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Abstract. We develop a theory of Toeplitz, and to some extent Han-
kel, operators on the kernels of powers of the boundary d-bar operator,
suggested by Boutet de Monvel and Guillemin, and on their analogues,
somewhat better from the point of view of complex analysis, defined using
instead the covariant Cauchy-Riemann operators of Peetre and the sec-
ond author. For the former, Dixmier class membership of these Hankel
operators is also discussed. Our main tool are the generalized Toeplitz
operators (with pseudodifferential symbols), in particular there appears
naturally the problem of finding parametrices of matrices of such opera-
tors in situations when the principal symbol fails to be elliptic.
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1. Introduction

Let Ω be a bounded domain in Cd and L2
hol(Ω) the Bergman space of all

holomorphic functions in L2(Ω). For φ ∈ L∞(Ω), the Toeplitz operator Tφ
with symbol φ is the operator on L2

hol(Ω) defined by

Tφf = Π(φf), f ∈ L2
hol(Ω),

where Π : L2(Ω) → L2
hol(Ω) is the orthogonal projection (the Bergman pro-

jection). Similarly, if Ω has smooth boundary ∂Ω, one has the Hardy space
H2(∂Ω) consisting of all functions in L2(∂Ω) (with respect to the surface
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measure on ∂Ω) whose Poisson extension into Ω is holomorphic, and for
φ ∈ L∞(∂Ω) the Toeplitz operator Tφ on H2(∂Ω) is defined by

Tφu = Π(φu), u ∈ H2(∂Ω),

where Π : L2(∂Ω) → H2(∂Ω) is the orthogonal projection (the Szegö projec-
tion). There are also Hankel operators Hφ : L2

hol(Ω) → L2(Ω) ⊖ L2
hol(Ω) and

Hφ : H2(∂Ω) → L2(Ω)⊖H2(∂Ω) defined as

Hφf = (I −Π)(φf), Hφu = (I −Π)(φu), respectively.

Toeplitz and Hankel operators, and their various generalizations, have been
extensively studied for the last three decades, and have turned out to play
important role in many subjects ranging from operator theory and complex
function theory to geometry and mathematical physics, see e.g. [14], [16], [19],
[18] and the references therein for a sample.
The spaces L2

hol(Ω) on which Tφ and Hφ act can alternatively be characterized

as the kernel of the operator ∂ in L2(Ω), where, as usual, ∂ denotes the operator
assigning to a function f on Ω the (0, 1)-form

∂f :=

d∑

j=1

∂f

∂zj
dzj .

For d > 1, one has a similar characterization of the Hardy space H2(∂Ω) as
the kernel of the operator ∂b in L

2(∂Ω), where for a function u on ∂Ω, ∂bu is
the restriction of du to the antiholomorphic complex tangent space T ′′(∂Ω),
consisting of all vectors X on ∂Ω of the form

X =

d∑

j=1

Xj
∂

∂zj
, Xj ∈ C,

which are tangent to ∂Ω. Fixing a positively-signed defining function ρ for Ω,
so that ρ > 0 on Ω and ρ = 0 < |∇ρ| on ∂Ω, the last condition just means that
Xρ = 0, and T ′′(∂Ω) is spanned by the (linearly dependent) vector fields

(1) Ljk :=
∂ρ

∂zj

∂

∂zk
−

∂ρ

∂zk

∂

∂zj
, 1 ≤ j < k ≤ d;

so ∂bu = 0 means that Ljku = 0 for all j, k.
A generalization of the Hardy space due to Boutet de Monvel and Guillemin
[3, §15.3] are the subspaces Bm in L2(∂Ω), m = 1, 2, . . . , of all functions u

annihilated by ∂
m

b , in the sense that

Lj1k1Lj2k2 . . . Ljmkmu = 0 for all j1, . . . , jm, k1, . . . , km.
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Clearly B1 ⊂ B2 ⊂ · · · ⊂ L2(∂Ω) and B1 = H2(∂Ω). It was shown in [3] that
microlocally, the associated “higher Szegö projectors” Πm : L2(∂Ω) → Bm are
of the same type as Π, and, hence, in this sense, so are the corresponding
Toeplitz operators TBm

φ : u 7→ Πm(φu) on Bm.
The drawback of the spaces Bm, however, is that in spite of the microlocal
equivalence of the Szegö projectors just mentioned, they fail to be invariant
under biholomorphic maps. For instance, in the simplest possible situation
when Ω = B2, the unit ball of C2, one checks easily that the function z2
belongs to B2 = KerL2

12, but if φa is the automorphism of B2 interchanging
the origin with a point a ∈ B2, then z2 ◦φa /∈ B2 if a 6= 0. (See Section 3 below
for the details.)
The aim of this paper is, firstly, to show that in spite of not being biholomor-
phically invariant, the spaces Bm, m > 1, have Toeplitz and Hankel operators
which behave very similarly as in the classical casem = 1; and secondly, to pro-
pose a different generalization, the so-called higher Cauchy-Riemann spaces Cm,
m = 1, 2, . . . , which are well-behaved under biholomorphic maps, and study the
associated Toeplitz operators.
For the first part, we work out only the case of Ω = B2, the unit ball in C2.
Our main result is the following.

Theorem 1. The Toeplitz operator TB2

f on B2(∂B
2) is unitarily equivalent to

the operator
[
Tf 0
0 Tf

]

+ lower order term

on the direct sum H2(∂B2)⊕H2(∂B2).

Here the “lower order term” means a 2 × 2 matrix of generalized Toeplitz
operators of order at most − 1

2 ; see again Section 3 below for more details.
As a corollary to the theorem, we also get a similar result for the product H∗

f
Hg

of two Hankel operators on B2(∂B
2), and a formula for the Dixmier trace of

(H∗
f
Hg)

2 that can be compared to the one for ordinary Hankel operatorsH∗
f
Hg

from [11].
Concerning the second part, consider, quite generally, a Kähler metric gjk

on Ω, and let glj be the inverse matrix to gjk (so the Kähler form is given

by glkdzl ∧ dzk). The Cauchy-Riemann operator, introduced by Peetre (cf. [8]
and [15]), is the map from functions into holomorphic vector fields on Ω given by

Df := glk∂lf,

where we have started to employ the Einstein summation convention of sum-
ming automatically over any index that occurs twice, and also to write for
brevity ∂l = ∂/∂zl. One can iterate this construction and set, for m = 1, 2, . . . ,

D
m
f := glmkm∂lmg

lm−1km−1∂lm−1 . . . g
l1k1∂l1f.

Documenta Mathematica 22 (2017) 1081–1116



1084 M. Englǐs, G. Zhang

It turns out that (D
m
f)km...k1 is symmetric in the indices km, . . . , k1 [15], and

in fact coincides with the contravariant derivative f/km...k1 with respect to the
Hermitian connection [8]. The m-th Cauchy-Riemann space Cm is, by defini-

tion, the kernel of D
m
:

Cm := {f : D
m
f = 0 on Ω}.

Clearly C1 comprises precisely of holomorphic functions, and is also independent
of the metric gjk. For m > 1, Cm depends on gjk (although this fact is not

reflected by the notation). Now there are various holomorphically invariant
Kähler metrics associated to a given bounded strictly pseudoconvex domain
with smooth boundary, such as the Bergman metric, the Poincare (Kähler-
Einstein) metric, the metric coming from the invariant Szegö kernel, and so
forth. Taking any of these for gjk, by the very nature of their construction the
spaces Cm, unlike Bm, will be invariant under biholomorphisms.
Choosing a (positive smooth) weight w on Ω, let Cm,w := Cm ∩L2(Ω, w) (since
differential operators are closed, this is a closed subspace of L2(Ω, w)), and

let T
(m,w)
φ : f 7→ Π(m,w)(φf), where Π(m,w) : L2(Ω, w) → Cm,w is the or-

thogonal projection, be the associated Toeplitz operator on Cm,w with sym-

bol φ ∈ L∞(Ω). (Thus T
(m,w)
φ again depends also on the choice of the met-

ric gjk, although this is not reflected by the notation.) We will actually assume

that Ω is bounded, strictly pseudoconvex and with smooth boundary, that
φ ∈ C∞(Ω) is smooth on the closure Ω of Ω, that the weight w is of the form

w = ρν , ν ∈ R,

where ρ is a (fixed) positively-signed defining function for Ω and ν is large
enough; and that gjk is given by a Kähler potential Ψ,

gjk = ∂j∂kΨ,

where Ψ is of the form

Ψ ≈

∞∑

j=0

(ρM log ρ)jηj , ηj ∈ C∞(Ω),

with an integer M ≥ 2; see Section 4 for the details. Note that all the metrics
gjk mentioned in the penultimate paragraph are of this kind.

Theorem 2. Let Ω, w and gjk be as stated above. Assume that ν > 1 and

that −ρ is strictly plurisubharmonic near ∂Ω and |∂ρ| = 1 on ∂Ω. Then the

Toeplitz operator T
(2,w)
φ is unitarily equivalent to the operator

(2) T
(2,w)
φ

∼=

d⊕

j=0

Tφ|∂Ω + lower order term

on the direct sum ⊕dj=0H
2(∂Ω) of (d+ 1) copies of H2(∂Ω).
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Here the “lower order term” means a (d + 1) × (d + 1) matrix of sums of
generalized Toeplitz operators of orders and − 1

2 and −1, see Section 4 for the
details.
The hypothesis ν > 1 is needed to have C2,w nontrivial: for ν ≤ 1, C2,w contains
just the function constant zero.
For general m ≥ 2, (2) holds too, except that the hypothesis on ν becomes

ν > 2m− 3 and instead of d+ 1 copies of Tφ|∂Ω, one gets
(
d+m−1
m−1

)
copies (and

matrices of the corresponding size).
Our main tool are Toeplitz operators with pseudodifferential symbols, or gener-
alized Toeplitz operators, on H2(∂Ω) whose theory was worked out by Boutet
de Monvel and Guillemin in [3]. The proof of Theorem 1 follows what is now
already a more or less standard Ansatz (cf. e.g. [2] and [11]) once we identify
B2 explicitly by parameterizing it by two copies of H2(∂Ω). To some extent
this is also true for Theorem 2, however the main difficulty there is that we
are confronted with inverting a matrix of generalized Toeplitz operators whose
principal symbol is not invertible (i.e. the matrix is not elliptic).
The proof of Theorem 1 is presented in Section 3, after reviewing various pre-
requisites in Section 2. The proof of Theorem 2 occupies Section 4, while the
simplest case of the ball is worked out in detail in Section 5.
As already introduced above, we write simply ∂j , ∂j for ∂/∂zj and ∂/∂zj ,
respectively. Throughout the paper, abusing the notation slightly, we will also
denote the restriction φ|∂Ω of a function φ ∈ C∞(Ω) to ∂Ω just again by φ.

