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Abstract. Let K be a finite extension of Qp. We use the the-
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for certain representations V of Gal(Qp/K). If in addition V is crys-
talline, we describe these classes explicitly using Bloch-Kato’s expo-
nential maps. This allows us to generalize Perrin-Riou’s period map
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Introduction

Let K be a finite extension of Qp and let GK = Gal(Qp/K). In this article, we
use the theory of (ϕ,Γ)-modules in the Lubin-Tate setting to construct some
classes in H1(K,V ), for “F -analytic” representations V of GK . If in addition
V is crystalline, we describe these classes explicitly using Bloch and Kato’s
exponential maps and generalize Perrin-Riou’s period map to the Lubin-Tate
setting.
We now describe our constructions in more detail, and introduce some notation
which is used throughout this paper. Let F be a finite Galois extension of Qp,
with ring of integers OF and maximal ideal mF , let π be a uniformizer of OF
and let kF = OF /π and q = Card(kF ). Let LT be the Lubin-Tate formal group
[LT65] attached to π. We fix a coordinate T on LT, so that for each a ∈ OF
the multiplication-by-a map is given by a power series [a](T ) = aT + O(T 2) ∈
OF [[T ]]. Let logLT(T ) denote the attached logarithm and expLT(T ) its inverse
for the composition. Let χπ : GF → O

×
F be the attached Lubin-Tate character.

If K is a finite extension of F , let Kn = K(LT[πn]) and K∞ = ∪n>1Kn and
ΓK = Gal(K∞/K).
Let AF denote the set of power series

∑
i∈Z aiT

i with ai ∈ OF such that
ai → 0 as i → −∞ and let BF = AF [1/π], which is a field. It is endowed
with a Frobenius map ϕq : f(T ) 7→ f([π](T )) and an action of ΓF given by
g : f(T ) 7→ f([χπ(g)](T )). If K is a finite extension of F , the theory of the field
of norms ([FW79a, FW79b] and [Win83]) provides us with a finite unramified
extension BK of BF . Recall [Fon90] that a (ϕ,Γ)-module over BK is a finite
dimensional BK-vector space endowed with a compatible Frobenius map ϕq
and action of ΓK . We say that a (ϕ,Γ)-module over BK is étale if it has a
basis in which Mat(ϕq) ∈ GLd(AK). The relevance of these objects is explained
by the result below (see [Fon90], [KR09]).

Theorem. There is an equivalence of categories between the category of F -
linear representations of GK and the category of étale (ϕ,Γ)-modules over BK .

Let B
†
F denote the set of power series f(T ) ∈ BF that have a non-empty

domain of convergence. The theory of the field of norms again provides us
[Mat95] with a finite extension B

†
K of B

†
F . We say that a (ϕ,Γ)-module over

BK is overconvergent if it has a basis in which Mat(ϕq) ∈ GLd(B
†
K) and

Mat(g) ∈ GLd(B
†
K) for all g ∈ ΓK . If F = Qp, every étale (ϕ,Γ)-module over

BK is overconvergent [CC98]. If F 6= Qp, this is no longer the case [FX13].
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Let us say that an F -linear representation V of GK is F -analytic if for all
embeddings τ : F → Qp, with τ 6= Id, the representation Cp⊗

τ
F V is trivial (as

a semilinear Cp-representation of GK). The following result is known [Ber16].

Theorem. If V is an F -analytic representation of GK , it is overconvergent.

Another source of overconvergent representations of GK is the set of repre-
sentations that factor through ΓK (see §1.3). Our first result is the following
(theorem 1.3.1).

Theorem A. If V is an overconvergent representation of GK , there exists an
F -analytic representation Xan of GK , a representation YΓ of GK that factors
through ΓK , and a surjective GK-equivariant map Xan ⊗F YΓ → V .

We next focus on F -analytic representations. Let B
†
rig,F denote the Robba

ring, which is the ring of power series f(T ) =
∑

i∈Z aiT
i with ai ∈ F such

that there exists ρ < 1 such that f(T ) converges for ρ < |T | < 1. We have

B
†
F ⊂ B

†
rig,F . The theory of the field of norms again provides us with a finite

extension B
†
rig,K of B

†
rig,F . If V is an F -linear representation of GK , let D(V )

denote the (ϕ,Γ)-module over BK attached to V . If V is overconvergent, there

is a well defined (ϕ,Γ)-module D†(V ) over B
†
K attached to V , such that D(V ) =

BK ⊗B
†

K
D†(V ). We call D†

rig(V ) the (ϕ,Γ)-module over B
†
rig,K attached to V ,

given by D†
rig(V ) = B

†
rig,K ⊗B

†

K
D†(V ).

The ring B
†
rig,K is a free ϕq(B

†
rig,K)-module of degree q. This allows us to

define [FX13] a map ψq : B
†
rig,K → B

†
rig,K that is a ΓK-equivariant left inverse

of ϕq, and likewise, if V is an overconvergent representation of GK , a map

ψq : D†
rig(V )→ D†

rig(V ) that is a ΓK-equivariant left inverse of ϕq.
The main result of this article is the construction, for an F -analytic represen-
tation V of GK , of a collection of maps

h1
Kn,V : D†

rig(V )ψq=1 → H1(Kn, V ),

having a certain number of properties. For example, these maps are compatible
with corestriction: corKn+1/Kn

◦ h1
Kn+1,V

= h1
Kn,V

if n > 1. Another property

is that if F = Qp and π = p (the cyclotomic case), these maps coïncide with
those constructed in [CC99] (and generalized in [Ber03]).
If now K = F and V is a crystalline F -analytic representation of GF , we give
explicit formulas for h1

Fn,V
using Bloch and Kato’s exponential maps [BK90].

Let V be as above, let Dcris(V ) = (Bcris,F ⊗F V )GF (note that because the ⊗ is
over F , this is the identity component of the usual Dcris) and let tπ = logLT(T ).
Let {un}n>0 be a compatible sequence of primitive πn-torsion points of LT.
Let B+

rig,F denote the positive part of the Robba ring, namely the ring of

power series f(T ) =
∑

i>0 aiT
i with ai ∈ F such that f(T ) converges for

0 6 |T | < 1. If n > 0, we have a map ϕ−n
q : B+

rig,F → Fn[[tπ ]] given by
f(T ) 7→ f(un ⊕ expLT(tπ/π

n)). Using the results of [KR09], we prove that
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there is a natural (ϕ,Γ)-equivariant inclusion D†
rig(V )ψq=1 → B+

rig,F [1/tπ] ⊗F

Dcris(V ). This provides us, by composition, with maps ϕ−n
q : D†

rig(V )ψq=1 →

Fn((tπ)) ⊗F Dcris(V ) and ∂V ◦ ϕ
−n
q : D†

rig(V )ψq=1 → Fn ⊗F Dcris(V ) where ∂V
is the “coefficient of t0π” map. Recall finally that we have two maps, Bloch
and Kato’s exponential expFn,V : Fn ⊗F Dcris(V ) → H1(Fn, V ) and its dual
exp∗

Fn,V ∗(1) H1(Fn, V )→ Fn⊗F Dcris(V ) (the subscript V ∗(1) denotes the dual

of V twisted by the cyclotomic character, but is merely a notation here). The
first result is as follows (theorem 3.3.1).

Theorem B. If V is as above and y ∈ D†
rig(V )ψq=1, then

exp∗
Fn,V ∗(1)(h

1
Fn,V (y)) =

{
q−n∂V (ϕ−n

q (y)) if n > 1

(1− q−1ϕ−1
q )∂V (y) if n = 0.

Let ∇ = tπ · d/dtπ, let ∇i = ∇ − i if i ∈ Z and let h > 1 be such that
Fil−hDcris(V ) = Dcris(V ). We prove that if y ∈ (B+

rig,F ⊗F Dcris(V ))ψq=1, then

∇h−1 ◦ · · · ◦ ∇0(y) ∈ D†
rig(V )ψq=1, and we have the following result (theorem

3.3.2).

Theorem C. If V is as above and y ∈ (B+
rig,F ⊗F Dcris(V ))ψq=1, then

h1
Fn,V (∇h−1 ◦ · · · ◦ ∇0(y)) =

(−1)h−1(h− 1)!

{
expFn,V (q−n∂V (ϕ−n

q (y))) if n > 1

expF,V ((1 − q−1ϕ−1
q )∂V (y)) if n = 0.

Using theorems B and C, we give in §3.5 a Lubin-Tate analogue of Perrin-
Riou’s “big exponential map” [PR94] using the same method as that of [Ber03]
which treats the cyclotomic case. It will be interesting to compare this big
exponential map with the “big logarithms” constructed in [Fou05] and [Fou08].
It is also instructive to specialize theorem C to the case V = F (χπ), which cor-
responds to “Lubin-Tate” Kummer theory. Recall that if L is a finite extension
of F , Kummer theory gives us a map δ : LT(mL) → H1(L,F (χπ)). When L
varies among the Fn, these maps are compatible: the diagram

LT(mFn+1)
δ

−−−−→ H1(Fn+1, V )

TrLT
Fn+1/Fn

y
ycorFn+1/Fn

LT(mFn)
δ

−−−−→ H1(Fn, V )

commutes. Let S denote the set of sequences {xn}n>1 with xn ∈ mFn and

such that TrLT
Fn+1/Fn

(xn+1) = [q/π](xn) for n > 1. We prove that S is big,
in the sense that (if F 6= Qp) the projection on the n-th coordinate map
S⊗OF F → Fn is onto (this would not be the case if we did not have the factor
q/π in the definition of S). Furthermore, we prove that if x ∈ S, there exists
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a power series f(T ) ∈ (B+
rig,F )ψq=1/π such that f(un) = logLT(xn) for n > 1.

We have d/dtπ(f(T )) ∈ (B+
rig,F )ψq=1 and the following holds (theorem 3.4.5),

where u is the basis of F (χπ) corresponding to the choice of {un}n>0.

Theorem D. We have h1
Fn,F (χπ)(d/dtπ(f(T )) · u) = (q/π)−n · δ(xn) for all

n > 1.

In the cyclotomic case, there is [Col79] a power series Colx(T ) such that
Colx(un) = xn for n > 1. We then have f(T ) = log Colx(T ), and theorem D
is proved in [CC99]. In the general Lubin-Tate case, we do not know whether
there is a “Coleman power series” of which f(T ) would be the logLT. This
seems like a non-trivial question.
It would be interesting to compare our results with those of [SV17]. The
authors of [SV17] also construct some classes in H1(K,V ), but start from the
space D(V (χπ · χ

−1
cyc))

ψq=π/q. In another direction, is it possible to extend our
constructions to representations of the form V ⊗F YΓ with V F -analytic and
YΓ factoring through ΓK , and in particular recover the explicit reciprocity law
of [Tsu04]?

