ki,OV×UKi) for Di contained in

Z. By Proposition 2.6, the stalk of the characteristic form CharR(V/U) at the
generic point of Di defines the zero mapping for Di contained in Z. Hence the
assertion holds.

By Lemma 2.11, the bound of the ramification of the Galois torsor V → U
corresponding to χ and its characteristic form CharR(V/U) does not depend
on the prime-to-p-part of χ, that is, they are dependent only on the p-part of
χ.

Proposition 2.12. Assume that the order of χ is ps and regard χ as an el-
ement of H1

ét(U,Z/p
sZ). We put G = Z/psZ. Let V → U be the G-torsor

corresponding to χ.

(i) The ramification of V over U along D is bounded by R′
χ+, where R′

χ is
the total dimension divisor of χ (Definition 1.41).

(ii) Assume that R′
χ 6= D and put Z = Supp(R′

χ − D). Then the scheme

E(R′
χ) → T (R′

χ) = TX(−R′
χ)×X Z is defined by the Artin-Schreier equa-

tion tp − t = char(χ).

Proof. We put mi = dt(χ|Ki) for i ∈ I. Let a = (as−1, . . . , a0) ∈
fil′R′

χ
j∗Ws(OU ) be an element whose image by δs (1.33) is χ. Then V ×k

V/∆G → U ×k U is the G-torsor defined by the Artin-Schreier-Witt equation
(F − 1)(t) = v(a)− u(a).
(i) By Lemma 2.3, we may assume that D is irreducible. Since the assertion is
local, we may assume that X = SpecA is affine and that D is defined by an
element of A. By (2.3) and Lemma 2.9, the difference v(a)− u(a) is a regular

function on P (R′
χ). Hence the assertion holds.

(ii) By (i), (2.3), Lemma 2.9 (ii), and Lemma 2.10, the scheme E(R′
χ) →

T (R′
χ) is the G-torsor defined by the Artin-Schreier equation tp − t =

∑s−1
j=0 u(aj)

pj−1(v(aj) − u(aj)). We put nij = ordKi(aj) for i ∈ I and
0 ≤ j ≤ s − 1. As calculating in the proof of Lemma 2.7, we have the fol-

lowing on a neighborhood of the generic point of D
(R′

χ)

i for i ∈ I such that
mi > 1:

(a) If nij /∈ pZ, we have u(aj)
pj−1(v(aj)− u(aj)) = niju(aj)

pj

u(ti)
mi−1wi;

(b) If nij ∈ pZ and if (p,mi, ordp(nij)) 6= (2, 2, 1), we have u(aj)
pj−1(v(aj)−

u(aj)) = u(aj)
pj

u(a′j)
−1u(ti)

miw′
ij ;

(c) If (p,mi, ordp(nij)) = (2, 2, 1), we have u(aj)
pj−1(v(aj) − u(aj)) =

u(aj)
pj

(u(a′j)
−1u(ti)

2w′
ij + (nij/2)u(ti)

2w2
i ),

where ti is a local equation of Di, a
′
j = aj/t

nij

i , wi = (v(ti) − u(ti))/u(ti)
mi ,

and w′
ij = (v(a′j) − u(a′j))/u(ti)

mi for every j = 0, . . . , s − 1. Since
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a ∈ fil′R′
χ
j∗Ws(OU ), we have pj ord

L
(mi)

i

(aj) ≥ −(mi − 1) if nij /∈ pZ and

pj ord
L

(mi)

i

(aj) ≥ −mi if nij ∈ pZ. If (p,mi, ordp(nij), p
jnij) = (2, 2, 1,−2),

we have (p, j, nij) = (2, 0,−2). Hence the assertion holds by identifying wi and
w′

ij with dti/t
mi

i and da′j/t
mi

i respectively.

Corollary 2.13. Let V → U be the Galois torsor corresponding to χ. Assume
that the ramification of V over U along D is non-degenerate at the multiplicity
R′

χ.

(i) The image of the generator 1 ∈ G̃(R′
χ)∨ = Fp by CharR′

χ
(V/U) is equal

to char(χ).

(ii) Assume that D = D1 is irreducible and that dt(χ|K1) > 1. Then the
ramification of V over U at the generic point of D is not bounded by
rD+ for any rational number r such that 1 ≤ r < dt(χ|K1).

Proof. (i) The assertion holds by Lemma 2.11 and Proposition 2.12 (ii).
(ii) We putK = K1. Assume thatGr+

K acts trivially on L = Γ(V×UK,OV ×UK)
for a rational number r such that 1 ≤ r < dt(χ|K). Then, by (i) and Propo-
sition 2.6, the stalk char(χ|K) of char(χ) at the generic point of D must be 0.
However char(χ) is non-zero. Hence the assertion holds by Proposition 2.4.

3 Equality of ramification filtrations

Let K be a complete discrete valuation field of characteristic p > 0 and FK the
residue field. Let GK be the absolute Galois group of K. We show that the
abelianization of Abbes-Saito’s filtration {Gr

K}r∈Q>0 ([AS1, Definition 3.4]) is
the same as {fil′mH1(K,Q/Z)}m∈Z≥1

(Definition 1.2) by taking dual. If m > 2,
then it has been proved by Abbes-Saito ([AS3, Théorème 9.10]).