2. Background

2.1 Pseudodifferential operators. Throughout the rest of this paper, Ω will
be a bounded strictly pseudoconvex domain in Cd, d > 1, with smooth (= C∞)
boundary, and ρ a positively signed defining function for Ω, i.e. ρ ∈ C∞(Ω),
ρ > 0 on Ω, and ρ = 0 < |∇ρ| on ∂Ω. Denote by η the restriction to ∂Ω of the
1-form Im(−∂ρ) = (∂ρ − ∂ρ)/2i. The strict pseudoconvexity of Ω guarantees
that the half-line bundle

Σ := {(x, ξ) ∈ T ∗(∂Ω) : ξ = tηx, t > 0}

is a symplectic submanifold of the cotangent bundle T ∗(∂Ω).
By a classical (or polyhomogeneous) pseudodifferential operator (ψdo for short)
P on ∂Ω of orderm we will mean a ψdo whose total symbol in any local coordi-
nate chart has an asymptotic expansion p(x, ξ) ∼

∑∞
j=0 pm−j(x, ξ), where pm−j

is C∞ in x, ξ and positively homogeneous of degree m− j in ξ for |ξ| > 1. Here

m can be any real number, and “∼” means that the difference p−
∑k−1

j=0 pm−j

should belong to the Hörmander class Sm−k, for each k = 0, 1, 2, . . . . The func-
tion pm(x, ξ) is called the (leading or principal) symbol of P , denoted σm(P )
(or just σ(P ) if the order m is clear from the context), and the set of all ψdo’s
of order m will be denoted by Ψm. Operators in

⋂

m∈R
Ψm are the smoothing

operators, i.e. those with C∞ Schwartz kernel; and we will write P ∼ Q if
P −Q is smoothing.
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Unless explicitly stated otherwise, all ψdo’s henceforth will be classical. In Sec-
tion 4, we will also need ψdo’s with symbols whose degrees of homogeneity go
down by 1

2 instead of 1; for the purposes of this paper, we will call these demi-

classical ψdo’s. In other words, a demi-classical ψdo of order m is the sum of
a classical ψdo of order m and a classical ψdo of order m− 1

2 .

2.2 Generalized Toeplitz operators. For Q ∈ Ψm the generalized Toeplitz
operator (or gTo for short) TQ is defined as

TQ = ΠQ|H2(∂Ω).

Alternatively, one can view TQ as the operator

TQ = ΠQΠ

on all of L2(∂Ω). In both cases, TQ is a densely defined operator (its domain
contains the Sobolev space Wm(∂Ω)), and extends to a continuous map from
the Sobolev space W s(∂Ω) into W s−m

hol (∂Ω), for any s ∈ R.

Generalized Toeplitz operators are known to enjoy the following properties.

(P1) They form an algebra, i.e. TPTQ = TR for some ψdo R.
(P2) In fact, for any TQ there exists a ψdo P of the same order as Q such

that TP = TQ and PΠ = ΠP .
(P3) If P,Q are of the same order and TP = TQ, then σ(P ) and σ(Q) coincide

on the half-line bundle Σ. One can thus define unambiguously the order
of TQ as ord(TQ) := inf{ord(P ) : TP = TQ}, and the (principal) symbol
σ(TQ) := σ(Q)|Σ if ord(Q) = ord(TQ). (The symbol is undefined if
ord(TQ) = −∞.)

(P4) ord(TPTQ) = ord(TP ) + ord(TQ), σ(TPTQ) = σ(TP )σ(TQ), and
σ([TP , TQ]) = 1

i {σ(TP ), σ(TQ)}Σ where {·, ·}Σ denotes the Poisson
bracket on Σ.

(P5) If ord(TQ) ≤ 0, then TQ is bounded on L2(∂Ω); if ord(TQ) < 0, it is
even compact.

(P6) If Q ∈ Ψm and σm(Q)|Σ = 0, then there exists P ∈ Ψm−1 with TP =
TQ. If TQ ∼ 0, then there exists P ∼ 0 such that TP = TQ.

(P7) One says that TQ is elliptic if σ(TQ) does not vanish. Then TQ has a
parametrix, i.e. there exists a gTo TP , with ord(TP ) = − ord(TQ) and
σ(TP ) = σ(TQ)

−1, such that TPTQ ∼ TQTP ∼ IH2(∂Ω).
(P8) If an elliptic gTo TP is in addition positive self-adjoint as an operator

on H2(∂Ω), then its complex power T zP , z ∈ C, defined using the spec-
tral theorem, is again a gTo, of order z ord(TP ) and with symbol equal
to σ(TP )

z; in particular, the inverse T−1
P and the positive square roots

T
1/2
P , T

−1/2
P are gTo’s.

We refer to the book [3], especially its Appendix, and to the paper [2] for the
proofs and for additional information on generalized Toeplitz operators.
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In addition to classical ψdo’s and gTo’s, we will also need the more general
class Ψlog of log-classical (or log-polyhomogeneous) ψdo’s and gTo’s, whose
total symbol in any local coordinate chart satisfies

p(x, ξ) −

k−1∑

j=0

pm−j(x, ξ) ∈ Sm−k+ǫ ∀ǫ > 0, k = 0, 1, 2, . . . ,

where pm−j are of the form

(3) pm−j(x, ξ) =

kj∑

k=0

pm−j,k(x,
ξ
|ξ|)|ξ|

m−j(log |ξ|)k

for |ξ| > 2, for some (finite) integers kj . Such ψdo’s arise naturally as log-
arithms of complex powers of elliptic classical ψdo’s, and similarly for the
corresponding gTo’s. The properties (P1)–(P8) above remain in force for log-
classical gTo’s, except in (P7), (P8) and the first part of (P5) one must assume
that k0 = 0 (i.e. that the principal symbol is log-free). The reader is referred
e.g. to [10], and the references therein, for the details.
Again, in Section 4 we will also need the demi-classical analogues of log-pluri-
homogeneous ψdo’s and gTo’s, i.e. with symbols whose degrees of homogeneity
go down by 1

2 instead of 1; everything above extends also to this case.

2.3 Boutet de Monvel calculus. Let K denote the Poisson extension oper-
ator, i.e. K solves the Dirichlet problem

(4) ∆Ku = 0 on Ω, Ku|∂Ω = u.

(Thus K acts from functions on ∂Ω into functions on Ω. Here ∆ is the ordinary
Laplacian.) By the standard elliptic regularity theory [13], K is continuous

from W s(∂Ω) into W s+ 1
2 (Ω), for any real s; in particular, it is continuous

from L2(∂Ω) into L2(Ω), and thus has a continuous Hilbert space adjoint K∗ :
L2(Ω) → L2(∂Ω). The composition

K∗K =: Λ

is known to be a positive selfadjoint elliptic ψdo on ∂Ω of order −1. We have
by definition Λ−1K∗K = IL2(∂Ω); comparing this with (4) we see that the
restriction

γ := Λ−1K∗|RanK

is the operator of “taking the boundary values” of a harmonic function. The op-
erators

Λw := K∗wK,

with w a smooth function on Ω, are governed by a calculus developed by Boutet
de Monvel in [1]. For typographical reasons, we will often write Λ[w] instead
of Λw. It was shown that for w of the form

w = ρsg, g ∈ C∞(Ω), s > −1,
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Λ[w] is a ψdo on ∂Ω of order −s− 1, with principal symbol

(5) σ(Λw)(x, ξ) =
Γ(s+ 1)|ηx|

s

2|ξ|s+1
g(x).

More generally, Λ[gρs(log ρ)k] is a log-classical ψdo on ∂Ω whose leading symbol
p−s−1(x, ξ) has the form (3) with k0 = k; see e.g. [12].

2.4 The Levi form. We denote by T ′′ ≡ T ′′(∂Ω) ⊂ T (∂Ω)⊗C the antiholo-
morphic complex tangent space to ∂Ω, i.e. elements of T ′′

x , x ∈ ∂Ω, are vec-

tors X =
∑d

j=1Xj
∂
∂zj

, Xj ∈ C, such that Xρ = 0. (This notation follows

[4, p. 141].) The holomorphic complex tangent space T ′ is defined similarly,
and the whole complex tangent space T (∂Ω) ⊗ C is spanned by T ′, T ′′ and
the vector

E :=
d∑

j=1

∂ρ

∂zj

∂

∂zj
−
∂ρ

∂zj

∂

∂zj

(the “complex normal” direction).
The boundary d-bar operator ∂b : C∞(∂Ω) → C∞(∂Ω → T ′′∗) is defined as
the restriction

∂bf := df |T ′′ ,

or, more precisely, ∂bf = df̃ |T ′′ for any smooth extension f̃ of f to a neigh-
bourhood of ∂Ω in Cd (the right-hand side is independent of the choice of such
extension). Recall that the Levi form is the Hermitian form on T ′ defined by

L′(X,Y ) = −

d∑

j,k=1

∂2ρ

∂zj∂zk
XjY k if X =

d∑

j=1

Xj
∂

∂zj
, Y =

d∑

k=1

Yk
∂

∂zk
.

The strong pseudoconvexity implies that L′ is positive definite. Similarly one
has the positive-definite Levi form L′′ on T ′′ defined by

L′′(X,Y ) := −

d∑

j,k=1

∂2ρ

∂zk∂zj
XjY k if X =

∑

j

Xj
∂

∂zj
, Y =

∑

k

Yk
∂

∂zk
.

In terms of the complex conjugationX 7→ X given byXj
∂
∂zj

= Xj
∂
∂zj

, mapping

T ′ onto T ′′ and vice versa, the two forms are related by

L′′(X,Y ) = L′(Y ,X) ∀X,Y ∈ T ′′.

By the usual formalism, L′′ induces a positive definite Hermitian form (or, per-
haps more appropriately, a positive definite Hermitian bivector) on the dual
space T ′′∗ of T ′′; we denote it by L. Namely, for α ∈ T ′′∗, let Z ′′

α ∈ T ′′ be
defined by

L′′(X,Z ′′
α) = α(X) ∀X ∈ T ′′.
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(This is possible, and Z ′′
α is unique, owing to the non-degeneracy of L′′. Note

that α 7→ Z ′′
α is conjugate-linear.) Then

L(α, β) = L′′(Z ′′
β , Z

′′
α) = α(Z ′′

β ) = β(Z ′′
α).

These objects are related to the symplectic structure of Σ as follows. Note that

dη = −i∂∂ρ = −i

d∑

k,l=1

∂2ρ

∂zk∂zl
dzk ∧ dzl,

hence
dη(X ′ +X ′′, Y ′ + Y ′′) = iL′(X ′, Y ′′)− iL′(Y ′, X ′′)

for all X ′, Y ′ ∈ T ′ and X ′′, Y ′′ ∈ T ′′. It follows that dη is a non-degenerate
skew-symmetric bilinear form on T ′ + T ′′. Let us define ET ∈ T ′ + T ′′ by

dη(X,ET ) = dη(X,E) ∀X ∈ T ′ + T ′′

(again, this is possible and unambiguous by virtue of the non-degeneracy of dη
on T ′ + T ′′), and set

E⊥ :=
E − ET

η(E)
=
E − ET

i‖η‖2
.

The vector field E⊥ is usually called the Reeb vector field, and is defined by
the conditions η(E⊥) = 1, iE⊥

dη = 0.
For f, g ∈ C∞(∂Ω), if we denote by f, g also the corresponding functions on the
half-line bundle Σ constant on each fiber, then one has the following formula
for their Poisson bracket:

(6)
1

i
{f, g}Σ =

L(∂bf, ∂bg)− L(∂bg, ∂bf)

t
, ξ = tηx, t > 0.