1 Lubin-Tate (ϕ,Γ)-modules

In this chapter, we recall the theory of Lubin-Tate (ϕ,Γ)-modules and classify
overconvergent representations.

1.1 Notation

Let F be a finite Galois extension of Qp with ring of integers OF , and residue
field kF . Let π be a uniformizer of OF . Let d = [F : Qp] and e be the
ramification index of F/Qp. Let q = pf be the cardinality of kF and let
F0 = W (kF )[1/p] be the maximal unramified extension of Qp inside F . Let σ
denote the absolute Frobenius map on F0.
Let LT be the Lubin-Tate formal OF -module attached to π and choose a co-
ordinate T for the formal group law, such that the action of π on LT is given
by [π](T ) = T q + πT . If a ∈ OF , let [a](T ) denote the power series that
gives the action of a on LT. Let logLT(T ) denote the attached logarithm and
expLT(T ) its inverse. If K is a finite extension of F , let Kn = K(LT[πn]) and
let K∞ = ∪n>1Kn. Let HK = Gal(Qp/K∞) and ΓK = Gal(K∞/K). By

Lubin-Tate theory (see [LT65]), ΓK is isomorphic to an open subgroup of O×
F

via the Lubin-Tate character χπ : ΓK → O
×
F .

Let n(K) > 1 be such that if n > n(K), then χπ : ΓKn → 1 + πnOF is an
isomorphism, and logp : 1 + πnOF → πnOF is also an isomorphism.
Since logLT(T ) converges on the open unit disk, it can be seen as an element
of B+

rig,F and we denote it by tπ. Recall that g(tπ) = χπ(g) · tπ if g ∈ GK and
that ϕq(tπ) = π · tπ. Let ∂ = d/dtπ so that ∂f(T ) = a(T ) · df(T )/dT , where
a(T ) = (d logLT(T )/dT )−1 ∈ OF [[T ]]×. We have ∂ ◦ g = χπ(g) · g ◦ ∂ if g ∈ ΓK
and ∂ ◦ ϕq = π · ϕq ◦ ∂.
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Recall that B
†
rig,F denotes the Robba ring, the ring of power series f(T ) =∑

i∈Z aiT
i with ai ∈ F such that there exists ρ < 1 such that f(T ) converges

for ρ < |T | < 1. We have B
†
F ⊂ B

†
rig,F and by writing a power series as the

sum of its plus part and its minus part, we get B
†
rig,F = B+

rig,F + B
†
F .

Each ring R ∈ {B†
rig,F ,B

+
rig,F ,B

†
F ,BF } is equipped with a Frobenius map

ϕq : f(T ) 7→ f([π](T )) and an action of ΓF given by g : f(T ) 7→ f([χπ(g)](T )).
Moreover, the ring R is a free ϕq(R)-module of rank q, and we define ψq : R→
R by the formula ϕq(ψq(f)) = 1/q ·TrR/ϕq(R)(f). The map ψq has the following
properties (see for instance §2A of [FX13] and §1.2.3 of [Col16]): ψq(x·ϕq(y)) =
ψq(x)·y, the map ψq commutes with the action of ΓF , ∂◦ψq = π−1 ·ψq◦∂ and if
f(T ) ∈ B+

rig,F then ϕq◦ψq(f) = 1/q ·
∑
z∈LT[π] f(T⊕z). If M is a free R-module

with a semilinear Frobenius map ϕq such that Mat(ϕq) is invertible, then any
m ∈M can be written as m =

∑
i ri ·ϕq(mi) with ri ∈ R and mi ∈M and the

map ψq : m 7→
∑

i ψq(ri) ·mi is then well-defined. This applies in particular to

the rings B
†
rig,K , B+

rig,K , B
†
K , BK and to the (ϕ,Γ)-modules over them.

1.2 Construction of Lubin-Tate (ϕ,Γ)-modules

A (ϕ,Γ)-module over BK (or over B
†
K or over B

†
rig,K) is a finite dimensional

BK-vector space D (or a finite dimensional B
†
K-vector space or a free B

†
rig,K-

module of finite rank respectively), along with a semilinear Frobenius map ϕq
whose matrix (in some basis) is invertible, and a continuous, semilinear action
of ΓK that commutes with ϕq.
We say that a (ϕ,Γ)-module D over BK is étale if D has a basis in which
Mat(ϕq) ∈ GLd(AK). Let B be the p-adic completion of ∪M/FBM where M
runs through the finite extensions of F . By specializing the constructions of
[Fon90], Kisin and Ren prove the following theorem (theorem 1.6 of [KR09]).

Theorem 1.2.1. The functors V 7→ D(V ) = (B ⊗F V )HK and D 7→ (B ⊗BK

D)ϕq=1 give rise to mutually inverse equivalences of categories between the
category of F -linear representations of GK and the category of étale (ϕ,Γ)-
modules over BK .

We say that a (ϕ,Γ)-module D is overconvergent if there exists a basis of D in

which the matrices of ϕq and of all g ∈ ΓK have entries in B
†
K . This basis then

generates a B
†
K-vector space D† which is canonically attached to D. If V is a p-

adic representation, we say that it is overconvergent if D(V ) is overconvergent,

and then D†(V ) denotes the corresponding (ϕ,Γ)-module over B
†
K . The main

result of [CC98] states that if F = Qp, then every étale (ϕ,Γ)-module over
BK is overconvergent (the proof is given for π = p, but it is easy to see that
it works for any uniformizer). If F 6= Qp, some simple examples (see [FX13])
show that this is no longer the case.
Recall that an F -linear representation of GK is F -analytic if Cp⊗

τ
FV is the triv-

ial Cp-semilinear representation of GK for all embeddings τ 6= Id ∈ Gal(F/Qp).
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This definition is the natural generalization of Kisin and Ren’s notion of F -
crystalline representation. Kisin and Ren then show that if K ⊂ F∞, and if V
is a crystalline F -analytic representation of GK , the (ϕ,Γ)-module attached to
V is overconvergent (see §3.3 of [KR09]; they actually prove a stronger result,
namely that the (ϕ,Γ)-module attached to such a V is of finite height).

If D†
rig is a (ϕ,Γ)-module over B

†
rig,K , and if g ∈ ΓK is close enough to 1,

then by standard arguments (see §2.1 of [KR09] or §1C of [FX13]), the series

log(g) = log(1 + (g − 1)) gives rise to a differential operator ∇g : D†
rig → D†

rig.
The map v 7→ exp(v) is defined on a neighborhood of 0 in Lie ΓK ; the map

Lie ΓK → End(D†
rig) arising from v 7→ ∇exp(v) is Qp-linear, and we say that

D†
rig is F -analytic if this map is F -linear (see §2.1 of [KR09] and §1.3 of [FX13]).

If V is an overconvergent representation of GK , we let D†
rig(V ) = B

†
rig,K ⊗B

†

K

D†(V ). The following is theorem D of [Ber16].

Theorem 1.2.2. The functor V 7→ D†
rig(V ) gives rise to an equivalence of

categories between the category of F -analytic representations of GK and the
category of étale F -analytic Lubin-Tate (ϕ,Γ)-modules over B

†
rig,K .

In general, representations of GK that are not F -analytic are not overconver-
gent (see §1.3), and the analogue of theorem 1.2.2 without the F -analyticity
condition on both sides does not hold.

1.3 Overconvergent Lubin-Tate (ϕ,Γ)-modules

By theorem 1.2.2, there is an equivalence of categories between the category of
F -analytic representations of GK and the category of étale F -analytic Lubin-
Tate (ϕ,Γ)-modules over B

†
rig,K . The purpose of this section is to prove a

conjecture of Colmez that describes all overconvergent representations of GK .
Any representation V of GK that factors through ΓK is overconvergent, since
HK acts trivially on V so that D(V ) = BK⊗F V and therefore D(V ) has a basis
in which Mat(ϕq) = Id and Mat(g) ∈ GLd(OF ) if g ∈ ΓK . If X is F -analytic
and Y factors through ΓK , X⊗F Y is therefore overconvergent. We prove that
any overconvergent representation of GK is a quotient (and therefore also a
subobject, by dualizing) of some representation of the form X ⊗F Y as above.

Theorem 1.3.1. If V is an overconvergent representation of GK , there exists
an F -analytic representation X of GK , a representation Y of GK that factors
through ΓK , and a surjective GK-equivariant map X ⊗F Y → V .

Proof. Recall (see §3 of [Ber16]) that if r > 0, then inside B
†
rig,K we have

the subring B
†,r
rig,K of elements defined on a fixed annulus whose inner radius

depends on r and whose outer raidus is 1, and that (ϕ,Γ)-modules over B
†
rig,K

can be defined over B
†,r
rig,K if r is large enough, giving us a module D†,r

rig(V ).

We also have rings B
[r;s]
K of elements defined on a closed annulus whose radii

depend on r 6 s. One can think of an element of B
†,r
rig,K as a compatible family
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of elements of {BI
K}I where I runs over a set of closed intervals whose union is

[r; +∞[. In the rest of the proof, we use this principle of glueing objects defined

on closed annuli to get an object on the annulus corresponding to B
†,r
rig,K .

Choose r > 0 large enough such that D†,r
rig(V ) is defined, and s > qr. Let

D[r;s](V ) = B
[r;s]
K ⊗

B
†,r
rig,K

D†,r
rig(V ). If a ∈ OF , and if valp(a) > n for n = n(r, s)

large enough, the series exp(a·∇) converges in the operator norm to an operator
on the Banach space D[r;s](V ). This way, we can define a twisted action of ΓKn

on D[r;s](V ), by the formula h ⋆ x = exp(logp(χπ(h)) · ∇)(x). This action is
now F -analytic by construction.

Since s > qr, the modules D[qmr;qms](V ) for m > 0 are glued together (using

the idea explained above) by ϕq and we get a new action of ΓKn on D†,r
rig (V ) =

D[r;+∞[(V ) and hence on D†
rig(V ). Since ϕq is unchanged, this new (ϕ,Γ)-

module is étale, and therefore corresponds to a representation W of GKn . The
representation W is F -analytic by theorem 1.2.2, and its restriction to HK is
isomorphic to V .

Let X = indGK

GKn
W . By Mackey’s formula, X |HK contains W |HK ≃ V |HK as a

direct summand. The space Y = Hom(indGK

GKn
W,V )HK is therefore a nonzero

representation of ΓK , and there is an element y ∈ Y whose image is V . The
natural map X⊗F Y → V is therefore surjective. Finally, X is F -analytic since
W is F -analytic.

By dualizing, we get the following variant of theorem 1.3.1.

Corollary 1.3.2. If V is an overconvergent representation of GK , there exists
an F -analytic representation X of GK , a representation Y of GK that factors
through ΓK , and an injective GK -equivariant map V → X ⊗F Y .

1.4 Extensions of (ϕ,Γ)-modules

In this section, we prove that there are no non-trivial extensions between an
F -analytic (ϕ,Γ)-module and the twist of an F -analytic (ϕ,Γ)-module by a
character that is not F -analytic. This is not used in the rest of the paper, but
is of independent interest.

