Iwasawa Theory and F-Analytic
 Lubin-Tate (φ, Γ)-Modules

Laurent Berger and Lionel Fourquaux

Received: December 20, 2016
Revised: June 6, 2017

Communicated by Otmar Venjakob

Abstract

Let K be a finite extension of \mathbf{Q}_{p}. We use the theory of (φ, Γ)-modules in the Lubin-Tate setting to construct some corestriction-compatible families of classes in the cohomology of V, for certain representations V of $\operatorname{Gal}\left(\overline{\mathbf{Q}}_{p} / K\right)$. If in addition V is crystalline, we describe these classes explicitly using Bloch-Kato's exponential maps. This allows us to generalize Perrin-Riou's period map to the Lubin-Tate setting.

2010 Mathematics Subject Classification: 11F; 11S; 14G Keywords and Phrases: p-adic representation; (φ, Γ)-module; LubinTate group; overconvergent representation; p-adic Hodge theory; analytic cohomology; normalized traces; Bloch-Kato exponential; Iwasawa theory; Kummer theory

Contents

1 Lubin-Tate (φ, Γ)-modules 1003
1.1 Notation 1003
1.2 Construction of Lubin-Tate (φ, Γ)-modules 1004
1.3 Overconvergent Lubin-Tate (φ, Γ)-modules 1005
1.4 Extensions of (φ, Γ)-modules 1006
2 Analytic cohomology and Iwasawa theory 1007
2.1 Analytic cohomology 1007
2.2 Cohomology of F-analytic (φ, Γ)-modules 1009
2.3 The space $\mathrm{D} /\left(\psi_{q}-1\right)$ 1010
2.4 The operator Θ_{b} 1012
2.5 Construction of extensions 1015

3 Explicit formulas for crystalline representations
 1019

3.1 Crystalline F-analytic representations 1019
3.2 Bloch-Kato's exponentials for analytic representations 1020
3.3 Interpolating exponentials and their duals 1021
3.4 Kummer theory and the representation $F\left(\chi_{\pi}\right)$. 1023
3.5 Perrin-Riou's big exponential map 1025

Introduction

Let K be a finite extension of \mathbf{Q}_{p} and let $G_{K}=\operatorname{Gal}\left(\overline{\mathbf{Q}}_{p} / K\right)$. In this article, we use the theory of (φ, Γ)-modules in the Lubin-Tate setting to construct some classes in $\mathrm{H}^{1}(K, V)$, for " F-analytic" representations V of G_{K}. If in addition V is crystalline, we describe these classes explicitly using Bloch and Kato's exponential maps and generalize Perrin-Riou's period map to the Lubin-Tate setting.
We now describe our constructions in more detail, and introduce some notation which is used throughout this paper. Let F be a finite Galois extension of \mathbf{Q}_{p}, with ring of integers \mathcal{O}_{F} and maximal ideal \mathfrak{m}_{F}, let π be a uniformizer of \mathcal{O}_{F} and let $k_{F}=\mathcal{O}_{F} / \pi$ and $q=\operatorname{Card}\left(k_{F}\right)$. Let LT be the Lubin-Tate formal group [LT65] attached to π. We fix a coordinate T on LT, so that for each $a \in \mathcal{O}_{F}$ the multiplication-by- a map is given by a power series $[a](T)=a T+\mathrm{O}\left(T^{2}\right) \in$ $\mathcal{O}_{F} \llbracket T \rrbracket$. Let $\log _{\mathrm{LT}}(T)$ denote the attached logarithm and $\exp _{\mathrm{LT}}(T)$ its inverse for the composition. Let $\chi_{\pi}: G_{F} \rightarrow \mathcal{O}_{F}^{\times}$be the attached Lubin-Tate character. If K is a finite extension of F, let $K_{n}=K\left(\operatorname{LT}\left[\pi^{n}\right]\right)$ and $K_{\infty}=\cup_{n \geqslant 1} K_{n}$ and $\Gamma_{K}=\operatorname{Gal}\left(K_{\infty} / K\right)$.
Let \mathbf{A}_{F} denote the set of power series $\sum_{i \in \mathbf{Z}} a_{i} T^{i}$ with $a_{i} \in \mathcal{O}_{F}$ such that $a_{i} \rightarrow 0$ as $i \rightarrow-\infty$ and let $\mathbf{B}_{F}=\mathbf{A}_{F}[1 / \pi]$, which is a field. It is endowed with a Frobenius map $\varphi_{q}: f(T) \mapsto f([\pi](T))$ and an action of Γ_{F} given by $g: f(T) \mapsto f\left(\left[\chi_{\pi}(g)\right](T)\right)$. If K is a finite extension of F, the theory of the field of norms ([FW79a, FW79b] and [Win83]) provides us with a finite unramified extension \mathbf{B}_{K} of \mathbf{B}_{F}. Recall [Fon90] that a (φ, Γ)-module over \mathbf{B}_{K} is a finite dimensional \mathbf{B}_{K}-vector space endowed with a compatible Frobenius map φ_{q} and action of Γ_{K}. We say that a (φ, Γ)-module over \mathbf{B}_{K} is étale if it has a basis in which $\operatorname{Mat}\left(\varphi_{q}\right) \in \mathrm{GL}_{d}\left(\mathbf{A}_{K}\right)$. The relevance of these objects is explained by the result below (see [Fon90], [KR09]).

Theorem. There is an equivalence of categories between the category of F linear representations of G_{K} and the category of étale (φ, Γ)-modules over \mathbf{B}_{K}.

Let \mathbf{B}_{F}^{\dagger} denote the set of power series $f(T) \in \mathbf{B}_{F}$ that have a non-empty domain of convergence. The theory of the field of norms again provides us [Mat95] with a finite extension \mathbf{B}_{K}^{\dagger} of \mathbf{B}_{F}^{\dagger}. We say that a (φ, Γ)-module over \mathbf{B}_{K} is overconvergent if it has a basis in which $\operatorname{Mat}\left(\varphi_{q}\right) \in \mathrm{GL}_{d}\left(\mathbf{B}_{K}^{\dagger}\right)$ and $\operatorname{Mat}(g) \in \mathrm{GL}_{d}\left(\mathbf{B}_{K}^{\dagger}\right)$ for all $g \in \Gamma_{K}$. If $F=\mathbf{Q}_{p}$, every étale (φ, Γ)-module over \mathbf{B}_{K} is overconvergent [CC98]. If $F \neq \mathbf{Q}_{p}$, this is no longer the case [FX13].

Let us say that an F-linear representation V of G_{K} is F-analytic if for all embeddings $\tau: F \rightarrow \overline{\mathbf{Q}}_{p}$, with $\tau \neq \mathrm{Id}$, the representation $\mathbf{C}_{p} \otimes_{F}^{\tau} V$ is trivial (as a semilinear \mathbf{C}_{p}-representation of G_{K}). The following result is known [Ber16].
Theorem. If V is an F-analytic representation of G_{K}, it is overconvergent.
Another source of overconvergent representations of G_{K} is the set of representations that factor through Γ_{K} (see $\S 1.3$). Our first result is the following (theorem 1.3.1).

Theorem A. If V is an overconvergent representation of G_{K}, there exists an F-analytic representation X_{an} of G_{K}, a representation Y_{Γ} of G_{K} that factors through Γ_{K}, and a surjective G_{K}-equivariant map $X_{\mathrm{an}} \otimes_{F} Y_{\Gamma} \rightarrow V$.
We next focus on F-analytic representations. Let $\mathbf{B}_{\text {rig }, F}^{\dagger}$ denote the Robba ring, which is the ring of power series $f(T)=\sum_{i \in \mathbf{Z}} a_{i} T^{i}$ with $a_{i} \in F$ such that there exists $\rho<1$ such that $f(T)$ converges for $\rho<|T|<1$. We have $\mathbf{B}_{F}^{\dagger} \subset \mathbf{B}_{\mathrm{rig}, F}^{\dagger}$. The theory of the field of norms again provides us with a finite extension $\mathbf{B}_{\text {rig, } K}^{\dagger}$ of $\mathbf{B}_{\text {rig }, F}^{\dagger}$. If V is an F-linear representation of G_{K}, let $\mathrm{D}(V)$ denote the (φ, Γ)-module over \mathbf{B}_{K} attached to V. If V is overconvergent, there is a well defined (φ, Γ)-module $\mathrm{D}^{\dagger}(V)$ over \mathbf{B}_{K}^{\dagger} attached to V, such that $\mathrm{D}(V)=$ $\mathbf{B}_{K} \otimes_{\mathbf{B}_{K}^{\dagger}} \mathrm{D}^{\dagger}(V)$. We call $\mathrm{D}_{\text {rig }}^{\dagger}(V)$ the (φ, Γ)-module over $\mathbf{B}_{\text {rig, } K}^{\dagger}$ attached to V, given by $\mathrm{D}_{\text {rig }}^{\dagger}(V)=\mathbf{B}_{\text {rig, } K}^{\dagger} \otimes_{\mathbf{B}_{K}^{\dagger}} \mathrm{D}^{\dagger}(V)$.
The ring $\mathbf{B}_{\mathrm{rig}, K}^{\dagger}$ is a free $\varphi_{q}\left(\mathbf{B}_{\mathrm{rig}, K}^{\dagger}\right)$-module of degree q. This allows us to define [FX13] a map $\psi_{q}: \mathbf{B}_{\text {rig }, K}^{\dagger} \rightarrow \mathbf{B}_{\text {rig }, K}^{\dagger}$ that is a Γ_{K}-equivariant left inverse of φ_{q}, and likewise, if V is an overconvergent representation of G_{K}, a map $\psi_{q}: \mathrm{D}_{\text {rig }}^{\dagger}(V) \rightarrow \mathrm{D}_{\mathrm{rig}}^{\dagger}(V)$ that is a Γ_{K}-equivariant left inverse of φ_{q}.
The main result of this article is the construction, for an F-analytic representation V of G_{K}, of a collection of maps

$$
h_{K_{n}, V}^{1}: \mathrm{D}_{\mathrm{rig}}^{\dagger}(V)^{\psi_{q}=1} \rightarrow \mathrm{H}^{1}\left(K_{n}, V\right),
$$

having a certain number of properties. For example, these maps are compatible with corestriction: $\operatorname{cor}_{K_{n+1} / K_{n}} \circ h_{K_{n+1}, V}^{1}=h_{K_{n}, V}^{1}$ if $n \geqslant 1$. Another property is that if $F=\mathbf{Q}_{p}$ and $\pi=p$ (the cyclotomic case), these maps coïncide with those constructed in [CC99] (and generalized in [Ber03]).
If now $K=F$ and V is a crystalline F-analytic representation of G_{F}, we give explicit formulas for $h_{F_{n}, V}^{1}$ using Bloch and Kato's exponential maps [BK90]. Let V be as above, let $\mathrm{D}_{\text {cris }}(V)=\left(\mathbf{B}_{\text {cris }, F} \otimes_{F} V\right)^{G_{F}}$ (note that because the \otimes is over F, this is the identity component of the usual $\mathrm{D}_{\text {cris }}$) and let $t_{\pi}=\log _{\mathrm{LT}}(T)$. Let $\left\{u_{n}\right\}_{n \geqslant 0}$ be a compatible sequence of primitive π^{n}-torsion points of LT. Let $\mathbf{B}_{\text {rig }, F}^{+}$denote the positive part of the Robba ring, namely the ring of power series $f(T)=\sum_{i \geqslant 0} a_{i} T^{i}$ with $a_{i} \in F$ such that $f(T)$ converges for $0 \leqslant|T|<1$. If $n \geqslant 0$, we have a map $\varphi_{q}^{-n}: \mathbf{B}_{\text {rig }, F}^{+} \rightarrow F_{n} \llbracket t_{\pi} \rrbracket$ given by $f(T) \mapsto f\left(u_{n} \oplus \exp _{\mathrm{LT}}\left(t_{\pi} / \pi^{n}\right)\right)$. Using the results of $[\mathrm{KR} 09]$, we prove that
there is a natural (φ, Γ)-equivariant inclusion $\mathrm{D}_{\mathrm{rig}}^{\dagger}(V)^{\psi_{q}=1} \rightarrow \mathbf{B}_{\mathrm{rig}, F}^{+}\left[1 / t_{\pi}\right] \otimes_{F}$ $\mathrm{D}_{\text {cris }}(V)$. This provides us, by composition, with maps $\varphi_{q}^{-n}: \mathrm{D}_{\text {rig }}^{\dagger}(V)^{\psi_{q}=1} \rightarrow$ $F_{n}\left(\left(t_{\pi}\right)\right) \otimes_{F} \mathrm{D}_{\text {cris }}(V)$ and $\partial_{V} \circ \varphi_{q}^{-n}: \mathrm{D}_{\mathrm{rig}}^{\dagger}(V)^{\psi_{q}=1} \rightarrow F_{n} \otimes_{F} \mathrm{D}_{\text {cris }}(V)$ where ∂_{V} is the "coefficient of t_{π}^{0} " map. Recall finally that we have two maps, Bloch and Kato's exponential $\exp _{F_{n}, V}: F_{n} \otimes_{F} \mathrm{D}_{\text {cris }}(V) \rightarrow \mathrm{H}^{1}\left(F_{n}, V\right)$ and its dual $\exp _{F_{n}, V^{*}(1)}^{*} \mathrm{H}^{1}\left(F_{n}, V\right) \rightarrow F_{n} \otimes_{F} \mathrm{D}_{\text {cris }}(V)$ (the subscript $V^{*}(1)$ denotes the dual of V twisted by the cyclotomic character, but is merely a notation here). The first result is as follows (theorem 3.3.1).

Theorem B. If V is as above and $y \in \mathrm{D}_{\text {rig }}^{\dagger}(V)^{\psi_{q}=1}$, then

$$
\exp _{F_{n}, V^{*}(1)}^{*}\left(h_{F_{n}, V}^{1}(y)\right)= \begin{cases}q^{-n} \partial_{V}\left(\varphi_{q}^{-n}(y)\right) & \text { if } n \geqslant 1 \\ \left(1-q^{-1} \varphi_{q}^{-1}\right) \partial_{V}(y) & \text { if } n=0\end{cases}
$$

Let $\nabla=t_{\pi} \cdot d / d t_{\pi}$, let $\nabla_{i}=\nabla-i$ if $i \in \mathbf{Z}$ and let $h \geqslant 1$ be such that $\operatorname{Fil}^{-h} \mathrm{D}_{\text {cris }}(V)=\mathrm{D}_{\text {cris }}(V)$. We prove that if $y \in\left(\mathbf{B}_{\text {rig }, F}^{+} \otimes_{F} \mathrm{D}_{\text {cris }}(V)\right)^{\psi_{q}=1}$, then $\nabla_{h-1} \circ \cdots \circ \nabla_{0}(y) \in \mathrm{D}_{\text {rig }}^{\dagger}(V)^{\psi_{q}=1}$, and we have the following result (theorem 3.3.2).

Theorem C. If V is as above and $y \in\left(\mathbf{B}_{\text {rig }, F}^{+} \otimes_{F} \mathrm{D}_{\text {cris }}(V)\right)^{\psi_{q}=1}$, then

$$
\begin{aligned}
& h_{F_{n}, V}^{1}\left(\nabla_{h-1} \circ \cdots \circ \nabla_{0}(y)\right)= \\
& \qquad(-1)^{h-1}(h-1)! \begin{cases}\exp _{F_{n}, V}\left(q^{-n} \partial_{V}\left(\varphi_{q}^{-n}(y)\right)\right) & \text { if } n \geqslant 1 \\
\exp _{F, V}\left(\left(1-q^{-1} \varphi_{q}^{-1}\right) \partial_{V}(y)\right) & \text { if } n=0\end{cases}
\end{aligned}
$$

Using theorems B and C, we give in $\S 3.5$ a Lubin-Tate analogue of PerrinRiou's "big exponential map" [PR94] using the same method as that of [Ber03] which treats the cyclotomic case. It will be interesting to compare this big exponential map with the "big logarithms" constructed in [Fou05] and [Fou08]. It is also instructive to specialize theorem C to the case $V=F\left(\chi_{\pi}\right)$, which corresponds to "Lubin-Tate" Kummer theory. Recall that if L is a finite extension of F, Kummer theory gives us a map $\delta: \operatorname{LT}\left(\mathfrak{m}_{L}\right) \rightarrow \mathrm{H}^{1}\left(L, F\left(\chi_{\pi}\right)\right)$. When L varies among the F_{n}, these maps are compatible: the diagram

$$
\begin{array}{rlll}
\operatorname{LT}\left(\mathfrak{m}_{F_{n+1}}\right) & \xrightarrow{\delta} & \mathrm{H}^{1}\left(F_{n+1}, V\right) \\
\operatorname{Tr}_{F_{n+1} / F_{n}}^{\mathrm{LT}} \downarrow & & & \downarrow \operatorname{cor}_{F_{n+1} / F_{n}} \\
\operatorname{LT}\left(\mathfrak{m}_{F_{n}}\right) & \xrightarrow{\delta} & \mathrm{H}^{1}\left(F_{n}, V\right)
\end{array}
$$

commutes. Let S denote the set of sequences $\left\{x_{n}\right\}_{n \geqslant 1}$ with $x_{n} \in \mathfrak{m}_{F_{n}}$ and such that $\operatorname{Tr}_{F_{n+1} / F_{n}}^{\mathrm{LT}}\left(x_{n+1}\right)=[q / \pi]\left(x_{n}\right)$ for $n \geqslant 1$. We prove that S is big, in the sense that (if $F \neq \mathbf{Q}_{p}$) the projection on the n-th coordinate map $S \otimes_{\mathcal{O}_{F}} F \rightarrow F_{n}$ is onto (this would not be the case if we did not have the factor q / π in the definition of S). Furthermore, we prove that if $x \in S$, there exists
a power series $f(T) \in\left(\mathbf{B}_{\mathrm{rig}, F}^{+}\right)^{\psi_{q}=1 / \pi}$ such that $f\left(u_{n}\right)=\log _{\mathrm{LT}}\left(x_{n}\right)$ for $n \geqslant 1$. We have $d / d t_{\pi}(f(T)) \in\left(\mathbf{B}_{\text {rig }, F}^{+}\right)^{\psi_{q}=1}$ and the following holds (theorem 3.4.5), where u is the basis of $F\left(\chi_{\pi}\right)$ corresponding to the choice of $\left\{u_{n}\right\}_{n} \geqslant 0$.
Theorem D. We have $h_{F_{n}, F\left(\chi_{\pi}\right)}^{1}\left(d / d t_{\pi}(f(T)) \cdot u\right)=(q / \pi)^{-n} \cdot \delta\left(x_{n}\right)$ for all $n \geqslant 1$.

In the cyclotomic case, there is [Col79] a power series $\operatorname{Col}_{x}(T)$ such that $\operatorname{Col}_{x}\left(u_{n}\right)=x_{n}$ for $n \geqslant 1$. We then have $f(T)=\log \operatorname{Col}_{x}(T)$, and theorem D is proved in [CC99]. In the general Lubin-Tate case, we do not know whether there is a "Coleman power series" of which $f(T)$ would be the $\log _{\text {LT }}$. This seems like a non-trivial question.
It would be interesting to compare our results with those of [SV17]. The authors of [SV17] also construct some classes in $\mathrm{H}^{1}(K, V)$, but start from the space $\mathrm{D}\left(V\left(\chi_{\pi} \cdot \chi_{\text {cyc }}^{-1}\right)\right)^{\psi_{q}=\pi / q}$. In another direction, is it possible to extend our constructions to representations of the form $V \otimes_{F} Y_{\Gamma}$ with $V F$-analytic and Y_{Γ} factoring through Γ_{K}, and in particular recover the explicit reciprocity law of [Tsu04]?

1 Lubin-Tate (φ, Γ)-modules

In this chapter, we recall the theory of Lubin-Tate (φ, Γ)-modules and classify overconvergent representations.