In particular, the right-hand side gives the symbol σ−1([Tf , Tg]) of the com-
mutator of two Toeplitz operators, by the property (P4). One can also show
that

(7) σ−1(Tfg − TfTg) =
1
tL(∂bg, ∂bf).

More generally, identifying — once for all — the half-line bundle Σ with ∂Ω×
R+ via the map (x, tηx) 7→ (x, t), let F,G be the functions on Σ given by

F (x, t) = t−kf(x), G(x, t) = t−mg(x).

Then the Poisson bracket of F and G is given by

(8) {F,G}Σ = t−k−m−1
(

iL(∂bf, ∂bg)− iL(∂bg, ∂bf) +mgE⊥f − kfE⊥g
)

.

See [11, Corollary 8] for (6) and (8), from which (7) follows in the same way as
in the proof of Theorem 9 there.

Documenta Mathematica 22 (2017) 1081–1116



1090 M. Englǐs, G. Zhang

2.5 Dixmier trace. Recall that if A is a compact operator acting on a Hilbert
space then its sequence of singular values {sj(A)}

∞
j=1 is the sequence of eigen-

values of |A| = (A∗A)1/2 arranged in nonincreasing order. In particular if
A≫ 0 this will also be the sequence of eigenvalues of A in nonincreasing order.
For 0 < p <∞ we say that A is in the Schatten ideal Sp if {sj(A)} ∈ lp(Z>0).
If A ≫ 0 is in S1, the trace class, then A has a finite trace and, in fact,
tr(A) =

∑

j sj(A). If however we only know that

sj(A) = O(j−1) or that

Sk(A) :=

k∑

j=1

sj(A) = O(log(1 + k))

then A may have infinite trace. However in this case we may still try to
compute its Dixmier trace, trω(A). Informally trω(A) = limk

1
log kSk(A) and

this will actually be true in the cases of interest to us. We begin with the
definition. Select a continuous positive linear functional ω on l∞(Z>0) and
denote its value on a = (a1, a2, ...) by limω(ak). We require of this choice
that limω(ak) = lim ak if the latter exists. We require further that ω be scale

invariant; a technical requirement that is fundamental for the theory but will
not be of further concern to us.
Let SDixm be the class of all compact operators A which satisfy

( Sk(A)

log(1 + k)

)

∈ l∞.

With the norm defined as the l∞-norm of the left-hand side, SDixm becomes
a Banach space. For a positive operator A ∈ SDixm, we define the Dixmier

trace of A, trω A, as trω A = limω(
Sk(A)

log(1+k) ); trω is then extended by linearity

to all of SDixm. Although this definition does depend on ω, the operators A
we consider are measurable, that is, the value of trω A is independent of the
particular choice of ω. We refer to [7] for details and for discussion of the role
of these functionals.
It is a result of Connes [6] that if Q is a ψdo on a compact manifold M of real
dimension n and ord(Q) = −n, then Q ∈ SDixm and

trω(Q) =
1

n!(2π)n

∫

T ∗(M)1

σ(Q).

(Here T ∗(M)1 denotes the unit sphere bundle in the cotangent bundle T ∗(M),
and the integral is taken with respect to a measure induced by any Riemannian
metric onM ; since σ(Q) is homogeneous of degree −n, the value of the integral
is independent of the choice of such metric.) It was shown in [11] that for
Toeplitz operators TQ on ∂Ω, the “right” order for TQ to belong to SDixm is
not − dimR ∂Ω = −(2d − 1), but rather − dimC Ω = −d. Namely, if T is a
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generalized Toeplitz operator on H2(∂Ω) of order −d, then T ∈ SDixm, T is
measurable, and

trω T =
1

d!(2π)d

∫

∂Ω

σ−d(T )(x, ηx) η ∧ (dη)d−1.

See Theorem 3 in [11].

3. Operators on Bm

In this section we consider Toeplitz and Hankel operators on the Boutet de
Monvel-Guillemin spaces Bm associated to “higher Szegö projectors”. We deal
in detail with the case m = 2 on the unit ball B2 of C2, and at the end discuss
what happens for m > 2 and general domains.
Let thus Ω = B2, with the usual defining function ρ(z) = 1 − |z|2. The anti-
holomorphic complex tangent space T ′′ is then one-dimensional, spanned by
the single vector field

Z := L12 = z1∂2 − z2∂1 on ∂B2.

Its adjoint with respect to the inner product in L2(∂B2) equals (by Stokes’ the-
orem)

Z := z2∂1 − z1∂2.

The spaces Bm, m = 1, 2, . . . , are given simply by

Bm = L2(∂B2) ∩KerZ
m
.

As already noted, B1 = H2(∂B2) ≡ H2. Let

H2
0 := {f ∈ H2 : f(0) = 0},

where, abusing notation slightly, we denote by f also the holomorphic extension
of f ∈ H2 into B2.

Proposition 3. Every function in B2 can uniquely be written in the form

f + Zg, with f ∈ H2 and g ∈ H2
0 .

Proof. By a simple computation

(9) ZZ(zm1 z
n
2 ) = (m+ n)zm1 z

n
2 = R(zm1 z

n
2 ),

where R := z1∂1 + z2∂2 is the holomorphic radial derivative. Letting S :
zm1 z

n
2 7→ zm1 z

n
2 /(m+n) stand for the inverse of R on H2

0 , we thus have ZZSh =
h for all h ∈ H2

0 . Also, by direct check, z2∂1S and z1∂2S are both bounded
from H2

0 into L2(∂B2), hence so is ZS. Now if u ∈ B2, then Zu =: h must be
a function in H2. By Stokes’ theorem,

h(0) = −

∫

∂B2

h = −

∫

∂B2

Zu = −

∫

∂B2

u(Z1) = 0,
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so in fact h ∈ H2
0 . Hence Z(u − ZSh) = 0, so u − ZSh is holomorphic and

belongs to L2(∂B2), i.e. u − ZSh ∈ H2. Taking f = u − ZSh, g = Sh thus
yields the desired decomposition.
Uniqueness is immediate from the fact that Z(f + Zg) = ZZg = Rg together
with the injectivity of R on H2

0 . �

The last proof actually shows that

A : f ⊕ g 7→ f + Zg, f ∈ H2, g ∈ H2
0 ,

is a densely defined closed operator mapping its domain H2 ⊕ SH2
0 bijectively

onto B2. By abstract operator theory, we have the polar decomposition

A = U(A∗A)1/2,

where U = A(A∗A)−1/2 is a partial isometry with initial space RanA∗ =
(KerA)⊥ = H2 ⊕H2

0 and final space RanA = B2; that is, U is a unitary map
of H2 ⊕H2

0 onto B2, and UU
∗ = Π2 is the orthogonal projection of L2(∂B2)

onto B2.
For f ∈ L∞(∂B2), the Toeplitz operator TB2

f —which, throughout this section,
we will abbreviate just to Tf — can thus be written as

Tf = UU∗fUU∗,

and is therefore unitarily equivalent to the operator

U∗fU = (A∗A)−1/2A∗fA(A∗A)−1/2

on H2 ⊕ H2
0 . Denote by Π0 = Π − 〈·,1〉1 the orthogonal projection of H2

onto H2
0 ; note that Π−Π0 is a smoothing operator (its Schwartz kernel equals

constant 1). The complex normal vector field

E =

2∑

j=1

(zj∂j − zj∂j)

is tangential to ∂B2 and E|H2 = −R, i.e. TE = −R. It follows that R is
an elliptic gTo of order 1 with principal symbol |ξ|/|ηx|; and, hence, also its
parametrix Π0SΠ0 is a gTo, of order −1 and with principal symbol |ηx|/|ξ|.
Consequently (see Proposition 16 in [9] for detailed argument), the square root

Ř := Π0S
−1/2Π0 : zm1 z

n
2 7→

{
(m+ n)−1/2zm1 z

n
2 , m+ n > 0,

0, m = n = 0,

is a gTo of order − 1
2 with symbol |ηx|

1/2/|ξ|1/2.
After these preliminaries, we are ready for the main result of this section.
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Theorem 4. For f ∈ C∞(∂B2),

(10) U∗fU =

[
Tf TfZŘ

ŘTZf ŘTZfZŘ

]

.

Here the off-diagonal entries are of order − 1
2 , while ŘTZfZŘ − Tf is of or-

der −1; consequently, Tf ∼= U∗fU =

[
Tf 0
0 Tf

]

+A where A is a 2× 2 matrix

of gTo’s of orders at most − 1
2 .

Here and below, TZf stands for the operator u 7→ ΠZ(fu), i.e. f is to be
understood as a multiplier; we will write T(Zf) for the operator Tg with the

function g = Zf (i.e. u 7→ Π(uZf)).

Proof. Writing f ⊕ g ∈ H2 ⊕ H2
0 as the column vector

[
f
g

]

, we have A =

[I, Z], so

A∗A =

[
I ΠZΠ0

Π0ZΠ Π0ZZΠ

]

=

[
I 0
0 Π0RΠ0

]

,

since ZZ = R while ZΠ = ΠZ = 0. It follows that (A∗A)−1/2 =

[
I 0
0 Ř

]

.

Next,

A∗fA =

[
I

Π0Z

]

f [I, Z] =

[
Tf ΠfZΠ0

Π0ZfΠ Π0ZfZΠ0

]

,

and so

U∗fU = (A∗A)−1/2A∗fA(A∗A)−1/2 =

[
Tf TfZŘ

ŘTZf ŘTZfZŘ

]

,

proving (10).
We have TZf = T(Zf) + TfZ = T(Zf), since ZΠ = 0; similarly

(11) TfZ = TZf − T(Zf) = −T(Zf),

since ΠZ = 0. Thus TZf and TfZ are gTo’s of order 0, hence TfZŘ and ŘTZf
are indeed of order − 1

2 . Finally, by the Leibniz rule and (11),

(12) TZfZ = TfZZ + T(Zf)Z = TfR− T(ZZf) = −TfTE − T(ZZf)

is a gTo of order 1, so that ŘTZfZŘ is of order 0, with principal symbol

σ(Ř)2σ(−TE)σ(Tf ) = σ(Tf ). Thus ŘTZfZŘ − Tf is of order −1, and the
second part of the theorem follows. �

Clearly, the second part of the last theorem is precisely the statement of The-
orem 1 from the Introduction.
Using the standard relation

(13) H∗
f
Hg = Tfg − TfTg,

one can also get information about the “higher Hankel” operators Hf ≡ H
(2)
f :

u 7→ (I −Π2)(fu), u ∈ B2.
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Theorem 5. For f, g ∈ C∞(∂B2),
(14)
U∗H∗

f
HgU =

[
Tfg − TfTg − TfZŘ

2TZg (TfgZ − TfTgZ − TfZŘ
2TZgZ)Ř

Ř(TZfg − TZfTg − TZfZŘ
2TZg) Ř(TZfgZ − TZfTgZ − TZfZŘ

2TZgZ)Ř

]

.

Here the orders of the entries are at most

[
−2 − 3

2

− 3
2 −1

]

, with

σ−1(Ř(TZfgZ − TZfTgZ − TZfZŘ
2TZgZ)Ř) = −2(Zf)(Zg).