If δ : ΓK → O×
F is a continuous character, and g ∈ ΓK , let wδ(g) =

log δ(g)/ logχπ(g). Note that δ is F -analytic if and only if wδ(g) is independent
of g ∈ ΓK .

We define the first cohomology group H1(D) of a (ϕ,Γ)-module D as in §4 of

[FX13]. Let D be a (ϕ,Γ)-module over B
†
rig,K . Let G denote the semigroup

ϕ
Z>0
q × ΓK and let Z1(D) denote the set of continuous functions f : G → D

such that (h− 1)f(g) = (g − 1)f(h) for all g, h ∈ G. Let B1(D) be the subset
of Z1(D) consisting of functions of the form g 7→ (g − 1)y, y ∈ D and let
H1(D) = Z1(D)/B1(D). If g ∈ G and f ∈ Z1, then [h 7→ (g − 1)f(h)] = [h 7→
(h−1)f(g)] ∈ B1. The natural actions of ΓK and ϕq on H1 are therefore trivial.

Documenta Mathematica 22 (2017) 999–1030



Iwasawa Theory and Lubin-Tate (ϕ,Γ)-Modules 1007

If D0 and D1 are two (ϕ,Γ)-modules, then Hom(D1,D0) =

Hom
B

†

rig,K
-mod(D1,D0) is a free B

†
rig,K-module of rank rk(D0) rk(D1) which is

easily seen to be itself a (ϕ,Γ)-module. The space H1(Hom(D1,D0)) classifies
the extensions of D1 by D0. More precisely, if D is such an extension and if
s : D1 → D is a B

†
rig,K-linear map that is a section of the projection D → D1,

then g 7→ s− g(s) is a cocycle on G with values in Hom(D1,D0) (the element
g(s) ∈ Hom(D1,D) being defined by g(s)(g(x)) = g(s(x)) for all g ∈ G and all
x ∈ D1). The class of this cocycle in the quotient H1(Hom(D1,D0)) does not
depend on the choice of the section s, and every such class defines a unique
extension of D1 by D0 up to isomorphism.

Theorem 1.4.1. If D is an F -analytic (ϕ,Γ)-module, and if δ : ΓK → O
×
F is

not locally F -analytic, then H1(D(δ)) = {0}.

Proof. If g ∈ ΓK and x(δ) ∈ D(δ) with x ∈ D, we have

∇g(x(δ)) = ∇(x)(δ) + wδ(g) · x(δ).

If g, h ∈ ΓK , this implies that ∇g(x(δ))−∇h(x(δ)) = (wδ(g)−wδ(h)) ·x(δ). If
f ∈ H1(D(δ)) and g ∈ ΓK , then g(f) = f and therefore∇g(f) = 0. The formula
above shows that if k ∈ ΓK , then ∇g(f(k))−∇h(f(k)) = (wδ(g)−wδ(h))·f(k),
so that 0 = (∇g −∇h)(f) = (wδ(g)−wδ(h)) · f , and therefore f = 0 if δ is not
locally analytic.

2 Analytic cohomology and Iwasawa theory

In this chapter, we explain how to construct classes in the cohomology groups
of F -analytic (ϕ,Γ)-modules. This allows us to define our maps h1

Kn,V
.

2.1 Analytic cohomology

Let G be an F -analytic semigroup and let M be a Fréchet or LF space with a
pro-F -analytic (§2 of [Ber16]) action of G. Recall that this means that we can
write M = lim

−→i
lim
←−j

Mij where Mij is a Banach space with a locally analytic

action of G. A function f : G → M is said to be pro-F -analytic if its image
lies in lim

←−j
Mij for some i and if the corresponding function f : G → Mij is

locally F -analytic for all j.
The analytic cohomology groups Hi

an(G,M) are defined and studied in §4
of [FX13] and §5 of [Col16]. In particular, we have H0

an(G,M) = MG and
H1

an(G,M) = Z1
an(G,M)/B1

an(G,M) where Z1
an(G,M) is the set of pro-F -

analytic functions f : G → M such that (g − 1)f(h) = (h − 1)f(g) for all
g, h ∈ G and B1

an(G,M) is the set of functions of the form g 7→ (g − 1)m.
Let M be a Fréchet space, and write M = lim

←−n
Mn with Mn a Banach space

such that the image of Mn+j in Mn is dense for all j > 0.

Proposition 2.1.1. We have H1
an(G,M) = lim

←−n
H1

an(G,Mn).
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Proof. By definition, we have an exact sequence

0→ B1
an(G,Mn)→ Z1

an(G,Mn)→ H1
an(G,Mn)→ 0.

It is clear that B1
an(G,M) = lim

←−n
B1

an(G,Mn) and that Z1
an(G,M) =

lim
←−n

Z1
an(G,Mn), since these spaces are spaces of functions on G satisfying

certain compatible conditions. The Banach spaces B1
an(G,Mn) satisfy the

Mittag-Leffler condition: B1
an(G,Mn) = Mn/M

G
n and the image of Mn+j in

Mn is dense for all j > 0. This implies that the sequence

0→ lim
←−
n

B1
an(G,Mn)→ lim

←−
n

Z1
an(G,Mn)→ lim

←−
n

H1
an(G,Mn)→ 0

is exact, and the proposition follows.

In this paper, we mainly use the semigroups ΓK , ΓK × Φ where Φ = {ϕnq ,
n ∈ Z>0} and ΓK × Ψ where Ψ = {ψnq , n ∈ Z>0}. The semigroups Φ and Ψ
are discrete and the F -analytic structure comes from the one on ΓK .

Definition 2.1.2. Let G be a compact group and let H be an open subgroup
of G. We have the corestriction map cor : H1

an(H,M) → H1
an(G,M), which

satisfies cor ◦ res = [G : H ]. This map has the following equivalent explicit
descriptions (see §2.5 of [Ser94] and §II.2 of [CC99]). Let X ⊂ G be a set of
representatives of G/H and let f ∈ Z1

an(H,M) be a cocycle.

1. By Shapiro’s lemma, H1
an(H,M) = H1

an(G, indGHM) and cor is the map
induced by i 7→

∑
x∈X x · i(x

−1);

2. if M ⊂ N where N is a G-module and if there exists n ∈ N such that
f(h) = (h− 1)(n), then cor(f)(g) = (g − 1)(

∑
x∈X xn);

3. if g ∈ G, let τg : X → X be the permutation defined by τg(x)H = gxH .
We have cor(f)(g) =

∑
x∈X τg(x) · f(τg(x)−1gx).

If g ∈ ΓK , let ℓ(g) = logp χπ(g). If M is a Fréchet space with a pro-F -analytic

action of ΓK and if g ∈ ΓK is such that χπ(g) ∈ 1 + 2pOF , then limn→∞(gp
n

−
1)/(pnℓ(g)) converges to an operator∇ on M , which is independent of g thanks
to the F -analyticity assumption. If c : ΓK →M is an F -analytic map, let c′(1)
denote its derivative at the identity.

Proposition 2.1.3. If M is a Fréchet space with a pro-F -analytic action of
ΓK , the map c 7→ c′(1) induces an isomorphism H1

an(ΓK ,M) = (M/∇M)ΓK ,
under which corL/K corresponds to TrL/K .

Proof. Assume for the time being that M is a Banach space. We first show that
the map induced by c 7→ c′(1) is well-defined and lands in (M/∇M)ΓK . The
map c 7→ c′(1) from Z1

an(ΓK ,M)→M is well-defined, and if c(g) = (g − 1)m,
then c′(1) = ∇m so that there is a well-defined map H1

an(ΓK ,M)→M/∇M . If
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h ∈ ΓK then (h−1)c′(1) = limg→1(h−1)c(g)/ℓ(g) = limg→1(g−1)c(h)/ℓ(g) =
∇c(h) so that the image of c 7→ c′(1) lies in (M/∇M)ΓK .
The formula for the corestriction follows from the explicit descriptions above:
if h ∈ ΓL then τh(x) = x so that cor(c)(h) =

∑
x∈X x · c(h) and

cor(c)′(1) = lim
h→1

cor(c)(h)/ℓ(h) =
∑

x∈X

x · c′(1) = TrL/K(c′(1)).

We now show that the map is injective. If c′(1) = ∇m, then the derivative of
g 7→ c(g)− (g − 1)m at g = 1 is zero and hence c(g) = (g − 1)m on some open
subgroup ΓL of ΓK and c = [L : K]−1corL/K ◦ resK/L(c) = 0.

We finally show that the map is surjective. Suppose now that y ∈ (M/∇M)ΓK .
The formula g 7→ (exp(ℓ(g)∇)−1)/∇·y defines an analytic cocycle cL on some
open subgroup ΓL of ΓK . The image of [L : K]−1cL under corL/K gives a
cocyle c ∈ H1

an(ΓK ,M) such that c′(1) = y.
We now let M = lim

←−n
Mn be a Fréchet space. The map H1

an(ΓK ,M) →

(M/∇M)ΓK induced by c 7→ c′(1) is well-defined, and in the other direction
we have the map y 7→ cy:

(M/∇M)ΓK → lim
←−
n

(Mn/∇Mn)ΓK → lim
←−
n

H1
an(ΓK ,Mn)→ H1

an(ΓK ,M).

These two maps are inverses of each other.

Remark 2.1.4. Compare with the following theorem (see [Tam15], corollary 21):
if G is a compact p-adic Lie group and if M is a locally analytic representation
of G, then Hi

an(G,M) = Hi(Lie(G),M)G.

2.2 Cohomology of F -analytic (ϕ,Γ)-modules

If V is an F -analytic representation, let H1
an(K,V ) ⊂ H1(K,V ) classify the

F -analytic extensions of F by V . Let D denote an F -analytic (ϕ,Γ)-module

over B
†
rig,K , such as D†

rig(V ).

Proposition 2.2.1. If V is F -analytic, then H1
an(K,V ) = H1

an(ΓK ×

Φ,D†
rig(V )).

Proof. The group H1
an(ΓK × Φ,D†

rig(V )) classifies the F -analytic extensions of

B
†
rig,K by D†

rig(V ), which correspond to F -analytic extensions of F by V by
theorem 1.2.2.

Theorem 2.2.2. If D is an F -analytic (ϕ,Γ)-module over B
†
rig,K and i = 0, 1,

then Hi
an(ΓK ,D

ψq=0) = 0.

Proof. Since B
†
rig,F ⊂ B

†
rig,K , the B

†
rig,K-module D is a free B

†
rig,F -module of

finite rank. Let RF denote B
†
rig,F and let RCp denote Cp⊗̂FB

†
rig,F the Robba
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ring with coefficients in Cp. There is an action of GF on the coefficients of

RCp and RGF

Cp
= RF .