1.1 Notation

Let F be a finite Galois extension of \mathbf{Q}_{p} with ring of integers \mathcal{O}_{F}, and residue field k_{F}. Let π be a uniformizer of \mathcal{O}_{F}. Let $d=\left[F: \mathbf{Q}_{p}\right]$ and e be the ramification index of F / \mathbf{Q}_{p}. Let $q=p^{f}$ be the cardinality of k_{F} and let $F_{0}=W\left(k_{F}\right)[1 / p]$ be the maximal unramified extension of \mathbf{Q}_{p} inside F. Let σ denote the absolute Frobenius map on F_{0}.
Let LT be the Lubin-Tate formal \mathcal{O}_{F}-module attached to π and choose a coordinate T for the formal group law, such that the action of π on LT is given by $[\pi](T)=T^{q}+\pi T$. If $a \in \mathcal{O}_{F}$, let $[a](T)$ denote the power series that gives the action of a on LT. Let $\log _{\mathrm{LT}}(T)$ denote the attached logarithm and $\exp _{\mathrm{LT}}(T)$ its inverse. If K is a finite extension of F, let $K_{n}=K\left(\mathrm{LT}\left[\pi^{n}\right]\right)$ and let $K_{\infty}=\cup_{n \geqslant 1} K_{n}$. Let $H_{K}=\operatorname{Gal}\left(\overline{\mathbf{Q}}_{p} / K_{\infty}\right)$ and $\Gamma_{K}=\operatorname{Gal}\left(K_{\infty} / K\right)$. By Lubin-Tate theory (see [LT65]), Γ_{K} is isomorphic to an open subgroup of \mathcal{O}_{F}^{\times} via the Lubin-Tate character $\chi_{\pi}: \Gamma_{K} \rightarrow \mathcal{O}_{F}^{\times}$.
Let $n(K) \geqslant 1$ be such that if $n \geqslant n(K)$, then $\chi_{\pi}: \Gamma_{K_{n}} \rightarrow 1+\pi^{n} \mathcal{O}_{F}$ is an isomorphism, and $\log _{p}: 1+\pi^{n} \mathcal{O}_{F} \rightarrow \pi^{n} \mathcal{O}_{F}$ is also an isomorphism.
Since $\log _{\text {LT }}(T)$ converges on the open unit disk, it can be seen as an element of $\mathbf{B}_{\text {rig }, F}^{+}$and we denote it by t_{π}. Recall that $g\left(t_{\pi}\right)=\chi_{\pi}(g) \cdot t_{\pi}$ if $g \in G_{K}$ and that $\varphi_{q}\left(t_{\pi}\right)=\pi \cdot t_{\pi}$. Let $\partial=d / d t_{\pi}$ so that $\partial f(T)=a(T) \cdot d f(T) / d T$, where $a(T)=\left(d \log _{\mathrm{LT}}(T) / d T\right)^{-1} \in \mathcal{O}_{F} \llbracket T \rrbracket^{\times}$. We have $\partial \circ g=\chi_{\pi}(g) \cdot g \circ \partial$ if $g \in \Gamma_{K}$ and $\partial \circ \varphi_{q}=\pi \cdot \varphi_{q} \circ \partial$.

Recall that $\mathbf{B}_{\mathrm{rig}, F}^{\dagger}$ denotes the Robba ring, the ring of power series $f(T)=$ $\sum_{i \in \mathbf{Z}} a_{i} T^{i}$ with $a_{i} \in F$ such that there exists $\rho<1$ such that $f(T)$ converges for $\rho<|T|<1$. We have $\mathbf{B}_{F}^{\dagger} \subset \mathbf{B}_{\text {rig, } F}^{\dagger}$ and by writing a power series as the sum of its plus part and its minus part, we get $\mathbf{B}_{\text {rig }, F}^{\dagger}=\mathbf{B}_{\text {rig }, F}^{+}+\mathbf{B}_{F}^{\dagger}$.
Each ring $R \in\left\{\mathbf{B}_{\text {rig }, F}^{\dagger}, \mathbf{B}_{\text {rig }, F}^{+}, \mathbf{B}_{F}^{\dagger}, \mathbf{B}_{F}\right\}$ is equipped with a Frobenius map $\varphi_{q}: f(T) \mapsto f([\pi](T))$ and an action of Γ_{F} given by $g: f(T) \mapsto f\left(\left[\chi_{\pi}(g)\right](T)\right)$. Moreover, the ring R is a free $\varphi_{q}(R)$-module of rank q, and we define $\psi_{q}: R \rightarrow$ R by the formula $\varphi_{q}\left(\psi_{q}(f)\right)=1 / q \cdot \operatorname{Tr}_{R / \varphi_{q}(R)}(f)$. The map ψ_{q} has the following properties (see for instance §2A of [FX13] and §1.2.3 of [Col16]): $\psi_{q}\left(x \cdot \varphi_{q}(y)\right)=$ $\psi_{q}(x) \cdot y$, the map ψ_{q} commutes with the action of $\Gamma_{F}, \partial \circ \psi_{q}=\pi^{-1} \cdot \psi_{q} \circ \partial$ and if $f(T) \in \mathbf{B}_{\mathrm{rig}, F}^{+}$then $\varphi_{q} \circ \psi_{q}(f)=1 / q \cdot \sum_{z \in \mathrm{LT}[\pi]} f(T \oplus z)$. If M is a free R-module with a semilinear Frobenius map φ_{q} such that $\operatorname{Mat}\left(\varphi_{q}\right)$ is invertible, then any $m \in M$ can be written as $m=\sum_{i} r_{i} \cdot \varphi_{q}\left(m_{i}\right)$ with $r_{i} \in R$ and $m_{i} \in M$ and the $\operatorname{map} \psi_{q}: m \mapsto \sum_{i} \psi_{q}\left(r_{i}\right) \cdot m_{i}$ is then well-defined. This applies in particular to the rings $\mathbf{B}_{\text {rig }, K}^{\dagger}, \mathbf{B}_{\text {rig }, K}^{+}, \mathbf{B}_{K}^{\dagger}, \mathbf{B}_{K}$ and to the (φ, Γ)-modules over them.

1.2 Construction of Lubin-Tate (φ, Γ)-modules

A (φ, Γ)-module over \mathbf{B}_{K} (or over \mathbf{B}_{K}^{\dagger} or over $\mathbf{B}_{\mathrm{rig}, K}^{\dagger}$) is a finite dimensional \mathbf{B}_{K}-vector space D (or a finite dimensional \mathbf{B}_{K}^{\dagger}-vector space or a free $\mathbf{B}_{\mathrm{rig}, K^{-}}^{\dagger}$ module of finite rank respectively), along with a semilinear Frobenius map φ_{q} whose matrix (in some basis) is invertible, and a continuous, semilinear action of Γ_{K} that commutes with φ_{q}.
We say that a (φ, Γ)-module D over \mathbf{B}_{K} is étale if D has a basis in which $\operatorname{Mat}\left(\varphi_{q}\right) \in \mathrm{GL}_{d}\left(\mathbf{A}_{K}\right)$. Let \mathbf{B} be the p-adic completion of $\cup_{M / F} \mathbf{B}_{M}$ where M runs through the finite extensions of F. By specializing the constructions of [Fon90], Kisin and Ren prove the following theorem (theorem 1.6 of [KR09]).

Theorem 1.2.1. The functors $V \mapsto \mathrm{D}(V)=\left(\mathbf{B} \otimes_{F} V\right)^{H_{K}}$ and $\mathrm{D} \mapsto\left(\mathbf{B} \otimes_{\mathbf{B}_{K}}\right.$ $\mathrm{D})^{\varphi_{q}=1}$ give rise to mutually inverse equivalences of categories between the category of F-linear representations of G_{K} and the category of étale (φ, Γ) modules over \mathbf{B}_{K}.

We say that a (φ, Γ)-module D is overconvergent if there exists a basis of D in which the matrices of φ_{q} and of all $g \in \Gamma_{K}$ have entries in \mathbf{B}_{K}^{\dagger}. This basis then generates a \mathbf{B}_{K}^{\dagger}-vector space D^{\dagger} which is canonically attached to D . If V is a p adic representation, we say that it is overconvergent if $\mathrm{D}(V)$ is overconvergent, and then $\mathrm{D}^{\dagger}(V)$ denotes the corresponding (φ, Γ)-module over \mathbf{B}_{K}^{\dagger}. The main result of [CC98] states that if $F=\mathbf{Q}_{p}$, then every étale (φ, Γ)-module over \mathbf{B}_{K} is overconvergent (the proof is given for $\pi=p$, but it is easy to see that it works for any uniformizer). If $F \neq \mathbf{Q}_{p}$, some simple examples (see [FX13]) show that this is no longer the case.
Recall that an F-linear representation of G_{K} is F-analytic if $\mathbf{C}_{p} \otimes_{F}^{\tau} V$ is the trivial \mathbf{C}_{p}-semilinear representation of G_{K} for all embeddings $\tau \neq \operatorname{Id} \in \operatorname{Gal}\left(F / \mathbf{Q}_{p}\right)$.

This definition is the natural generalization of Kisin and Ren's notion of F crystalline representation. Kisin and Ren then show that if $K \subset F_{\infty}$, and if V is a crystalline F-analytic representation of G_{K}, the (φ, Γ)-module attached to V is overconvergent (see $\S 3.3$ of [KR09]; they actually prove a stronger result, namely that the (φ, Γ)-module attached to such a V is of finite height).
If $\mathrm{D}_{\text {rig }}^{\dagger}$ is a (φ, Γ)-module over $\mathbf{B}_{\text {rig }, K}^{\dagger}$, and if $g \in \Gamma_{K}$ is close enough to 1 , then by standard arguments (see §2.1 of [KR09] or §1C of [FX13]), the series $\log (g)=\log (1+(g-1))$ gives rise to a differential operator $\nabla_{g}: \mathrm{D}_{\text {rig }}^{\dagger} \rightarrow \mathrm{D}_{\text {rig }}^{\dagger}$. The map $v \mapsto \exp (v)$ is defined on a neighborhood of 0 in Lie Γ_{K}; the map $\operatorname{Lie} \Gamma_{K} \rightarrow \operatorname{End}\left(\mathrm{D}_{\text {rig }}^{\dagger}\right)$ arising from $v \mapsto \nabla_{\exp (v)}$ is \mathbf{Q}_{p}-linear, and we say that $\mathrm{D}_{\text {rig }}^{\dagger}$ is F-analytic if this map is F-linear (see $\S 2.1$ of [KR09] and $\S 1.3$ of [FX13]). If V is an overconvergent representation of G_{K}, we let $\mathrm{D}_{\text {rig }}^{\dagger}(V)=\mathbf{B}_{\text {rig, } K}^{\dagger} \otimes_{\mathbf{B}_{K}^{\dagger}}^{\dagger}$ $\mathrm{D}^{\dagger}(V)$. The following is theorem D of [Ber16].
Theorem 1.2.2. The functor $V \mapsto \mathrm{D}_{\text {rig }}^{\dagger}(V)$ gives rise to an equivalence of categories between the category of F-analytic representations of G_{K} and the category of étale F-analytic Lubin-Tate (φ, Γ)-modules over $\mathbf{B}_{\mathrm{rig}, K}^{\dagger}$.
In general, representations of G_{K} that are not F-analytic are not overconvergent (see $\S 1.3$), and the analogue of theorem 1.2 .2 without the F-analyticity condition on both sides does not hold.

1.3 Overconvergent Lubin-Tate (φ, Γ)-modules

By theorem 1.2.2, there is an equivalence of categories between the category of F-analytic representations of G_{K} and the category of étale F-analytic LubinTate (φ, Γ)-modules over $\mathbf{B}_{\mathrm{rig}, K}^{\dagger}$. The purpose of this section is to prove a conjecture of Colmez that describes all overconvergent representations of G_{K}. Any representation V of G_{K} that factors through Γ_{K} is overconvergent, since H_{K} acts trivially on V so that $\mathrm{D}(V)=\mathbf{B}_{K} \otimes_{F} V$ and therefore $\mathrm{D}(V)$ has a basis in which $\operatorname{Mat}\left(\varphi_{q}\right)=\operatorname{Id}$ and $\operatorname{Mat}(g) \in \operatorname{GL}_{d}\left(\mathcal{O}_{F}\right)$ if $g \in \Gamma_{K}$. If X is F-analytic and Y factors through $\Gamma_{K}, X \otimes_{F} Y$ is therefore overconvergent. We prove that any overconvergent representation of G_{K} is a quotient (and therefore also a subobject, by dualizing) of some representation of the form $X \otimes_{F} Y$ as above.
Theorem 1.3.1. If V is an overconvergent representation of G_{K}, there exists an F-analytic representation X of G_{K}, a representation Y of G_{K} that factors through Γ_{K}, and a surjective G_{K}-equivariant map $X \otimes_{F} Y \rightarrow V$.
Proof. Recall (see $\S 3$ of [Ber16]) that if $r>0$, then inside $\mathbf{B}_{\text {rig, } K}^{\dagger}$ we have the subring $\mathbf{B}_{\text {rig, } K}^{\dagger, r}$ of elements defined on a fixed annulus whose inner radius depends on r and whose outer raidus is 1 , and that (φ, Γ)-modules over $\mathbf{B}_{\text {rig, } K}^{\dagger}$ can be defined over $\mathbf{B}_{\text {rig, } K}^{\dagger, r}$ if r is large enough, giving us a module $\mathrm{D}_{\text {rig }}^{\dagger, r}(V)$. We also have rings $\mathbf{B}_{K}^{[r ; s]}$ of elements defined on a closed annulus whose radii depend on $r \leqslant s$. One can think of an element of $\mathbf{B}_{\mathrm{rig}, K}^{\dagger, r}$ as a compatible family
of elements of $\left\{\mathbf{B}_{K}^{I}\right\}_{I}$ where I runs over a set of closed intervals whose union is $[r ;+\infty[$. In the rest of the proof, we use this principle of glueing objects defined on closed annuli to get an object on the annulus corresponding to $\mathbf{B}_{\mathrm{rig}, K}^{\dagger, r}$.
Choose $r>0$ large enough such that $\mathrm{D}_{\mathrm{rig}}^{\dagger, r}(V)$ is defined, and $s \geqslant q r$. Let $\mathrm{D}^{[r ; s]}(V)=\mathbf{B}_{K}^{[r ; s]} \otimes_{\mathbf{B}_{\mathrm{rig}, K}^{\dagger, r}} \mathrm{D}_{\mathrm{rig}}^{\dagger, r}(V)$. If $a \in \mathcal{O}_{F}$, and if $\operatorname{val}_{p}(a) \geqslant n$ for $n=n(r, s)$ large enough, the series $\exp (a \cdot \nabla)$ converges in the operator norm to an operator on the Banach space $\mathrm{D}^{[r ; s]}(V)$. This way, we can define a twisted action of $\Gamma_{K_{n}}$ on $\mathrm{D}^{[r ; s]}(V)$, by the formula $h \star x=\exp \left(\log _{p}\left(\chi_{\pi}(h)\right) \cdot \nabla\right)(x)$. This action is now F-analytic by construction.
Since $s \geqslant q r$, the modules $\mathrm{D}^{\left[q^{m} r ; q^{m} s\right]}(V)$ for $m \geqslant 0$ are glued together (using the idea explained above) by φ_{q} and we get a new action of $\Gamma_{K_{n}}$ on $\mathrm{D}_{\text {rig }}^{\dagger, r}(V)=$ $\mathrm{D}^{[r ;+\infty}\left[(V)\right.$ and hence on $\mathrm{D}_{\text {rig }}^{\dagger}(V)$. Since φ_{q} is unchanged, this new (φ, Γ) module is étale, and therefore corresponds to a representation W of $G_{K_{n}}$. The representation W is F-analytic by theorem 1.2 .2 , and its restriction to H_{K} is isomorphic to V.
Let $X=\operatorname{ind}_{G_{K_{n}}}^{G_{K}} W$. By Mackey's formula, $\left.X\right|_{H_{K}}$ contains $\left.\left.W\right|_{H_{K}} \simeq V\right|_{H_{K}}$ as a direct summand. The space $Y=\operatorname{Hom}\left(\operatorname{ind}_{G_{K_{n}}}^{G_{K}} W, V\right)^{H_{K}}$ is therefore a nonzero representation of Γ_{K}, and there is an element $y \in Y$ whose image is V. The natural map $X \otimes_{F} Y \rightarrow V$ is therefore surjective. Finally, X is F-analytic since W is F-analytic.

By dualizing, we get the following variant of theorem 1.3.1.
Corollary 1.3.2. If V is an overconvergent representation of G_{K}, there exists an F-analytic representation X of G_{K}, a representation Y of G_{K} that factors through Γ_{K}, and an injective G_{K}-equivariant map $V \rightarrow X \otimes_{F} Y$.

1.4 Extensions of (φ, Γ)-modules

In this section, we prove that there are no non-trivial extensions between an F-analytic (φ, Γ)-module and the twist of an F-analytic (φ, Γ)-module by a character that is not F-analytic. This is not used in the rest of the paper, but is of independent interest.
If $\delta: \Gamma_{K} \rightarrow \mathcal{O}_{F}^{\times}$is a continuous character, and $g \in \Gamma_{K}$, let $w_{\delta}(g)=$ $\log \delta(g) / \log \chi_{\pi}(g)$. Note that δ is F-analytic if and only if $w_{\delta}(g)$ is independent of $g \in \Gamma_{K}$.
We define the first cohomology group $\mathrm{H}^{1}(\mathrm{D})$ of a (φ, Γ)-module D as in $\S 4$ of [FX13]. Let D be a (φ, Γ)-module over $\mathbf{B}_{\text {rig }, K}^{\dagger}$. Let G denote the semigroup $\varphi_{q}^{\mathbf{Z} \geqslant 0} \times \Gamma_{K}$ and let $\mathrm{Z}^{1}(\mathrm{D})$ denote the set of continuous functions $f: G \rightarrow \mathrm{D}$ such that $(h-1) f(g)=(g-1) f(h)$ for all $g, h \in G$. Let $\mathrm{B}^{1}(\mathrm{D})$ be the subset of $\mathrm{Z}^{1}(\mathrm{D})$ consisting of functions of the form $g \mapsto(g-1) y, y \in D$ and let $\mathrm{H}^{1}(\mathrm{D})=\mathrm{Z}^{1}(\mathrm{D}) / \mathrm{B}^{1}(\mathrm{D})$. If $g \in G$ and $f \in \mathrm{Z}^{1}$, then $[h \mapsto(g-1) f(h)]=[h \mapsto$ $(h-1) f(g)] \in \mathrm{B}^{1}$. The natural actions of Γ_{K} and φ_{q} on H^{1} are therefore trivial.

If D_{0} and D_{1} are two (φ, Γ)-modules, then $\operatorname{Hom}\left(D_{1}, D_{0}\right)=$ $\operatorname{Hom}_{\mathbf{B}_{\mathrm{rig}, K^{-\bmod }}^{\dagger}}\left(\mathrm{D}_{1}, \mathrm{D}_{0}\right)$ is a free $\mathbf{B}_{\mathrm{rig}, K^{\prime}}^{\dagger}$-module of rank $\operatorname{rk}\left(\mathrm{D}_{0}\right) \operatorname{rk}\left(\mathrm{D}_{1}\right)$ which is easily seen to be itself a (φ, Γ)-module. The space $H^{1}\left(\operatorname{Hom}\left(D_{1}, D_{0}\right)\right)$ classifies the extensions of D_{1} by D_{0}. More precisely, if D is such an extension and if $s: \mathrm{D}_{1} \rightarrow \mathrm{D}$ is a $\mathbf{B}_{\text {rig, } K}^{\dagger}$-linear map that is a section of the projection $\mathrm{D} \rightarrow \mathrm{D}_{1}$, then $g \mapsto s-g(s)$ is a cocycle on G with values in $\operatorname{Hom}\left(\mathrm{D}_{1}, \mathrm{D}_{0}\right)$ (the element $g(s) \in \operatorname{Hom}\left(\mathrm{D}_{1}, \mathrm{D}\right)$ being defined by $g(s)(g(x))=g(s(x))$ for all $g \in G$ and all $\left.x \in \mathrm{D}_{1}\right)$. The class of this cocycle in the quotient $\mathrm{H}^{1}\left(\operatorname{Hom}\left(\mathrm{D}_{1}, \mathrm{D}_{0}\right)\right)$ does not depend on the choice of the section s, and every such class defines a unique extension of D_{1} by D_{0} up to isomorphism.