Proof. The formula (14) follows directly from (10) and (13). In the upper
left corner, σ(Tfg) = fg = σ(TfTg), so Tfg − TfTg is of order −1, and so is

TfZŘ
2TZg since TfZ and TZg are of order 0 by (11) while Ř is of order − 1

2 .

In the bottom right corner TZfgZ has order 1 and symbol fg/σ(Ř)2 by (12), and

so does TZfZŘ
2TZgZ (for the same reason); so their difference is of order 0,

while TZf and TgZ are also of order 0 by (11); so the whole entry has the

same order as Ř2, i.e. −1. Finally, in the upper right corner, σ(TfgZ) =
−Z(fg) and σ(TfTgZ) = −f(Zg) by (11), so σ(TfgZ − TfTgZ) = −(Zf)g;

while σ(TfZŘ
2TZgZ) = −(Zf)σ(Ř)2 g

σ(Ř)2
= −(Zf)g as well, all these gTo’s

being of order 0. Hence TfgZ − TfTgZ − TfZŘ
2TZgZ is of order at most −1,

and the whole entry is of order at most −1 + ord(Ř) = − 3
2 .

We claim that σ−1(Tfg−TfTg−TfZŘ
2TZg) = 0, so the upper left corner in (14)

is in fact of order −2 (at most). Note first of all that L′′(Z,Z) = 1, whence by a

short computation Z ′′
∂bg

= −(Zg)Z and L′′(∂bf, ∂bg) = −(Zf)(Zg). Therefore

by (7),

(15) σ−1(Tfg − TfTg) = −
1

t
(Zf)(Zg), ξ = tηx.

Consequently,

σ−1(Tfg − TfTg − TfZŘ
2TZg)

= σ−1(Tfg − TfTg + T(Zf)Ř
2T(Zg)) by (11)

= − 1
t (Zf)(Zg) + (Zf)σ−1(Ř

2)(Zg) by (15)

= 0 since σ(Ř2) =
1

t
,

proving the claim.
It remains to compute the principal symbol of the bottom right corner in (14).
Now by (11) and (12) again

TZfgZ − TZfTgZ − TZfZŘ
2TZgZ

= T−fgE−(ZZfg) + T(Zf)T(Zg) − T−fE−(ZZf)Ř
2T−gE−(ZZg)

= −TfgTE − T(ZZf)g+(Zf)(Zg)+(Zf)(Zg)+f(ZZg) + T(Zf)T(Zg)

− TfEŘ
2TgE − TfEŘ

2T(ZZg) − T (ZZf)Ř2TgE − T(ZZf)Ř
2T(ZZg).
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The last summand is of order −1, while −TfEŘ
2 = −TfTEŘ

2 = TfRŘ
2 =

Tf−Tf(Π−Π0) ∼ Tf , and similarly σ0(−Ř
2TgE) = σ0(−TgEŘ

2) = σ0(Tg) = g.
Thus

σ0(TZfgZ − TZfTgZ − TZfZŘ
2TZgZ)

= σ0(−TfgE − TfEŘ
2TgE)− (Zf)(Zg)

= σ−1(Tfg + TfEŘ
2Tg)σ1(−TE)− (Zf)(Zg)

= σ−1(Tfg − TfTg)σ1(−TE)− (Zf)(Zg)

= −
(Zf)(Zg)

t
t− (Zf)(Zg) by (15)

= −2(Zf)(Zg),

completing the proof. �

Corollary 6. For f, g ∈ C∞(∂B2), (H∗
f
Hg)

2 ∈ SDixm, is measurable, and

trω(H
∗
f
Hg)

2 = 4 trω(H
∗
f
Hg)

2 = 2

∫

∂B2

(Zf)2(Zg)2 dσ̃,

where dσ̃ stands for the normalized surface measure on ∂B2.

Proof. Immediate from the last theorem and Theorem 11 in [11]. �

Remark. By a similar computation as above, one can show that the principal
symbol of the upper right corner in (14) is

σ−3/2((TfgZ − TfTgZ − TfZŘ
2TZgZ)Ř) = (Z2f)(Zg).

We have not tried to compute σ−2(Tfg − TfTg − TfZŘ
2TZg), which is proba-

bly going to be more tricky (but is of no relevance from the point of view of
e.g. Corollary 6). �

The last theorem and corollary extend also to the spaces Bm(∂B2) = KerZ
m
∩

L2(∂B2) for m > 2. Indeed, generalizing (9), one has

Z
m
Zm = m!R(R − 1) . . . (R−m+ 1),

and as before one concludes that

Bm = H2 + ZH2
0 + Z2H00 + · · ·+ Zm−1H2

0m−1 ,

where we denoted H2
0j := {f ∈ H2 : ∂αf(0) = 0 ∀|α| < j}; and following the

same argument as in the proof of Theorem 5, one gets a unitary equivalence of
the Toeplitz operator TBm

f on Bm to a certain m ×m matrix of gTo’s on H2.
We are leaving the details to the interested reader.
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As already mentioned, what we perceive as the main drawback of the spaces
Bm — despite their similarity to the ordinary H2 from the “microlocal” point
of view — is that they fail to be invariant under biholomorphic equivalence.
In fact, assume that φ = (φ1, φ2) is a biholomorphic automorphism of B2.
Then by the chain rule

Z(f ◦ φ) =
2∑

k=1

(∂kf) ◦ φ · Zφk.

Since 0 = Z1 = Z(φ1φ1 + φ2φ2) = φ1Zφ1 + φ2Zφ2, we see that

Z(f ◦ φ) = aφ · (Zf) ◦ φ,

where aφ = −
Zφ1

φ2
=

Zφ2

φ1
. Hence

Z
2
(f ◦ φ) = Z[aφ · (Zf) ◦ φ] = a2φ · (Z

2
f) ◦ φ+ Zaφ · (Zf) ◦ φ.

Consequently, f ∈ B2 =⇒ f ◦ φ ∈ B2 would mean that Zaφ · (Zf) ◦ φ = 0

∀f ∈ B2, so — taking f so that Zf are e.g. the coordinate functions — Zaφ = 0,

whence Z
2
φ1 = Z

2
φ2 = 0. The last condition is easily seen to be fulfilled only

if φ is an affine map, showing that B2 ◦ φ 6⊂ B2 for other φ.

Yet another drawback of the spaces Bm is their dependence on the — in some
sense arbitrary — choice of the special vector fields Ljk, 1 ≤ j < k ≤ d, in (1)

(reducing to just L12 = Z for d = 2). Namely, the “natural” definition would
rather be

B̃m := {u ∈ L2(∂Ω) : X1 . . . Xmu = 0

for any C∞ sections X1, . . . , Xm of T ′′(∂Ω)},

i.e. X1 . . . Xmu = 0 for any m-tuple of anti-holomorphic complex tangen-
tial vector fields X1, . . . , Xm on ∂Ω. However, unfortunately, one has B̃m =
H2(∂Ω) for all m ≥ 1. In fact, e.g. for Ω = B2 and m = 2 again, the condition

f ∈ B̃2 means that

ZaZf = 0 ∀a ∈ C∞(∂Ω),

or (Za)(Zf)+aZ
2
f = 0 for all a. Taking a = 1 gives Z

2
f = 0, so (Za)(Zf) = 0

for all a; and taking a = Zzj, so that Za = Rzj = zj , then yields zjZf = 0 ∀j.

Thus Zf = 0 and f ∈ H2(∂B2), as claimed.

We therefore proceed to describe a different variant of the spaces Bm, which
does not suffer from the above deficiencies.

Documenta Mathematica 22 (2017) 1081–1116



Higher Cauchy-Riemann Spaces 1097

4. Toeplitz operators on Cm

Throughout this section, we assume that Ω is a bounded strictly pseudocon-
vex domain in Cd, d > 1, with smooth boundary ∂Ω. We fix once for all a
positively-signed defining function ρ for Ω, i.e. ρ ∈ C∞(Ω) satisfies ρ > 0 on Ω
and ρ = 0 < |∇ρ| on ∂Ω. Assume that Ω is equipped with a Kähler metric

gjk = ∂j∂kΨ,

where Ψ is a real-valued strictly-plurisubharmonic function (Kähler potential)
on Ω, which we assume to be of the form

(16) Ψ ≈ log
1

ρ
+

∞∑

j=0

(ρM log ρ)jηj

with an integer M ≥ 2 and ηj ∈ C∞(Ω). Here “≈” is to be understood in the
sense of “resolution of singularities”, i.e. it means that the difference Ψ−log 1

ρ−
∑N−1

j=1 should belong to CMN−1(Ω) and vanish on ∂Ω to order MN − 1. It is

known that e.g. the Bergman metric on Ω is of this form (withM = d+1), as is
the “Szegö metric” corresponding to Ψ(z) = 1

d logKSz(z, z) where KSz is the
invariantly defined Szegö kernel on Ω (then M = d), and likewise the Poincare
metric (i.e. the Kähler-Einstein metric) on Ω corresponding to Ψ = log 1

u with
u the solution of the Monge-Ampere equation (then M = d+ 1 again); see for
instance the survey [5] and the references therein. Finally, we equip Ω with the
weight

w = ρν , ν ∈ R,

where ν will be sufficiently large as precised further below.
As described in the introduction, we then have the kernels of powers of the
Cauchy-Riemann operator

Cm := {f on Ω : D
m
f = 0}

and the associated “higher Cauchy-Riemann spaces”

Cm,w := Cm ∩ L2(Ω, w),

with their Toeplitz and Hankel operators

T
(m,w)
φ : u 7→ Π(m,w)(φu), H

(m,w)
φ : u 7→ (I −Π(m,w))(φu), u ∈ Cm,w,

where φ ∈ L∞(Ω) and Π(m,w) : L2(Ω, w) → Cm,w is the orthogonal projection.

We will usually write just Tφ,Hφ instead of T
(m,w)
φ ,H

(m,w)
φ if there is no danger

of confusion.
Clearly Tφ and Hφ have the usual properties of Toeplitz and Hankel operators,
namely they depend linearly on φ, T1 = I, T ∗

φ = Tφ, and ‖Tφ‖ ≤ ‖φ‖∞ and

similarly for Hφ (by Cauchy-Schwarz).
In the context of bounded symmetric domains, the next assertion is proved as
Proposition 2.4 in Shimura [17].

Documenta Mathematica 22 (2017) 1081–1116



1098 M. Englǐs, G. Zhang

Proposition 7. One has f ∈ C2 if and only if f can be written in the form

(17) f = hk∂kΨ+ h

where hk, k = 1, . . . , d, and h are holomorphic functions; the representation

(17) is unique.

More generally, f ∈ Cm if and only if f can be written in the form

f =

m−1∑

j=0

hk1...kjΨk1 . . .Ψkj ,

with hk1...kj , 1 ≤ k1 ≤ · · · ≤ kj ≤ d, holomorphic on Ω; and this representation

is unique.

Here we have introduced the shorthand

Ψk := ∂kΨ,

and also started using the (Einstein) summation convention of automatically
summing over any index that appears twice in the formula.