Theorem 5.5 of [Col16] says that Hi
an(ΓK , (RCp ⊗RF D)ψq=0) = 0. For i = 0,

this implies our claim. For i = 1, it says that if c : ΓK → Dψq=0 is an F -
analytic cocycle, there exists m ∈ (RCp ⊗RF D)ψq=0 such that c(g) = (g−1)m
for all g ∈ ΓK . If α ∈ GF , then c(g) = (g−1)α(m) as well, so that α(m)−m ∈
((RCp ⊗RF D)ψq=0)ΓK = 0. This shows that m ∈ ((RCp ⊗RF D)ψq=0)GF =
Dψq=0.

Corollary 2.2.3. The groups Hi
an(ΓK × Φ,D) and Hi

an(ΓK × Ψ,D) are iso-
morphic for i = 0, 1.

Proof. If i = 0, then we have an inclusion Dϕq=1,ΓK ⊂ Dψq=1,ΓK . If x ∈
Dψq=1,ΓK , then x − ϕq(x) ∈ Dψq=0,ΓK = {0} by theorem 2.2.2, so that x =
ϕq(x) and the above inclusion is an equality.
Now let i = 1. If f ∈ Z1

an(ΓK ×Φ,D), let Tf ∈ Z1
an(ΓK ×Ψ,D) be the function

defined by Tf(g) = f(g) if g ∈ ΓK and Tf(ψq) = −ψq(f(ϕq)).
If f ∈ Z1

an(ΓK ×Ψ,D) and g ∈ ΓK , then (ϕqψq − 1)f(g) ∈ Dψq=0 and the map
g 7→ (ϕqψq−1)f(g) is an element of Z1

an(ΓK ,D
ψq=0). By theorem 2.2.2, applied

once for existence and once for unicity, there is a unique mf ∈ Dψq=0 such that
(ϕqψq − 1)f(g) = (g− 1)mf . Let Uf ∈ Z1

an(ΓK ×Φ,D) be the function defined
by Uf(g) = f(g) if g ∈ ΓK and Uf(ϕq) = −ϕq(f(ψq)) +mf .
It is straightforward to check that U and T are inverses of each other (even at
the level of the Z1

an) and that they descend to the H1
an.

Theorem 2.2.4. The map f 7→ f(ψq) from Z1
an(ΓK ×Ψ,D) to D gives rise to

an exact sequence:

0→ H1
an(ΓK ,D

ψq=1)→ H1
an(ΓK ×Ψ,D)→

(
D

ψq − 1

)ΓK

Proof. If f ∈ Z1
an(ΓK ×Ψ,D) and g ∈ ΓK , then (g − 1)f(ψq) = (ψq − 1)f(g) ∈

(ψq − 1)D so that the image of f is in (D/(ψq − 1))ΓK . The other verifications
are similar.

2.3 The space D/(ψq − 1)

By theorem 2.2.4 in the previous section, the cokernel of the map
H1

an(ΓK ,D
ψq=1) → H1

an(ΓK × Ψ,D) injects into (D/(ψq − 1))ΓK . It can
be useful to know that this cokernel is not too large. In this section, we bound
D/(ψq − 1) when D = B

†
rig,F , with the action of ϕq twisted by a−1, for some

a ∈ F×.

Theorem 2.3.1. If a ∈ F×, then ψq − a : B
†
rig,F → B

†
rig,F is onto unless

a = q−1πm for some m ∈ Z>1, in which case B
†
rig,F/(ψq − a) is of dimension

1.

Documenta Mathematica 22 (2017) 999–1030



Iwasawa Theory and Lubin-Tate (ϕ,Γ)-Modules 1011

In order to prove this theorem, we need some results about the action of ψq on

B
†
rig,F . Recall that the map ∂ = d/dtπ was defined in §1.1.

Lemma 2.3.2. If a ∈ F×, then aϕq − 1 : B+
rig,F → B+

rig,F is an isomorphism,
unless a = π−m for some m ∈ Z>0, in which case

ker(aϕq − 1 : B+
rig,F → B+

rig,F ) = Ftmπ

im(aϕq − 1 : B+
rig,F → B+

rig,F ) = {f(T ) ∈ B+
rig,F | ∂

m(f)(0) = 0}.

Proof. This is lemma 5.1 of [FX13].

Lemma 2.3.3. If m ∈ Z>0, there is an h(T ) ∈ (B+
rig,F )ψq=0 such that

∂m(h)(0) 6= 0.

Proof. We have ψq(T ) = 0 by (the proof of) proposition 2.2 of [FX13]. If
there was some m0 such that ∂m(T )(0) = 0 for all m > m0, then T would
be a polynomial in tπ, which it is not. This implies that there is a sequence
{mi}i of integers with mi → +∞, such that ∂mi(T )(0) 6= 0, and we can take
h(T ) = ∂mi−m(T ) for any mi > m.

Corollary 2.3.4. If a ∈ F×, then ψq − a : B+
rig,F → B+

rig,F is onto.

Proof. If f(T ) ∈ B+
rig,F and if we can write f = (1 − aϕq)g, then f = (ψq −

a)(ϕq(g)). If this is not possible, then by lemma 2.3.2 there exists m > 0 such
that a = π−m and ∂m(f)(0) 6= 0. Let h be the function provided by lemma
2.3.3. The function f − (∂m(f)(0)/∂m(h)(0)) · h is in the image of 1− aϕq by
lemma 2.3.2, and h = (ψq − a)(−a−1h) since ψq(h) = 0. This implies that f is
in the image of ψq − a.

Lemma 2.3.5. If a−1 ∈ q · OF , then ψq − a : B
†
rig,F → B

†
rig,F is onto.

Proof. We have B
†
rig,F = B+

rig,F+B
†
F (by writing a power series as the sum of its

plus part and of its minus part) and by corollary 2.3.4, ψq−a : B+
rig,F → B+

rig,F

is onto. Take f(T ) ∈ B
†
F , choose some r > 0 and let B

(0,r]
F be the set of

f(T ) ∈ B
†
F that converge and are bounded on the annulus 0 < valp(x) 6 r.

It follows from proposition 1.4 of [Col16] that if n ≫ 0, then ψnq (f) ∈ B
(0,r]
F

and by proposition 2.4(d) of [FX13], the sequence (q/π ·ψq)
n(f) is bounded in

B
(0,r]
F . The series

∑
n>0 a

−1−nψnq (f) therefore converges in B
(0,r]
F , and we can

write f = (ψq − a)g where g = a−1(1− a−1ψq)
−1f =

∑
n>0 a

−1−nψnq (f).

Let Res : B
†
rig,F → F be defined by Res(f) = a−1 where f(T )dtπ =∑

n∈Z anT
ndT . The following lemma combines propositions 2.12 and 2.13 of

[FX13].

Lemma 2.3.6. The sequence 0 → F → B
†
rig,F

∂
−→ B

†
rig,F

Res
−−→ F → 0 is exact,

and Res(ψq(f)) = π/q ·Res(f).
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Proof of theorem 2.3.1. Since ∂ ◦ ψq = π−1ψq ◦ ∂, the map ∂ induces a map:

B
†
rig,F

ψq − a

∂
−−−−→

B
†
rig,F

ψq − aπ
. (Der)

Take x ∈ B
†
rig,F such that Res(x) = 1. We have Res((ψq − aπ)x) = π/q − aπ.

If a 6= q−1, this is non-zero and if f ∈ B
†
rig,F , proposition 2.3.6 allows us to

write f = ∂g+ Res(f)/(π/q− aπ) · (ψq − aπ)x. This implies that (Der) is onto
if a 6= q−1.
Combined with lemma 2.3.5, this implies that B

†
rig,F /(ψq − a) = 0 if a is not

of the form q−1πm for some m ∈ Z>1.
When a = q−1, we have an exact sequence

B
†
rig,F

ψq − q−1

∂
−−−−→

B
†
rig,F

ψq − q−1π

Res
−−−−−−→ F → 0,

which now implies that B
†
rig,F /(ψq − q

−1π) = F , generated by the class of x.

We now assume again that a 6= q−1 and compute the kernel of (Der). If

f ∈ B
†
rig,F is such that ∂f = (ψq − aπ)g, then Res ∂f = Res(ψq − aπ)g =

(π/q − aπ) Res(g), so that Res(g) = 0 and we can write g = ∂h. We have
∂(f − (ψq−a)h) = 0, so that f = (ψq−a)h+ c, with c ∈ F . By corollary 2.3.4,
there exists b ∈ B+

rig,F such that (ψq − a)(b) = c, so that f = (ψq − a)(h + b)

and (Der) is bijective. We then have, by induction on m > 1, that B
†
rig,F /(ψq−

q−1πm) = F , generated by the class of ∂m(x).

Remark 2.3.7. More generally, we expect that the following holds: if D is a
(ϕ,Γ)-module over B

†
rig,K , the F -vector space D/(ψq − 1) is finite dimensional.

2.4 The operator Θb

The power series F (X) = X/(exp(X)−1) belongs to Qp[[X ]] and has a nonzero
radius of convergence. If M is a Banach space with a locally F -analytic action
of ΓK and h ∈ ΓK is close enough to 1, then

∇

h− 1
=

∇

exp(ℓ(h)∇)− 1
= ℓ(h)−1F (ℓ(h)∇)

converges to a continuous operator on M . If g ∈ ΓK , we then define

∇

1− g
=

∇

1− gn
·

1− gn

1− g
.

This operator is independent of the choice of n such that gn is close enough to
1, and can be seen as an element of the locally F -analytic distribution algebra
acting on M .
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If M is a Fréchet space, write M = lim
←−i

Mi and define operators ∇
1−g on each

Mi as above. These operators commute with the maps Mj → Mi (because n
can be taken large enough for both Mi and Mj). This defines an operator ∇

1−g

on M itself. The definition of ∇
1−g extends to an LF space with a pro-F -analytic

action of ΓK .

Assume that K contains F1 and let r(K) = f + valp([K : F1]). For example,
pr(Fn) = qn if n > 1. Assume further that K contains Fn(K), so that χπ : ΓK →

O×
F is injective and its image is a free Zp-module of rank d. If b = (b1, . . . , bd)

is a basis of ΓK (that is, ΓK = b
Zp

1 · · · b
Zp

d ), then let ℓ∗(b) = ℓ(b1) · · · ℓ(bd)/p
r(K)

and

Θb = ℓ∗(b) ·
∇d

(b1 − 1) · · · (bd − 1)
.

Lemma 2.4.1. If K = Fn and m > 0 and x ∈ Fm+n, then

Θb(x) = q−m−n · TrFm+n/Fn
(x).

Proof. Since ∇ = limk→∞(bp
k

− 1)/pkℓ(b), we have

Θb = lim
k→∞

1

qnpkd
·

(bp
k

1 − 1) · · · (bp
k

d − 1)

(b1 − 1) · · · (bd − 1)
.