Theorem 1.4.1. If D is an F-analytic (φ, Γ)-module, and if $\delta: \Gamma_{K} \rightarrow \mathcal{O}_{F}^{\times}$is not locally F-analytic, then $\mathrm{H}^{1}(\mathrm{D}(\delta))=\{0\}$.

Proof. If $g \in \Gamma_{K}$ and $x(\delta) \in \mathrm{D}(\delta)$ with $x \in \mathrm{D}$, we have

$$
\nabla_{g}(x(\delta))=\nabla(x)(\delta)+w_{\delta}(g) \cdot x(\delta)
$$

If $g, h \in \Gamma_{K}$, this implies that $\nabla_{g}(x(\delta))-\nabla_{h}(x(\delta))=\left(w_{\delta}(\underline{g})-w_{\delta}(h)\right) \cdot x(\delta)$. If $\bar{f} \in \mathrm{H}^{1}(\mathrm{D}(\delta))$ and $g \in \Gamma_{K}$, then $g(\bar{f})=\bar{f}$ and therefore $\nabla_{g}(\bar{f})=0$. The formula above shows that if $k \in \Gamma_{K}$, then $\nabla_{g}(f(k))-\nabla_{h}(f(k))=\left(w_{\delta}(g)-w_{\delta}(h)\right) \cdot f(k)$, so that $0=\left(\nabla_{g}-\nabla_{h}\right)(\bar{f})=\left(w_{\delta}(g)-w_{\delta}(h)\right) \cdot \bar{f}$, and therefore $\bar{f}=0$ if δ is not locally analytic.

2 Analytic cohomology and Iwasawa theory

In this chapter, we explain how to construct classes in the cohomology groups of F-analytic (φ, Γ)-modules. This allows us to define our maps $h_{K_{n}, V}^{1}$.

2.1 Analytic cohomology

Let G be an F-analytic semigroup and let M be a Fréchet or LF space with a pro- F-analytic ($\S 2$ of [Ber16]) action of G. Recall that this means that we can write $M=\underset{i}{\lim _{i}} \lim _{j} M_{i j}$ where $M_{i j}$ is a Banach space with a locally analytic action of G. A function $f: G \rightarrow M$ is said to be pro- F-analytic if its image lies in $\lim _{\leftrightarrows}^{\leftrightarrows} M_{i j}$ for some i and if the corresponding function $f: G \rightarrow M_{i j}$ is locally F-analytic for all j.
The analytic cohomology groups $\mathrm{H}_{\mathrm{an}}^{i}(G, M)$ are defined and studied in $\S 4$ of [FX13] and $\S 5$ of [Col16]. In particular, we have $\mathrm{H}_{\mathrm{an}}^{0}(G, M)=M^{G}$ and $\mathrm{H}_{\mathrm{an}}^{1}(G, M)=\mathrm{Z}_{\mathrm{an}}^{1}(G, M) / \mathrm{B}_{\mathrm{an}}^{1}(G, M)$ where $\mathrm{Z}_{\mathrm{an}}^{1}(G, M)$ is the set of pro- F analytic functions $f: G \rightarrow M$ such that $(g-1) f(h)=(h-1) f(g)$ for all $g, h \in G$ and $\mathrm{B}_{\mathrm{an}}^{1}(G, M)$ is the set of functions of the form $g \mapsto(g-1) m$.
Let M be a Fréchet space, and write $M=\lim _{\varlimsup_{n}} M_{n}$ with M_{n} a Banach space such that the image of M_{n+j} in M_{n} is dense for all $j \geqslant 0$.

Proposition 2.1.1. We have $\mathrm{H}_{\mathrm{an}}^{1}(G, M)=\lim _{{ }_{n}} \mathrm{H}_{\mathrm{an}}^{1}\left(G, M_{n}\right)$.

Proof. By definition, we have an exact sequence

$$
0 \rightarrow \mathrm{~B}_{\mathrm{an}}^{1}\left(G, M_{n}\right) \rightarrow \mathrm{Z}_{\mathrm{an}}^{1}\left(G, M_{n}\right) \rightarrow \mathrm{H}_{\mathrm{an}}^{1}\left(G, M_{n}\right) \rightarrow 0
$$

It is clear that $\mathrm{B}_{\mathrm{an}}^{1}(G, M)=\lim _{\ddagger} \mathrm{B}_{\mathrm{an}}^{1}\left(G, M_{n}\right)$ and that $\mathrm{Z}_{\mathrm{an}}^{1}(G, M)=$ $\lim _{n} \mathrm{Z}_{\mathrm{an}}^{1}\left(G, M_{n}\right)$, since these spaces are spaces of functions on G satisfying certain compatible conditions. The Banach spaces $\mathrm{B}_{\mathrm{an}}^{1}\left(G, M_{n}\right)$ satisfy the Mittag-Leffler condition: $\mathrm{B}_{\mathrm{an}}^{1}\left(G, M_{n}\right)=M_{n} / M_{n}^{G}$ and the image of M_{n+j} in M_{n} is dense for all $j \geqslant 0$. This implies that the sequence

$$
0 \rightarrow{\underset{\check{n}}{n}}^{\lim _{\mathrm{an}}} \mathrm{~B}_{\mathrm{a}}^{1}\left(G, M_{n}\right) \rightarrow \underset{{ }_{n}}{\lim } \mathrm{Z}_{\mathrm{an}}^{1}\left(G, M_{n}\right) \rightarrow \underset{{\underset{n}{n}}^{\lim } \mathrm{H}_{\mathrm{an}}^{1}\left(G, M_{n}\right) \rightarrow 0}{ }
$$

is exact, and the proposition follows.
In this paper, we mainly use the semigroups $\Gamma_{K}, \Gamma_{K} \times \Phi$ where $\Phi=\left\{\varphi_{q}^{n}\right.$, $\left.n \in \mathbf{Z}_{\geqslant 0}\right\}$ and $\Gamma_{K} \times \Psi$ where $\Psi=\left\{\psi_{q}^{n}, n \in \mathbf{Z}_{\geqslant 0}\right\}$. The semigroups Φ and Ψ are discrete and the F-analytic structure comes from the one on Γ_{K}.

Definition 2.1.2. Let G be a compact group and let H be an open subgroup of G. We have the corestriction map cor : $\mathrm{H}_{\mathrm{an}}^{1}(H, M) \rightarrow \mathrm{H}_{\mathrm{an}}^{1}(G, M)$, which satisfies cor \circ res $=[G: H]$. This map has the following equivalent explicit descriptions (see §2.5 of [Ser94] and §II. 2 of [CC99]). Let $X \subset G$ be a set of representatives of G / H and let $f \in \mathrm{Z}_{\mathrm{an}}^{1}(H, M)$ be a cocycle.

1. By Shapiro's lemma, $\mathrm{H}_{\mathrm{an}}^{1}(H, M)=\mathrm{H}_{\mathrm{an}}^{1}\left(G, \operatorname{ind}_{H}^{G} M\right)$ and cor is the map induced by $i \mapsto \sum_{x \in X} x \cdot i\left(x^{-1}\right)$;
2. if $M \subset N$ where N is a G-module and if there exists $n \in N$ such that $f(h)=(h-1)(n)$, then $\operatorname{cor}(f)(g)=(g-1)\left(\sum_{x \in X} x n\right) ;$
3. if $g \in G$, let $\tau_{g}: X \rightarrow X$ be the permutation defined by $\tau_{g}(x) H=g x H$. We have $\operatorname{cor}(f)(g)=\sum_{x \in X} \tau_{g}(x) \cdot f\left(\tau_{g}(x)^{-1} g x\right)$.
If $g \in \Gamma_{K}$, let $\ell(g)=\log _{p} \chi_{\pi}(g)$. If M is a Fréchet space with a pro- F-analytic action of Γ_{K} and if $g \in \Gamma_{K}$ is such that $\chi_{\pi}(g) \in 1+2 p \mathcal{O}_{F}$, then $\lim _{n \rightarrow \infty}\left(g^{p^{n}}-\right.$ $1) /\left(p^{n} \ell(g)\right)$ converges to an operator ∇ on M, which is independent of g thanks to the F-analyticity assumption. If $c: \Gamma_{K} \rightarrow M$ is an F-analytic map, let $c^{\prime}(1)$ denote its derivative at the identity.

Proposition 2.1.3. If M is a Fréchet space with a pro-F-analytic action of Γ_{K}, the map $c \mapsto c^{\prime}(1)$ induces an isomorphism $\mathrm{H}_{\mathrm{an}}^{1}\left(\Gamma_{K}, M\right)=(M / \nabla M)^{\Gamma_{K}}$, under which cor $_{L / K}$ corresponds to $\operatorname{Tr}_{L / K}$.

Proof. Assume for the time being that M is a Banach space. We first show that the map induced by $c \mapsto c^{\prime}(1)$ is well-defined and lands in $(M / \nabla M)^{\Gamma_{K}}$. The map $c \mapsto c^{\prime}(1)$ from $\mathrm{Z}_{\mathrm{an}}^{1}\left(\Gamma_{K}, M\right) \rightarrow M$ is well-defined, and if $c(g)=(g-1) m$, then $c^{\prime}(1)=\nabla m$ so that there is a well-defined map $\mathrm{H}_{\mathrm{an}}^{1}\left(\Gamma_{K}, M\right) \rightarrow M / \nabla M$. If
$h \in \Gamma_{K}$ then $(h-1) c^{\prime}(1)=\lim _{g \rightarrow 1}(h-1) c(g) / \ell(g)=\lim _{g \rightarrow 1}(g-1) c(h) / \ell(g)=$ $\nabla c(h)$ so that the image of $c \mapsto c^{\prime}(1)$ lies in $(M / \nabla M)^{\Gamma_{K}}$.
The formula for the corestriction follows from the explicit descriptions above: if $h \in \Gamma_{L}$ then $\tau_{h}(x)=x$ so that $\operatorname{cor}(c)(h)=\sum_{x \in X} x \cdot c(h)$ and

$$
\operatorname{cor}(c)^{\prime}(1)=\lim _{h \rightarrow 1} \operatorname{cor}(c)(h) / \ell(h)=\sum_{x \in X} x \cdot c^{\prime}(1)=\operatorname{Tr}_{L / K}\left(c^{\prime}(1)\right)
$$

We now show that the map is injective. If $c^{\prime}(1)=\nabla m$, then the derivative of $g \mapsto c(g)-(g-1) m$ at $g=1$ is zero and hence $c(g)=(g-1) m$ on some open subgroup Γ_{L} of Γ_{K} and $c=[L: K]^{-1} \operatorname{cor}_{L / K} \circ \operatorname{res}_{K / L}(c)=0$.
We finally show that the map is surjective. Suppose now that $y \in(M / \nabla M)^{\Gamma_{K}}$. The formula $g \mapsto(\exp (\ell(g) \nabla)-1) / \nabla \cdot y$ defines an analytic cocycle c_{L} on some open subgroup Γ_{L} of Γ_{K}. The image of $[L: K]^{-1} c_{L}$ under $\operatorname{cor}_{L / K}$ gives a cocyle $c \in \mathrm{H}_{\mathrm{an}}^{1}\left(\Gamma_{K}, M\right)$ such that $c^{\prime}(1)=y$.
We now let $M=\lim _{n} M_{n}$ be a Fréchet space. The map $\mathrm{H}_{\mathrm{an}}^{1}\left(\Gamma_{K}, M\right) \rightarrow$ $(M / \nabla M)^{\Gamma_{K}}$ induced by $c \mapsto c^{\prime}(1)$ is well-defined, and in the other direction we have the map $y \mapsto c_{y}$:

$$
(M / \nabla M)^{\Gamma_{K}} \rightarrow \underset{{ }_{n}}{\lim }\left(M_{n} / \nabla M_{n}\right)^{\Gamma_{K}} \rightarrow \underset{{ }_{n}}{\lim _{\mathrm{an}}} \mathrm{H}_{\mathrm{a}}^{1}\left(\Gamma_{K}, M_{n}\right) \rightarrow \mathrm{H}_{\mathrm{an}}^{1}\left(\Gamma_{K}, M\right)
$$

These two maps are inverses of each other.
Remark 2.1.4. Compare with the following theorem (see [Tam15], corollary 21): if G is a compact p-adic Lie group and if M is a locally analytic representation of G, then $\mathrm{H}_{\mathrm{an}}^{i}(G, M)=\mathrm{H}^{i}(\operatorname{Lie}(G), M)^{G}$.

2.2 Cohomology of F-Analytic (φ, Γ)-modules

If V is an F-analytic representation, let $\mathrm{H}_{\text {an }}^{1}(K, V) \subset \mathrm{H}^{1}(K, V)$ classify the F-analytic extensions of F by V. Let D denote an F-analytic (φ, Γ)-module over $\mathbf{B}_{\text {rig }, K}^{\dagger}$, such as $\mathrm{D}_{\text {rig }}^{\dagger}(V)$.

Proposition 2.2.1. If V is F-analytic, then $\mathrm{H}_{\mathrm{an}}^{1}(K, V)=\mathrm{H}_{\mathrm{an}}^{1}\left(\Gamma_{K} \times\right.$ $\left.\Phi, \mathrm{D}_{\mathrm{rig}}^{\dagger}(V)\right)$.

Proof. The group $\mathrm{H}_{\mathrm{an}}^{1}\left(\Gamma_{K} \times \Phi, \mathrm{D}_{\text {rig }}^{\dagger}(V)\right)$ classifies the F-analytic extensions of $\mathbf{B}_{\text {rig }, K}^{\dagger}$ by $\mathrm{D}_{\text {rig }}^{\dagger}(V)$, which correspond to F-analytic extensions of F by V by theorem 1.2.2.

Theorem 2.2.2. If D is an F-analytic (φ, Γ)-module over $\mathbf{B}_{\mathrm{rig}, K}^{\dagger}$ and $i=0,1$, then $\mathrm{H}_{\mathrm{an}}^{i}\left(\Gamma_{K}, \mathrm{D}^{\psi_{q}=0}\right)=0$.

Proof. Since $\mathbf{B}_{\text {rig }, F}^{\dagger} \subset \mathbf{B}_{\mathrm{rig}, K}^{\dagger}$, the $\mathbf{B}_{\mathrm{rig}, K}^{\dagger}$-module D is a free $\mathbf{B}_{\mathrm{rig}, F^{-}}^{\dagger}$-module of finite rank. Let \mathcal{R}_{F} denote $\mathbf{B}_{\text {rig }, F}^{\dagger}$ and let $\mathcal{R}_{\mathbf{C}_{p}}$ denote $\mathbf{C}_{p} \widehat{\otimes}_{F} \mathbf{B}_{\text {rig }, F}^{\dagger}$ the Robba
ring with coefficients in \mathbf{C}_{p}. There is an action of G_{F} on the coefficients of $\mathcal{R}_{\mathbf{C}_{p}}$ and $\mathcal{R}_{\mathbf{C}_{p}}^{G_{F}}=\mathcal{R}_{F}$.
Theorem 5.5 of [Col16] says that $\mathrm{H}_{\mathrm{an}}^{i}\left(\Gamma_{K},\left(\mathcal{R}_{\mathbf{C}_{p}} \otimes_{\mathcal{R}_{F}} \mathrm{D}\right)^{\psi_{q}=0}\right)=0$. For $i=0$, this implies our claim. For $i=1$, it says that if $c: \Gamma_{K} \rightarrow \mathrm{D}^{\psi_{q}=0}$ is an F analytic cocycle, there exists $m \in\left(\mathcal{R}_{\mathbf{C}_{p}} \otimes_{\mathcal{R}_{F}} \mathrm{D}\right)^{\psi_{q}=0}$ such that $c(g)=(g-1) m$ for all $g \in \Gamma_{K}$. If $\alpha \in G_{F}$, then $c(g)=(g-1) \alpha(m)$ as well, so that $\alpha(m)-m \in$ $\left(\left(\mathcal{R}_{\mathbf{C}_{p}} \otimes_{\mathcal{R}_{F}} \mathrm{D}\right)^{\psi_{q}=0}\right)^{\Gamma_{K}}=0$. This shows that $m \in\left(\left(\mathcal{R}_{\mathbf{C}_{p}} \otimes_{\mathcal{R}_{F}} \mathrm{D}\right)^{\psi_{q}=0}\right)^{G_{F}}=$ $\mathrm{D}^{\psi_{q}=0}$ 。

Corollary 2.2.3. The groups $\mathrm{H}_{\mathrm{an}}^{i}\left(\Gamma_{K} \times \Phi, \mathrm{D}\right)$ and $\mathrm{H}_{\mathrm{an}}^{i}\left(\Gamma_{K} \times \Psi, \mathrm{D}\right)$ are isomorphic for $i=0,1$.

Proof. If $i=0$, then we have an inclusion $\mathrm{D}^{\varphi_{q}=1, \Gamma_{K}} \subset \mathrm{D}^{\psi_{q}=1, \Gamma_{K}}$. If $x \in$ $\mathrm{D}^{\psi_{q}=1, \Gamma_{K}}$, then $x-\varphi_{q}(x) \in \mathrm{D}^{\psi_{q}=0, \Gamma_{K}}=\{0\}$ by theorem 2.2.2, so that $x=$ $\varphi_{q}(x)$ and the above inclusion is an equality.
Now let $i=1$. If $f \in \mathrm{Z}_{\mathrm{an}}^{1}\left(\Gamma_{K} \times \Phi, \mathrm{D}\right)$, let $T f \in \mathrm{Z}_{\mathrm{an}}^{1}\left(\Gamma_{K} \times \Psi, \mathrm{D}\right)$ be the function defined by $T f(g)=f(g)$ if $g \in \Gamma_{K}$ and $T f\left(\psi_{q}\right)=-\psi_{q}\left(f\left(\varphi_{q}\right)\right)$.
If $f \in \mathrm{Z}_{\mathrm{an}}^{1}\left(\Gamma_{K} \times \Psi, \mathrm{D}\right)$ and $g \in \Gamma_{K}$, then $\left(\varphi_{q} \psi_{q}-1\right) f(g) \in \mathrm{D}^{\psi_{q}=0}$ and the map $g \mapsto\left(\varphi_{q} \psi_{q}-1\right) f(g)$ is an element of $\mathrm{Z}_{\mathrm{an}}^{1}\left(\Gamma_{K}, \mathrm{D}^{\psi_{q}=0}\right)$. By theorem 2.2.2, applied once for existence and once for unicity, there is a unique $m_{f} \in \mathrm{D}^{\psi_{q}=0}$ such that $\left(\varphi_{q} \psi_{q}-1\right) f(g)=(g-1) m_{f}$. Let $U f \in \mathrm{Z}_{\mathrm{an}}^{1}\left(\Gamma_{K} \times \Phi, \mathrm{D}\right)$ be the function defined by $U f(g)=f(g)$ if $g \in \Gamma_{K}$ and $U f\left(\varphi_{q}\right)=-\varphi_{q}\left(f\left(\psi_{q}\right)\right)+m_{f}$.
It is straightforward to check that U and T are inverses of each other (even at the level of the $\mathrm{Z}_{\mathrm{an}}^{1}$) and that they descend to the $\mathrm{H}_{\mathrm{an}}^{1}$.