Theorem 3.1. Let χ be an element of H1(K,Q/Z). Let m ≥ 1 be an integer.
Let r be a rational number such that m ≤ r < m+1. If FK is finitely generated
over a perfect subfield k ⊂ FK , then the following are equivalent:

(i) χ ∈ fil′mH1(K,Q/Z).

(ii) χ(Gm+
K ) = 0.

(iii) χ(Gr+
K ) = 0.

Proof. Since G1+
K is a pro-p-subgroup of GK ([AS1, Proposition 3.7.1]), we may

assume that the order of χ is a power of p. Let ps be the order of χ and regard
χ as an element of H1

ét(U,Z/p
sZ). We put G = Z/psZ. As in [AS3, 6.1],

we take a smooth affine connected scheme X over k and a smooth irreducible
divisor D on X such that the completion ÔX,p of the local ring OX,p at the
generic point p of D is isomorphic to OK . By shrinking X if necessary, we take
a G-torsor V → U = X − D corresponding to a character of πab

1 (U) whose
restriction to GK is χ.
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By Proposition 2.12 (i) and Corollary 2.13 (ii), the ramification of V over U
at the generic point of D is bounded by rD+ for a rational number r ≥ 1
if and only if r ≥ dt(χ). Further, by Proposition 2.4, the former condition
is equivalent to that Gr+

K acts trivially on L = Γ(V ×U K,OV ×UK). Hence
χ(Gr+

K ) = 0 if and only if r ≥ dt(χ).
Since the condition (i) holds if and only if m ≥ dt(χ), the equivalence of (i) and
(ii) follows. Since m ≤ r, the condition (ii) deduces the condition (iii). Suppose
that the condition (iii) holds. Since r ≥ dt(χ), we have m = [r] ≥ dt(χ). Hence
the condition (ii) holds.

Proof of Theorem 0.1. We may identify K with FK((π)) by taking a uni-
formizer of K. Let Kh = Frac(FK [π]h(π)) be the fractional field of the

henselization of the localization FK [π](π) of FK [π] at the prime ideal (π).
Since the completion of Kh is K, the canonical morphisms GK → GKh

and
H1(Kh,Q/Z) → H1(K,Q/Z) are isomorphisms.
Let k be a perfect subfield of FK and take a separating transcendental basis S
of FK over k. For a finite subextension E of FK over k(S′), where S′ is a finite
set of S, let KE,h denote the fractional field of the henselization of the local
ring E[π](π). Since FK = lim−→E, we may identify Kh with the inductive limit

lim−→KE,h and H1(Kh,Q/Z) with lim−→H1(KE,h,Q/Z), where E runs through
such subfields of FK .
Let χ be an element of H1(K,Q/Z). Take a subfield E of FK such that
E is a subextension of FK over k(S′) for a finite subset S′ ⊂ S and that
χ ∈ H1(KE,h,Q/Z). Let KE denote the completion of KE,h. We identify
H1(KE ,Q/Z) with H1(KE,h,Q/Z) and χ ∈ H1(KE,h,Q/Z) with an element
of H1(KE ,Q/Z). We prove that each condition in Theorem 3.1 holds for K if
and only if it holds for KE .
Let dtK(χ) and dtKE (χ) denote the total dimension of χ as an element
of H1(K,Q/Z) and H1(KE ,Q/Z) respectively. We put dtK(χ) = n and
dtKE (χ) = n′ and prove that n = n′. Since fil′mWs(KE) ⊂ fil′mWs(K) for
every integer m ≥ 1, we have fil′mH1(KE ,Q/Z) ⊂ fil′mH1(K,Q/Z). Hence we
have 1 ≤ n ≤ n′, which proves that n = 1 if n′ = 1.
Assume that n′ > 1. Take an element ā of gr′n′Ws(E(π)) whose image in
gr′n′H1(KE ,Q/Z) is χ. Let charK(χ) and charKE (χ) denote the characteristic
form of χ as an element of H1(K,Q/Z) and H1(KE ,Q/Z) respectively. Let
OK and OKE denote the valuation rings of K and KE respectively. Since FK

is separable over E, we have an injection Ω1
E[π](π)

→ Ω1
FK [π](π)

. This injection

induces the injection Ω1
OKE

→ Ω1
OK

, and further the injection gr′n′Ω1
KE

→
gr′n′Ω1

K . Hence the canonical morphism gr′n′Ω1
KE

⊗FK F
1/p
K → gr′n′Ω1

K⊗FK F
1/p
K

is injective. Since charKE (χ) 6= 0, the image of charKE (χ) in gr′n′Ω1
K ⊗FK F

1/p
K

is not 0. This implies that charK(χ) is the image of charKE (χ) in gr′n′Ω1
K ⊗FK

F
1/p
K . Hence we have n = n′. Since the condition (i) in Theorem 3.1 holds for

K if and only if m ≥ n and similarly for KE , the condition (i) in Theorem 3.1
for K is equivalent to that for KE.
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Let r ≥ 1 be a rational number. Since K is an extension of KE of ramification
index 1 and the extension of residue fields is separable, by applying [AS2,
Lemma 2.2], the canonical morphism GK → GKE induces the surjection Gs

K →
Gs

KE
for every s ∈ Q≥1. Hence we have χ(G

r+
K ) = 0 if and only if χ(Gr+

KE
) = 0,

which proves the assertions for conditions (ii) and (iii) in Theorem 3.1.
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