The set {ba1
1 · · · b

ad

d } with 0 6 ai 6 pk − 1 runs through a set of representatives

of Γn/Γ
pk

n = Γn/Γn+ek so that

1

qnpkd
·

(bp
k

1 − 1) · · · (bp
k

d − 1)

(b1 − 1) · · · (bd − 1)
=

1

qnpkd
TrFn+ek/Fn

=
1

qn+ek
·TrFn+ek/Fn

.

The lemma follows from taking k large enough so that ek > m.

For i ∈ Z, let ∇i = ∇− i.

Lemma 2.4.2. If b is a basis of ΓFn and if f(T ) ∈ (B+
rig,F )ψq=0, then

Θb(f(T )) ∈ (tπ/ϕ
n
q (T )) ·B+

rig,F , and if h > 2 then ∇h−1 ◦ · · · ◦∇1 ◦Θb(f(T )) ∈

(tπ/ϕ
n
q (T ))h ·B+

rig,F .

Proof. If m > 1, then by lemma 2.4.1 and using repeatedly the fact (see §1.1)
that ϕq ◦ ψq(f) = 1/q ·

∑
z∈LT[π] f(T ⊕ z),

Θb(f(un+m)) = 1/qm+n · TrFm+n/Fn
f(um+n) = ψmq (f)(un) = 0.

This proves the first claim, since an element f(T ) ∈ B+
rig,F is divisible by

tπ/ϕ
n
q (T ) if and only if f(un+m) = 0 for all m > 1. The second claim follows

easily.
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Let D be a ϕq-module over F . Let ϕ−n
q : B+

rig,F [1/tπ] ⊗F D → Fn((tπ)) ⊗F D
be the map

ϕ−n
q : t−hπ f(T )⊗ x 7→ πnht−hπ f(un ⊕ expLT(tπ/π

n))⊗ ϕ−n
q (x).

If f(tπ) ∈ Fn((tπ))⊗F D, let ∂D(f) ∈ Fn ⊗F D denote the coefficient of t0π.

Lemma 2.4.3. If y ∈ (B+
rig,F [1/tπ]⊗F D)ψq=1 and if m > n, then

q−mTrFm/Fn
∂D(ϕ−m

q (y)) =

{
q−n∂D(ϕ−n

q (y)) if n > 1

(1− q−1ϕ−1
q )∂D(y) if n = 0.

Proof. If y = t−ℓπ
∑+∞

k=0 akT
k ∈ B+

rig,F [1/tπ]⊗F D, then (by definition of ϕ−m
q )

ϕ−m
q (y) = πmℓt−ℓπ

+∞∑

k=0

ϕ−m
q (ak)(um ⊕ expLT(tπ/π

m))k,

and ψq(y) = y means that:

ϕq(y)(T ) =
1

q

∑

[π](ω)=0

y(T ⊕ ω).

If m > 2, the conjugates of um under Gal(Fm/Fm−1) are the {ω⊕ um}[π](ω)=0

so that:

TrFm/Fm−1
∂D(ϕ−m

q (y))

= ∂D


 ∑

[π](ω)=0

πmℓt−ℓπ

+∞∑

k=0

ϕ−m
q (ak)(ω ⊕ um ⊕ expLT(tπ/π

m))k




= ∂D


ϕ−m

q


 ∑

[π](ω)=0

y(T ⊕ ω)







= q∂D(ϕ−(m−1)
q (y)).

For m = 1, the computation is similar, except that the conjugates of u1 under
Gal(F1/F ) are the ω, where [π](ω) = 0 but ω 6= 0, which results in:

TrF1/F∂D(ϕ−1
q (y)) = ∂D


ϕ

−1
q




∑

[π](ω)=0
ω 6=0

y(T ⊕ ω)





 = ∂D(qy − ϕ−1

q (y)).
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2.5 Construction of extensions

Let D be an F -analytic (ϕ,Γ)-module over B
†
rig,K . The space Dψq=1 is a closed

subspace of D and therefore an LF space. Take K such that K contains Fn(K)

and let b be a basis of ΓK .

Proposition 2.5.1. If y ∈ Dψq=1, there is a unique cocycle cb(y) ∈
Z1

an(ΓK ,D
ψq=1) such that for all 1 6 j 6 d and k > 0, we have

cb(y)(bkj ) = ℓ∗(b) ·
bkj − 1

bj − 1
·

∇d−1

∏
i6=j(bi − 1)

(y).

We then have cb(y)′(1) = Θb(y).

Proof. There is obviously one and only one continuous cocycle satisfying the
conditions of the proposition. It is Qp-analytic, and in order to prove that it is
F -analytic, we need to check that the directional derivatives are independent
of j. We have

lim
k→0

cb(y)(bkj )

ℓ(bkj )
= ℓ∗(b) ·

∇d∏
i(bi − 1)

(y) = Θb(y),

which is indeed independent of j, and thus cb(y)′(1) = Θb(y).

Lemma 2.5.2. If n > n(K) and L = Kn and M = Kn+e and b is a basis of
ΓL, then bp is a basis of ΓM and corM/Lcbp(y) = cb(y).

Proof. The Lubin-Tate character maps ΓL to 1+πnOF , and ΓM = ΓpL because

(1 + πnOF )p = 1 + πn+eOF . Since {bk1
1 · · · b

kd

d } with 0 6 ki 6 p− 1 is a set of
representatives for ΓL/ΓM , and since [M : L] = qe = pd, the explicit formula
for the corestriction (definition 2.1.2) implies (here and elsewhere ⌈x⌉ is the
smallest integer > x)

corM/L(cbp (y))(bkj )

=
∑

06k1,...,kd6p−1

bk1
1 . . . bkd

d · ℓ
∗(bp) ·

b
p
⌈ k−kj

p

⌉
j − 1

bpj − 1
·

∇d−1

∏
i6=j(b

p
i − 1)

(y)

= ℓ∗(b)




p−1∑

kj=0

b
kj

j

b
p
⌈ k−kj

p

⌉
j − 1

bpj − 1


 ·


∏

i6=j

bpi − 1

bi − 1


 · ∇d−1

∏
i6=j(b

p
i − 1)

(y)

= ℓ∗(b)
bkj − 1

bj − 1
·

∇d−1

∏
i6=j(bi − 1)

(y)

= cb(y)(bkj ).

This proves the lemma.
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Lemma 2.5.3. If a and b are two bases of ΓK, then ca(y) and cb(y) are coho-
mologous.

Proof. If α1, . . . , αd and β1, . . . , βd are in F×, the Laurent series

α1 · · ·αd · T
d−1

(exp(α1T )− 1) · · · (exp(αdT )− 1)
−

β1 · · ·βd · T
d−1

(exp(β1T )− 1) · · · (exp(βdT )− 1)

is the difference of two Laurent series, each having a simple pole at 0 with equal
residues, and therefore belongs to F [[T ]]. Let a and b be two bases of ΓK and
take y ∈ Dψq=1.

Let N be a ΓK-stable Fréchet subspace of D that contains y and write N =
lim
←−

Mj. Since M = Mj is F -analytic, we have g = exp(ℓ(g)∇) on M for g

in some open subgroup of ΓK . Let k ≫ 0 be large enough such that ap
k

i and

bp
k

i are in this subgroup, and let αi = pkℓ(ai) and βi = pkℓ(bi). Taking k
large enough (depending on M), we can assume moreover that the power series
T/(exp(T ) − 1) applied to the operators αi∇ and βi∇ converges on M . The
element

w =

(
α1 · · ·αd · ∇

d−1

(exp(α1∇)− 1) · · · (exp(αd∇)− 1)

−
β1 · · ·βd · ∇

d−1

(exp(β1∇)− 1) · · · (exp(βd∇)− 1)

)
(y)

of M is well defined. By proposition 2.5.1, we have

capk (y)′(1)− cbpk (y)′(1) = Θapk (y)−Θbpk (y) = p−r(L)∇(w)

where L is the extension of K such that ΓL = Γp
k

K . Thus, for g close enough
to 1, we have capk (y)(g) − cbpk (y)(g) = (g − 1)(p−r(L)w). Lemma 2.5.2 now
implies by corestricting that this holds for all g, and, by corestricting again,
that ca(y) and cb(y) are cohomologous in M . By varying M , we get the same
result in N , which implies the proposition.

Lemma 2.5.4. If L/K is a finite extension contained in K∞, and if b is a basis
of ΓK and a is a basis of ΓL, then corL/Kca(y) = cb(y).

Proof. The groups ΓK and ΓL are both free Zp-modules of rank d, so that by
the elementary divisors theorem, we can change the bases a and b in such a
way that there exists e1, . . . , ed with ai = bp

ei

i .

Since {bk1
1 · · · b

kd

d } with 0 6 ki 6 pei − 1 is a set of representatives for ΓK/ΓL,
and since [L : K] = pe1+···+ed , the explicit formula for the corestriction implies
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corL/K(ca(y))(bkj )

=
∑

06k16p
e1 −1

...
06kd6p

ed −1

bk1
1 . . . bkd

d · ℓ
∗(a) ·

a

⌈
k−kj

p
ej

⌉

j − 1

aj − 1
·

∇d−1

∏
i6=j(ai − 1)

(y)

= ℓ∗(b) ·




pej −1∑

kj=0

a

⌈
k−kj

p
ej

⌉

j − 1

aj − 1


 ·




∏

i6=j

ai − 1

bi − 1


 · ∇d−1

∏
i6=j(ai − 1)

(y)

= ℓ∗(b) ·
bkj − 1

bj − 1
·

∇d−1

∏
i6=j(bi − 1)

(y)

= cb(y)(bkj ).

Definition 2.5.5. Let h1
K,V : D†

rig(V )ψq=1 → H1
an(K,V ) denote the map

obtained by composing y 7→ cb(y) with H1
an(ΓK ,D

†
rig(V )ψq=1) → H1

an(ΓK ×

Ψ,D†
rig(V )) (theorem 2.2.4) and with H1

an(ΓK × Ψ,D†
rig(V )) ≃ H1

an(K,V )
(proposition 2.2.1 and corollary 2.2.3).

Proposition 2.5.6. We have corM/L◦h
1
M,V = h1

L,V if M/L is a finite extension
contained in K∞/Kn(K). In particular, corKn+1/Kn

◦ h1
Kn+1,V

= h1
Kn,V

if n >

n(K).

Proof. This follows from the definition and from lemma 2.5.4 above.

Remark 2.5.7. Proposition 2.5.6 allows us to extend the definition of h1
K,V to

all K, without assuming that K contains Fn(K), by corestricting.

Some of the constructions of this section are summarized in the following the-
orem. Recall (see §3 of [Ber16]) that there is a ring B̃

†
rig that contains B

†
rig,F ,

is equipped with a Frobenius map ϕq and an action of GF and such that

V = (B̃†
rig ⊗B

†

rig,F
D†

rig(V ))ϕq=1.