THEOREM 2.2.4. The map $f \mapsto f\left(\psi_{q}\right)$ from $\mathrm{Z}_{\mathrm{an}}^{1}\left(\Gamma_{K} \times \Psi, \mathrm{D}\right)$ to D gives rise to an exact sequence:

$$
0 \rightarrow \mathrm{H}_{\mathrm{an}}^{1}\left(\Gamma_{K}, \mathrm{D}^{\psi_{q}=1}\right) \rightarrow \mathrm{H}_{\mathrm{an}}^{1}\left(\Gamma_{K} \times \Psi, \mathrm{D}\right) \rightarrow\left(\frac{\mathrm{D}}{\psi_{q}-1}\right)^{\Gamma_{K}}
$$

Proof. If $f \in \mathrm{Z}_{\mathrm{an}}^{1}\left(\Gamma_{K} \times \Psi, \mathrm{D}\right)$ and $g \in \Gamma_{K}$, then $(g-1) f\left(\psi_{q}\right)=\left(\psi_{q}-1\right) f(g) \in$ $\left(\psi_{q}-1\right) \mathrm{D}$ so that the image of f is in $\left(\mathrm{D} /\left(\psi_{q}-1\right)\right)^{\Gamma_{K}}$. The other verifications are similar.

2.3 The space $\mathrm{D} /\left(\psi_{q}-1\right)$

By theorem 2.2.4 in the previous section, the cokernel of the map $\mathrm{H}_{\mathrm{an}}^{1}\left(\Gamma_{K}, \mathrm{D}^{\psi_{q}=1}\right) \rightarrow \mathrm{H}_{\mathrm{an}}^{1}\left(\Gamma_{K} \times \Psi, \mathrm{D}\right)$ injects into $\left(\mathrm{D} /\left(\psi_{q}-1\right)\right)^{\Gamma_{K}}$. It can be useful to know that this cokernel is not too large. In this section, we bound $\mathrm{D} /\left(\psi_{q}-1\right)$ when $\mathrm{D}=\mathbf{B}_{\mathrm{rig}, F}^{\dagger}$, with the action of φ_{q} twisted by a^{-1}, for some $a \in F^{\times}$.

Theorem 2.3.1. If $a \in F^{\times}$, then $\psi_{q}-a: \mathbf{B}_{\mathrm{rig}, F}^{\dagger} \rightarrow \mathbf{B}_{\mathrm{rig}, F}^{\dagger}$ is onto unless $a=q^{-1} \pi^{m}$ for some $m \in \mathbf{Z}_{\geqslant 1}$, in which case $\mathbf{B}_{\text {rig }, F}^{\dagger} /\left(\psi_{q}-a\right)$ is of dimension 1.

In order to prove this theorem, we need some results about the action of ψ_{q} on $\mathbf{B}_{\text {rig }, F}^{\dagger}$. Recall that the map $\partial=d / d t_{\pi}$ was defined in $\S 1.1$.

Lemma 2.3.2. If $a \in F^{\times}$, then $a \varphi_{q}-1: \mathbf{B}_{\mathrm{ri}, F}^{+} \rightarrow \mathbf{B}_{\mathrm{rig}, F}^{+}$is an isomorphism, unless $a=\pi^{-m}$ for some $m \in \mathbf{Z}_{\geqslant 0}$, in which case

$$
\begin{aligned}
\operatorname{ker}\left(a \varphi_{q}-1: \mathbf{B}_{\mathrm{rig}, F}^{+} \rightarrow \mathbf{B}_{\mathrm{rig}, F}^{+}\right) & =F t_{\pi}^{m} \\
\operatorname{im}\left(a \varphi_{q}-1: \mathbf{B}_{\mathrm{rig}, F}^{+} \rightarrow \mathbf{B}_{\mathrm{rig}, F}^{+}\right) & =\left\{f(T) \in \mathbf{B}_{\mathrm{rig}, F}^{+} \mid \partial^{m}(f)(0)=0\right\}
\end{aligned}
$$

Proof. This is lemma 5.1 of [FX13].
Lemma 2.3.3. If $m \in \mathbf{Z}_{\geqslant 0}$, there is an $h(T) \in\left(\mathbf{B}_{\mathrm{rig}, F}^{+}\right)^{\psi_{q}=0}$ such that $\partial^{m}(h)(0) \neq 0$.

Proof. We have $\psi_{q}(T)=0$ by (the proof of) proposition 2.2 of [FX13]. If there was some m_{0} such that $\partial^{m}(T)(0)=0$ for all $m \geqslant m_{0}$, then T would be a polynomial in t_{π}, which it is not. This implies that there is a sequence $\left\{m_{i}\right\}_{i}$ of integers with $m_{i} \rightarrow+\infty$, such that $\partial^{m_{i}}(T)(0) \neq 0$, and we can take $h(T)=\partial^{m_{i}-m}(T)$ for any $m_{i} \geqslant m$.

Corollary 2.3.4. If $a \in F^{\times}$, then $\psi_{q}-a: \mathbf{B}_{\mathrm{rig}, F}^{+} \rightarrow \mathbf{B}_{\mathrm{rig}, F}^{+}$is onto.
Proof. If $f(T) \in \mathbf{B}_{\mathrm{rig}, F}^{+}$and if we can write $f=\left(1-a \varphi_{q}\right) g$, then $f=\left(\psi_{q}-\right.$ $a)\left(\varphi_{q}(g)\right)$. If this is not possible, then by lemma 2.3.2 there exists $m \geqslant 0$ such that $a=\pi^{-m}$ and $\partial^{m}(f)(0) \neq 0$. Let h be the function provided by lemma 2.3.3. The function $f-\left(\partial^{m}(f)(0) / \partial^{m}(h)(0)\right) \cdot h$ is in the image of $1-a \varphi_{q}$ by lemma 2.3.2, and $h=\left(\psi_{q}-a\right)\left(-a^{-1} h\right)$ since $\psi_{q}(h)=0$. This implies that f is in the image of $\psi_{q}-a$.
Lemma 2.3.5. If $a^{-1} \in q \cdot \mathcal{O}_{F}$, then $\psi_{q}-a: \mathbf{B}_{\mathrm{rig}, F}^{\dagger} \rightarrow \mathbf{B}_{\mathrm{rig}, F}^{\dagger}$ is onto.
Proof. We have $\mathbf{B}_{\text {rig }, F}^{\dagger}=\mathbf{B}_{\text {rig }, F}^{+}+\mathbf{B}_{F}^{\dagger}$ (by writing a power series as the sum of its plus part and of its minus part) and by corollary 2.3.4, $\psi_{q}-a: \mathbf{B}_{\text {rig }, F}^{+} \rightarrow \mathbf{B}_{\text {rig, } F}^{+}$ is onto. Take $f(T) \in \mathbf{B}_{F}^{\dagger}$, choose some $r>0$ and let $\mathbf{B}_{F}^{(0, r]}$ be the set of $f(T) \in \mathbf{B}_{F}^{\dagger}$ that converge and are bounded on the annulus $0<\operatorname{val}_{p}(x) \leqslant r$. It follows from proposition 1.4 of [Col16] that if $n \gg 0$, then $\psi_{q}^{n}(f) \in \mathbf{B}_{F}^{(0, r]}$ and by proposition 2.4(d) of [FX13], the sequence $\left(q / \pi \cdot \psi_{q}\right)^{n}(f)$ is bounded in $\mathbf{B}_{F}^{(0, r]}$. The series $\sum_{n \geqslant 0} a^{-1-n} \psi_{q}^{n}(f)$ therefore converges in $\mathbf{B}_{F}^{(0, r]}$, and we can write $f=\left(\psi_{q}-a\right) g$ where $g=a^{-1}\left(1-a^{-1} \psi_{q}\right)^{-1} f=\sum_{n \geqslant 0} a^{-1-n} \psi_{q}^{n}(f)$.

Let Res : $\mathbf{B}_{\mathrm{rig}, F}^{\dagger} \rightarrow F$ be defined by $\operatorname{Res}(f)=a_{-1}$ where $f(T) d t_{\pi}=$ $\sum_{n \in \mathbf{Z}} a_{n} T^{n} d T$. The following lemma combines propositions 2.12 and 2.13 of [FX13].

LEMMA 2.3.6. The sequence $0 \rightarrow F \rightarrow \mathbf{B}_{\text {rig }, F}^{\dagger} \xrightarrow{\partial} \mathbf{B}_{\text {rig }, F}^{\dagger} \xrightarrow{\text { Res }} F \rightarrow 0$ is exact, and $\operatorname{Res}\left(\psi_{q}(f)\right)=\pi / q \cdot \operatorname{Res}(f)$.

Proof of theorem 2.3.1. Since $\partial \circ \psi_{q}=\pi^{-1} \psi_{q} \circ \partial$, the map ∂ induces a map:

$$
\begin{equation*}
\frac{\mathbf{B}_{\mathrm{rig}, F}^{\dagger}}{\psi_{q}-a} \xrightarrow{\partial} \frac{\mathbf{B}_{\mathrm{rig}, F}^{\dagger}}{\psi_{q}-a \pi} . \tag{Der}
\end{equation*}
$$

Take $x \in \mathbf{B}_{\text {rig }, F}^{\dagger}$ such that $\operatorname{Res}(x)=1$. We have $\operatorname{Res}\left(\left(\psi_{q}-a \pi\right) x\right)=\pi / q-a \pi$. If $a \neq q^{-1}$, this is non-zero and if $f \in \mathbf{B}_{\text {rig }, F}^{\dagger}$, proposition 2.3.6 allows us to write $f=\partial g+\operatorname{Res}(f) /(\pi / q-a \pi) \cdot\left(\psi_{q}-a \pi\right) x$. This implies that (Der) is onto if $a \neq q^{-1}$.
Combined with lemma 2.3.5, this implies that $\mathbf{B}_{\text {rig, } F}^{\dagger} /\left(\psi_{q}-a\right)=0$ if a is not of the form $q^{-1} \pi^{m}$ for some $m \in \mathbf{Z}_{\geqslant 1}$.
When $a=q^{-1}$, we have an exact sequence

$$
\frac{\mathbf{B}_{\mathrm{rig}, F}^{\dagger}}{\psi_{q}-q^{-1}} \xrightarrow{\partial} \frac{\mathbf{B}_{\mathrm{rig}, F}^{\dagger}}{\psi_{q}-q^{-1} \pi} \xrightarrow{\text { Res }} F \rightarrow 0
$$

which now implies that $\mathbf{B}_{\mathrm{rig}, F}^{\dagger} /\left(\psi_{q}-q^{-1} \pi\right)=F$, generated by the class of x. We now assume again that $a \neq q^{-1}$ and compute the kernel of (Der). If $f \in \mathbf{B}_{\mathrm{rig}, F}^{\dagger}$ is such that $\partial f=\left(\psi_{q}-a \pi\right) g$, then $\operatorname{Res} \partial f=\operatorname{Res}\left(\psi_{q}-a \pi\right) g=$ $(\pi / q-a \pi) \operatorname{Res}(g)$, so that $\operatorname{Res}(g)=0$ and we can write $g=\partial h$. We have $\partial\left(f-\left(\psi_{q}-a\right) h\right)=0$, so that $f=\left(\psi_{q}-a\right) h+c$, with $c \in F$. By corollary 2.3.4, there exists $b \in \mathbf{B}_{\mathrm{rig}, F}^{+}$such that $\left(\psi_{q}-a\right)(b)=c$, so that $f=\left(\psi_{q}-a\right)(h+b)$ and (Der) is bijective. We then have, by induction on $m \geqslant 1$, that $\mathbf{B}_{\mathrm{rig}, F}^{\dagger} /\left(\psi_{q}-\right.$ $\left.q^{-1} \pi^{m}\right)=F$, generated by the class of $\partial^{m}(x)$.

Remark 2.3.7. More generally, we expect that the following holds: if D is a (φ, Γ)-module over $\mathbf{B}_{\text {rig }, K}^{\dagger}$, the F-vector space $\mathrm{D} /\left(\psi_{q}-1\right)$ is finite dimensional.

2.4 The operator Θ_{b}

The power series $F(X)=X /(\exp (X)-1)$ belongs to $\mathbf{Q}_{p} \llbracket X \rrbracket$ and has a nonzero radius of convergence. If M is a Banach space with a locally F-analytic action of Γ_{K} and $h \in \Gamma_{K}$ is close enough to 1 , then

$$
\frac{\nabla}{h-1}=\frac{\nabla}{\exp (\ell(h) \nabla)-1}=\ell(h)^{-1} F(\ell(h) \nabla)
$$

converges to a continuous operator on M. If $g \in \Gamma_{K}$, we then define

$$
\frac{\nabla}{1-g}=\frac{\nabla}{1-g^{n}} \cdot \frac{1-g^{n}}{1-g} .
$$

This operator is independent of the choice of n such that g^{n} is close enough to 1 , and can be seen as an element of the locally F-analytic distribution algebra acting on M.

If M is a Fréchet space, write $M=\lim _{i} M_{i}$ and define operators $\frac{\nabla}{1-g}$ on each M_{i} as above. These operators commute with the maps $M_{j} \rightarrow M_{i}$ (because n can be taken large enough for both M_{i} and M_{j}). This defines an operator $\frac{\nabla}{1-g}$ on M itself. The definition of $\frac{\nabla}{1-g}$ extends to an LF space with a pro- F-analytic action of Γ_{K}.
Assume that K contains F_{1} and let $r(K)=f+\operatorname{val}_{p}\left(\left[K: F_{1}\right]\right)$. For example, $p^{r\left(F_{n}\right)}=q^{n}$ if $n \geqslant 1$. Assume further that K contains $F_{n(K)}$, so that $\chi_{\pi}: \Gamma_{K} \rightarrow$ \mathcal{O}_{F}^{\times}is injective and its image is a free \mathbf{Z}_{p}-module of rank d. If $b=\left(b_{1}, \ldots, b_{d}\right)$ is a basis of Γ_{K} (that is, $\Gamma_{K}=b_{1}^{\mathbf{Z}_{p}} \cdots b_{d}^{\mathbf{Z}_{p}}$), then let $\ell^{*}(b)=\ell\left(b_{1}\right) \cdots \ell\left(b_{d}\right) / p^{r(K)}$ and

$$
\Theta_{b}=\ell^{*}(b) \cdot \frac{\nabla^{d}}{\left(b_{1}-1\right) \cdots\left(b_{d}-1\right)}
$$

Lemma 2.4.1. If $K=F_{n}$ and $m \geqslant 0$ and $x \in F_{m+n}$, then

$$
\Theta_{b}(x)=q^{-m-n} \cdot \operatorname{Tr}_{F_{m+n} / F_{n}}(x)
$$

Proof. Since $\nabla=\lim _{k \rightarrow \infty}\left(b^{p^{k}}-1\right) / p^{k} \ell(b)$, we have

$$
\Theta_{b}=\lim _{k \rightarrow \infty} \frac{1}{q^{n} p^{k d}} \cdot \frac{\left(b_{1}^{p^{k}}-1\right) \cdots\left(b_{d}^{p^{k}}-1\right)}{\left(b_{1}-1\right) \cdots\left(b_{d}-1\right)}
$$

The set $\left\{b_{1}^{a_{1}} \cdots b_{d}^{a_{d}}\right\}$ with $0 \leqslant a_{i} \leqslant p^{k}-1$ runs through a set of representatives of $\Gamma_{n} / \Gamma_{n}^{p^{k}}=\Gamma_{n} / \Gamma_{n+e k}$ so that

$$
\frac{1}{q^{n} p^{k d}} \cdot \frac{\left(b_{1}^{p^{k}}-1\right) \cdots\left(b_{d}^{p^{k}}-1\right)}{\left(b_{1}-1\right) \cdots\left(b_{d}-1\right)}=\frac{1}{q^{n} p^{k d}} \operatorname{Tr}_{F_{n+e k} / F_{n}}=\frac{1}{q^{n+e k}} \cdot \operatorname{Tr}_{F_{n+e k} / F_{n}}
$$

The lemma follows from taking k large enough so that $e k \geqslant m$.
For $i \in \mathbf{Z}$, let $\nabla_{i}=\nabla-i$.
Lemma 2.4.2. If b is a basis of $\Gamma_{F_{n}}$ and if $f(T) \in\left(\mathbf{B}_{\mathrm{rig}, F}^{+}\right)^{\psi_{q}=0}$, then $\Theta_{b}(f(T)) \in\left(t_{\pi} / \varphi_{q}^{n}(T)\right) \cdot \mathbf{B}_{\text {rig }, F}^{+}$, and if $h \geqslant 2$ then $\nabla_{h-1} \circ \cdots \circ \nabla_{1} \circ \Theta_{b}(f(T)) \in$ $\left(t_{\pi} / \varphi_{q}^{n}(T)\right)^{h} \cdot \mathbf{B}_{\mathrm{rig}, F}^{+}$.

Proof. If $m \geqslant 1$, then by lemma 2.4.1 and using repeatedly the fact (see §1.1) that $\varphi_{q} \circ \psi_{q}(f)=1 / q \cdot \sum_{z \in \operatorname{LT}[\pi]} f(T \oplus z)$,

$$
\Theta_{b}\left(f\left(u_{n+m}\right)\right)=1 / q^{m+n} \cdot \operatorname{Tr}_{F_{m+n} / F_{n}} f\left(u_{m+n}\right)=\psi_{q}^{m}(f)\left(u_{n}\right)=0
$$

This proves the first claim, since an element $f(T) \in \mathbf{B}_{\text {rig }, F}^{+}$is divisible by $t_{\pi} / \varphi_{q}^{n}(T)$ if and only if $f\left(u_{n+m}\right)=0$ for all $m \geqslant 1$. The second claim follows easily.

Let D be a φ_{q}-module over F. Let $\varphi_{q}^{-n}: \mathbf{B}_{\text {rig }, F}^{+}\left[1 / t_{\pi}\right] \otimes_{F} D \rightarrow F_{n}\left(\left(t_{\pi}\right)\right) \otimes_{F} D$ be the map

$$
\varphi_{q}^{-n}: t_{\pi}^{-h} f(T) \otimes x \mapsto \pi^{n h} t_{\pi}^{-h} f\left(u_{n} \oplus \exp _{\mathrm{LT}}\left(t_{\pi} / \pi^{n}\right)\right) \otimes \varphi_{q}^{-n}(x)
$$

If $f\left(t_{\pi}\right) \in F_{n}\left(\left(t_{\pi}\right)\right) \otimes_{F} D$, let $\partial_{D}(f) \in F_{n} \otimes_{F} D$ denote the coefficient of t_{π}^{0}.
Lemma 2.4.3. If $y \in\left(\mathbf{B}_{\mathrm{rig}, F}^{+}\left[1 / t_{\pi}\right] \otimes_{F} D\right)^{\psi_{q}=1}$ and if $m \geqslant n$, then

$$
q^{-m} \operatorname{Tr}_{F_{m} / F_{n}} \partial_{D}\left(\varphi_{q}^{-m}(y)\right)= \begin{cases}q^{-n} \partial_{D}\left(\varphi_{q}^{-n}(y)\right) & \text { if } n \geqslant 1 \\ \left(1-q^{-1} \varphi_{q}^{-1}\right) \partial_{D}(y) & \text { if } n=0\end{cases}
$$

Proof. If $y=t_{\pi}^{-\ell} \sum_{k=0}^{+\infty} a_{k} T^{k} \in \mathbf{B}_{\text {rig }, F}^{+}\left[1 / t_{\pi}\right] \otimes_{F} D$, then (by definition of φ_{q}^{-m})

$$
\varphi_{q}^{-m}(y)=\pi^{m \ell} t_{\pi}^{-\ell} \sum_{k=0}^{+\infty} \varphi_{q}^{-m}\left(a_{k}\right)\left(u_{m} \oplus \exp _{\mathrm{LT}}\left(t_{\pi} / \pi^{m}\right)\right)^{k},
$$

and $\psi_{q}(y)=y$ means that:

$$
\varphi_{q}(y)(T)=\frac{1}{q} \sum_{[\pi](\omega)=0} y(T \oplus \omega)
$$

If $m \geqslant 2$, the conjugates of u_{m} under $\operatorname{Gal}\left(F_{m} / F_{m-1}\right)$ are the $\left\{\omega \oplus u_{m}\right\}_{[\pi](\omega)=0}$ so that:

$$
\begin{aligned}
\operatorname{Tr}_{F_{m} / F_{m-1}} & \partial_{D}\left(\varphi_{q}^{-m}(y)\right) \\
& =\partial_{D}\left(\sum_{[\pi](\omega)=0} \pi^{m \ell} t_{\pi}^{-\ell} \sum_{k=0}^{+\infty} \varphi_{q}^{-m}\left(a_{k}\right)\left(\omega \oplus u_{m} \oplus \exp _{\mathrm{LT}}\left(t_{\pi} / \pi^{m}\right)\right)^{k}\right) \\
& =\partial_{D}\left(\varphi_{q}^{-m}\left(\sum_{[\pi](\omega)=0} y(T \oplus \omega)\right)\right) \\
& =q \partial_{D}\left(\varphi_{q}^{-(m-1)}(y)\right) .
\end{aligned}
$$

For $m=1$, the computation is similar, except that the conjugates of u_{1} under $\operatorname{Gal}\left(F_{1} / F\right)$ are the ω, where $[\pi](\omega)=0$ but $\omega \neq 0$, which results in:

$$
\operatorname{Tr}_{F_{1} / F} \partial_{D}\left(\varphi_{q}^{-1}(y)\right)=\partial_{D}\left(\varphi_{q}^{-1}\left(\sum_{\substack{[\pi](\omega)=0 \\ \omega \neq 0}} y(T \oplus \omega)\right)\right)=\partial_{D}\left(q y-\varphi_{q}^{-1}(y)\right)
$$

2.5 Construction of extensions

Let D be an F-analytic (φ, Γ)-module over $\mathbf{B}_{\mathrm{rig}, K}^{\dagger}$. The space $\mathrm{D}^{\psi_{q}=1}$ is a closed subspace of D and therefore an LF space. Take K such that K contains $F_{n(K)}$ and let b be a basis of Γ_{K}.