Proof. For m = 2, we have by the definition of D

D(hkΨk) = glm∂l(h
kΨk) = glmhk(∂lΨk) = glmhkgkl = δmk h

k = hm

since hk are holomorphic. Thus indeed D
2
(hkΨk) = 0, and since Dh = 0, any f

of the form (17) belongs to C2. Conversely, given f ∈ C2, we must haveDf = hk

for some hk ∈ KerD i.e. for some holomorphic functions hk, k = 1, . . . , d, on Ω.
Then by the above computation, D(f − hkΨk) = 0, i.e. h := f − hkΨk is a
holomorphic function, so f is of the form (17). Finally, if f is of the form (17)
and f = 0, then hk = Df = 0, hence h = f = 0, proving uniqueness.
The proof for general m is the same. �

Note as a corollary that if f ∈ Cm and g is holomorphic, then gf ∈ Cm.
It follows, in particular, that for g holomorphic, the Toeplitz operator Tg is
just the operator of “multiplication by g”, and in fact
(18)

TφTg = Tφg, TgTφ = Tgφ, Hg = 0, for g holomorphic and any φ.

As in Section 3, our strategy now will be to transfer the Toeplitz operators Tφ
to (the direct sum of copies of) the Hardy space. To avoid too many indices,

we will again deal only with the case m = 2. Let κ : (
⊕d

j=1H
2(∂Ω)) ⊕

H2(∂Ω) → L2(Ω, w) be the operator defined by

(19) κ

[
uj
u

]

=

d∑

j=1

ΨjKuj +Ku
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where K is the Poisson extension operator from §2.3. Take again the polar
decomposition of κ,

κ = U(κ∗κ)1/2,

where U is a partial isometry with initial space Ranκ∗ = (Kerκ)⊥ =
0⊥ = ⊕d+1H2(∂Ω) and final space Ranκ, i.e. U is a unitary operator
from ⊕d+1H2(∂Ω) onto C2,w by the last proposition. Also, U∗U = I on

⊕d+1H2(∂Ω) while UU∗ = Π(2,w), the projection onto C2,w. The Toeplitz
operator Tφ = UU∗φ|RanUU∗ is therefore unitarily equivalent to the operator

(20) U∗φU = (κ∗κ)−1/2κ∗φκ(κ∗κ)−1/2

on the direct sum ⊕d+1H2(∂Ω) of d+ 1 copies of H2(∂Ω).

Lemma 8. Let ν > 1. Writing as in (19) the elements of ⊕d+1H2(∂Ω) as

column vectors

[
uj
u

]

= [u1, u2, . . . , ud, u]
t, we have

(21) κ∗φκ =

[
TΛ[ΨkφwΨj ]

TΛ[Ψkφw]

TΛ[φwΨj] TΛ[φw]

]

.

(So here the right-hand side is a (d+ 1)× (d+ 1) matrix of gTo’s on H2(∂Ω),
with j = 1, . . . , d the column index and k = 1, . . . , d the row index.)

Proof. For any u, v ∈ C∞
hol(Ω), we have

〈φKu,Kv〉L2(Ω,w) = 〈wφKu,Kv〉L2(Ω)

= 〈K∗wφKu, v〉L2(∂Ω)

= 〈Λ[φw]u, v〉L2(∂Ω)

= 〈TΛ[φw]u, v〉H2(∂Ω),

and similarly for ΨkφwΨj , Ψkφw and φwΨj in the place of φw. By (19),
the claim follows. �

For brevity, let us denote the collection of all functions in C∞(Ω) of the form
∑∞

j=0 ηj(ρ
m log ρ)j as in (16) by AM (thus Ψ− log 1

ρ ∈ AM ), and also denote

ρj := ∂jρ.

By the Leibniz rule, we have ρΨj ∈ ρj+ρAM−1 ⊂ AM . From the facts reviewed

in §2.3, we thus conclude that for φ ∈ C∞(Ω), Λ[φwΨj ] = Λ[φρν−1(ρΨj)] is an
operator in Ψ−ν

log , with log terms appearing only at orders −ν −M and lower

(in particular, there is no log term in the leading symbol), and with principal

symbol σ−ν(Λ[φwΨj ]) =
Γ(ν)|η|ν−1φρj

2|ξ|ν . Similarly for the other entries in (21),

σ−ν(Λ[Ψkφw]) =
Γ(ν)|η|ν−1ρkφ

2|ξ|ν
, σ1−ν(Λ[ΨkφwΨj ]) =

Γ(ν − 1)|η|ν−2ρkφρj
2|ξ|ν−1

,

σ−ν−1(Λ[φw]) =
Γ(ν + 1)|η|νφ

2|ξ|ν+1
.

Documenta Mathematica 22 (2017) 1081–1116



1100 M. Englǐs, G. Zhang

In particular, for φ = 1, the operator κ∗κ has for its entries gTo’s of orders
[
1− ν −ν
−ν −ν − 1

]

, with leading symbol σ1−ν(κ
∗κ) = Γ(ν−1)|η|ν−2

2|ξ|ν−1

[
ρkρj 0
0 0

]

.

This is obviously not elliptic, so it is not clear at first whether (κ∗κ)−1,
not to say (κ∗κ)−1/2, are given by generalized Toeplitz operators. Our next
task is to show that in fact they are; the main role in this result is played by
the “sub-principal” order terms of κ∗κ.
Denote by Q = [Qkj ]

d
j,k=1 the d× d matrix of gTo’s

(22) Qkj := TΛ[ΨkwΨj]
− TΛ[Ψkw]T

−1
Λ[w]TΛ[wΨj ]

(where as before j is the column index and k the row index). Since TΛ[w] is
elliptic of order −ν − 1, it follows from the formulas for symbols above that
Qkj are gTo’s of order 1− ν (for ν > 1), with principal symbols

σ1−ν(Qkj) = σ1−ν(Λ[ΨkwΨj ])−
σ−ν(Λ[Ψkw])σ−ν(Λ[wΨj ])

σ−ν−1(Λ[w])

∣
∣
∣
Σ

=
Γ(ν − 1)|η|ν−2

2ν|ξ|ν−1
ρkρj .(23)

Denote

(24) Zkj := Qkj −
1

ν
TρkTΛ[ρν−2]Tρj .

In view of (23) and (5), we have σ1−ν(Zkj) = 0, so in fact Zkj is a gTo of order
at most −ν.
In addition to our positively signed defining function ρ, we will also use the
negatively signed defining function r := −ρ, and denote again by

rj := ∂jr = −ρj , rk := ∂kr = −ρk, rjk := ∂j∂kr = −∂j∂kρ

its partial derivatives as indicated.

Proposition 9. Assume that ν > 1. Then there exists a function c ∈ C∞(∂Ω)
such that, using again the identification (x, tηx) ∈ Σ ∼= ∂Ω×R+ ∋ (x, t),

(25) σ−ν(Zkj) =

σ(TΛ[ρν−1])

ν − 1

(

rjk +
|η|

ν
rkL(∂brj , ∂b

1

|η|
) +

|η|

ν
rjL(∂b

1

|η|
, ∂brk) + crkrj

)

.

Proof. Denote, quite generally, for φ, ψ ∈ C∞(∂Ω),

(26) σ−ν(TΛ[φρν−2ψ] − TΛ[φρν−1]T
−1
Λ[ρν ]TΛ[ρν−1ψ] −

1

ν
TφTΛ[ρν−2]Tψ) =: Q(φ, ψ).
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Again, first of all, by the same computation as in (23), we see that the operator
on the left-hand side of (26) is a gTo of order 1− ν with σ1−ν vanishing, hence,
indeed, is in fact a gTo of order −ν, so the σ−ν in (26) makes sense.
Next, from the relation 〈TΛ[w]u, v〉 =

∫

Ω wuv dz, u, v ∈ H2(∂Ω), and the fact
that Tf is just the operator of “multiplication by f” when f is holomorphic,
we have

(27) TΛ[wf ] = TΛ[w]Tf , TΛ[gw] = TgTΛ[w]

for holomorphic f, g and arbitrary w. For our bilinear form Q from (26), this
means that

Q(gφ, ψf) = gQ(φ, ψ)f for f, g holomorphic.

Since, by general theory, Q(φ, ψ) depends only on finitely many derivatives of φ
and ψ (see the bottom of p. 616 in [11] for the detailed argument), it is therefore

enough to evaluate Q(φ, ψ) for φ = f and ψ = g with f, g holomorphic. In that
case we have, using (27) again,

Q(f, g) = σ−ν(TΛ[fρν−2g] − TΛ[fρν−1]T
−1
Λ[ρν ]TΛ[ρν−1g] −

1

ν
TfTΛ[ρν−2]Tg)

= σ−ν(TgT[ν−2]Tf − T[ν−1]TfT
−1
[ν] TgT[ν−1] −

1

ν
TfT[ν−2]Tg),

where, for typographical reasons, we have started writing just [ν] for Λ[ρν ].
Abusing notation slightly, we will also write {·, ·} for 1

i {·, ·}Σ, so that (P4)
reads simply σ([TP , TQ]) = {σ(TP ), σ(TQ)}. Then

σ−ν(TgT[ν−2]Tf − TfT[ν−2]Tg) = {g, [ν − 2]}f + [ν − 2]{g, f}+ {[ν − 2], f}g,

where we started denoting by [ν] also the symbol of T[ν]. Similarly,

σ−ν−1(T[ν−1]Tf − TfT[ν−1]) = {[ν − 1], f},

σ−ν−1(TgT[ν−1] − T[ν−1]Tg) = {g, [ν − 1]},

and, consequently,

Q(f, g) = {g, [ν − 2]}f + [ν − 2]{g, f}+ {[ν − 2], f}g

− {[ν − 1], f}
[ν − 1]

[ν]
g − {g, [ν − 1]}

[ν − 1]

[ν]
f

+ σν(TfT[ν−2]Tg − TfT[ν−1]T
−1
[ν] T[ν−1]Tg −

1

ν
TfT[ν−2]Tg).

The last summand equals just fQ(1,1)g. Since [ν] = Γ(ν+1)
2|η|tν+1 by (5), we have

[ν−1]
[ν] = t

ν . By the Leibniz rule for the Poisson bracket

{g, ab} = a{g, b}+ {g, a}b,
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1102 M. Englǐs, G. Zhang

we have {g, tν} = νtν−1{g, t}, and so, using again (5),

{g, [ν − 2]} =
Γ(ν − 1)

2
{g,

t1−ν

|η|
}

=
Γ(ν − 1)

2|η|
(1 − ν)t−ν{g, t}+

Γ(ν − 1)

2
t1−ν{g,

1

|η|
},

t

ν
{g, [ν − 1]} =

Γ(ν)

2ν|η|
(−ν)t−ν{g, t}+

Γ(ν)

2ν
t1−ν{g,

1

|η|
},

whence

{g, [ν − 2]} −
[ν − 1]

[ν]
{g, [ν − 1]} =

[ν − 2]|η|

ν
{g,

1

|η|
}.

Similarly for the corresponding brackets with f . Finally by (6), when either f
or g is holomorphic, we have

{g, f} =
1

t
L(∂bg, ∂bf).