Theorem 2.5.8. If y ∈ D†
rig(V )ψq=1 and K contains Kn(K) and b is a basis of

ΓK , then

1. there is a unique cb(y) ∈ Z1
an(ΓK ,D

†
rig(V )ψq=1) such that for k ∈ Zp,

cb(y)(bkj ) = ℓ∗(b) ·
bkj − 1

bj − 1
·

∇d−1

∏
i6=j(bi − 1)

(y);
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2. there is a unique mc ∈ D†
rig(V )ψq=0 such that (ϕq−1)cb(y)(g) = (g−1)mc

for all g ∈ ΓK ;

3. the (ϕ,Γ)-module corresponding to this extension has a basis in which

Mat(g) =

(
∗ cb(y)(g)
0 1

)
if g ∈ ΓK, and Mat(ϕq) =

(
∗ mc

0 1

)
;

4. if z ∈ B̃
†
rig ⊗F V is such that (ϕq − 1)z = mc, then the cocycle

g 7→ cb(y)(g)− (g − 1)z

defined on GK has values in V and represents h1
K,V (y) in H1

an(K,V ).

Proof. Items (1), (2) and (3) are reformulations of the constructions of this
chapter. Let us prove (4). Let us write the (ϕ,Γ)-module corresponding to

the extension in (3) as D′ = D†
rig(V ) ⊕ B

†
rig,F · e. It is an étale (ϕ,Γ)-module

that comes from the p-adic representation V ′ = (B̃†
rig⊗B

†

rig,F
D′)ϕq=1. We have

V ′ = V ⊕ F · (e − z) as F -vector spaces since ϕq(e − z) = e − z. If g ∈ GK ,
then

g(e− z) = e+ cb(y)(g)− g(z) = e− z + cb(y)(g)− (g − 1)z.

This proves (4).

Let F = Qp and π = p = q, and let V be a representation of GK . In §II.1
of [CC99], Cherbonnier and Colmez define a map Log∗

V ∗(1) : D†(V )ψ=1 →

H1
Iw(K,V ), which is an isomorphism (theorem II.1.3 and proposition III.3.2 of

[CC99]).

Proposition 2.5.9. If F = Qp and π = p, then the map

D†(V )ψ=1 → D†
rig(V )ψ=1

{h1
Kn,V }n>1

−−−−−−−−→ lim
←−
n

H1
an(Kn, V )→ lim

←−
n

H1(Kn, V )

coincides with the map Log∗
V ∗(1) : D†(V )ψ=1 → H1

Iw(K,V ) ⊂ lim
←−n

H1(Kn, V ).

Proof. The map Log∗
V ∗(1) is contructed by mapping x ∈ D†(V )ψ=1 to the

sequence (. . . , ιψ,n(x), . . . ) ∈ lim
←−n

H1(Kn, V ) (see theorem II.1.3 in [CC99] and

the paragraph preceding it), where

ιψ,n(x) =

[
σ 7→ ℓKn(γn)

(
σ − 1

γn − 1
x− (σ − 1)b

)]

on GKn and where (see proposition I.4.1, lemma I.5.2 and lemma I.5.5 of ibid.)

1. γn = γ
[Kn:K1]
1 and γ1 is a fixed generator of ΓK1 ;
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2. ℓKn(γn) = logχ(γn)
pr(Kn) where r(Kn) is the integer such that logχ(ΓKn) =

pr(Kn)Zp;

3. b ∈ B̃† ⊗Qp V is such that (ϕ − 1)b = a and a ∈ D†(V )ψ=1 is such that
(γn−1)a = (ϕ−1)x (using the fact that γn−1 is bijective on D†(V )ψ=0).

The theorem follows from comparing this with the explicit formula of theorem
2.5.8.

3 Explicit formulas for crystalline representations

In this chapter, we explain how the constructions of the previous chapter are
related to p-adic Hodge theory, via Bloch and Kato’s exponential maps. Let
BdR be Fontaine’s ring of periods [Fon94] and let B+

max,F be the subring of

B+
dR that is constructed in §8.5 of [Col02] (recall that B+

max,F = F ⊗F0 B+
max

where F0 = F ∩Qunr
p and B+

max is a ring that is similar to Fontaine’s Bcris).

We assume throughout this chapter that K = F and that the representation
V is crystalline and F -analytic.

3.1 Crystalline F -analytic representations

If V is an F -analytic crystalline representation of GF , let Dcris(V ) =
(Bmax,F ⊗F V )GF (this is the “component at identity” of the usual Dcris).
By corollary 3.3.8 of [KR09], F -analytic crystalline representations of GF are
overconvergent. Moreover, if M(D) ⊂ B+

rig,F [1/tπ] ⊗F D is the object con-
structed in §2.2 of ibid., then by §2.4 of ibid., M(Dcris(V )) contains a ba-

sis of D†(V ) and D†
rig(V ) = B

†
rig,F ⊗B

+
rig,F
M(Dcris(V )). This implies that

D†
rig(V ) ⊂ B

†
rig,F [1/tπ]⊗F Dcris(V ).

Theorem 3.1.1. We have D†
rig(V )ψq=1 ⊂ B+

rig,F [1/tπ]⊗F Dcris(V ).

Proof. Take h > 0 such that the slopes of π−hϕq on Dcris(V ) are 6 −d. Let E
be an extension of F such that E contains the eigenvalues of ϕq on Dcris(V ).

We show that D†
rig(V )ψq=1 ⊂ t−hπ E ⊗F B+

rig,F ⊗F Dcris(V ). Let e1, . . . , en be a

basis of t−hπ E ⊗F Dcris(V ) in which the matrix (pi,j) of ϕq is upper triangular.

If y =
∑d

i=1 yi ⊗ ϕq(ei) with yi ∈ E ⊗F B
†
rig,F , then ψq(y) = y if and only if

ψq(yk) = pk,kyk +
∑
j>k pk,jyj for all k. The theorem follows from applying

lemma 3.1.2 below to k = n, n− 1, . . . , 1.

Lemma 3.1.2. Take y ∈ E ⊗F B
†
rig,F and α ∈ F such that valπ(α) 6 −d. If

ψq(y)− αy ∈ E ⊗F B+
rig,F , then y ∈ E ⊗F B+

rig,F .

Proof. This is lemma 5.4 of [FX13].
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3.2 Bloch-Kato’s exponentials for analytic representations

We now recall the definition of Bloch-Kato’s exponential map and its dual, and
give a similar definition for F -analytic representations.

Lemma 3.2.1. We have an exact sequence

0→ F → (B+
max,F [1/tπ])ϕq=1 → BdR/B

+
dR → 0.

Proof. This is lemma 9.25 of [Col02].

If V is a de Rham F -linear representation of GK , we can ⊗F the above sequence
with V and we get a connecting homomorphism expK,V : (BdR ⊗F V )GK →
H1(K,V ). Recall that if W is an F -vector space, there is a natural injective
map W ⊗F V →W ⊗Qp V .

Lemma 3.2.2. If V is F -analytic, the map expK,V : (BdR⊗F V )GK → H1(K,V )
defined above coincides with Bloch-Kato’s exponential via the inclusion (BdR⊗F
V )GK ⊂ (BdR ⊗Qp V )GK , and its image is in H1

an(K,V ).

Proof. Bloch and Kato’s exponential is defined as follows (definition 3.10 of
[BK90]): if ϕp denotes the Frobenius map that lifts x 7→ xp and if x ∈ (BdR⊗Qp

V )GK , there exists x̃ ∈ B
ϕp=1
max,Qp

⊗Qp V such that x̃ − x ∈ B+
dR ⊗Qp V , and

exp(x) is represented by the cocyle g 7→ (g − 1)x̃.
Lemma 3.2.1 says that we can lift x ∈ (BdR ⊗F V )GK to some x̃ ∈
(B+

max,F [1/tπ])ϕq=1 ⊗F V such that x̃ − x ∈ B+
dR ⊗F V ⊂ B+

dR ⊗Qp V . In

addition, B
ϕq=1
max,Qp

= F0 ⊗Qp B
ϕp=1
max,Qp

(see lemma 1.1.11 of [Ber08]) so that

(B+
max,F [1/tπ])ϕq=1 ⊂ F ⊗Qp B

ϕp=1
max,Qp

. We can therefore view x̃ as an element

of B
ϕp=1
max,Qp

⊗Qp V , and expK,V (x) = [g 7→ (g − 1)x̃] = exp(x).

The construction of expK,V (x) shows that the cocycle expK,V (x) is de Rham.
At each embedding τ 6= Id of F , the extension of F by V given by expK,V (x) is
therefore Hodge-Tate with weights 0. This finishes the proof of the lemma.

Recall the following theorem of Kato (see §II.1 of [Kat93]).

Theorem 3.2.3. If V is a de Rham representation, the map from (BdR ⊗Qp

V )GK to H1(K,BdR ⊗Qp V ) defined by x 7→ [g 7→ log(χcyc(g))x] is an isomor-
phism, and the dual exponential map exp∗

K,V ∗(1) : H1(K,V )→ (BdR⊗Qp V )GK

is equal to the composition of the map H1(K,V ) → H1(K,BdR ⊗Qp V ) with
the inverse of this isomorphism.

Concretely, if c ∈ Z1(K,BdR⊗Qp V ) is some cocycle, there exists w ∈ BdR⊗Qp

V such that c(g) = log(χcyc(g)) · exp∗
K,V ∗(1)(c) + (g − 1)(w).

Corollary 3.2.4. If c ∈ Z1(K,BdR ⊗F V ), and if there exist x ∈ (BdR ⊗F
V )GK and w ∈ BdR ⊗F V such that c(g) = ℓ(g) · x + (g − 1)(w), then
exp∗

K,V ∗(1)(c) = x.
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Proof. This follows from theorem 3.2.3 and from the fact that g 7→
log(χπ(g)/χcyc(g)) is BdR-admissible, since tπ/t ∈ (B+

dR)× so that log(tπ/t) ∈
B+

dR is well-defined.

3.3 Interpolating exponentials and their duals

Let V be an F -analytic crystalline representation. By theorem 3.1.1, we have
D†

rig(V )ψq=1 ⊂ B+
rig,F [1/tπ]⊗F Dcris(V ). Let ∂V denote the map ∂D of §2.4 for

D = Dcris(V ).

Theorem 3.3.1. If y ∈ D†
rig(V )ψq=1, then

exp∗
Fn,V ∗(1)(h

1
Fn,V (y)) =

{
q−n∂V (ϕ−n

q (y)) if n > 1

(1− q−1ϕ−1
q )∂V (y) if n = 0.