Proposition 2.5.1. If $y \in \mathrm{D}^{\psi_{q}=1}$, there is a unique cocycle $c_{b}(y) \in$ $\mathrm{Z}_{\mathrm{an}}^{1}\left(\Gamma_{K}, \mathrm{D}^{\psi_{q}=1}\right)$ such that for all $1 \leqslant j \leqslant d$ and $k \geqslant 0$, we have

$$
c_{b}(y)\left(b_{j}^{k}\right)=\ell^{*}(b) \cdot \frac{b_{j}^{k}-1}{b_{j}-1} \cdot \frac{\nabla^{d-1}}{\prod_{i \neq j}\left(b_{i}-1\right)}(y)
$$

We then have $c_{b}(y)^{\prime}(1)=\Theta_{b}(y)$.
Proof. There is obviously one and only one continuous cocycle satisfying the conditions of the proposition. It is \mathbf{Q}_{p}-analytic, and in order to prove that it is F-analytic, we need to check that the directional derivatives are independent of j. We have

$$
\lim _{k \rightarrow 0} \frac{c_{b}(y)\left(b_{j}^{k}\right)}{\ell\left(b_{j}^{k}\right)}=\ell^{*}(b) \cdot \frac{\nabla^{d}}{\prod_{i}\left(b_{i}-1\right)}(y)=\Theta_{b}(y)
$$

which is indeed independent of j, and thus $c_{b}(y)^{\prime}(1)=\Theta_{b}(y)$.
LEmMA 2.5.2. If $n \geqslant n(K)$ and $L=K_{n}$ and $M=K_{n+e}$ and b is a basis of Γ_{L}, then b^{p} is a basis of Γ_{M} and $\operatorname{cor}_{M / L} c_{b^{p}}(y)=c_{b}(y)$.

Proof. The Lubin-Tate character maps Γ_{L} to $1+\pi^{n} \mathcal{O}_{F}$, and $\Gamma_{M}=\Gamma_{L}^{p}$ because $\left(1+\pi^{n} \mathcal{O}_{F}\right)^{p}=1+\pi^{n+e} \mathcal{O}_{F}$. Since $\left\{b_{1}^{k_{1}} \cdots b_{d}^{k_{d}}\right\}$ with $0 \leqslant k_{i} \leqslant p-1$ is a set of representatives for Γ_{L} / Γ_{M}, and since $[M: L]=q^{e}=p^{d}$, the explicit formula for the corestriction (definition 2.1.2) implies (here and elsewhere $\lceil x\rceil$ is the smallest integer $\geqslant x$)

$$
\begin{aligned}
\operatorname{cor}_{M / L} & \left(c_{b^{p}}(y)\right)\left(b_{j}^{k}\right) \\
& =\sum_{0 \leqslant k_{1}, \ldots, k_{d} \leqslant p-1} b_{1}^{k_{1}} \ldots b_{d}^{k_{d}} \cdot \ell^{*}\left(b^{p}\right) \cdot \frac{\left.b_{j}^{p} \frac{k^{k-k_{j}}}{p}\right\rceil}{b_{j}^{p}-1} \cdot \frac{\nabla^{d-1}}{\prod_{i \neq j}\left(b_{i}^{p}-1\right)}(y) \\
& =\ell^{*}(b)\left(\sum_{k_{j}=0}^{p-1} b_{j}^{k_{j}} \frac{b_{j}^{p\left\lceil\frac{k-k_{j}}{p}\right\rceil}-1}{b_{j}^{p}-1}\right) \cdot\left(\prod_{i \neq j} \frac{b_{i}^{p}-1}{b_{i}-1}\right) \cdot \frac{\nabla^{d-1}}{\prod_{i \neq j}\left(b_{i}^{p}-1\right)}(y) \\
& =\ell^{*}(b) \frac{b_{j}^{k}-1}{b_{j}-1} \cdot \frac{\nabla^{d-1}}{\prod_{i \neq j}\left(b_{i}-1\right)}(y) \\
& =c_{b}(y)\left(b_{j}^{k}\right) .
\end{aligned}
$$

This proves the lemma.

Lemma 2.5.3. If a and b are two bases of Γ_{K}, then $c_{a}(y)$ and $c_{b}(y)$ are cohomologous.

Proof. If $\alpha_{1}, \ldots, \alpha_{d}$ and $\beta_{1}, \ldots, \beta_{d}$ are in F^{\times}, the Laurent series

$$
\frac{\alpha_{1} \cdots \alpha_{d} \cdot T^{d-1}}{\left(\exp \left(\alpha_{1} T\right)-1\right) \cdots\left(\exp \left(\alpha_{d} T\right)-1\right)}-\frac{\beta_{1} \cdots \beta_{d} \cdot T^{d-1}}{\left(\exp \left(\beta_{1} T\right)-1\right) \cdots\left(\exp \left(\beta_{d} T\right)-1\right)}
$$

is the difference of two Laurent series, each having a simple pole at 0 with equal residues, and therefore belongs to $F \llbracket T \rrbracket$. Let a and b be two bases of Γ_{K} and take $y \in \mathrm{D}^{\psi_{q}=1}$.
Let N be a Γ_{K}-stable Fréchet subspace of D that contains y and write $N=$ $\lim _{\rightleftarrows} M_{j}$. Since $M=M_{j}$ is F-analytic, we have $g=\exp (\ell(g) \nabla)$ on M for g in some open subgroup of Γ_{K}. Let $k \gg 0$ be large enough such that $a_{i}^{p^{k}}$ and $b_{i}^{p^{k}}$ are in this subgroup, and let $\alpha_{i}=p^{k} \ell\left(a_{i}\right)$ and $\beta_{i}=p^{k} \ell\left(b_{i}\right)$. Taking k large enough (depending on M), we can assume moreover that the power series $T /(\exp (T)-1)$ applied to the operators $\alpha_{i} \nabla$ and $\beta_{i} \nabla$ converges on M. The element

$$
\begin{aligned}
& w=\left(\frac{\alpha_{1} \cdots \alpha_{d} \cdot \nabla^{d-1}}{\left(\exp \left(\alpha_{1} \nabla\right)-1\right) \cdots\left(\exp \left(\alpha_{d} \nabla\right)-1\right)}\right. \\
& \left.\quad-\frac{\beta_{1} \cdots \beta_{d} \cdot \nabla^{d-1}}{\left(\exp \left(\beta_{1} \nabla\right)-1\right) \cdots\left(\exp \left(\beta_{d} \nabla\right)-1\right)}\right)(y)
\end{aligned}
$$

of M is well defined. By proposition 2.5.1, we have

$$
c_{a^{p^{k}}}(y)^{\prime}(1)-c_{b^{p^{k}}}(y)^{\prime}(1)=\Theta_{a^{p^{k}}}(y)-\Theta_{b^{p^{k}}}(y)=p^{-r(L)} \nabla(w)
$$

where L is the extension of K such that $\Gamma_{L}=\Gamma_{K}^{p^{k}}$. Thus, for g close enough to 1 , we have $c_{a^{p^{k}}}(y)(g)-c_{b^{p}}(y)(g)=(g-1)\left(p^{-r(L)} w\right)$. Lemma 2.5.2 now implies by corestricting that this holds for all g, and, by corestricting again, that $c_{a}(y)$ and $c_{b}(y)$ are cohomologous in M. By varying M, we get the same result in N, which implies the proposition.

Lemma 2.5.4. If L / K is a finite extension contained in K_{∞}, and if b is a basis of Γ_{K} and a is a basis of Γ_{L}, then $\operatorname{cor}_{L / K} c_{a}(y)=c_{b}(y)$.

Proof. The groups Γ_{K} and Γ_{L} are both free \mathbf{Z}_{p}-modules of rank d, so that by the elementary divisors theorem, we can change the bases a and b in such a way that there exists e_{1}, \ldots, e_{d} with $a_{i}=b_{i}^{p^{e_{i}}}$.
Since $\left\{b_{1}^{k_{1}} \cdots b_{d}^{k_{d}}\right\}$ with $0 \leqslant k_{i} \leqslant p^{e_{i}}-1$ is a set of representatives for Γ_{K} / Γ_{L}, and since $[L: K]=p^{e_{1}+\cdots+e_{d}}$, the explicit formula for the corestriction implies

$$
\begin{aligned}
\operatorname{cor}_{L / K} & \left(c_{a}(y)\right)\left(b_{j}^{k}\right) \\
& =\sum_{\substack{0 \leqslant k_{1} \leqslant p^{e_{1}}-1 \\
0 \leqslant k_{d} \leqslant p^{e_{d}-1}}} b_{1}^{k_{1}} \ldots b_{d}^{k_{d}} \cdot \ell^{*}(a) \cdot \frac{a_{j}^{\left\lceil\frac{k-k_{j}}{p_{j}^{e}}\right.}-1}{a_{j}-1} \cdot \frac{\nabla^{d-1}}{\prod_{i \neq j}\left(a_{i}-1\right)}(y) \\
& =\ell^{*}(b) \cdot\left(\sum_{k_{j}=0}^{p^{e_{j}}-1} \frac{a_{j}^{\left\lceil\frac{k-k_{j}}{p_{j}}\right\rceil}-1}{a_{j}-1}\right) \cdot\left(\prod_{i \neq j} \frac{a_{i}-1}{b_{i}-1}\right) \cdot \frac{\nabla^{d-1}}{\prod_{i \neq j}\left(a_{i}-1\right)}(y) \\
& =\ell^{*}(b) \cdot \frac{b_{j}^{k}-1}{b_{j}-1} \cdot \frac{\nabla^{d-1}}{\prod_{i \neq j}\left(b_{i}-1\right)}(y) \\
& =c_{b}(y)\left(b_{j}^{k}\right) .
\end{aligned}
$$

Definition 2.5.5. Let $h_{K, V}^{1}: \mathrm{D}_{\text {rig }}^{\dagger}(V)^{\psi_{q}=1} \rightarrow \mathrm{H}_{\mathrm{an}}^{1}(K, V)$ denote the map obtained by composing $y \mapsto \bar{c}_{b}(y)$ with $\mathrm{H}_{\mathrm{an}}^{1}\left(\Gamma_{K}, \mathrm{D}_{\text {rig }}^{\dagger}(V)^{\psi_{q}=1}\right) \rightarrow \mathrm{H}_{\mathrm{an}}^{1}\left(\Gamma_{K} \times\right.$ $\Psi, \mathrm{D}_{\mathrm{rig}}^{\dagger}(V)$) (theorem 2.2.4) and with $\mathrm{H}_{\mathrm{an}}^{1}\left(\Gamma_{K} \times \Psi, \mathrm{D}_{\mathrm{rig}}^{\dagger}(V)\right) \simeq \mathrm{H}_{\mathrm{an}}^{1}(K, V)$ (proposition 2.2.1 and corollary 2.2.3).

Proposition 2.5.6. We have $\operatorname{cor}_{M / L} \circ h_{M, V}^{1}=h_{L, V}^{1}$ if M / L is a finite extension contained in $K_{\infty} / K_{n(K)}$. In particular, $\operatorname{cor}_{K_{n+1} / K_{n}} \circ h_{K_{n+1}, V}^{1}=h_{K_{n}, V}^{1}$ if $n \geqslant$ $n(K)$.

Proof. This follows from the definition and from lemma 2.5.4 above.
Remark 2.5.7. Proposition 2.5.6 allows us to extend the definition of $h_{K, V}^{1}$ to all K, without assuming that K contains $F_{n(K)}$, by corestricting.

Some of the constructions of this section are summarized in the following theorem. Recall (see $\S 3$ of [Ber16]) that there is a ring $\widetilde{\mathbf{B}}_{\text {rig }}^{\dagger}$ that contains $\mathbf{B}_{\text {rig }, F}^{\dagger}$, is equipped with a Frobenius map φ_{q} and an action of G_{F} and such that $V=\left(\widetilde{\mathbf{B}}_{\mathrm{rig}}^{\dagger} \otimes_{\mathbf{B}_{\mathrm{rig}, F}} \mathrm{D}_{\mathrm{rig}}^{\dagger}(V)\right)^{\varphi_{q}=1}$.

Theorem 2.5.8. If $y \in \mathrm{D}_{\mathrm{rig}}^{\dagger}(V)^{\psi_{q}=1}$ and K contains $K_{n(K)}$ and b is a basis of Γ_{K}, then

1. there is a unique $c_{b}(y) \in \mathrm{Z}_{\mathrm{an}}^{1}\left(\Gamma_{K}, \mathrm{D}_{\mathrm{rig}}^{\dagger}(V)^{\psi_{q}=1}\right)$ such that for $k \in \mathbf{Z}_{p}$,

$$
c_{b}(y)\left(b_{j}^{k}\right)=\ell^{*}(b) \cdot \frac{b_{j}^{k}-1}{b_{j}-1} \cdot \frac{\nabla^{d-1}}{\prod_{i \neq j}\left(b_{i}-1\right)}(y)
$$

2. there is a unique $m_{c} \in \mathrm{D}_{\mathrm{rig}}^{\dagger}(V)^{\psi_{q}=0}$ such that $\left(\varphi_{q}-1\right) c_{b}(y)(g)=(g-1) m_{c}$ for all $g \in \Gamma_{K}$;
3. the (φ, Γ)-module corresponding to this extension has a basis in which

$$
\operatorname{Mat}(g)=\left(\begin{array}{cc}
* & c_{b}(y)(g) \\
0 & 1
\end{array}\right) \text { if } g \in \Gamma_{K}, \quad \text { and } \quad \operatorname{Mat}\left(\varphi_{q}\right)=\left(\begin{array}{cc}
* & m_{c} \\
0 & 1
\end{array}\right)
$$

4. if $z \in \widetilde{\mathbf{B}}_{\text {rig }}^{\dagger} \otimes_{F} V$ is such that $\left(\varphi_{q}-1\right) z=m_{c}$, then the cocycle

$$
g \mapsto c_{b}(y)(g)-(g-1) z
$$

defined on G_{K} has values in V and represents $h_{K, V}^{1}(y)$ in $\mathrm{H}_{\mathrm{an}}^{1}(K, V)$.
Proof. Items (1), (2) and (3) are reformulations of the constructions of this chapter. Let us prove (4). Let us write the (φ, Γ)-module corresponding to the extension in (3) as $\mathrm{D}^{\prime}=\mathrm{D}_{\mathrm{rig}}^{\dagger}(V) \oplus \mathbf{B}_{\mathrm{rig}, F}^{\dagger} \cdot e$. It is an étale (φ, Γ)-module that comes from the p-adic representation $V^{\prime}=\left(\widetilde{\mathbf{B}}_{\text {rig }}^{\dagger} \otimes_{\mathbf{B}_{\mathrm{rig}, F}} \mathrm{D}^{\prime}\right)^{\varphi_{q}=1}$. We have $V^{\prime}=V \oplus F \cdot(e-z)$ as F-vector spaces since $\varphi_{q}(e-z)=e-z$. If $g \in G_{K}$, then

$$
g(e-z)=e+c_{b}(y)(g)-g(z)=e-z+c_{b}(y)(g)-(g-1) z .
$$

This proves (4).
Let $F=\mathbf{Q}_{p}$ and $\pi=p=q$, and let V be a representation of G_{K}. In §II. 1 of [CC99], Cherbonnier and Colmez define a map $\log _{V^{*}(1)}^{*}: \mathrm{D}^{\dagger}(V)^{\psi=1} \rightarrow$ $\mathrm{H}_{\mathrm{Iw}}^{1}(K, V)$, which is an isomorphism (theorem II.1.3 and proposition III.3.2 of [CC99]).

Proposition 2.5.9. If $F=\mathbf{Q}_{p}$ and $\pi=p$, then the map

$$
\mathrm{D}^{\dagger}(V)^{\psi=1} \rightarrow \mathrm{D}_{\mathrm{rig}}^{\dagger}(V)^{\psi=1} \xrightarrow{\left\{h_{K_{n}, V}^{1}\right\}_{n \geqslant 1}}{\underset{\check{n}}{n}}^{\mathrm{H}_{\mathrm{an}}^{1}}\left(K_{n}, V\right) \rightarrow \underset{{ }_{n}}{\lim _{n}} \mathrm{H}^{1}\left(K_{n}, V\right)
$$

coincides with the map $\log _{V^{*}(1)}^{*}: \mathrm{D}^{\dagger}(V)^{\psi=1} \rightarrow \mathrm{H}_{\mathrm{Iw}}^{1}(K, V) \subset{\underset{\varliminf i m}{n}} \mathrm{H}^{1}\left(K_{n}, V\right)$.
Proof. The map $\log _{V^{*}(1)}^{*}$ is contructed by mapping $x \in \mathrm{D}^{\dagger}(V)^{\psi=1}$ to the sequence $\left(\ldots, \iota_{\psi, n}(x), \ldots\right) \in \lim _{n} \mathrm{H}^{1}\left(K_{n}, V\right)$ (see theorem II.1.3 in [CC99] and the paragraph preceding it), where

$$
\iota_{\psi, n}(x)=\left[\sigma \mapsto \ell_{K_{n}}\left(\gamma_{n}\right)\left(\frac{\sigma-1}{\gamma_{n}-1} x-(\sigma-1) b\right)\right]
$$

on $G_{K_{n}}$ and where (see proposition I.4.1, lemma I.5.2 and lemma I.5.5 of ibid.)

1. $\gamma_{n}=\gamma_{1}^{\left[K_{n}: K_{1}\right]}$ and γ_{1} is a fixed generator of $\Gamma_{K_{1}}$;
2. $\ell_{K_{n}}\left(\gamma_{n}\right)=\frac{\log \chi\left(\gamma_{n}\right)}{p^{r\left(K_{n}\right)}}$ where $r\left(K_{n}\right)$ is the integer such that $\log \chi\left(\Gamma_{K_{n}}\right)=$ $p^{r\left(K_{n}\right)} \mathbf{Z}_{p}$;
3. $b \in \widetilde{\mathbf{B}}^{\dagger} \otimes_{\mathbf{Q}_{p}} V$ is such that $(\varphi-1) b=a$ and $a \in \mathrm{D}^{\dagger}(V)^{\psi=1}$ is such that $\left(\gamma_{n}-1\right) a=(\varphi-1) x$ (using the fact that $\gamma_{n}-1$ is bijective on $\mathrm{D}^{\dagger}(V)^{\psi=0}$).

The theorem follows from comparing this with the explicit formula of theorem 2.5.8.