Putting everything together, we thus arrive at

(28) Q(f, g) =

[ν − 2]
f |η|
ν L(∂bg, ∂b

1
|η|) + g |η|

ν L(∂b
1
|η| , ∂bf) + L(∂bg, ∂bf)

t
+ fgQ(1,1),

and so

(29) Q(φ, ψ) =

[ν − 2]
φ |η|
ν L(∂bψ, ∂b

1
|η| ) + ψ |η|

ν L(∂b
1
|η| , ∂bφ) + L(∂bψ, ∂bφ)

t
+ φψQ(1,1),

Now σ−ν(Zkj) = Q(ρk, ρj). We claim that

(30) L(∂bρj , ∂bρk) = rjk + qrjrk

with some q ∈ C∞(∂Ω). To see this, assume we are at a point of ∂Ω where
e.g. r1 6= 0, so that

Rj := ∂j −
rj
r1
∂1, Rk := ∂k −

rk
r1
∂1, j = 2, . . . , d,

form a basis for T ′ and T ′′, respectively. By a simple computation,

L′(Rk, Rn) = Rkrn −
rn
r1
Rkr1 =: ℓkn.
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Let ℓmk be the inverse matrix of ℓkn (which is positive definite by the strict
pseudoconvexity). Thus (employing the summation convention)

(31) ℓkmRkrj = δmj +
rj
r1
ℓkmRkr1.

Remembering the definition of the dual Levi form, we have L(∂bρj , ∂bρk) =

∂bρj(X) = Xρj where X ∈ T ′′ is characterized by L′′(Rn, X) = ∂bρk(Rn) =

Rnρk for all n = 2, . . . , d. Writing temporarily X =
∑

j cjRj this yields, since

L′′(Rn, Rj) = L′(Rj , Rn) = ℓjn,

cjℓjn = Rnρk,

or, using (31),

cm = ℓnmRnρk = −ℓnmRnrk = −δmk −
rk
r1
ℓnmRnr1.

Hence, using (31) one more time,

L(∂bρj , ∂bρk) = cmRmρj = (δmk +
rk
r1
ℓmnRnr1)Rmrj

= Rkrj +
rk
r1

(Rnr1)(δ
n
j +

rj
r1
ℓmnRmr1)

= (Rkrj +
rk
r1
Rjr1) +

rkrj
r1r1

ℓmn(Rnr1)(Rmr1)

= rjk +
rkrj
r1r1

[ℓmn(Rnr1)(Rmr1)− r11]

= rjk + rjrkq,

with

(32) q :=
1

r1r1
[ℓmn(Rnr1)(Rmr1)− r11]

(on the piece of ∂Ω where r1 6= 0; note that q is real-valued). Thus (30) holds.

Inserting (30) into (29), noting that [ν−2]
t = [ν−1]

ν−1 , we finally get

(33)
σ−ν(Zkj) = Q(ρk, ρj)

=
[ν − 1]

ν − 1

(

rk
|η|

ν
L(∂brj , ∂b

1

|η|
) + rj

|η|

ν
L(∂b

1

|η|
, ∂brk) + rjk + qrjrk

)

+ rjrkQ(1,1),

completing the proof of the proposition (with c = q + ν−1
[ν−1]Q(1,1)). �
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Throughout the rest of this section, we will assume that on ∂Ω

(34) [rjk]
d
j,k=1 is positive definite, and |η| = 1.

Such defining functions exist in abundance: indeed, it is standard that there
exists a (negatively signed) defining function r′ for Ω such that r′ is strictly
plurisubharmonic, i.e. [r′

jk
]dj,k=1 is positive definite, on Ω. If g ∈ C∞(Ω) and

r = r′g, then on ∂Ω
|η|2 = rkrk = |g|2r′kr

′
k
,

and

rjk = gr′
jk

+ gjr
′
k
+ r′jgk = gr′

jk
+
( ∂g

∂n
⊗
∂r′

∂n

)

jk

(where ∂/∂n stands for the normal derivative; note that the tangential deriva-
tives of r′ vanish). Thus taking any positive g with

g = (r′kr
′
k
)−1/2 and

∂g

∂n
= 0

on ∂Ω produces an r satisfying (34).

Corollary 10. Assume that (34) holds. Then

σ−ν(Zkj) =
[ν − 1]

ν − 1
(rjk + crjrk), c ∈ C∞(∂Ω).

Proof. If |η| = 1, then ∂b
1
|η| = 0. �

Proposition 11. Assume that ν > 1 and r satisfies (34). Then

(i) the inverse of the d × d matrix of gTo’s Q = [Qkj ]
d
j,k=1 is given by

S = [Sjm]dj,m=1, where Sjm are gTo’s of order ν;
(ii) the inverse of the (d+1)× (d+1) matrix of gTo’s κ∗κ is a matrix all of

whose entries are gTo’s of order ν, except the bottom right entry which

is a positive selfadjoint elliptic gTo of order ν + 1.

Proof. Denote, for brevity, Rj := Tρj and Ř = 1
νT[ν−2] +

1
ν−1Tc[ν−1], with

the c from (25). By the last proposition and its corollary, Ỹkj := Qkj −

R∗
kŘRj is a gTo of order −ν with σ−ν(Ỹkj) = [ν−1]

ν−1 rjk. Since the matrix

[rjk]
d
j,k=1 is positive definite by hypothesis, there exists a matrix S1 of (fi-

nite rank) smoothing operators such that [Ykj ] := [Ỹkj ] + S1 is positive self-
adjoint on ⊕dH2(∂Ω). (Sketch of proof: looking at the symbols shows that

(ν − 1)[Ỹkj ] = T
1/2
[ν−1][Trjk ]

1/2(I +K)[Tr
jk
]1/2T

1/2
[ν−1] with K of order −1, i.e. K

is a compact selfadjoint operator. Thus K has at most finitely many eigen-
values, each of finite multiplicity, in the interval (−∞,− 1

2 ); the correspond-
ing spectral projection P(−∞,− 1

2 )
is thus a finite rank smoothing operator.
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Take S0 := P(−∞,− 1
2 )
KP(−∞,− 1

2 )
(a finite rank smoothing operator too, with

I +K + S0 ≫ 1
2I) and S1 := 1

ν−1T
1/2
[ν−1][Trjk ]

1/2S0[Tr
jk
]1/2T

1/2
[ν−1] (a finite rank

smoothing operator, with [Ỹkj ] + S1 ≫ 1
2

1
ν−1T

1/2
[ν−1][Trjk ]T

1/2
[ν−1] ≫ 0).) Conse-

quently, by the (matrix variant of the) property (P8) in §2.2, the powers Y z

of Y = [Ykj ]
d
j,k=1, with any z ∈ C, are gTo’s, with entries of order −zν; in par-

ticular, the inverse Y −1 =W , W = [Wjm]∞j,m=1, is matrix of gTo’s, and so are

the square roots Y 1/2 and W 1/2 = Y −1/2.
For the matrix Q = [Qkj ] above, we can then write, in the obvious block matrix
notation (R is to be viewed as a row vector)

(35) Q = Y +R∗ŘR − S1 = Y 1/2(I + z∗Řz − S2)Y
1/2, z := RW 1/2,

with S2 =W 1/2S1W
1/2 smoothing. Recall from (21) that

(36) κ∗κ =

[
TΛ[ΨkwΨj]

TΛ[Ψkw]

TΛ[wΨj ] TΛ[w]

]

≡

[
A B
C D

]

.

Note that D = T[ν], as well as all of κ∗κ, are positive selfadjoint, so have an
(unbounded) inverse. Using the decomposition

(37)

[
A B
C D

]

=

[
I BD−1

0 I

] [
A−BD−1C 0

0 D

] [
I 0

D−1C I

]

,

we thus see that A − BD−1C = Q must also be positive selfadjoint. Hence,
by (35), so must be (I + z∗Řz − S2).
The operator

H := zz∗ = RWR∗

is an elliptic gTo on H2(∂Ω) of order ν, with σν(H) = |[rjk]
−1/2[rk]|

2 > 0.
Being of the form zz∗, it is also automatically nonnegative; by a similar argu-
ment as above, it follows that the projection H0 onto KerH is a finite rank
smoothing operator, and H + H0 is a positive selfadjoint elliptic gTo of or-
der ν; hence H1/2 = (H +H0)

1/2 − H0 =: h is a gTo (of order ν
2 ), and so is

h− := (H +H0)
−1/2 −H0 (of order − ν

2 ), with hh− = h−h = I −H0. Taking
polar decomposition of z∗, we obtain

z∗ = Vh

with some V a column matrix of gTo’s of order 0 and a partial isometry from
H2(∂Ω) into ⊕dH2(∂Ω), with V∗V = I − H0, and z∗Řz = V∗hŘhV . Again,
the operator I + hŘh is a selfadjoint gTo of order 1 with symbol σ1(hŘh) =
[ν−2]
ν σν(H) > 0, so there exists a finite rank smoothing operator S3 such that

I + hŘh + S3 ≫ 0; and by (P8), (I + hŘh + S3)
−1/2 is an elliptic gTo of

order − 1
2 . Set

b := h2− − h−(I + hŘh+ S3)
−1/2h−,
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this is an elliptic demi-classical gTo of order −ν (the first summand is elliptic
of order −ν, the second summand is of order −ν − 1

2 ); and

X ′′ : = I − VhbhV∗

= I − V(I −H0)[I − (I + hŘh+ S3)
−1/2](I −H0)V

∗,

which differs by a finite-rank smoothing operator from

I − V [I − (I + hŘh+ S3)
−1/2]V∗ = (I − VV∗) + V(I + hŘh+ S3)

−1/2V∗.

The last operator is selfadjoint, equals I on KerV∗, while on (KerV∗)⊥ = RanV
it is unitarily equivalent to V∗V(I+hŘh+S3)

−1/2V∗V , which differs by a finite-
rank smoothing operator from (I+hŘh+S3)

−1/2, an elliptic gTo of order − 1
2 .

It follows one more time that there exists a finite-rank smoothing operator S4

such that
X ′ := X ′′ + S4 = I − VhbhV∗ + S4

is a matrix of demi-classical gTo’s of order 0 which is also positive selfadjoint
as an operator on ⊕dH2(∂Ω). Now

X ′2 ∼ (I − VhbhV∗)2

= I + Vh(−2b+ bhV∗Vhb)hV∗

∼ I + Vh(−2b+ bh2b)hV∗

= I + V [(I − hbh)2 − I]V∗

∼ I + V [(I + hŘh+ S3)
−1 − I

︸ ︷︷ ︸

=:G

]V∗,

and so

X ′2(I + z∗Řz − S2) = X ′2(I + VhŘhV∗ − S2)

∼ (I + VGV∗)(I + VhŘhV∗)

= I + V(G+ hŘh+GV∗VhŘh)V∗

∼ I + V(G+ hŘh+GhŘh)V∗

= I + V [(I +G)(I + hŘh)− I]V∗

∼ I + V [(I +G)(I + hŘh+ S3)− I]V∗ = I.