Proof. Since the diagram

H1(Fn+1, V )
exp∗

Fn+1,V ∗(1)

−−−−−−−−−→ Fn+1 ⊗F Dcris(V )

corFn+1/Fn

y TrFn+1/Fn

y

H1(Fn, V )
exp∗

Fn,V ∗(1)
−−−−−−−−→ Fn ⊗F Dcris(V )

is commutative, we only need to prove the theorem when n > n(F ) by lemma
2.4.3 and proposition 2.5.6. By theorem 2.5.8, we have

h1
Fn,V (y)(bkj ) = ℓ∗(b) ·

bkj − 1

bj − 1
·

∇d−1

∏
i6=j(bi − 1)

(y)− (bkj − 1)z,

with z ∈ B̃
†
rig ⊗F V so that if m ≫ 0, then ϕ−m

q (z) ∈ B+
dR ⊗F V (see §3 of

[Ber16] and §2.2 of [Ber02]). Moreover, ϕ−m
q (y) ∈ Fm((tπ)) ⊗F Dcris(V ). Let

W = {w ∈ Fm((tπ)) ⊗F Dcris(V ) such that ∂V (w) = 0}. The operator ∇ is
bijective on W , and Fm((tπ)) ⊗F Dcris(V ) injects into BdR ⊗F V , hence there
exists u ∈ BdR ⊗F V such that

h1
Fn,V (y)(bkj ) = ℓ∗(b) ·

bkj − 1

bj − 1
·

∇d−1

∏
i6=j(bi − 1)

(∂V (ϕ−m
q (y)))− (bkj − 1)u

= ℓ(bkj ) ·Θb(∂V (ϕ−m
q (y))) − (bkj − 1)u

= ℓ(bkj ) · q−n∂V (ϕ−n
q (y)))− (bkj − 1)u,

by lemmas 2.4.1 and 2.4.3. This proves the theorem by corollary 3.2.4.

We now give explicit formulas for expFn,V . Take h > 0 such that

Fil−hDcris(V ) = Dcris(V ), so that thπ(B+
rig,F ⊗F Dcris(V )) ⊂ D†

rig(V ) (in the

notation of §2.2 of [KR09], we have thπ(B+
rig,F ⊗F Dcris(V )) ⊂ M(Dcris(V ))).

In particular, if y ∈ (B+
rig,F ⊗F Dcris(V ))ψq=1, then ∇h−1 ◦ · · · ◦ ∇0(y) ∈

D†
rig(V )ψq=1.
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Theorem 3.3.2. If y ∈ (B+
rig,F ⊗F Dcris(V ))ψq=1, then

h1
Fn,V (∇h−1 ◦ · · · ◦ ∇0(y)) =

(−1)h−1(h− 1)!

{
expFn,V (q−n∂V (ϕ−n

q (y))) if n > 1

expF,V ((1 − q−1ϕ−1
q )∂V (y)) if n = 0.

Proof. Since the diagram

Fn+1 ⊗F Dcris(V )
expFn+1,V

−−−−−−−→ H1(Fn+1, V )

TrFn+1/Fn

y corFn+1/Fn

y

Fn ⊗F Dcris(V )
expFn,V
−−−−−→ H1(Fn, V )

is commutative, we only need to prove the theorem when n > n(F ) by lemma
2.4.3 and proposition 2.5.6. By theorem 2.5.8, we have

h1
Fn,V (∇h−1 ◦ · · · ◦ ∇0(y))(bkj )

= ℓ∗(b) ·
bkj − 1

bj − 1
·

∇d−1

∏
i6=j(bi − 1)

(∇h−1 ◦ · · · ◦ ∇0(y))− (bkj − 1)z

= (bkj − 1) · (∇h−1 ◦ · · · ◦ ∇1 ◦Θb)(y)− (bkj − 1)z,

so that h1
Fn,V

(∇h−1 ◦· · ·◦∇0(y))(g) = (g−1)(∇h−1 ◦· · ·◦∇1 ◦Θb)(y)−(g−1)z
if g ∈ ΓK . By lemma 2.4.2, we have

(∇h−1 ◦ · · · ◦ ∇1 ◦Θb)((ϕq − 1)y)

∈ (tπ/ϕ
n
q (T ))h(B+

rig,F ⊗F Dcris(V ))ψq=0 ⊂ D†
rig(V )ψq=0,

so that (in the notation of theorem 2.5.8) mc = (∇h−1◦· · ·◦∇1◦Θb)((ϕq−1)y).
Since (ϕq − 1)z = mc, we have (ϕq − 1)((∇h−1 ◦ · · · ◦∇1 ◦Θb)(y)− z) = 0, and
therefore

(∇h−1 ◦ · · · ◦ ∇1 ◦Θb)(y)− z ∈ (B̃†
rig[1/tπ])ϕq=1 ⊗F V

The ring B̃
†
rig contains B+

max,F and the inclusion (B+
max,F [1/tπ])ϕq=1 ⊂

(B̃†
rig[1/tπ])ϕq=1 is an equality (proposition 3.2 of [Ber02]). This implies that

(∇h−1 ◦ · · · ◦ ∇1 ◦Θb)(y)− z ⊂ (B+
max,F [1/tπ])ϕq=1 ⊗F V.

Moreover, we have z ∈ B̃
†
rig⊗FV so that ifm≫ 0, then ϕ−m

q (z) ∈ B+
dR⊗FV . In

addition, ϕ−m
q (y) belongs to Fm[[tπ]]⊗F Dcris(V ), so that ϕ−m

q (y)−∂V (ϕ−m
q (y))

belongs to tπFm[[tπ]]⊗F Dcris(V ) and therefore

(∇h−1 ◦ · · · ◦ ∇1 ◦Θb)
(
ϕ−m
q (y)− ∂V (ϕ−m

q (y))
)
∈ thπFm[[tπ]]⊗F Dcris(V )

⊂ B+
dR ⊗F V.
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We can hence write

h1
Fn,V (∇h−1◦· · ·◦∇0(y))(g) = (g−1)(∇h−1◦· · ·◦∇1◦Θb◦∂V (ϕ−m

q (y))−(g−1)u,

with u ∈ B+
dR ⊗F V . The theorem now follows from the fact that

Θb ◦ ∂V (ϕ−m
q (y)) = q−n∂V (ϕ−n

q (y)) ∈ Fn ⊗F Dcris(V )

by lemmas 2.4.2 and 2.4.3, that ∇h−1 ◦ · · · ◦ ∇1 = (−1)h−1(h − 1)! on Fn ⊗F
Dcris(V ), and from the reminders given in §3.2, in particular the fact that
expK,V is the connecting homomorphism when tensoring the exact sequence of
lemma 3.2.1 with V and taking Galois invariants.

3.4 Kummer theory and the representation F (χπ)

Throughout this section, V = F (χπ). Let L ⊂ Qp be an extension of K. The
Kummer map δ : LT(mL)→ H1(L, V ) is defined as follows. Choose a generator
u = (uk)k>0 of Tπ LT = lim

←−k
LT[πk]. If x ∈ LT(mL), let xk ∈ LT(m

Qp
) be such

that [πk](xk) = x. If g ∈ GL, then g(xk) − xk ∈ LT[πk] so that we can write
g(xk) − xk = [ck(g)](uk) for some ck(g) ∈ OF /π

k. If c(g) = (ck(g))k>0 ∈ OF
then δ(x) = [g 7→ c(g)] ∈ H1(L, V ).
If x ∈ LT(mL), and L/K is finite Galois, let TrLT

L/K be the map defined by

TrLT
L/K(x) =

∑LT
g∈Gal(L/K) g(x) where the superscript LT means that the sum-

mation is carried out using the Lubin-Tate addition. If F = Qp and LT = Gm,

we recover the classical Kummer map, and TrLT
L/K(x) = NL/K(1 + x)− 1.

Lemma 3.4.1. We have the following commutative diagram:

LT(mKn+1)
δ

−−−−→ H1(Kn+1, V )

TrLT
Kn+1/Kn

y
ycorKn+1/Kn

LT(mKn)
δ

−−−−→ H1(Kn, V ).

Proof. This is a straightforward consequence of the explicit description of the
corestriction map.

Recall that ϕq ◦ ψq(f) = 1
q

∑
ω∈LT[π] f(T ⊕ ω), so that for n > 1:

ψq(f)(un) =
1

q

∑

ω∈LT[π]

f(un+1 ⊕ ω) =
1

q
TrFn+1/Fn

f(un+1).

In particular, if f(T ) ∈ B+
rig,F is such that ψq(f(T )) = 1/π · f(T ) and yn =

f(un), then TrFn+1/Fn
(yn+1) = q/π · yn.

Proposition 3.4.2. Assume that F 6= Qp. If {yn}n>1 is a sequence with
yn ∈ Fn and TrFn+1/Fn

(yn+1) = q/π · yn, there exists f(T ) ∈ B+
rig,F such that

ψq(f(T )) = 1/π · f(T ) and yn = f(un) for all n > 1.
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Proof. By [Laz62], there exists a power series g(T ) ∈ B+
rig,F such that g(un) =

yn for all n > 1. We also have

ψqg(0) =
1

q
g(0) +

1

q
TrF1/F0

g(u1),

and since q 6= π (because F 6= Qp), we can choose g(0) such that

1

π
g(0) =

1

q
g(0) +

1

q
TrF1/F0

y1.

This implies that (ψq(g)−1/π ·g)(un) = 0 for all n > 0, so that ψq(g)−1/π ·g ∈
tπ ·B

+
rig,F . It is therefore enough to prove that ψq−1/π : tπ ·B

+
rig,F → tπ ·B

+
rig,F

is onto. Since ψq(tπf) = 1/π · tπψq(f), this amounts to proving that ψq − 1 :
B+

rig,F → B+
rig,F is onto, which follows from corollary 2.3.4.

Definition 3.4.3. Let S denote the set of sequences {xn}n>1 with xn ∈ mFn

and TrLT
Fn+1/Fn

(xn+1) = [q/π](xn) for n > 1.

The following proposition says that if F 6= Qp, then S is quite large: for any
k > 1, the “k-th component” map F ⊗OF S → Fk is surjective (if F = Qp,
there are restrictions on “universal norms”).

Proposition 3.4.4. Assume that F 6= Qp. If z ∈ mFk
, there exists ℓ > 0 and

x ∈ S such that xk = [πℓ](z).

Proof. We claim that TrFn+1/Fn
(OFn+1) = πOFn . Indeed, let D denote the

different. We have (see for instance proposition 7.11 of [Iwa86])

valp(DFn+1/Fn
) =

1

e

(
n+ 1−

1

q − 1

)
−

1

e

(
n−

1

q − 1

)
= valp(π).

This implies that TrFn+1/Fn
(OFn+1) = πOFn by proposition 7 of Chapter III

of [Ser68].
Since π divides q/π, this shows that given y ∈ OFk

, there exists a sequence
{yn}n>1 with xn ∈ OFn such that yk = y, and TrFn+1/Fn

(yn+1) = q/π · yn for

n > 1. Take ℓ1, ℓ2 > 0 such that πℓ1OCp is in the domain of expLT and such
that πℓ2 logLT(z) ∈ OFk

. Let y = πℓ2 logLT(z). Let {yn}n>1 be a sequence as
above, let xn = expLT(πℓ1yn) and ℓ = ℓ1 + ℓ2. The elements xk ⊖ [πℓ](z), as
well as TrLT

Fn+1/Fn
(xn+1)⊖ [q/π](xn) for all n, have their logLT equal to zero and

are in a domain in which logLT is injective. This proves the proposition.