3 Explicit formulas for crystalline representations

In this chapter, we explain how the constructions of the previous chapter are related to p-adic Hodge theory, via Bloch and Kato's exponential maps. Let \mathbf{B}_{dR} be Fontaine's ring of periods [Fon94] and let $\mathbf{B}_{\max , F}^{+}$be the subring of $\mathbf{B}_{\mathrm{dR}}^{+}$that is constructed in $\S 8.5$ of [Col02] (recall that $\mathbf{B}_{\max , F}^{+}=F \otimes_{F_{0}} \mathbf{B}_{\max }^{+}$ where $F_{0}=F \cap \mathbf{Q}_{p}^{\mathrm{unr}}$ and $\mathbf{B}_{\max }^{+}$is a ring that is similar to Fontaine's $\mathbf{B}_{\text {cris }}$).
We assume throughout this chapter that $K=F$ and that the representation V is crystalline and F-analytic.

3.1 Crystalline F-analytic representations

If V is an F-analytic crystalline representation of G_{F}, let $\mathrm{D}_{\text {cris }}(V)=$ $\left(\mathbf{B}_{\max , F} \otimes_{F} V\right)^{G_{F}}$ (this is the "component at identity" of the usual $\mathrm{D}_{\text {cris }}$). By corollary 3.3.8 of [KR09], F-analytic crystalline representations of G_{F} are overconvergent. Moreover, if $\mathcal{M}(D) \subset \mathbf{B}_{\text {rige }, F}^{+}\left[1 / t_{\pi}\right] \otimes_{F} D$ is the object constructed in $\S 2.2$ of ibid., then by $\S 2.4$ of ibid., $\mathcal{M}\left(\mathrm{D}_{\text {cris }}(V)\right)$ contains a basis of $\mathrm{D}^{\dagger}(V)$ and $\mathrm{D}_{\text {rig }}^{\dagger}(V)=\mathbf{B}_{\text {rig }, F}^{\dagger} \otimes_{\mathbf{B}_{\text {rig }, F}^{+}} \mathcal{M}\left(\mathrm{D}_{\text {cris }}(V)\right)$. This implies that $\mathrm{D}_{\text {rig }}^{\dagger}(V) \subset \mathbf{B}_{\text {rig }, F}^{\dagger}\left[1 / t_{\pi}\right] \otimes_{F} \mathrm{D}_{\text {cris }}(V)$.

Theorem 3.1.1. We have $\mathrm{D}_{\text {rig }}^{\dagger}(V)^{\psi_{q}=1} \subset \mathbf{B}_{\text {rig }, F}^{+}\left[1 / t_{\pi}\right] \otimes_{F} \mathrm{D}_{\text {cris }}(V)$.
Proof. Take $h \geqslant 0$ such that the slopes of $\pi^{-h} \varphi_{q}$ on $\mathrm{D}_{\text {cris }}(V)$ are $\leqslant-d$. Let E be an extension of F such that E contains the eigenvalues of φ_{q} on $\mathrm{D}_{\text {cris }}(V)$. We show that $\mathrm{D}_{\text {rig }}^{\dagger}(V)^{\psi_{q}=1} \subset t_{\pi}^{-h} E \otimes_{F} \mathbf{B}_{\text {rig }, F}^{+} \otimes_{F} \mathrm{D}_{\text {cris }}(V)$. Let e_{1}, \ldots, e_{n} be a basis of $t_{\pi}^{-h} E \otimes_{F} \mathrm{D}_{\text {cris }}(V)$ in which the matrix $\left(p_{i, j}\right)$ of φ_{q} is upper triangular. If $y=\sum_{i=1}^{d} y_{i} \otimes \varphi_{q}\left(e_{i}\right)$ with $y_{i} \in E \otimes_{F} \mathbf{B}_{\text {rig }, F}^{\dagger}$, then $\psi_{q}(y)=y$ if and only if $\psi_{q}\left(y_{k}\right)=p_{k, k} y_{k}+\sum_{j>k} p_{k, j} y_{j}$ for all k. The theorem follows from applying lemma 3.1.2 below to $k=n, n-1, \ldots, 1$.

Lemma 3.1.2. Take $y \in E \otimes_{F} \mathbf{B}_{\text {rig }, F}^{\dagger}$ and $\alpha \in F$ such that $\operatorname{val}_{\pi}(\alpha) \leqslant-d$. If $\psi_{q}(y)-\alpha y \in E \otimes_{F} \mathbf{B}_{\text {rig }, F}^{+}$, then $y \in E \otimes_{F} \mathbf{B}_{\text {rig }, F}^{+}$.

Proof. This is lemma 5.4 of [FX13].

3.2 Bloch-Kato's exponentials for analytic representations

We now recall the definition of Bloch-Kato's exponential map and its dual, and give a similar definition for F-analytic representations.

Lemma 3.2.1. We have an exact sequence

$$
0 \rightarrow F \rightarrow\left(\mathbf{B}_{\max , F}^{+}\left[1 / t_{\pi}\right]\right)^{\varphi_{q}=1} \rightarrow \mathbf{B}_{\mathrm{dR}} / \mathbf{B}_{\mathrm{dR}}^{+} \rightarrow 0
$$

Proof. This is lemma 9.25 of [Col02].
If V is a de Rham F-linear representation of G_{K}, we can \otimes_{F} the above sequence with V and we get a connecting homomorphism $\exp _{K, V}:\left(\mathbf{B}_{\mathrm{dR}} \otimes_{F} V\right)^{G_{K}} \rightarrow$ $\mathrm{H}^{1}(K, V)$. Recall that if W is an F-vector space, there is a natural injective $\operatorname{map} W \otimes_{F} V \rightarrow W \otimes_{\mathbf{Q}_{p}} V$.
Lemma 3.2.2. If V is F-analytic, the map $\exp _{K, V}:\left(\mathbf{B}_{\mathrm{dR}} \otimes_{F} V\right)^{G_{K}} \rightarrow \mathrm{H}^{1}(K, V)$ defined above coincides with Bloch-Kato's exponential via the inclusion $\left(\mathbf{B}_{\mathrm{dR}} \otimes_{F}\right.$ $V)^{G_{K}} \subset\left(\mathbf{B}_{\mathrm{dR}} \otimes_{\mathbf{Q}_{p}} V\right)^{G_{K}}$, and its image is in $\mathrm{H}_{\mathrm{an}}^{1}(K, V)$.

Proof. Bloch and Kato's exponential is defined as follows (definition 3.10 of [BK90]): if φ_{p} denotes the Frobenius map that lifts $x \mapsto x^{p}$ and if $x \in\left(\mathbf{B}_{\mathrm{dR}} \otimes_{\mathbf{Q}_{p}}\right.$ $V)^{G_{K}}$, there exists $\tilde{x} \in \mathbf{B}_{\max , \mathbf{Q}_{p}}^{\varphi_{p}=1} \otimes_{\mathbf{Q}_{p}} V$ such that $\tilde{x}-x \in \mathbf{B}_{\mathrm{dR}}^{+} \otimes_{\mathbf{Q}_{p}} V$, and $\exp (x)$ is represented by the cocyle $g \mapsto(g-1) \tilde{x}$.
Lemma 3.2.1 says that we can lift $x \in\left(\mathbf{B}_{\mathrm{dR}} \otimes_{F} V\right)^{G_{K}}$ to some $\tilde{x} \in$ $\left(\mathbf{B}_{\max , F}^{+}\left[1 / t_{\pi}\right]\right)^{\varphi_{q}=1} \otimes_{F} V$ such that $\tilde{x}-x \in \mathbf{B}_{\mathrm{dR}}^{+} \otimes_{F} V \subset \mathbf{B}_{\mathrm{dR}}^{+} \otimes_{\mathbf{Q}_{p}} V$. In addition, $\mathbf{B}_{\max , \mathbf{Q}_{p}}^{\varphi_{q}=1}=F_{0} \otimes_{\mathbf{Q}_{p}} \mathbf{B}_{\max , \mathbf{Q}_{p}}^{\varphi_{p}=1}$ (see lemma 1.1.11 of [Ber08]) so that $\left(\mathbf{B}_{\max , F}^{+}\left[1 / t_{\pi}\right]\right)^{\varphi_{q}=1} \subset F \otimes{\mathbf{\mathbf { Q } _ { p }}} \mathbf{B}_{\max , \mathbf{Q}_{p}}^{\varphi_{p}=1}$. We can therefore view \tilde{x} as an element of $\mathbf{B}_{\max , \mathbf{Q}_{p}}^{\varphi_{p}=1} \otimes_{\mathbf{Q}_{p}} V$, and $\exp _{K, V}(x)=[g \mapsto(g-1) \tilde{x}]=\exp (x)$.
The construction of $\exp _{K, V}(x)$ shows that the cocycle $\exp _{K, V}(x)$ is de Rham. At each embedding $\tau \neq \mathrm{Id}$ of F, the extension of F by V given by $\exp _{K, V}(x)$ is therefore Hodge-Tate with weights 0 . This finishes the proof of the lemma.

Recall the following theorem of Kato (see §II. 1 of [Kat93]).
Theorem 3.2.3. If V is a de Rham representation, the map from $\left(\mathbf{B}_{\mathrm{dR}} \otimes_{\mathbf{Q}_{p}}\right.$ $V)^{G_{K}}$ to $\mathrm{H}^{1}\left(K, \mathbf{B}_{\mathrm{dR}} \otimes_{\mathbf{Q}_{p}} V\right)$ defined by $x \mapsto\left[g \mapsto \log \left(\chi_{\mathrm{cyc}}(\bar{g})\right) x\right]$ is an isomorphism, and the dual exponential map $\exp _{K, V^{*}(1)}^{*}: \mathrm{H}^{1}(K, V) \rightarrow\left(\mathbf{B}_{\mathrm{dR}} \otimes_{\mathbf{Q}_{p}} V\right)^{G_{K}}$ is equal to the composition of the map $\mathrm{H}^{1}(K, V) \rightarrow \mathrm{H}^{1}\left(K, \mathbf{B}_{\mathrm{dR}} \otimes_{\mathbf{Q}_{p}} V\right)$ with the inverse of this isomorphism.

Concretely, if $c \in \mathrm{Z}^{1}\left(K, \mathbf{B}_{\mathrm{dR}} \otimes_{\mathbf{Q}_{p}} V\right)$ is some cocycle, there exists $w \in \mathbf{B}_{\mathrm{dR}} \otimes_{\mathbf{Q}_{p}}$ V such that $c(g)=\log \left(\chi_{\text {cyc }}(\bar{g})\right) \cdot \exp _{K, V^{*}(1)}^{*}(c)+(g-1)(w)$.

Corollary 3.2.4. If $c \in \mathrm{Z}^{1}\left(K, \mathbf{B}_{\mathrm{dR}} \otimes_{F} V\right)$, and if there exist $x \in\left(\mathbf{B}_{\mathrm{dR}} \otimes_{F}\right.$ $V)^{G_{K}}$ and $w \in \mathbf{B}_{\mathrm{dR}} \otimes_{F} V$ such that $c(g)=\ell(\bar{g}) \cdot x+(g-1)(w)$, then $\exp _{K, V^{*}(1)}^{*}(c)=x$.

Proof. This follows from theorem 3.2.3 and from the fact that $g \mapsto$ $\log \left(\chi_{\pi}(\bar{g}) / \chi_{\text {cyc }}(\bar{g})\right)$ is \mathbf{B}_{dR}-admissible, since $t_{\pi} / t \in\left(\mathbf{B}_{\mathrm{dR}}^{+}\right)^{\times}$so that $\log \left(t_{\pi} / t\right) \in$ $\mathbf{B}_{\mathrm{dR}}^{+}$is well-defined.

3.3 Interpolating exponentials and their duals

Let V be an F-analytic crystalline representation. By theorem 3.1.1, we have $\mathrm{D}_{\text {rig }}^{\dagger}(V)^{\psi_{q}=1} \subset \mathbf{B}_{\text {rig }, F}^{+}\left[1 / t_{\pi}\right] \otimes_{F} \mathrm{D}_{\text {cris }}(V)$. Let ∂_{V} denote the map ∂_{D} of $\S 2.4$ for $D=\mathrm{D}_{\text {cris }}(V)$.
Theorem 3.3.1. If $y \in \mathrm{D}_{\mathrm{rig}}^{\dagger}(V)^{\psi_{q}=1}$, then

$$
\exp _{F_{n}, V^{*}(1)}^{*}\left(h_{F_{n}, V}^{1}(y)\right)= \begin{cases}q^{-n} \partial_{V}\left(\varphi_{q}^{-n}(y)\right) & \text { if } n \geqslant 1 \\ \left(1-q^{-1} \varphi_{q}^{-1}\right) \partial_{V}(y) & \text { if } n=0\end{cases}
$$

Proof. Since the diagram

$$
\begin{array}{rll}
\mathrm{H}^{1}\left(F_{n+1}, V\right) & \xrightarrow{\exp _{F_{n+1}, V^{*}(1)}^{*}} F_{n+1} \otimes_{F} \mathrm{D}_{\text {cris }}(V) \\
\operatorname{cor}_{F_{n+1} / F_{n}} \downarrow & \operatorname{Tr}_{F_{n+1} / F_{n}} \downarrow \\
\mathrm{H}^{1}\left(F_{n}, V\right) & \xrightarrow{\exp _{F_{n}, V^{*}(1)}^{*}} \quad F_{n} \otimes_{F} \mathrm{D}_{\text {cris }}(V)
\end{array}
$$

is commutative, we only need to prove the theorem when $n \geqslant n(F)$ by lemma 2.4.3 and proposition 2.5.6. By theorem 2.5.8, we have

$$
h_{F_{n}, V}^{1}(y)\left(b_{j}^{k}\right)=\ell^{*}(b) \cdot \frac{b_{j}^{k}-1}{b_{j}-1} \cdot \frac{\nabla^{d-1}}{\prod_{i \neq j}\left(b_{i}-1\right)}(y)-\left(b_{j}^{k}-1\right) z,
$$

with $z \in \widetilde{\mathbf{B}}_{\text {rig }}^{\dagger} \otimes_{F} V$ so that if $m \gg 0$, then $\varphi_{q}^{-m}(z) \in \mathbf{B}_{\mathrm{dR}}^{+} \otimes_{F} V$ (see $\S 3$ of [Ber16] and $\S 2.2$ of [Ber02]). Moreover, $\varphi_{q}^{-m}(y) \in F_{m}\left(\left(t_{\pi}\right)\right) \otimes_{F} \mathrm{D}_{\text {cris }}(V)$. Let $W=\left\{w \in F_{m}\left(\left(t_{\pi}\right)\right) \otimes_{F} \mathrm{D}_{\text {cris }}(V)\right.$ such that $\left.\partial_{V}(w)=0\right\}$. The operator ∇ is bijective on W, and $F_{m}\left(\left(t_{\pi}\right)\right) \otimes_{F} \mathrm{D}_{\text {cris }}(V)$ injects into $\mathbf{B}_{\mathrm{dR}} \otimes_{F} V$, hence there exists $u \in \mathbf{B}_{\mathrm{dR}} \otimes_{F} V$ such that

$$
\begin{aligned}
h_{F_{n}, V}^{1}(y)\left(b_{j}^{k}\right) & =\ell^{*}(b) \cdot \frac{b_{j}^{k}-1}{b_{j}-1} \cdot \frac{\nabla^{d-1}}{\prod_{i \neq j}\left(b_{i}-1\right)}\left(\partial_{V}\left(\varphi_{q}^{-m}(y)\right)\right)-\left(b_{j}^{k}-1\right) u \\
& =\ell\left(b_{j}^{k}\right) \cdot \Theta_{b}\left(\partial_{V}\left(\varphi_{q}^{-m}(y)\right)\right)-\left(b_{j}^{k}-1\right) u \\
& \left.=\ell\left(b_{j}^{k}\right) \cdot q^{-n} \partial_{V}\left(\varphi_{q}^{-n}(y)\right)\right)-\left(b_{j}^{k}-1\right) u,
\end{aligned}
$$

by lemmas 2.4.1 and 2.4.3. This proves the theorem by corollary 3.2.4.
We now give explicit formulas for $\exp _{F_{n}, V}$. Take $h \geqslant 0$ such that $\mathrm{Fil}^{-h} \mathrm{D}_{\text {cris }}(V)=\mathrm{D}_{\text {cris }}(V)$, so that $t_{\pi}^{h}\left(\mathbf{B}_{\text {rig }, F}^{+} \otimes_{F} \mathrm{D}_{\text {cris }}(V)\right) \subset \mathrm{D}_{\text {rig }}^{\dagger}(V)$ (in the notation of $\S 2.2$ of $[K R 09]$, we have $\left.t_{\pi}^{h}\left(\mathbf{B}_{\text {rig }, F}^{+} \otimes_{F} \mathrm{D}_{\text {cris }}(V)\right) \subset \mathcal{M}\left(\mathrm{D}_{\text {cris }}(V)\right)\right)$. In particular, if $y \in\left(\mathbf{B}_{\text {rig }, F}^{+} \otimes_{F} \mathrm{D}_{\text {cris }}(V)\right)^{\psi_{q}=1}$, then $\nabla_{h-1} \circ \cdots \circ \nabla_{0}(y) \in$ $\mathrm{D}_{\text {rig }}^{\dagger}(V)^{\psi_{q}=1}$ 。

Theorem 3.3.2. If $y \in\left(\mathbf{B}_{\text {rig }, F}^{+} \otimes_{F} \mathrm{D}_{\text {cris }}(V)\right)^{\psi_{q}=1}$, then

$$
\begin{aligned}
& h_{F_{n}, V}^{1}\left(\nabla_{h-1} \circ \cdots \circ \nabla_{0}(y)\right)= \\
& \qquad(-1)^{h-1}(h-1)! \begin{cases}\exp _{F_{n}, V}\left(q^{-n} \partial_{V}\left(\varphi_{q}^{-n}(y)\right)\right) & \text { if } n \geqslant 1 \\
\exp _{F, V}\left(\left(1-q^{-1} \varphi_{q}^{-1}\right) \partial_{V}(y)\right) & \text { if } n=0\end{cases}
\end{aligned}
$$

Proof. Since the diagram

$$
\begin{aligned}
& F_{n+1} \otimes_{F} \mathrm{D}_{\text {cris }}(V) \xrightarrow{\exp _{F_{n+1}, V}} \mathrm{H}^{1}\left(F_{n+1}, V\right) \\
& \operatorname{Tr}_{F_{n+1} / F_{n}} \downarrow \operatorname{cor}_{F_{n+1} / F_{n}} \downarrow \\
& F_{n} \otimes_{F} \mathrm{D}_{\text {cris }}(V) \xrightarrow{\exp _{F_{n}, V}} \mathrm{H}^{1}\left(F_{n}, V\right)
\end{aligned}
$$

is commutative, we only need to prove the theorem when $n \geqslant n(F)$ by lemma 2.4.3 and proposition 2.5.6. By theorem 2.5.8, we have

$$
\begin{aligned}
& h_{F_{n}, V}^{1}\left(\nabla_{h-1} \circ \cdots \circ \nabla_{0}(y)\right)\left(b_{j}^{k}\right) \\
& \qquad \begin{aligned}
&=\ell^{*}(b) \cdot \frac{b_{j}^{k}-1}{b_{j}-1} \cdot \frac{\nabla^{d-1}}{\prod_{i \neq j}\left(b_{i}-1\right)}\left(\nabla_{h-1} \circ \cdots \circ \nabla_{0}(y)\right)-\left(b_{j}^{k}-1\right) z \\
&=\left(b_{j}^{k}-1\right) \cdot\left(\nabla_{h-1} \circ \cdots \circ \nabla_{1} \circ \Theta_{b}\right)(y)-\left(b_{j}^{k}-1\right) z
\end{aligned}
\end{aligned}
$$

so that $h_{F_{n}, V}^{1}\left(\nabla_{h-1} \circ \cdots \circ \nabla_{0}(y)\right)(g)=(g-1)\left(\nabla_{h-1} \circ \cdots \circ \nabla_{1} \circ \Theta_{b}\right)(y)-(g-1) z$ if $g \in \Gamma_{K}$. By lemma 2.4.2, we have

$$
\begin{aligned}
\left(\nabla_{h-1} \circ \cdots \circ \nabla_{1} \circ\right. & \left.\Theta_{b}\right)\left(\left(\varphi_{q}-1\right) y\right) \\
& \in\left(t_{\pi} / \varphi_{q}^{n}(T)\right)^{h}\left(\mathbf{B}_{\mathrm{rig}, F}^{+} \otimes_{F} \mathrm{D}_{\mathrm{cris}}(V)\right)^{\psi_{q}=0} \subset \mathrm{D}_{\mathrm{rig}}^{\dagger}(V)^{\psi_{q}=0}
\end{aligned}
$$

so that (in the notation of theorem 2.5.8) $m_{c}=\left(\nabla_{h-1} \circ \cdots \circ \nabla_{1} \circ \Theta_{b}\right)\left(\left(\varphi_{q}-1\right) y\right)$. Since $\left(\varphi_{q}-1\right) z=m_{c}$, we have $\left(\varphi_{q}-1\right)\left(\left(\nabla_{h-1} \circ \cdots \circ \nabla_{1} \circ \Theta_{b}\right)(y)-z\right)=0$, and therefore

$$
\left(\nabla_{h-1} \circ \cdots \circ \nabla_{1} \circ \Theta_{b}\right)(y)-z \in\left(\widetilde{\mathbf{B}}_{\mathrm{rig}}^{\dagger}\left[1 / t_{\pi}\right]\right)^{\varphi_{q}=1} \otimes_{F} V
$$