Consequently,
X ′2(I + z∗Řz − S2) = I + S5

with some smoothing operator S5. Since we have managed that both terms on
the left-hand side are positive, hence invertible, so must be the right-hand side,
thus (I + S5)

−1 is a gTo, and

(I + S5)
−1X ′2(I + z∗Řz − S2) = I,
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i.e. (I + S5)
−1X ′2 is a left inverse of (I + z∗Řz − S2). Taking adjoints, we see

that X ′2(I + S5)
−1 is a right inverse, hence

(38) S′ := (I + S5)
−1X ′2 = X ′2(I + S5)

−1

is the two-sided inverse for (I + z∗Řz − S2); thus finally by (35),

S :=W 1/2S′W 1/2

is the inverse of Q, proving part (i).
Note that although X ′ is only demi-classical, the operator G above, and thus
also X ′2, is classical, hence so are also S′ and S.
For (ii), recall from (37) that

(κ∗κ)−1 =

[
I 0

−D−1C I

] [
Q−1 0
0 D−1

] [
I −BD−1

0 I

]

=

[
Q−1 −Q−1BD−1

−D−1CQ−1 D−1 +D−1CQ−1BD−1

]

.

Thus the matrix of gTo’s

[
S −SBD−1

−D−1CS D−1 +D−1CSBD−1

]

(note that C = B∗)

is the inverse for κ∗κ.
Now D−1CS is a gTo of order (ν + 1) + (−ν) + ν = ν + 1, with symbol

σν+1(D
−1CS) = σν+1(D

−1CW 1/2X ′2W 1/2)

= σν+1(D
−1)σ−ν/2(CW

1/2X ′)σν/2(X
′W 1/2),

with

(39)

σ−ν/2(CW
1/2X ′) = σ−ν(C)σν/2(W

1/2)σ0(X
′)

= [ν − 1]R · σν/2(W
1/2)σ0(I − VhbhV∗)

= [ν − 1]σν/2(z)σ0(I − VhbhV∗)

= [ν − 1]σν/2(hV
∗)σ0(I − VhbhV∗)

= [ν − 1]σν/2(h)σ0(V
∗ − V∗VhbhV∗)

= [ν − 1]σν/2(h)σ0((I − hbh)V∗) (since V∗V ∼ I)

= [ν − 1]σν/2(h)σ0(I − hbh)σ0(V
∗)

= 0,

since I − bhb ∼ (I + hŘh+ S3)
−1/2 is of order − 1

2 . Thus D
−1CS is in fact of

order ν, and similarly for SBD−1, while D−1CSBD−1 = (D−1CS)Q(SBD−1)
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has order ν + (1 − ν) + ν = ν + 1, same as D−1. Consequently, (κ∗κ)−1 is a

(d+ 1)× (d+ 1) matrix of gTo’s with orders

[
ν ν
ν ν + 1

]

, as asserted.

Finally, as C = B∗,

σν+1(D
−1 +D−1CSBD−1)

= σν+1(D
−1 +D−1CW 1/2X ′2W 1/2C∗D−1)

= σν+1(D
−1) + |σν+1(D

−1)σ−ν/2−1/2(CW
1/2X ′)|2 > 0,

showing the ellipticity of the bottom right corner and thus completing the proof
of part (ii). �

Proposition 12. Under the same hypothesis as in Proposition 11, there exists

an isometry V on ⊕d+1H2(∂Ω) such that V (κ∗κ)−1/2 is a (d + 1) × (d + 1)
matrix of demi-classical gTo’s.

Proof. Keeping the notations from the previous proof, we have from the com-
mutativity of the two factors on the right-hand side of (38) that I + S5 is
positive and

S′ := (I + S5)
−1/2X ′2(I + S5)

−1/2.

Thus the operator
X := X ′(I + S5)

−1/2W 1/2

satisfies
X∗X =W 1/2S′W 1/2 = S = Q−1.

Finally, with the notation (37), set

(40) Z :=

[
X −XBD−1

0 D−1/2

]

.

Then

Z∗Z =

[
X∗ 0

−D−1CX∗ D−1/2

] [
X −XBD−1

0 D−1/2

]

=

[
S −SBD−1

−D−1CS D−1 +D−1CSBD−1

]

is precisely the matrix of (κ∗κ)−1 from the preceding proposition. Taking polar
decomposition, it follows that Z = V (κ∗κ)−1/2 with V a partial isometry

with initial space Ran(κ∗κ)−1/2 = (Ker(κ∗κ)−1/2)⊥ = 0⊥, i.e. an isometry
on ⊕d+1H2(∂Ω). �

We pause to note what are the orders of the entries in Z: while those of X
have orders ν

2 , the bottom right entry is a positive selfadjoint elliptic gTo of

order ν+1
2 with symbol [ν]−1/2. For XBD−1 = (D−1CX∗)∗, a brute count
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gives order ν
2 + 1; however, D−1CX∗ ∼ D−1CW 1/2X ′ and we have seen in

(39) that σ−ν/2(CW
1/2X ′) = 0 so that CW 1/2X ′ is actually of order − ν

2 − 1
2 ;

thus XBD−1 is actually of order ν
2 + 1

2 , i.e. the same as D−1/2.

Proof of Theorem 2. We have seen in (20) that the Toeplitz operator Tφ on C2,w
is unitarily equivalent to (κ∗κ)−1/2κ∗φκ(κ∗κ)−1/2 on ⊕d+1H2(∂Ω). By the last
proposition, the latter is in turn equivalent to (modulo smoothing operators)

V ∗Zκ∗φκZ∗V ∼= Zκ∗φκZ∗

with Z from (40). Writing now (21) as κ∗φκ =

[
Aφ Bφ
Cφ Dφ

]

(similarly to (36))

we have by (40) (noting again that B∗ = C)

Zκ∗φκZ∗ =

[
X −XBD−1

0 D−1/2

] [
Aφ Bφ
Cφ Dφ

] [
X∗ 0

−D−1CX∗ D−1/2

]

which equals





X(Aφ −BD−1Cφ −BφD
−1C+

+BD−1DφD
−1C)X∗ X(Bφ −BD−1Dφ)D

−1/2

D−1/2(Cφ −DφD
−1C) D−1/2DφD

−1/2



 .

However, from (21) we see that σ(Aφ) = φσ(A), so Aφ = TφA + A′
φ with A′

φ

of order 1 less than A i.e. −ν; and similarly Bφ = BTφ +B′
φ, Cφ = TφC + C′

φ

and Dφ = DTφ +D′
φ. It follows that

D−1/2DφD
−1/2 = D1/2TφD

−1/2 +D−1/2D′
φD

−1/2

= Tφ + ([D1/2, Tφ]D
−1/2 +D−1/2D′

φD
−1/2),

where the term in the parentheses is of order −1. Next,

Rφ : = X(Bφ −BD−1Dφ)D
−1/2

= X [(BTφ +B′
φ)−BD−1(DTφ +D′

φ)]D
−1/2

= X [B′
φ −BD−1D′

φ]D
−1/2,(41)

which is of order − 1
2 ; similarly for D−1/2(Cφ −DφD

−1C)X∗ = R∗
φ
. Finally,

X(Aφ −BD−1Cφ −BφD
−1C +BD−1DφD

−1C)X∗

= X [(TφA+A′
φ)−BD−1(TφC + C′

φ)− (BTφ +B′
φ)D

−1C

+BD−1(DTφ +D′
φ)D

−1C]X∗

= X [(TφA+A′
φ)−BD−1(TφC + C′

φ)−B′
φD

−1C +BD−1D′
φD

−1C]X∗

= X [TφA+A′
φ − [BD−1, Tφ]C − TφBD

−1C −BD−1C′
φ

−B′
φD

−1C +BD−1D′
φD

−1C]X∗
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= X [Tφ(A−BD−1C)+

A′
φ − [BD−1, Tφ]C −BD−1C′

φ −B′
φD

−1C +BD−1D′
φD

−1C
︸ ︷︷ ︸

=:W ′

φ

]X∗

= X [TφQ+W ′
φ]X

∗

= [X,Tφ]QX
∗ + Tφ[X,QX

∗] + TφQX
∗X +XW ′

φX
∗

= Tφ + [X,Tφ]QX
∗ + Tφ[X,QX

∗] +XW ′
φX

∗,

(42)

since QX∗X = I by the construction of X . The last line is a d × d matrix of
gTo’s of order 0, and their symbols — M(φ) = [Mkj(φ)]

d
j,k=1, say — depend

linearly on derivatives of φ of at most first order, i.e. are of the form

Mkj(φ) = akjφ+ Lkjφ

with some akj ∈ C∞(∂Ω) and smooth vector-fields Lkj (not necessarily tan-
gential) on ∂Ω. We thus conclude that

(43) Tφ ∼= Zκ∗φκZ∗ =

[
TM(φ) 0

0 Tφ

]

+ lower order term,

where the “lower order term” is a matrix of gTo’s of order − 1
2 . Now, first of all,

T1 = I, which implies that akj = δkj1. Secondly, remembering that, by (18),
Tφf = TφTf for f holomorphic, we see that for all such f ,

(φI + Lφ)(fI + Lf) = φfI + L(φf),

or, using the Leibniz rule, (Lφ)(Lf) = 0. Taking φ = f shows that Lf = 0 for
all holomorphic f . Since T ∗

φ = Tφ, we similarly get Lg=0 for all holomorphic g.
Thus L contains neither holomorphic nor anti-holomorphic derivatives, i.e. L =
0. This completes the proof. �

Remark. An alternative proof of L = 0 can be given by brute force computation
from (42) using (39). �

Remark. We have been somewhat silent about the log terms in the various
ψdo’s and gTo’s, so here we spell them out: clearly Ř, c and Rj contain no

log terms, while Qkj ∈ Ψ1−ν
log have log terms starting at order 1 − ν − M

(i.e. at distance M from the leading order). The operators Ykj ∈ Ψ−ν
log have

log terms starting at distance M − 1 from the leading order already (since
they were basically fabricated from Qkj by cancelling the leading order term);
and similarly for W , z, H , S, b, X and Z, as well as for the right-hand side
of (43). �

Remark. It should be noted that, in general, even if a Toeplitz operator Tφ
is positive selfadjoint on H2(∂Ω) — hence, having an inverse there with the
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same properties — then this inverse need not be a gTo in general (i.e. if Tφ
is not in addition elliptic); hence, in particular, the effort needed for proving
Proposition 11. An example is φ = |z1|

2 on the unit ball in Cd, d > 1:
its inverse would have to be of order 0 with symbol 1/|z1|

2, but T1/|z1|2 is not a
well defined operator. Note that, in fact, for the ball the entries in the matrix
(36) for κ∗κ are precisely of the above type: for instance, the (1,1)-entry in (36)
is then Tz1T[ν−2]Tz1 , hence with symbol [ν − 2]|z1|

2 of the kind as above. It is
noteworthy that although each entry is non-manageable in this way, the entire
matrix κ∗κ is nonetheless invertible as a gTo by Proposition 11. Similar remarks

apply to the square root T
1/2
φ and Proposition 12 (see also the remark at the

very end of the next section). �

Remark. Note that the only place where (34) was used was in the proof of
Proposition 11, to ensure the existence of powers of [Ykj ]. One can get this even
if the second part of (34), i.e. |η| = 1, is dropped, as soon as ν is sufficiently

large: namely, thanks to the factors of |η|
ν in (33), the matrix

[

rjk +
|η|

ν

(

rkL(∂brj , ∂b
1

|η|
) + rjL(∂b

1

|η|
, ∂brk)

)]

will be positive whenever [rjk] is and ν gets large enough, because the second

summand becomes negligible compared to [rjk]. We are not sure what happens

when (34) is dropped completely (i.e. if r is not strictly-PSH near ∂Ω), though
we expect that at least Theorem 2 will still remain in force. �

Remark. We have left aside the case of dimension d = 1. In that case, many
things simplify considerably: namely, the operator Q = A − BD−1C in (37)
is then an elliptic positive selfadjoint gTo, so it follows immediately that so is
also its inverse Q−1 and inverse square root Q−1/2 = X ; the constructions in
the proofs of Propositions 11 and 12 are thus not needed, while the statements
of these two propositions remain in force, and so does that of Theorem 2. �

Remark. We pause to remark that the function q from (32) occurs on at least
one more interesting occasion. Namely, denote by E the holomorphic vector
field on ∂Ω given by

Ef =
1

i
E⊥f for holomorphic f,

where E⊥ is the Reeb vector field from §2.4; in other words, by (8),

Ef = {t, f} for holomorphic f.