If x ∈ S and yn = logLT(xn), then yn ∈ Fn and TrFn+1/Fn
(yn+1) = q/π · yn,

so that by proposition 3.4.2, there exists f(T ) ∈ B+
rig,F such that ψq(f(T )) =

π−1 · f(T ) and yn = f(un) for all n > 1. If f(T ) ∈ B+
rig,F is such that

ψq(f(T )) = π−1 · f(T ), then ∂f ∈ (B+
rig,F )ψq=1 and ∂f · u can be seen as an

element of D†
rig(V )ψq=1.
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Theorem 3.4.5. If x ∈ S, and if f(T ) ∈ B+
rig,F is such that f(un) = logLT(xn)

and ψq(f(T )) = π−1 · f(T ), then h1
Fn,V

(∂f(T ) · u) = (q/π)−n · δ(xn) for all
n > 1.

Proof. Let y = f(T )⊗ t−1
π u, so that y ∈ (B+

rig,F ⊗F Dcris(V ))ψq=1. By theorem

3.3.2 applied to y with h = 1, we have h1
Fn,V

(∇(y)) = expFn,V (q−n∂V (ϕ−n
q (y)))

if n > 1. Since ϕ−n
q ◦ ∂ = πn · ∂ ◦ ϕ−n

q , this implies that

h1
Fn,V (∂f(T )·u) = expFn,V (q−n∂V (ϕ−n

q (y))) = (q/π)−n ·expFn,V (logLT(xn)·u).

By example 3.10.1 of [BK90] and lemma 3.2.2, we have δ(xn) =
expFn,V (logLT(xn) · u). This proves the theorem.

Remark 3.4.6. If F = Qp and π = q = p and x = {xn}n>1, this the-
orem says that Exp∗

Qp
(δ(x)) = ∂ log Colx(T ), which is (iii) of proposition

V.3.2 of [CC99] (see theorem II.1.3 of ibid for the definition of the map

Exp∗
Qp

: H1
Iw(F,Qp(1))→ D†

rig(Qp(1))ψq=1).

Remark 3.4.7. If x ∈ S, then by proposition 3.4.2, there is a power series f(T )
such that f(un) = logLT(xn) for n > 1. Is there a power series g(T ) ∈ OF [[T ]]
such that g(un) = xn, so that f(T ) = log g(T )?
If F = Qp, such a power series is the classical Coleman power series [Col79]. If
F 6= Qp and x ∈ S and z is a [q/π]-torsion point, and k > d−1 so that z ∈ Fk,
then the sequence x′ = {x′

n}n>1 defined by x′
n = xn if n 6= k and x′

k = xk ⊕ z
also belongs to S. This means that we cannot naïvely interpolate x.

3.5 Perrin-Riou’s big exponential map

In this last section, we explain how the explicit formulas of the previous sections
can be used to give a Lubin-Tate analogue of Perrin-Riou’s “big exponential
map” [PR94]. Take h > 1 such that Fil−hDcris(V ) = Dcris(V ). If f ∈ B+

rig,F ⊗F
Dcris(V ), let ∆(f) be the image of ⊕hk=0∂

k(f)(0) in ⊕hk=0Dcris(V )/(1− πkϕq).

Lemma 3.5.1. There is an exact sequence:

0→ ⊕hk=0t
k
πDcris(V )ϕq=π−k

→
(

B+
rig,F ⊗F Dcris(V )

)ψq=1 1−ϕq
−−−→

(B+
rig,F )ψq=0 ⊗F Dcris(V )

∆
−→ ⊕hk=0

Dcris(V )

1− πkϕq
→ 0.

Proof. Note that the map ϕq acts diagonally on tensor products. It is easy to

see that ker(1 − ϕq) = ⊕hk=0t
k
πDcris(V )ϕq=π−k

, that ∆ is surjective, and that
im(1− ϕq) ⊂ ker ∆, so we now prove that im(1− ϕq) = ker ∆.
If f, g ∈ B+

rig,F ⊗F Dcris(V ) and f = (1 − ϕq)g, then ψq(f) = 0 if and only if

ψq(g) = g. It is therefore enough to show that if f ∈ B+
rig,F ⊗F Dcris(V ) is such

that ∆(f) = 0, then f = (1− ϕq)g for some g ∈ B+
rig,F ⊗F Dcris(V ).
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The map 1−ϕq : T h+1B+
rig,F ⊗F Dcris(V )→ T h+1B+

rig,F⊗F Dcris(V ) is bijective

because the slopes of ϕq on T h+1B+
rig,F ⊗F D are > 0. This implies that 1−ϕq

induces a sequence

0→ ⊕hk=0t
k
πDcris(V )ϕq=π−k

→
B+

rig,F ⊗F Dcris(V )

T h+1B+
rig,F ⊗F Dcris(V )

1−ϕq
−−−→

B+
rig,F ⊗F Dcris(V )

T h+1B+
rig,F ⊗F Dcris(V )

∆
−→ ⊕hk=0

Dcris(V )

1− πkϕq
.

We have ker(1− ϕq) = ⊕hk=0t
k
πDcris(V )ϕq=π−k

and by comparing dimensions,
we see that coker(1− ϕq) = ⊕hk=0Dcris(V )/(1−πkϕq). This and the bijectivity
of 1− ϕq on T h+1B+

rig,F ⊗F Dcris(V ) imply the claim.

If f ∈ ((B+
rig,F )ψq=0 ⊗F Dcris(V ))∆=0, then by lemma 3.5.1 there exists y ∈

(B+
rig,F ⊗F Dcris(V ))ψq=1 such that f = (1 − ϕq)y. Since ∇h−1 ◦ · · · ◦ ∇0 kills

⊕h−1
k=0t

k
πDcris(V )ϕq=π−k

we see that ∇h−1 ◦ · · · ◦ ∇0(y) does not depend upon

the choice of such a y (unless Dcris(V )ϕq=π−h

6= 0).

Definition 3.5.2. Let h > 1 be such that Fil−hDcris(V ) = Dcris(V ) and such

that Dcris(V )ϕq=π−h

= 0. We deduce from the above construction a well-
defined map:

ΩV,h : ((B+
rig,F )ψq=0 ⊗F Dcris(V ))∆=0 → D†

rig(V )ψq=1,

given by ΩV,h(f) = ∇h−1 ◦ · · · ◦ ∇0(y) where the element y ∈ (B+
rig,F ⊗F

Dcris(V ))ψq=1 is such that f = (1− ϕq)y and is provided by lemma 3.5.1.

If Dcris(V )ϕq=π−h

6= 0, we get a map

ΩV,h : ((B+
rig,F )ψq=0 ⊗F Dcris(V ))∆=0 → D†

rig(V )ψq=1/V GF =χh
π .

Let u be a basis of F (χπ) as above, and let ej = u⊗j if j ∈ Z.

Theorem 3.5.3. Take y ∈ (B+
rig,F ⊗F Dcris(V ))ψq=1 and let h > 1 be such that

Fil−hDcris(V ) = Dcris(V ). Let f = (1 − ϕq)y so that f ∈ ((B+
rig,F )ψq=0 ⊗F

Dcris(V ))∆=0.
If j ∈ Z and h+ j > 1, then

h1
Fn,V (χj

π)
(ΩV,h(f)⊗ ej) = (−1)h+j−1(h+ j − 1)!×

{
expFn,V (χj

π)(q
−n∂V (χj

π)(ϕ
−n
q (∂−jy ⊗ t−jπ ej))) if n > 1

expF,V (χj
π)((1 − q

−1ϕ−1
q )∂V (χj

π)(∂
−jy ⊗ t−jπ ej)) if n = 0.
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If j ∈ Z and h+ j 6 0, then

exp∗
Fn,V ∗(1−j)(h

1
Fn,V (χj

π)
(ΩV,h(f)⊗ ej)) =

1

(−h− j)!

{
q−n∂V (χj

π)(ϕ
−n
q (∂−jy ⊗ t−jπ ej)) if n > 1

(1− q−1ϕ−1
q )∂V (χj

π)(∂
−jy ⊗ t−jπ ej) if n = 0.

Proof. If h+ j > 1, the following diagram is commutative:

D†
rig(V )ψq=1 ⊗ej

−−−−→ D†
rig(V (χjπ))ψq=1

∇h−1◦···◦∇0

x ∇h+j−1◦···◦∇0

x
(

B+
rig,F ⊗F Dcris(V )

)ψq=1 ∂−j⊗t−jej
−−−−−−−→

(
B+

rig,F ⊗F Dcris(V (χjπ))
)ψq=1

,

and the theorem is a straightforward consequence of theorem 3.3.2 applied to
∂−jy ⊗ t−jej, h+ j and V (χjπ) (which are the j-th twists of y, h and V ).

If h+ j 6 0, and ΓFn is torsion free, then theorem 3.3.1 shows that

exp∗
Fn,V ∗(1−j)(h

1
Fn,V (χj

π)
(∇h−1 ◦ · · · ◦ ∇0(y)⊗ ej))

= q−n∂V (χj
π)(ϕ

−n
q (∇h−1 ◦ · · · ◦ ∇0(y)⊗ ej))

in Dcris(V (χjπ)), and a short computation involving Taylor series shows that

∂V (χj
π)(ϕ

−n
q (∇h−1 ◦ · · · ◦∇0(y)⊗ej)) = (−h− j)!−1∂V (χj

π)(ϕ
−n
q (∂−jy⊗ t−jπ ej)).

To get the other n, we corestrict.

Corollary 3.5.4. We have ΩV,h(x) ⊗ ej = ΩV (χj
π),h+j(∂

−jx ⊗ t−jπ ej) and
∇h ◦ ΩV,h(x) = ΩV,h+1(x).

Remark 3.5.5. The notation ∂−j is somewhat abusive if j > 1 as ∂ is not
injective on B+

rig,F (it is surjective as can be seen by “integrating” directly a
power series) but the reader can check that this leads to no ambiguity in the
formulas of theorem 3.5.3 above.

If F = Qp and π = p, definition 3.5.2 and theorem 3.5.3 are given in §II.5 of
[Ber03]. They imply that ΩV,h coïncides with Perrin-Riou’s exponential map
(see theorem 3.2.3 of [PR94]) after making suitable identifications (theorem
II.13 of [Ber03]).

Our definition therefore generalizes Perrin-Riou’s exponential map to the F -
analytic setting. We hope to use the results of [Fou05] and [Fou08] to relate
our constructions to suitable Iwasawa algebras as in the cyclotomic case.
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