The ring $\widetilde{\mathbf{B}}_{\text {rig }}^{\dagger}$ contains $\mathbf{B}_{\text {max }, F}^{+}$and the inclusion $\left(\mathbf{B}_{\max , F}^{+}\left[1 / t_{\pi}\right]\right)^{\varphi_{q}=1} \subset$ $\left(\widetilde{\mathbf{B}}_{\text {rig }}^{\dagger}\left[1 / t_{\pi}\right]\right)^{\varphi_{q}=1}$ is an equality (proposition 3.2 of [Ber02]). This implies that

$$
\left(\nabla_{h-1} \circ \cdots \circ \nabla_{1} \circ \Theta_{b}\right)(y)-z \subset\left(\mathbf{B}_{\max , F}^{+}\left[1 / t_{\pi}\right]\right)^{\varphi_{q}=1} \otimes_{F} V
$$

Moreover, we have $z \in \widetilde{\mathbf{B}}_{\text {rig }}^{\dagger} \otimes_{F} V$ so that if $m \gg 0$, then $\varphi_{q}^{-m}(z) \in \mathbf{B}_{\mathrm{dR}}^{+} \otimes_{F} V$. In addition, $\varphi_{q}^{-m}(y)$ belongs to $F_{m} \llbracket t_{\pi} \rrbracket \otimes_{F} \mathrm{D}_{\text {cris }}(V)$, so that $\varphi_{q}^{-m}(y)-\partial_{V}\left(\varphi_{q}^{-m}(y)\right)$ belongs to $t_{\pi} F_{m} \llbracket t_{\pi} \rrbracket \otimes_{F} \mathrm{D}_{\text {cris }}(V)$ and therefore

$$
\begin{aligned}
\left(\nabla_{h-1} \circ \cdots \circ \nabla_{1} \circ \Theta_{b}\right)\left(\varphi_{q}^{-m}(y)-\partial_{V}\left(\varphi_{q}^{-m}(y)\right)\right) & \in t_{\pi}^{h} F_{m} \llbracket t_{\pi} \rrbracket \otimes_{F} \mathrm{D}_{\mathrm{cris}}(V) \\
& \subset \mathbf{B}_{\mathrm{dR}}^{+} \otimes_{F} V .
\end{aligned}
$$

We can hence write
$h_{F_{n}, V}^{1}\left(\nabla_{h-1} \circ \cdots \circ \nabla_{0}(y)\right)(g)=(g-1)\left(\nabla_{h-1} \circ \cdots \circ \nabla_{1} \circ \Theta_{b} \circ \partial_{V}\left(\varphi_{q}^{-m}(y)\right)-(g-1) u\right.$, with $u \in \mathbf{B}_{\mathrm{dR}}^{+} \otimes_{F} V$. The theorem now follows from the fact that

$$
\Theta_{b} \circ \partial_{V}\left(\varphi_{q}^{-m}(y)\right)=q^{-n} \partial_{V}\left(\varphi_{q}^{-n}(y)\right) \in F_{n} \otimes_{F} \mathrm{D}_{\text {cris }}(V)
$$

by lemmas 2.4.2 and 2.4.3, that $\nabla_{h-1} \circ \cdots \circ \nabla_{1}=(-1)^{h-1}(h-1)$! on $F_{n} \otimes_{F}$ $\mathrm{D}_{\text {cris }}(V)$, and from the reminders given in $\S 3.2$, in particular the fact that $\exp _{K, V}$ is the connecting homomorphism when tensoring the exact sequence of lemma 3.2.1 with V and taking Galois invariants.

3.4 Kummer theory and the representation $F\left(\chi_{\pi}\right)$

Throughout this section, $V=F\left(\chi_{\pi}\right)$. Let $L \subset \overline{\mathbf{Q}}_{p}$ be an extension of K. The Kummer map $\delta: \mathrm{LT}\left(\mathfrak{m}_{L}\right) \rightarrow \mathrm{H}^{1}(L, V)$ is defined as follows. Choose a generator $u=\left(u_{k}\right)_{k \geqslant 0}$ of $T_{\pi} \mathrm{LT}=\lim _{k} \mathrm{LT}\left[\pi^{k}\right]$. If $x \in \operatorname{LT}\left(\mathfrak{m}_{L}\right)$, let $x_{k} \in \operatorname{LT}\left(\mathfrak{m}_{\overline{\mathbf{Q}}_{p}}\right)$ be such that $\left[\pi^{k}\right]\left(x_{k}\right)=x$. If $g \in G_{L}$, then $g\left(x_{k}\right)-x_{k} \in \operatorname{LT}\left[\pi^{k}\right]$ so that we can write $g\left(x_{k}\right)-x_{k}=\left[c_{k}(g)\right]\left(u_{k}\right)$ for some $c_{k}(g) \in \mathcal{O}_{F} / \pi^{k}$. If $c(g)=\left(c_{k}(g)\right)_{k \geqslant 0} \in \mathcal{O}_{F}$ then $\delta(x)=[g \mapsto c(g)] \in \mathrm{H}^{1}(L, V)$.
If $x \in \operatorname{LT}\left(\mathfrak{m}_{L}\right)$, and L / K is finite Galois, let $\operatorname{Tr}_{L / K}^{\mathrm{LT}}$ be the map defined by $\operatorname{Tr}_{L / K}^{\mathrm{LT}}(x)=\sum_{g \in \operatorname{Gal}(L / K)}^{\mathrm{LT}} g(x)$ where the superscript LT means that the summation is carried out using the Lubin-Tate addition. If $F=\mathbf{Q}_{p}$ and $\mathrm{LT}=\mathbf{G}_{\mathrm{m}}$, we recover the classical Kummer map, and $\operatorname{Tr}_{L / K}^{\mathrm{LT}}(x)=\mathrm{N}_{L / K}(1+x)-1$.
Lemma 3.4.1. We have the following commutative diagram:

$$
\begin{array}{ccc}
\operatorname{LT}\left(\mathfrak{m}_{K_{n+1}}\right) & \xrightarrow{\delta} & \mathrm{H}^{1}\left(K_{n+1}, V\right) \\
\operatorname{Tr}_{K_{n+1} / K_{n}}^{\mathrm{LT}} \downarrow & & \\
\mathrm{LT}\left(\mathfrak{m}_{K_{1}}\right) & \xrightarrow{\delta} & \mathrm{H}^{1}\left(K_{n}, V\right) .
\end{array}
$$

Proof. This is a straightforward consequence of the explicit description of the corestriction map.
Recall that $\varphi_{q} \circ \psi_{q}(f)=\frac{1}{q} \sum_{\omega \in \operatorname{LT}[\pi]} f(T \oplus \omega)$, so that for $n \geqslant 1$:

$$
\psi_{q}(f)\left(u_{n}\right)=\frac{1}{q} \sum_{\omega \in \mathrm{LT}[\pi]} f\left(u_{n+1} \oplus \omega\right)=\frac{1}{q} \operatorname{Tr}_{F_{n+1} / F_{n}} f\left(u_{n+1}\right)
$$

In particular, if $f(T) \in \mathbf{B}_{\text {rig }, F}^{+}$is such that $\psi_{q}(f(T))=1 / \pi \cdot f(T)$ and $y_{n}=$ $f\left(u_{n}\right)$, then $\operatorname{Tr}_{F_{n+1} / F_{n}}\left(y_{n+1}\right)=q / \pi \cdot y_{n}$.
Proposition 3.4.2. Assume that $F \neq \mathbf{Q}_{p}$. If $\left\{y_{n}\right\}_{n \geqslant 1}$ is a sequence with $y_{n} \in F_{n}$ and $\operatorname{Tr}_{F_{n+1} / F_{n}}\left(y_{n+1}\right)=q / \pi \cdot y_{n}$, there exists $f(T) \in \mathbf{B}_{\text {rig }, F}^{+}$such that $\psi_{q}(f(T))=1 / \pi \cdot f(T)$ and $y_{n}=f\left(u_{n}\right)$ for all $n \geqslant 1$.

Proof. By [Laz62], there exists a power series $g(T) \in \mathbf{B}_{\text {rig }, F}^{+}$such that $g\left(u_{n}\right)=$ y_{n} for all $n \geqslant 1$. We also have

$$
\psi_{q} g(0)=\frac{1}{q} g(0)+\frac{1}{q} \operatorname{Tr}_{F_{1} / F_{0}} g\left(u_{1}\right)
$$

and since $q \neq \pi$ (because $F \neq \mathbf{Q}_{p}$), we can choose $g(0)$ such that

$$
\frac{1}{\pi} g(0)=\frac{1}{q} g(0)+\frac{1}{q} \operatorname{Tr}_{F_{1} / F_{0}} y_{1} .
$$

This implies that $\left(\psi_{q}(g)-1 / \pi \cdot g\right)\left(u_{n}\right)=0$ for all $n \geqslant 0$, so that $\psi_{q}(g)-1 / \pi \cdot g \in$ $t_{\pi} \cdot \mathbf{B}_{\text {rig }, F}^{+}$. It is therefore enough to prove that $\psi_{q}-1 / \pi: t_{\pi} \cdot \mathbf{B}_{\text {rig }, F}^{+} \rightarrow t_{\pi} \cdot \mathbf{B}_{\text {rig }, F}^{+}$ is onto. Since $\psi_{q}\left(t_{\pi} f\right)=1 / \pi \cdot t_{\pi} \psi_{q}(f)$, this amounts to proving that $\psi_{q}-1$: $\mathbf{B}_{\text {rig }, F}^{+} \rightarrow \mathbf{B}_{\text {rig }, F}^{+}$is onto, which follows from corollary 2.3.4.

Definition 3.4.3. Let S denote the set of sequences $\left\{x_{n}\right\}_{n \geqslant 1}$ with $x_{n} \in \mathfrak{m}_{F_{n}}$ and $\operatorname{Tr}_{F_{n+1} / F_{n}}^{\mathrm{LT}}\left(x_{n+1}\right)=[q / \pi]\left(x_{n}\right)$ for $n \geqslant 1$.

The following proposition says that if $F \neq \mathbf{Q}_{p}$, then S is quite large: for any $k \geqslant 1$, the " k-th component" map $F \otimes_{\mathcal{O}_{F}} S \rightarrow F_{k}$ is surjective (if $F=\mathbf{Q}_{p}$, there are restrictions on "universal norms").

Proposition 3.4.4. Assume that $F \neq \mathbf{Q}_{p}$. If $z \in \mathfrak{m}_{F_{k}}$, there exists $\ell \geqslant 0$ and $x \in S$ such that $x_{k}=\left[\pi^{\ell}\right](z)$.

Proof. We claim that $\operatorname{Tr}_{F_{n+1} / F_{n}}\left(\mathcal{O}_{F_{n+1}}\right)=\pi \mathcal{O}_{F_{n}}$. Indeed, let \mathcal{D} denote the different. We have (see for instance proposition 7.11 of [Iwa86])

$$
\operatorname{val}_{p}\left(\mathcal{D}_{F_{n+1} / F_{n}}\right)=\frac{1}{e}\left(n+1-\frac{1}{q-1}\right)-\frac{1}{e}\left(n-\frac{1}{q-1}\right)=\operatorname{val}_{p}(\pi)
$$

This implies that $\operatorname{Tr}_{F_{n+1} / F_{n}}\left(\mathcal{O}_{F_{n+1}}\right)=\pi \mathcal{O}_{F_{n}}$ by proposition 7 of Chapter III of [Ser68].
Since π divides q / π, this shows that given $y \in \mathcal{O}_{F_{k}}$, there exists a sequence $\left\{y_{n}\right\}_{n \geqslant 1}$ with $x_{n} \in \mathcal{O}_{F_{n}}$ such that $y_{k}=y$, and $\operatorname{Tr}_{F_{n+1} / F_{n}}\left(y_{n+1}\right)=q / \pi \cdot y_{n}$ for $n \geqslant 1$. Take $\ell_{1}, \ell_{2} \geqslant 0$ such that $\pi^{\ell_{1}} \mathcal{O}_{\mathbf{C}_{p}}$ is in the domain of $\exp _{\text {LT }}$ and such that $\pi^{\ell_{2}} \log _{\mathrm{LT}}(z) \in \mathcal{O}_{F_{k}}$. Let $y=\pi^{\ell_{2}} \log _{\mathrm{LT}}(z)$. Let $\left\{y_{n}\right\}_{n \geqslant 1}$ be a sequence as above, let $x_{n}=\exp _{\mathrm{LT}}\left(\pi^{\ell_{1}} y_{n}\right)$ and $\ell=\ell_{1}+\ell_{2}$. The elements $x_{k} \ominus\left[\pi^{\ell}\right](z)$, as well as $\operatorname{Tr}_{F_{n+1} / F_{n}}^{\mathrm{LT}}\left(x_{n+1}\right) \ominus[q / \pi]\left(x_{n}\right)$ for all n, have their $\log _{\mathrm{LT}}$ equal to zero and are in a domain in which $\log _{\text {LT }}$ is injective. This proves the proposition.

If $x \in S$ and $y_{n}=\log _{\mathrm{LT}}\left(x_{n}\right)$, then $y_{n} \in F_{n}$ and $\operatorname{Tr}_{F_{n+1} / F_{n}}\left(y_{n+1}\right)=q / \pi \cdot y_{n}$, so that by proposition 3.4.2, there exists $f(T) \in \mathbf{B}_{\text {rig, } F}^{+}$such that $\psi_{q}(f(T))=$ $\pi^{-1} \cdot f(T)$ and $y_{n}=f\left(u_{n}\right)$ for all $n \geqslant 1$. If $f(T) \in \mathbf{B}_{\text {rig, } F}^{+}$is such that $\psi_{q}(f(T))=\pi^{-1} \cdot f(T)$, then $\partial f \in\left(\mathbf{B}_{\text {rig }, F}^{+}\right)^{\psi_{q}=1}$ and $\partial f \cdot u$ can be seen as an element of $\mathrm{D}_{\mathrm{rig}}^{\dagger}(V)^{\psi_{q}=1}$.

Theorem 3.4.5. If $x \in S$, and if $f(T) \in \mathbf{B}_{\text {rig }, F}^{+}$is such that $f\left(u_{n}\right)=\log _{\mathrm{LT}}\left(x_{n}\right)$ and $\psi_{q}(f(T))=\pi^{-1} \cdot f(T)$, then $h_{F_{n}, V}^{1}(\partial f(T) \cdot u)=(q / \pi)^{-n} \cdot \delta\left(x_{n}\right)$ for all $n \geqslant 1$.

Proof. Let $y=f(T) \otimes t_{\pi}^{-1} u$, so that $y \in\left(\mathbf{B}_{\text {rig }, F}^{+} \otimes_{F} \mathrm{D}_{\text {cris }}(V)\right)^{\psi_{q}=1}$. By theorem 3.3.2 applied to y with $h=1$, we have $h_{F_{n}, V}^{1}(\nabla(y))=\exp _{F_{n}, V}\left(q^{-n} \partial_{V}\left(\varphi_{q}^{-n}(y)\right)\right)$ if $n \geqslant 1$. Since $\varphi_{q}^{-n} \circ \partial=\pi^{n} \cdot \partial \circ \varphi_{q}^{-n}$, this implies that
$h_{F_{n}, V}^{1}(\partial f(T) \cdot u)=\exp _{F_{n}, V}\left(q^{-n} \partial_{V}\left(\varphi_{q}^{-n}(y)\right)\right)=(q / \pi)^{-n} \cdot \exp _{F_{n}, V}\left(\log _{\mathrm{LT}}\left(x_{n}\right) \cdot u\right)$.
By example 3.10.1 of [BK90] and lemma 3.2.2, we have $\delta\left(x_{n}\right)=$ $\exp _{F_{n}, V}\left(\log _{\mathrm{LT}}\left(x_{n}\right) \cdot u\right)$. This proves the theorem.

Remark 3.4.6. If $F=\mathbf{Q}_{p}$ and $\pi=q=p$ and $x=\left\{x_{n}\right\}_{n \geqslant 1}$, this theorem says that $\operatorname{Exp}_{\mathbf{Q}_{p}}^{*}(\delta(x))=\partial \log \operatorname{Col}_{x}(T)$, which is (iii) of proposition V.3.2 of [CC99] (see theorem II.1.3 of ibid for the definition of the map $\left.\operatorname{Exp}_{\mathbf{Q}_{p}}^{*}: \mathrm{H}_{\mathrm{IW}}^{1}\left(F, \mathbf{Q}_{p}(1)\right) \rightarrow \mathrm{D}_{\mathrm{rig}}^{\dagger}\left(\mathbf{Q}_{p}(1)\right)^{\psi_{q}=1}\right)$.
Remark 3.4.7. If $x \in S$, then by proposition 3.4.2, there is a power series $f(T)$ such that $f\left(u_{n}\right)=\log _{\mathrm{LT}}\left(x_{n}\right)$ for $n \geqslant 1$. Is there a power series $g(T) \in \mathcal{O}_{F} \llbracket T \rrbracket$ such that $g\left(u_{n}\right)=x_{n}$, so that $f(T)=\log g(T)$?
If $F=\mathbf{Q}_{p}$, such a power series is the classical Coleman power series [Col79]. If $F \neq \mathbf{Q}_{p}$ and $x \in S$ and z is a $[q / \pi]$-torsion point, and $k \geqslant d-1$ so that $z \in F_{k}$, then the sequence $x^{\prime}=\left\{x_{n}^{\prime}\right\}_{n \geqslant 1}$ defined by $x_{n}^{\prime}=x_{n}$ if $n \neq k$ and $x_{k}^{\prime}=x_{k} \oplus z$ also belongs to S. This means that we cannot naïvely interpolate x.

3.5 Perrin-Riou's big exponential map

In this last section, we explain how the explicit formulas of the previous sections can be used to give a Lubin-Tate analogue of Perrin-Riou's "big exponential map" [PR94]. Take $h \geqslant 1$ such that $\operatorname{Fil}^{-h} \mathrm{D}_{\text {cris }}(V)=\mathrm{D}_{\text {cris }}(V)$. If $f \in \mathbf{B}_{\text {rig }, F}^{+} \otimes_{F}$ $\mathrm{D}_{\text {cris }}(V)$, let $\Delta(f)$ be the image of $\oplus_{k=0}^{h} \partial^{k}(f)(0)$ in $\oplus_{k=0}^{h} \mathrm{D}_{\text {cris }}(V) /\left(1-\pi^{k} \varphi_{q}\right)$.