(This operator makes appearance e.g. when one computes the symbol of oper-
ators like the B′

φ, D
′
φ in the proof of Theorem 2.) Then one can show that

Erk = −qrk, k = 1, . . . , d.
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The function q seems to be an interesting object from the point of view of
complex geometry of strictly pseudoconvex domains, and even more so its nor-
malized version |η|q which does not depend on the choice of the defining func-
tion r. �

Finally, it should be clear how to proceed for analogues of Theorem 2 for the
spaces Cm,w with general m > 2.

5. The case of the ball

In this final section, we work out the situation from Theorem 2, i.e. the Toeplitz
operators on C2,w, more explicitly for the unit ball Ω = Bd of Cd, with the
standard weights w = ρν , ρ(z) = 1 − |z|2. (Note that this defining function
satisfies the hypothesis (34).) In particular, we show that in this case the inverse
square root (κ∗κ)−1/2 is itself a gTo (so the isometry V in Proposition 12 is
not needed). We are unable to prove whether this is also the case for general
strictly pseudoconvex domains Ω and their defining functions from Section 4.
For multiindices α and β, the familiar formula for integration over the unit
sphere

(44) 〈zα, zβ〉H2(∂Bd) =

∫

∂Bd

zαzβ dσ(z) =
2πdδαβα!

Γ(d+ |α|)

(where dσ stands for the surface measure on ∂Bd) implies

(45)

∫

Bd

ρ(z)νzαzβ dz =
α!δαβπ

d

(ν + 1)d+|α|
.

Here (ν)k := ν(ν+1) . . . (ν+k−1) is the Pochhammer symbol. It follows that

TΛ[ρν ]z
α =

∑

β

〈TΛ[ρν ]z
α, zβ〉

zβ

〈zβ, zβ〉

=
∑

β

(∫

Bd

ρνzαzβ dz
)Γ(d+ |β|)

2πdβ!
zβ by (44)

=
Γ(d+ |α|)

2(ν + 1)d+|α|
by (45).(46)

Similarly, we compute how the operators in the matrix (36) act on the ba-
sis {zα}:

TΛ[zkρν−2zj ]z
α =

∑

β

(α + ek)!δα+ek,β+ejπ
d

(ν − 1)d+|α|+1

Γ(d+ |β|)

2πdβ!
zβ

=
(αj + δkj)Γ(d+ |α|)

2(ν − 1)d+|α|+1
zα+ek−ej ,

TΛ[ρν−2zj ]z
α =

αjΓ(d+ |α| − 1)

2(ν)d+|α|
zα−ej ,

TΛ[zkρν−2]z
α =

αjΓ(d+ |α|+ 1)

2(ν)d+|α|+1
zα+ek ,
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where ek = (0, . . . , 0, 1, 0, . . . , 0) with 1 at k-th position. It follows that

TΛ[zkρν−2]T
−1
Λ[ρν ]TΛ[ρν−2zj ]z

α =
αj
ν

Γ(d+ |α|)

2(ν)d+|α|
zα+ek−ej

and so Qkj = TΛ[zkρν−2zj ] − TΛ[zkρν−2]T
−1
Λ[ρν ]TΛ[ρν−2zj ] satisfies

Qkjz
α =

Γ(d+ |α|)

2(ν)d+|α|

[αj + δkj
ν − 1

−
αj
ν

]

zα+ek−ej .

On the other hand, Tzjz
α =

αj

d+|α|−1z
α−ej , whence

TzkTΛ[ρν−2]Tzjz
α =

αj
d+ |α| − 1

Γ(d+ |α| − 1)

2(ν − 1)d+|α|−1
zα+ek−ej .

Thus for the operator Zkj = Qkj −
1
νTzkT[ν−2]Tzj from (24) we get

Zkjz
α =

Γ(d+ |α|)

2(ν)d+|α|

[ δkj
ν − 1

−
2ν − 1

ν(ν − 1)

αj
d+ |α| − 1

−
αj

(d+ |α| − 1)2

]

zα+ek−ej .

Consequently,

Zkj =
δkj
ν − 1

T[ν−1] − TzkDTzj

where the operator

D : zα 7→
[ 2ν − 1

ν(ν − 1)
+

1

d+ |α|

]Γ(d+ |α|+ 1)

2(ν)d+|α|+1
zα

satisfies

D =
2ν − 1

ν(ν − 1)
(T[ν−1] − T[ν]) +

1

ν
T[ν] =

2ν − 1

ν(ν − 1)
T[ν−1] −

1

ν − 1
T[ν].

Thus, in full accordance with Proposition 9,

σ−ν(Zkj) =
[ν − 1]

ν − 1
δkj −

2ν − 1

ν(ν − 1)
[ν − 1] zjzk.

Indeed, rjk = δkj , while, by a routine computation, q = −1 and

(ν−1
ν T[ν−2] − T[ν−1]T

−1
[ν] T[ν−1])z

α

=
Γ(d+ |α|)

2

[ν − 1

ν

1

(ν − 1)d+|α|
−

(ν + 1)d+|α|

(ν)2d+|α|

]

zα

= −
1

ν

Γ(d+ |α|)

2(ν)d+|α|
zα = −

1

ν
T[ν−1]z

α,
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so Q(1,1) = σ−ν(
ν−1
ν T[ν−2] − T[ν−1]T

−1
[ν] T[ν−1]) = − [ν−1]

ν and

c =
ν − 1

[ν − 1]
Q(1,1) + q = −

2ν − 1

ν
.

We also pause to note that the Reeb vector field is given simply by E⊥ =
1
iE = 1

i (zj∂j − zj∂j), and E = zj∂j is just the holomorphic radial derivative.
Furthermore, ΠE = EΠ and TE = −E .
GTo’s that are invariant under the action of the unitary group U(d) of rotations
of Bd are precisely the diagonal operators

(47) Ts : zα 7→ s|α|z
α

on H2(∂Bd), with eigenvalue sequence s = (sk)
∞
k=0 possessing an asymptotic

expansion

sk ∼

∞∑

j=0

cj(k + 1)m−j as k → +∞,

with some cj ∈ C, j = 0, 1, 2, . . . , where m is the order of Ts and σm(Ts) =
c0t

m; alternatively, Ts ∼
∑∞

j=0 cj(I + E)m−j . One has

(48) TsTzk = TzkTs′,

where Ts′ is again a rotation-invariant gTo with eigenvalue sequence s′k =
sk+1, i.e. s

′ = S∗
s where S∗ is the “backward shift” operator on sequences;

alternatively, Ts′ =
∑d

k=1 TzkTsTzk .
In particular, this applies to T[ν] = Ts[ν]

where, by (46),

(49) s[ν] =
( Γ(d+ k)

2(ν + 1)d+k

)∞

k=0
,

and so

Qkj = Zkj +
1

ν
TzkT[ν−2]Tzj =

δkj
ν − 1

T[ν−1] + Tzk(
1
νT[ν−2] −D)Tzj

=
1

ν − 1
T

1/2
[ν−1](δkjI + TzkTsTzj )T

1/2
[ν−1],

with

(50) s = (ν − 1)(S∗
s[ν−1])

−1( 1ν s[ν−2] −
2ν−1
ν(ν−1)s[ν−1] +

1
ν−1s[ν])

(the multiplication and inverse of sequences being understood pointwise;
note that any two operators of the form (47) commute). From the simple
formula

(51) (δkjI + TzkATzj )(δjmI + TzjBTzm) = δkmI + Tzk(A+B +AB)Tzm
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(because
∑d

j=1 TzjTzj = T∑
j |zj|2 = T1 = I) we thus see that the matrix

Q = [Qkj ]
d
j,k=1 has the inverse S = [Sjm]dj,m=1 given by the gTo’s

(52) Sjm = (ν − 1)T
−1/2
[ν−1](δjmI − TzjTxTzm)T

−1/2
[ν−1]

where x = s/(1 + s) (i.e. xk = sk/(1 + sk) for all k); furthermore, S = X∗X
for X = [Xjm]dj,m=1 where

X = (ν − 1)1/2(δjmI − TzjTyTzm)T
1/2
[ν−1]

with yk = 1− (1− xk)
1/2 = 1− (1+ sk)

−1/2 (note that, by a direct check from
(50) and (49), sk > 0 for all k). This offers explicit expressions for the various
operators constructed in Propositions 11 and 12.
One can even do a little better and show that the positive square root S1/2 of
the matrix S is a matrix of gTo’s. Namely, using again (48) we can rewrite
(41) as

Sjm = (ν − 1)(δjmT
−1
[ν−1] − TzjTwTzm)

where w = (S∗
s[ν−1])

−1
x. By (48) and the same computation as in (51),

(δkjTa − TzkTbTzj )(δjmTa − TzjTbTzm) = δkmT
2
a − TzkT2(S∗a)b−b2Tzm .

Thus taking a = s
−1/2
[ν−1] and b = S∗

a −
√

(S∗a)2 −w we see that the ma-

trix of gTo’s T = (ν − 1)1/2[δjmT
−1/2
[ν−1] − TzjTbTzm ]dj,m=1 satisfies T 2 = S.

(Note that (S∗
a)2 −w = (S∗

s[ν−1])
−1/(1 + s) is a sequence with positive el-

ements; similarly one checks from T = (ν − 1)1/2T
−1/4
[ν−1] [δjm − TzjTcTzm ]T

−1/4
[ν−1]

with c = (S∗
s[ν−1])

1/2
b = 1− (1+ s)−1/2 ∈ (0, 1) that T is positive selfadjoint

as an operator on ⊕dH2(∂Bd).)

Remark. In general, it is not true that if T is a positive selfadjoint gTo (not nec-
essarily elliptic), then its positive square root T 1/2 is also a gTo. A counterex-
ample is furnished by T = Tz1Tz1 = T|z1|2 on H2(∂Bd), d > 1. Namely,

if T 1/2 =: TP , then TP has to be of order 0 with σ0(P )
2 = |z1|

2, which has no
solutions in C∞(∂Ω). �
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