Lemma 3.5.1. There is an exact sequence:

$$
\begin{aligned}
0 \rightarrow \oplus_{k=0}^{h} t_{\pi}^{k} \mathrm{D}_{\text {cris }}(V)^{\varphi_{q}=\pi^{-k}} \rightarrow\left(\mathbf{B}_{\text {rig }, F}^{+} \otimes_{F} \mathrm{D}_{\text {cris }}(V)\right)^{\psi_{q}=1} \xrightarrow{\frac{1-\varphi_{q}}{\longrightarrow}} \\
\left(\mathbf{B}_{\text {rig }, F}^{+}\right)^{\psi_{q}=0} \otimes_{F} \mathrm{D}_{\text {cris }}(V) \xrightarrow{\Delta} \oplus_{k=0}^{h} \frac{\mathrm{D}_{\text {cris }}(V)}{1-\pi^{k} \varphi_{q}} \rightarrow 0
\end{aligned}
$$

Proof. Note that the map φ_{q} acts diagonally on tensor products. It is easy to see that $\operatorname{ker}\left(1-\varphi_{q}\right)=\oplus_{k=0}^{h} t_{\pi}^{k} \mathrm{D}_{\text {cris }}(V)^{\varphi_{q}=\pi^{-k}}$, that Δ is surjective, and that $\operatorname{im}\left(1-\varphi_{q}\right) \subset \operatorname{ker} \Delta$, so we now prove that $\operatorname{im}\left(1-\varphi_{q}\right)=\operatorname{ker} \Delta$.
If $f, g \in \mathbf{B}_{\text {rig }, F}^{+} \otimes_{F} \mathrm{D}_{\text {cris }}(V)$ and $f=\left(1-\varphi_{q}\right) g$, then $\psi_{q}(f)=0$ if and only if $\psi_{q}(g)=g$. It is therefore enough to show that if $f \in \mathbf{B}_{\text {rig }, F}^{+} \otimes_{F} \mathrm{D}_{\text {cris }}(V)$ is such that $\Delta(f)=0$, then $f=\left(1-\varphi_{q}\right) g$ for some $g \in \mathbf{B}_{\text {rig }, F}^{+} \otimes_{F} \mathrm{D}_{\text {cris }}(V)$.

The map 1- $\varphi_{q}: T^{h+1} \mathbf{B}_{\text {rig }, F}^{+} \otimes_{F} \mathrm{D}_{\text {cris }}(V) \rightarrow T^{h+1} \mathbf{B}_{\text {rig }, F}^{+} \otimes_{F} \mathrm{D}_{\text {cris }}(V)$ is bijective because the slopes of φ_{q} on $T^{h+1} \mathbf{B}_{\text {rig }, F}^{+} \otimes_{F} D$ are >0. This implies that $1-\varphi_{q}$ induces a sequence

$$
\begin{aligned}
0 \rightarrow \oplus_{k=0}^{h} t_{\pi}^{k} \mathrm{D}_{\text {cris }}(V)^{\varphi_{q}=\pi^{-k}} \rightarrow & \frac{\mathbf{B}_{\text {rig }, F}^{+} \otimes_{F} \mathrm{D}_{\text {cris }}(V)}{T^{h+1} \mathbf{B}_{\text {rig }, F}^{+} \otimes_{F} \mathrm{D}_{\text {cris }}(V)} \stackrel{\overline{1-\varphi_{q}}}{\longrightarrow} \\
& \frac{\mathbf{B}_{\text {rig }, F}^{+} \otimes_{F} \mathrm{D}_{\text {cris }}(V)}{T^{h+1} \mathbf{B}_{\text {rig }, F}^{+} \otimes_{F} \mathrm{D}_{\text {cris }}(V)} \stackrel{\Delta}{\longrightarrow} \oplus_{k=0}^{h} \frac{\mathrm{D}_{\text {cris }}(V)}{1-\pi^{k} \varphi_{q}}
\end{aligned}
$$

We have $\operatorname{ker}\left(\overline{1-\varphi_{q}}\right)=\oplus_{k=0}^{h} t_{\pi}^{k} \mathrm{D}_{\text {cris }}(V)^{\varphi_{q}=\pi^{-k}}$ and by comparing dimensions, we see that $\operatorname{coker}\left(\overline{1-\varphi_{q}}\right) \stackrel{k=0}{=} \oplus_{k=0}^{h} \mathrm{D}_{\text {cris }}(V) /\left(1-\pi^{k} \varphi_{q}\right)$. This and the bijectivity of $1-\varphi_{q}$ on $T^{h+1} \mathbf{B}_{\text {rig }, F}^{+} \otimes_{F} \mathrm{D}_{\text {cris }}(V)$ imply the claim.

If $f \in\left(\left(\mathbf{B}_{\text {rig }, F}^{+}\right)^{\psi_{q}=0} \otimes_{F} \mathrm{D}_{\text {cris }}(V)\right)^{\Delta=0}$, then by lemma 3.5.1 there exists $y \in$ $\left(\mathbf{B}_{\text {rig }, F}^{+} \otimes_{F} \mathrm{D}_{\text {cris }}(V)\right)^{\psi_{q}=1}$ such that $f=\left(1-\varphi_{q}\right) y$. Since $\nabla_{h-1} \circ \cdots \circ \nabla_{0}$ kills $\oplus_{k=0}^{h-1} t_{\pi}^{k} \mathrm{D}_{\text {cris }}(V)^{\varphi_{q}=\pi^{-k}}$ we see that $\nabla_{h-1} \circ \cdots \circ \nabla_{0}(y)$ does not depend upon the choice of such a y (unless $\mathrm{D}_{\text {cris }}(V)^{\varphi_{q}=\pi^{-h}} \neq 0$).
Definition 3.5.2. Let $h \geqslant 1$ be such that $\operatorname{Fil}^{-h} \mathrm{D}_{\text {cris }}(V)=\mathrm{D}_{\text {cris }}(V)$ and such that $\mathrm{D}_{\text {cris }}(V)^{\varphi_{q}=\pi^{-h}}=0$. We deduce from the above construction a welldefined map:

$$
\Omega_{V, h}:\left(\left(\mathbf{B}_{\mathrm{rig}, F}^{+}\right)^{\psi_{q}=0} \otimes_{F} \mathrm{D}_{\text {cris }}(V)\right)^{\Delta=0} \rightarrow \mathrm{D}_{\mathrm{rig}}^{\dagger}(V)^{\psi_{q}=1}
$$

given by $\Omega_{V, h}(f)=\nabla_{h-1} \circ \cdots \circ \nabla_{0}(y)$ where the element $y \in\left(\mathbf{B}_{\text {rig }, F}^{+} \otimes_{F}\right.$ $\left.\mathrm{D}_{\text {cris }}(V)\right)^{\psi_{q}=1}$ is such that $f=\left(1-\varphi_{q}\right) y$ and is provided by lemma 3.5.1. If $\mathrm{D}_{\text {cris }}(V)^{\varphi_{q}=\pi^{-h}} \neq 0$, we get a map

$$
\Omega_{V, h}:\left(\left(\mathbf{B}_{\mathrm{rig}, F}^{+}\right)^{\psi_{q}=0} \otimes_{F} \mathrm{D}_{\text {cris }}(V)\right)^{\Delta=0} \rightarrow \mathrm{D}_{\mathrm{rig}}^{\dagger}(V)^{\psi_{q}=1} / V^{G_{F}=\chi_{\pi}^{h}} .
$$

Let u be a basis of $F\left(\chi_{\pi}\right)$ as above, and let $e_{j}=u^{\otimes j}$ if $j \in \mathbf{Z}$.
Theorem 3.5.3. Take $y \in\left(\mathbf{B}_{\text {rig }, F}^{+} \otimes_{F} \mathrm{D}_{\text {cris }}(V)\right)^{\psi_{q}=1}$ and let $h \geqslant 1$ be such that $\operatorname{Fil}^{-h} \mathrm{D}_{\text {cris }}(V)=\mathrm{D}_{\text {cris }}(V)$. Let $f=\left(1-\varphi_{q}\right) y$ so that $f \in\left(\left(\mathbf{B}_{\mathrm{rig}, F}^{+}\right)^{\psi_{q}=0} \otimes_{F}\right.$ $\left.\mathrm{D}_{\text {cris }}(V)\right)^{\Delta=0}$.
If $j \in \mathbf{Z}$ and $h+j \geqslant 1$, then

$$
\begin{aligned}
& h_{F_{n}, V\left(\chi_{\pi}^{j}\right)}^{1}\left(\Omega_{V, h}(f) \otimes e_{j}\right)=(-1)^{h+j-1}(h+j-1)!\times \\
& \qquad \begin{cases}\exp _{F_{n}, V\left(\chi_{\pi}^{j}\right)}\left(q^{-n} \partial_{V\left(\chi_{\pi}^{j}\right)}\left(\varphi_{q}^{-n}\left(\partial^{-j} y \otimes t_{\pi}^{-j} e_{j}\right)\right)\right) & \text { if } n \geqslant 1 \\
\left.\exp _{F, V\left(\chi_{\pi}^{j}\right)}\left(1-q^{-1} \varphi_{q}^{-1}\right) \partial_{V\left(\chi_{\pi}^{j}\right)}\left(\partial^{-j} y \otimes t_{\pi}^{-j} e_{j}\right)\right) & \text { if } n=0\end{cases}
\end{aligned}
$$

If $j \in \mathbf{Z}$ and $h+j \leqslant 0$, then

$$
\begin{aligned}
& \exp _{F_{n}, V^{*}(1-j)}^{*}\left(h_{F_{n}, V\left(\chi_{\pi}^{j}\right)}^{1}\left(\Omega_{V, h}(f) \otimes e_{j}\right)\right)= \\
& \quad \frac{1}{(-h-j)!} \begin{cases}q^{-n} \partial_{V\left(\chi_{\pi}^{j}\right)}\left(\varphi_{q}^{-n}\left(\partial^{-j} y \otimes t_{\pi}^{-j} e_{j}\right)\right) & \text { if } n \geqslant 1 \\
\left(1-q^{-1} \varphi_{q}^{-1}\right) \partial_{V\left(\chi_{\pi}^{j}\right)}\left(\partial^{-j} y \otimes t_{\pi}^{-j} e_{j}\right) & \text { if } n=0\end{cases}
\end{aligned}
$$

Proof. If $h+j \geqslant 1$, the following diagram is commutative:

$$
\begin{aligned}
& \mathrm{D}_{\text {rig }}^{\dagger}(V)^{\psi_{q}=1} \quad \xrightarrow{\otimes e_{j}} \quad \mathrm{D}_{\text {rig }}^{\dagger}\left(V\left(\chi_{\pi}^{j}\right)\right)^{\psi_{q}=1} \\
& \nabla_{h-1} 0 \cdots \circ \nabla_{0} \uparrow \quad \nabla_{h+j-1} 0 \cdots \circ \nabla_{0} \uparrow \\
& \left(\mathbf{B}_{\text {rig }, F}^{+} \otimes_{F} \mathrm{D}_{\text {cris }}(V)\right)^{\psi_{q}=1} \xrightarrow{\partial^{-j} \otimes t^{-j} e_{j}}\left(\mathbf{B}_{\text {rig }, F}^{+} \otimes_{F} \mathrm{D}_{\text {cris }}\left(V\left(\chi_{\pi}^{j}\right)\right)\right)^{\psi_{q}=1},
\end{aligned}
$$

and the theorem is a straightforward consequence of theorem 3.3.2 applied to $\partial^{-j} y \otimes t^{-j} e_{j}, h+j$ and $V\left(\chi_{\pi}^{j}\right)$ (which are the j-th twists of y, h and V). If $h+j \leqslant 0$, and $\Gamma_{F_{n}}$ is torsion free, then theorem 3.3.1 shows that

$$
\begin{aligned}
& \exp _{F_{n}, V^{*}(1-j)}^{*}\left(h_{F_{n}, V\left(\chi_{\pi}^{j}\right)}^{1}\left(\nabla_{h-1} \circ \cdots \circ \nabla_{0}(y) \otimes e_{j}\right)\right) \\
&=q^{-n} \partial_{V\left(\chi_{\pi}^{j}\right)}\left(\varphi_{q}^{-n}\left(\nabla_{h-1} \circ \cdots \circ \nabla_{0}(y) \otimes e_{j}\right)\right)
\end{aligned}
$$

in $\mathrm{D}_{\text {cris }}\left(V\left(\chi_{\pi}^{j}\right)\right)$, and a short computation involving Taylor series shows that

$$
\partial_{V\left(\chi_{\pi}^{j}\right)}\left(\varphi_{q}^{-n}\left(\nabla_{h-1} \circ \cdots \circ \nabla_{0}(y) \otimes e_{j}\right)\right)=(-h-j)!^{-1} \partial_{V\left(\chi_{\pi}^{j}\right)}\left(\varphi_{q}^{-n}\left(\partial^{-j} y \otimes t_{\pi}^{-j} e_{j}\right)\right) .
$$

To get the other n, we corestrict.

Corollary 3.5.4. We have $\Omega_{V, h}(x) \otimes e_{j}=\Omega_{V\left(\chi_{\pi}^{j}\right), h+j}\left(\partial^{-j} x \otimes t_{\pi}^{-j} e_{j}\right)$ and $\nabla_{h} \circ \Omega_{V, h}(x)=\Omega_{V, h+1}(x)$.

Remark 3.5.5. The notation ∂^{-j} is somewhat abusive if $j \geqslant 1$ as ∂ is not injective on $\mathbf{B}_{\text {rig, } F}^{+}$(it is surjective as can be seen by "integrating" directly a power series) but the reader can check that this leads to no ambiguity in the formulas of theorem 3.5.3 above.

If $F=\mathbf{Q}_{p}$ and $\pi=p$, definition 3.5.2 and theorem 3.5.3 are given in \S II. 5 of [Ber03]. They imply that $\Omega_{V, h}$ coïncides with Perrin-Riou's exponential map (see theorem 3.2.3 of [PR94]) after making suitable identifications (theorem II. 13 of [Ber03]).

Our definition therefore generalizes Perrin-Riou's exponential map to the F analytic setting. We hope to use the results of [Fou05] and [Fou08] to relate our constructions to suitable Iwasawa algebras as in the cyclotomic case.

References

[Ber02] L. BERGER - "Représentations p-adiques et équations différentielles", Invent. Math. 148 (2002), no. 2, p. 219-284.
[Ber03] L. Berger - "Bloch and Kato's exponential map: three explicit formulas", Doc. Math. (2003), no. Extra Vol., p. 99-129 (electronic), Kazuya Kato's fiftieth birthday.
[Ber08] L. BERGER - "Construction de (φ, Γ)-modules: représentations p adiques et B-paires", Algebra Number Theory 2 (2008), no. 1, p. 91120.
[Ber16] L. BERGER - "Multivariable (φ, Γ)-modules and locally analytic vectors", Duke Math. J. 165 (2016), no. 18, p. 3567-3595.
[BK90] S. Bloch \& K. Kato - "L-functions and Tamagawa numbers of motives", in The Grothendieck Festschrift, Vol. I, Progr. Math., vol. 86, Birkhäuser Boston, Boston, MA, 1990, p. 333-400.
[CC98] F. Cherbonnier \& P. Colmez - "Représentations p-adiques surconvergentes", Invent. Math. 133 (1998), no. 3, p. 581-611.
[CC99] F. Cherbonnier \& P. Colmez - "Théorie d'Iwasawa des représentations p-adiques d'un corps local", J. Amer. Math. Soc. 12 (1999), no. 1, p. 241-268.
[Col79] R. F. Coleman - "Division values in local fields", Invent. Math. 53 (1979), no. 2, p. 91-116.
[Col02] P. Colmez - "Espaces de Banach de dimension finie", J. Inst. Math. Jussieu 1 (2002), no. 3, p. 331-439.
[Col16] P. Colmez - "Représentations localement analytiques de $\mathrm{GL}_{2}\left(\mathbf{Q}_{p}\right)$ et (φ, Γ)-modules", Represent. Theory 20 (2016), p. 187-248.
[Fon90] J.-M. Fontaine - "Représentations p-adiques des corps locaux. I", in The Grothendieck Festschrift, Vol. II, Progr. Math., vol. 87, Birkhäuser Boston, Boston, MA, 1990, p. 249-309.
[Fon94] J.-M. Fontaine - "Le corps des périodes p-adiques", Astérisque (1994), no. 223, p. 59-111, With an appendix by Pierre Colmez, Périodes p-adiques (Bures-sur-Yvette, 1988).
[Fou05] L. Fourquaux - "Logarithme de Perrin-Riou pour des extensions associées à un groupe de Lubin-Tate", Thèse, Université Paris 6, 2005.
[Fou08] L. Fourquaux - "Logarithme de Perrin-Riou pour des extensions associées à un groupe de Lubin-Tate", preprint, 2008.
[FW79a] J.-M. Fontaine \& J.-P. Wintenberger - "Extensions algébriques et corps des normes des extensions APF des corps locaux", C. R. Acad. Sci. Paris Sér. A-B 288 (1979), no. 8, p. A441-A444.
[FW79b] J.-M. Fontaine \& J.-P. Wintenberger - "Le "corps des normes" de certaines extensions algébriques de corps locaux", C. R. Acad. Sci. Paris Sér. A-B 288 (1979), no. 6, p. A367-A370.
[FX13] L. Fourquaux \& B. XIE - "Triangulable \mathcal{O}_{F}-analytic $\left(\varphi_{q}, \Gamma\right)$ modules of rank 2", Algebra Number Theory 7 (2013), no. 10, p. 25452592.
[Iwa86] K. Iwasawa - Local class field theory, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1986, Oxford Mathematical Monographs.
[Kat93] K. Kato - "Lectures on the approach to Iwasawa theory for HasseWeil L-functions via B_{dR}. I", in Arithmetic algebraic geometry (Trento, 1991), Lecture Notes in Math., vol. 1553, Springer, Berlin, 1993, p. 50-163.
[KR09] M. Kisin \& W. REN - "Galois representations and Lubin-Tate groups", Doc. Math. 14 (2009), p. 441-461.
[Laz62] M. Lazard - "Les zéros des fonctions analytiques d'une variable sur un corps valué complet", Inst. Hautes Études Sci. Publ. Math. (1962), no. 14, p. 47-75.
[LT65] J. Lubin \& J. Tate - "Formal complex multiplication in local fields", Ann. of Math. (2) 81 (1965), p. 380-387.
[Mat95] S. Matsuda - "Local indices of p-adic differential operators corresponding to Artin-Schreier-Witt coverings", Duke Math. J. 77 (1995), no. 3 , p. 607-625.
[PR94] B. Perrin-Riou - "Théorie d'Iwasawa des représentations p-adiques sur un corps local", Invent. Math. 115 (1994), no. 1, p. 81-161, With an appendix by Jean-Marc Fontaine.
[Ser68] J.-P. Serre - Corps locaux, Hermann, Paris, 1968, Deuxième édition, Publications de l'Université de Nancago, No. VIII.
[Ser94] J.-P. Serre - Cohomologie galoisienne, fifth éd., Lecture Notes in Mathematics, vol. 5, Springer-Verlag, Berlin, 1994.
[SV17] P. Schneider \& O. Venjakob - "Coates-Wiles homomorphisms and Iwasawa cohomology for Lubin-Tate extensions", in Elliptic Curves, Modular Forms and Iwasawa Theory. In Honour of John H. Coates' 70th Birthday, Springer Verlag, 2017.
[Tam15] G. Tamme - "On an analytic version of Lazard's isomorphism", Algebra Number Theory 9 (2015), no. 4, p. 937-956.
[Tsu04] T. TsujI - "Explicit reciprocity law and formal moduli for LubinTate formal groups", J. Reine Angew. Math. 569 (2004), p. 103-173.
[Win83] J.-P. Wintenberger - "Le corps des normes de certaines extensions infinies de corps locaux; applications", Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 1, p. 59-89.

Laurent Berger	Lionel Fourquaux
UMPA, ENS de Lyon	IRMAR
UMR 5669 du CNRS	UMR 6625 du CNRS
Université de Lyon	Université Rennes 1

